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1 Introduction

The ion-temperature-gradient (ITG), a.k.a. the ηi mode,

ηi =
d lnTi
d lnn

, (1)

is another basic paradigm from the theory of transport in tokamaks. It is an important
example of reactive instability, i.e. instability that does not require dissipation. This
lecture presents the phenomenology related to ITG, illustrates the negative compress-
ibiliry nature of the ITG instability with the simplest physical model, and discusses
the implications of ITG for the energy transport and for the inward pinch of density.

Figure 1: The energy confinement
time τE vs density n̄e in ALCATOR
experiments, with ◦ and without •
the pellet injection

Importance of ITG in the tokamak
energy transport was definitively demon-
strated in the pellet-injection experiments
performed on the ALCATOR as shown in
Fig 1. Without • the pellet injection, the
energy confinement scaling obtained from
experiments demonstrates the transition
from linear τE ∝ n to saturated Ohmic
confinement (the LOC→ SOC transi-
tion), occurring due to the collisional cou-
pling between Ohmically heated electrons
and the ions. Experiments with ◦ pellet
injection removed the τE saturation, by
steepening the density gradient ∇n and
thus decreasing ηi.

Although the pellet injections were
motivated by the difficulty of edge fueling
and were not intended to improve con-
finement, observed recovery of the LOC
scaling demonstrated that peaked density
profiles are good for energy confinement.
This was direct evidence for anomalous
transport in agreement with the ηi-mode
analysis, and so the importance of ITG for energy transport in tokamaks was recognized.

1



The thermal diffusivity goes as χ ∼ 1/n in LOC. Suppressing the ηi
mode by pellet injection leaves electron drift waves as the only en-
ergy sink. The heat pulse propagation experiments done in the pellet
states resulted in τHPP ∼ n, and hence implicitly χ ∼ 1/n, which also
supports the recovery of LOC by peaking the density profile.

2 Simple ITG example

2.1 Derivation

To illustrate the onset of ITG instability, employ a fluid model for plasma with density
and temperature gradients Ti(x, y), n(x, y), located in the uniform magnetic field Bez.
The continuity equation is

∂n

∂t
+∇ · (nv) =

∂n

∂t
+ (∇n) · v⊥ + n(∇⊥v⊥ +∇||v||) = 0, (2)

where

v⊥ =
E×B

B2
= −∇Φ̃×B

B2
= −∇× (Φ̃B)

B2
. (3)

Linearized for perturbations ñ, ṽ ∼ exp(ikyy+ kzz−ωt), v⊥ = −ikyΦ̃ex/B and Eq. (2)
becomes

− ω ñ
n
− d ln(n)

dx

k̃y
B

Φ̃ + kzṽ|| = 0. (4)

The parallel velocity component ṽ|| is given by force balance along B,

min(
∂v||
∂t

+ v⊥ · ∇v||) = −∇||p̃i − n|e|∇||Φ̃. (5)

After linearization, Eq. (5) becomes

ωminṽ|| = kz(p̃+ |e|nΦ̃). (6)

Assuming adiabatic response from electrons, the ion temperature Ti can be obtained
from the ion’s equation of state pV 5/3 = const, which implies

d(pn−5/3)

dt
=
∂(pn−5/3)

∂t
+ v · ∇(

p

n5/3
) = 0, (7)
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or, after linearization,

p̃

p
− 5

3

ñ

n
+
iky
ωB

Φ̃(
d ln p

dx
− 5

3

d lnn

dx
) = 0. (8)

Recalling that from pV 5/3 = const follows

dp

p
− 5

3

dn

n
=
dT

T
− 2

3

dn

n
= 0, (9)

force balance (8) can be rewritten as

p̃

p
− 5

3

ñ

n
+
iky
ωB

Φ̃
d lnn

dx
(ηi −

2

3
) = 0. (10)

The perturbation density of ions then can then be expressed from (4, 6 ,11) as

ñ

n
+
kyΦ̃

ωB

d lnn

dx
=

(
kz
ω

)2
Ti
mi

[
5

3

ñ

n
+

ky
Bω

(ηi −
2

3
)
d lnn

dx
Φ̃ +

|e|Φ̃
Ti

]
(11)

Equating the ion density to the adiabatic response from the electrons |e|Φ̃/Te for per-
turbations with the spatial scale greater than the Debye radius gives dispersion relation

1− ω∗e
ω
−
(
kz
ω

)2
Ti
mi

[
5

3
+
Te
Ti

+
ω∗e
ω

(
ηi −

2

3

)]
= 0, (12)

where

ω∗e = −kyTe
eB

d lnn

dx
= 0. (13)

Dispersion relation (12) implies that high frequency ω � ω∗e perturbations result in
sound waves, while the low frequency ω � ω∗e can result in instability for ηi > 2/3,

ω � ω∗e ω � ω∗e

ω2 = k2z
mi

(Te + 5
3
Ti) > 0 (14) ω2 = k2zTi

mi
(2

3
− ηi), can have ω2 < 0 (15)

The value 2/3 for stability threshold comes from the equation of state (9) for ions, i.e.
Cp/Cv − 1 which is 2/3 for mono-atomic gas. It is important to note however that
since presented analysis does not account for ion Landau damping, it is only accurate
for ω � k||vTi i.e. for ITG mode with ηi � 1, and hence 2/3 is not a precise value
for instability threshold. The possibility of instability (15) despite adiabatic electron
response highlights the fundamental difference between ITG and electron drift modes,
where no instability occur for Boltzmann electrons.

2.2 Physics

Presented model is very useful for the physical understanding of the ITG mode, as dis-
cussed in the rest of this section. Specifically, it is instructive to note that in dispersion
relations (14, 15) for sound waves,

ω2 = k2(
dp

dρ
), (16)
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the dp/dρ is the compressibility of the medium, and so the instability of ITG mode
(15) is due to the negative compressibility v2

Ti
(2/3 − ηi). Note that the ion pressure

perturbation p̃i is

p̃i = niT̃i + ñiTi = niT̃i +
|e|Φ̃
Te

Ti, (17)

and so the negative compression is due to the phase difference between the ion tem-
perature perturbation T̃i/Ti and density perturbation given by the Boltzmann response
|e|Φ̃/Te. Such face difference occurs in presence of mean ion temperature gradient, as
can be illustrated for the case of large ∇〈Ti〉,

T̃i
Ti

= − v

iω

1

Ti

∂〈Ti〉
∂r

= −iω∗
γ
τi
eΦ̃

Te
. (18)

To further the understand the physics of instability due to negative compressibility, two
other prominent examples are discussed in the interlude below.

2.2.1 Jeans instability

The Jeans instability is an en example of negative compressibility in
self gravitating matter. Specifically, from continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (19)

equation of motion

ρ
dv

dt
= −∇p+ ρ∇φ (20)

and the Poisson equation for the gravitational potential,

∇2φ = 4πGρ (21)

follows
∂2

∂t2
ρ̃+ ρ

∂

∂t
∇ · ṽ = 0,

∂

∂t
∇ · ṽ = −∇

2ρ̃

ρ
−∇2φ,

∂2

∂t2
ρ̃

ρ
−∇2c2

s

(
ρ̃

ρ

)
− 4πρG

ρ̃

ρ
= 0,

resulting in the dispersion relation

ω2 = k2c2
s − 4πGρ = k2c2

s(1−
4πGρ0

c2
sk

2
). (22)

By the same analogy to the sound waves, 1− 4πGρ0/c
2
sk

2 is the com-
pressibility that can become negative for sufficiently small k, resulting
in the instability.
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2.2.2 PSFI

Relative of the ITG, the Parallel Shear Flow 〈v〉|| Instability occurs
due to negative compressibility from the phase shift introduced by
∇〈v||〉. Specifically, for case of flat density and temperature gradients,
∇n = ∇T = 0, in presence of parallel velocity gradient v||(r), the ion
continuity equation

∂

∂t

eΦ̃

T
+∇||v|| = 0 (23)

in presence of parallel velocity shear

∂ṽ

∂t
= −vER

∂

∂r
〈v||〉 − c2

s∇||
|e|Φ̃
T

(24)

implies
∂2

∂t2
|e|Φ̃
T

+∇||(−vEr
∂〈v||〉
∂r
− c2

s∇||
|e|Φ̃
T

) = 0,

resulting in dispersion relation

ω2 = −k||kθρscs
∂〈v||〉
∂r

+ k2
||c

2
s = −k||cs(kθρs

∂〈v||〉
∂r
− k||cs) (25)

Note that the parallel velocity shear ∂r〈v||〉 provides the energy source,
and the spectral asymmetry (k||kθ > 0 needed for instability with
∂r〈v||〉 < 0). At critical parallel shear velocity gradient, compressibility
becomes negative.
The PSFI can couple to ITG as neutral beam injections puts both heat
and the momentum for the parallel shear flow. Due to the coupling,
the turbulent viscosity χφ for the parallel flow is of the order of the
ion thermal diffusivity χi. The χφ ∼ χi is a robust result owing to the
fact that both ITG and PSFI are driven by negative compressibility.
The PSFI is most relative to regimes with the flat density profiles as
is typical for H-mode, and ind presence of strong eternal torque from
unbalanced neutral beam injection.

Coming back to the ITG mode, it is important to reiterate that the energy source is
the temperature gradient of ions and the ITG instability is more general than impact
of ηi on v2

Ti
(2/3 − ηi). Specifically, the full dispersion relation (12) in slab geometry

suggests that the ITG will still be unstable in the limit of flat density profile

1 +
k2
||c

2
s

ω3
ω∗Ti = 0⇒ ω = (−1)1/3(k2

||c
2
sω∗Ti)

1/3. (26)

The flat density regime is particularly relevant to H-mode, and (26) illustrates why ”ηi-
mode” naming got deprecated in favor of ITG. Furthermore, for toroidal geometry, the
stability parameter in addition to ηi also introduces dependence on stabilizing effects
from magnetic shear, as well as dependence on R/LT i and Ln/Ti due to the impact of
the curvature B×∇B drift.
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The nature of ITG instability in slab geometry is fundamentally different
from the toroidal geometry case. In case of slab ηi mode analyzed above,
the negative compressibility transforms the ion acoustic oscillations into
unstable compressional waves. In the toroidal model, the curvature
drift velocity induces charge separation and the electric field that drives
cross-field interchange of plasmas. This provides another mechanism to
release the thermal energy stored in ion pressure gradient.
Transition between curvature drift resonance (toroidal ITG branch)
and the slab drive was experimentally observed in ITG studies on the
Columbia Linear Machine (CLM), where the ITG was studies by start-
ing with the slab mode and gradually increasing the mirror-field.

3 On energy and particle transport

Since ITG instability occurs for the Boltzmann electrons, it can produce heat flux
in absence of particle transport. Indeed, since ñ/n ∼ |e|Φ̃/T is out of phase with
vr = v⊥ ·er ∝ B×∇Φ̃, the net particle flux across the magnetic surface Γ = 〈(n+ ñ)vr〉
is absent. In contrast, the heat flux created by the ITG driven turbulence is typically
sufficient to keep the temperature gradients close to marginal threshold, resulting in
“stiffness” of the the ion temperature gradient

ηi − ηi,crit ∝ Pα
OH , where α� 1 (27)

Important question related to the ITG-driven turbulent transport is the saturation
of ITG by Zonal Flows. Here the feedback loop is established between the turbulence
induced Reynolds stress driving the Zonal flow and the resulting Zonal flows suppressing
the turbulence by shearing apart the radial turbulent structures.

∇ · vpol →
d

dt
∇2
⊥φ→

∂

∂r
〈ṽr∇2φ̃〉 (28)

ITG is also an important example of profile corrugations effects, as it results in zonal
ion temperature profile corrugation and creations of zonal acoustic flows. Furthermore,
ITG leads to generation of zonal acoustic flows, which are an important example of
the plasma intrinsic rotation (rotation in absence of external momentum input). The
energy for differential rotation in plasma rotation comes from the heat input. The zonal
average for parallel flow equation

∂

∂t
〈v||〉+

∂

∂r
〈ṽrṽ||〉+ ... = 0 (29)

shows the rearrangement of total momentum, with the correlator 〈ṽrṽ||〉 equal to

〈ṽrṽ||〉 = Πr
〈Ti〉
∂r

, (30)

where

Πr = Re

{∑
n

|vr,n|2
(−i)v2

Ti
k||

Ti(ωr + 2γiωr − γ2)

}
, (31)
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Figure 2: One example of the intrinsic rotation is the differential rotation of the Sun,
observed experimentally in 1600s via a time series record of sunspot dynamics. Illus-
trations by Christopher Scheiner.

implying that the temperature graident ∂r〈Ti〉 can drive the momentum flux in the
form to drive a flow. Welcome to intrinsic rotation!

Qin

heat goes in

→ Ti
temperature gradient

→ Πr

parallel Reynolds stress
through symmetry braking

→ 〈v||〉
parallel flow

As was mentioned before, if electrons response is adiabatic there is no particle
transport. The net particle transport can result from modifying the Boltzmann response
in the basic ITG model by, for example, introducing a phase shift

ñk
n

=
|e|Φ̃k

T

(
1 + iδk

)
. (32)

This effect of ∇Ti driving the particle flux opens route to the up-gradient transport
i.e. the pinch. To understand the driving mechanism for up-gradient particle flux, it
is instructive to review the chemotaxis i.e. movement of bacteria in response to the
chemical concentration gradient.
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3.1 Chemotaxis: the Keller-Segal model

The motion of a microscopic organism can be approximated by random
walk. If all bacteria are traveling in the unbiased random walk, the
gradients of concentration will diffuse, i.e. the net bacteria flux is
always down the concentration slope. However, it is well known in
biology that in presence chemical concentration gradient (for example,
the “food” for bacteria) can cause the net bacteria flux to be up the
bacteria concentration gradient.
Consider a one dimensional model where each bacteria takes steps
of length ∆, has the body length α∆, and has receptors at each side.
Assume that the average step frequency f(c)depends on the mean con-
centration c of ”food” at the leading edge. Then bacteria located at
position x step right with the frequency f [c(x+ 0.5α∆)] and left with
f [c(x − 0.5α∆)]. Given the bacteria density n(x), the bacteria flux
Γ(x) is then

Γ(x) =

∫ x

x−∆

f [c(s+ 0.5α∆)]n(s)ds

steps to the right

−
∫ x+∆

x

f [c(s− 0.5α∆)]n(s)ds

steps to the left

.

(33)
Expanding (33) to the first order in ∆ gives

Γ(x) ≈ ∆2
(
− f [c(x)]n′(x) + (α− 1)f ′[c(x)]n(x)c′(x)

)
, (34)

where the first term describes diffusion of bacteria and hence always
directed against the density gradient n′(x), and the second term is the
chemotaxis response and can be up or down the concentration gradient
c′(x) depending on f and α.

The particle flux for the case of non-adiabatic electrons (32) is

Γ = 〈vr
ñ

n
〉 =

∑
k

i
cs
B
kθφ̃kiδk

|e|φ̃k
T

= −
∑
k

cs(kθρs)δk

∣∣∣∣eφ̃kT
∣∣∣∣2, (35)

where δk = δn/δ(|e|φ/T ) is set by the non-adiabatic electron response and is the phase
shift between the density and potential. Negative δk < 0 results in the outward flux,
while δk < 0 results in inward flux. This can be related to the Keller-Segal model, as δk
is effectively encoding the “food” while the fluctuation level |eφ̃k|/T accounts for the
energy for the steps. The response of δk to the density gradient δδk/δ∇n has to be
positive to comply with entropy production i.e. no negative particle diffusion should
be possible. From second law of thermodynamics

∂S

∂t
∼ −Γ∇n = D∇2n− σn∇n∇c > 0 (36)

follows that the concentration gradients allows for some entropy destruction by the
up-gradient flux. So, since up-gradient non-adiabatic particle flux driven by electrons
can not be produced by the density gradient, it has to be driven by the electron tem-
perature. The pinch is ultimately due to the electron temperature gradient, with ∇Te
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corresponding to gradient in concentration of “food” supply ∇c in Keller-Segal model.
Therefore, δδk/δ∇Te < 0 for the pinch and hence the temperature gradient and the den-
sity gradient from the non-adiabatic electron response have to have opposite phases,
arriving to the concept of ”Ion Mixing Mode” i.e. the ITG mode with collisional non-
adiabatic electron response that involves ∇Te. The electron temperature gradient shifts
the sign of δk to make the convection velocity negative V < 0. Part of the physics of
the Ion Mixing Mode is shown on the scheme below:

One needs to ensure the positive net entropy production,

∂

∂t

S

nT
= −∇〈n〉

n
Γn −

∇Ti
T

QTi
, (37)

equal to
∂

∂t

S

nT
= χi

(∇Ti
T

)2
+O(

ω

χ||k
2
||
)− ∇〈n〉

n
Γn. (38)

The second term in (38) is the growth rate correction and the last term is the positive
but small. In conclusion, more entropy is produced by relaxing the ion temperature
gradient than lost due to density peaking by the pinch. i.e. the relaxation of ∇Ti
dominates the entropy production. Summarizing the analogy with the Keller-Segal
model,

pinch Keller-Segal

density bacterial density

electron temperature gradient ∇Te “food” supply gradient∇c

ion temperature gradient ∇Ti bacterial energy

phases food sensors
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