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Abstract. This paper elucidates the close connections between hydro-
dynamic models of two-dimensional fluids and reduced models of
plasma dynamics in the presence of a strong magnetic field. The key
element is the similarity of the Coriolis force to the Lorentz force. The
reduced plasma model, the Hasegawa–Mima equation, is equivalent
to the two-dimensional ion vortex equation. The paper discusses the
history of the Hasegawa–Mima model and that of a related reduced sys-
tem called the Hasegawa–Wakatani model. The 2D fluid↔ magnetized
plasma analogy is exploited to argue that magnetized plasma turbu-
lence exhibits a dual cascade, including an inverse cascade of energy.
Generation of ordered mesoscopic flows in plasmas (akin to zonal jets)
is also explained. The paper concludes with a brief explanation of the
relevance of the quasi-2D dynamics to aspects of plasma confinement
physics.

1 Introduction and historical review

Plasma is a rich medium for studying the physics of fluids, in that a large num-
ber of characteristic modes (or waves) are accessible because of plasma’s collective
electromagnetic and hydrodynamic properties. In addition to the collective modes,
charged particles contribute to various forms of wave–particle interactions. These also
play important roles in determining its dynamical properties. Magnetically confined
plasma contains various forms of intrinsic free energy that may lead to excitation
of these dynamics. Excited modes often behave nonlinearly through wave–wave or
wave–particle interactions that broaden spectra. Their energy tends to cascade to
lower frequency modes, leading to turbulent states, sometimes with self-organized
structures. When frequencies of the characteristic modes are much higher than the
rate of nonlinear frequency shifts or energy transfer rates, the turbulent dynamics
can be treated by wave kinetic equations for wave action density (here, action is the
ratio of wave energy density to its characteristic frequency), which is preserved in the
phase space of wave number and position. Here the wave frequency and wave number
play the role of energy and canonical momentum of the wave quantum, a consequence
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of the Wentzel–Kramers–Brillouin (WKB) approximation. The characteristic modes
sometimes do not satisfy the golden rule of the wave action conservation, owing to
strong nonlinear interactions in which the rate of wave energy cascades exceeds the
characteristic frequencies. Then the turbulence characteristics become hydrodynamic
in nature, in which the characteristic modes are masked and the turbulence spectra
can be described only in wave number space. Here Kolmogorov’s idea of inertial range
spectra plays an important role. When this type of situation arises, plasma physicists
call it a strong turbulent state. Strongly turbulent plasma sometimes exhibits non-
trivial characteristics, e.g. when the system possesses global conservations in addition
to energy and self-organizes into various interesting structures. Because of the rich
characteristics of plasma such situations often arise (see examples in Hasegawa 1985).
This paper describes one example where the self-organized state produced by drift
wave instability, an instability intrinsic to inhomogeneous plasma, provides favorable
self-organized state for confinement of the plasma energy.

Pressure gradients in magnetically confined plasmas induce various micro-
instabilities with perpendicular scale sizes on the order of ion gyro radius ρi and
frequencies ωd of the order of vd/ρi ∼ ωciρi/a where ωci is the ion cyclotron fre-
quency, vd is the diamagnetic drift speed and a is the perpendicular scale size of
the plasma. Instabilities of this type do not stabilize easily because they are intrinsic
to plasmas with inhomogeneity in plasma temperature and/or density. As a result,
instabilities have often been called universal instability, or more specifically drift wave
instability. Early theoretical research on this type of turbulence was centered on the
so-called weak turbulence theory that allowed small frequency spread around the lin-
ear drift wave frequency (e.g. Sagdeev and Galeev, 1969). Pioneering experimental
observations by Mazzucato (1976) by microwave scattering and by Surko and Slusher
(1976) by laser scattering from the ATC Tokamak at Princeton Plasma Laboratory
in early 1970s have revealed the existence of density fluctuations produced by these
instabilities. However, contrary to theoretical expectations prior to this time, the
observed density fluctuation had frequency spectra much broader than the drift wave
frequency itself. As a result, the observed broad spectra were suspected to be caused
by the sampling of the scattered signal integrated over the path of the ray of the
diagnostic signal. To clarify the spectra, Slusher and Surko (1978) improved the scat-
tering experiment by employing pinpoint dual laser scattering and showed that the
broad spectrum is not caused by the effect of integrated path average but is intrinsic
and local to the turbulence.

At Bell Laboratories where Surko and Slusher brought back the scattering data,
Hasegawa and Mima (a postdoc who was working with Hasegawa), had the oppor-
tunity to discuss the experimental results directly with them. These experimental
observations have required development of new theory of strong drift wave turbulence
that should explain compressive plasma fluctuations with broad frequency spectra.
The so-called strong turbulence theory existed prior to this time, using E×B nonlin-
earity. However, the associated plasma flow is incompressible, and thus is irrelevant
to explain the observed density fluctuations (if the non-adiabatic electron response
is negligible). Hasegawa and Mima (1977) recognized that the polarization drift is
compressible and nonlinear since the total (not partial) time derivative of the electric
field is inducing the drift and constructed a model quasi-two dimensional nonlinear
equation for density fluctuations with the polarization drift of ions, together with
the assumption of Boltzmann electron response. Note that the strong toroidal mag-
netic field tends to confine ion motions in the plane perpendicular to the magnetic
field, while electrons with light mass are expected to move freely in the direction
of the magnetic field, causing electron density to obey the Boltzmann distribution.
The derivation of the Hasegawa–Mima equation is recalled in Section 2. Later this
equation was rewritten in the real space variables (Hasegawa et al., 1979) and used



A. Hasegawa and K. Mima : Strong turbulence, self-organization, . . . 501

to present the property of producing strong plasma turbulence even with the normal-
ized amplitude of the density fluctuation much smaller than unity. In other words,
nonlinear frequency shift becomes comparable to the linear drift frequency, ωd, even
at relatively small level of turbulence density fluctuations, ñ/n0 ≈ ρi/a, where n0 is
the background density.

It was later recognized, through discussions with the late Professor Tosiya Taniuti,
that the model equation derived by Hasegawa and Mima may be identified as the ion
vortex equation with convective E ×B motion of vorticity. This recognition eluci-
dated the relation between the drift wave turbulence and hydrodynamic turbulence.
The identification also led Hasegawa et al. (1979) to adopt results of hydrodynamic
turbulence developed by Kolmogorov (1941) and Kraichnan (1967), who introduced
the concept of inertial range turbulence spectra for three- and two-dimensional flu-
ids respectively. The inverse cascade, which had been predicted by Kraichnan for
two-dimensional fluids turbulence, is a consequence of the existence of an additional
conservative quantity called the enstrophy (squared vorticity). The Hasegawa–Mima
equation does possess two conservation quantities, energy and potential enstrophy, a
combination of enstrophy and density perturbation. The analogy between the plasma
dynamics based on the Hasegawa–Mima equation and the two-dimensional hydrody-
namics has led Hasegawa et al. (1979) to look into the spectral cascades of the drift
wave turbulence based on combination of weak turbulence and strong turbulence con-
cepts. The weak turbulence approach led to cascade of turbulence spectra to smaller
frequencies, which led to smaller wave numbers of the spectra in the direction per-
pendicular to the density gradients but to larger wave numbers in the direction of the
density gradient to k⊥%i ≈ 1. This concept lead to possible formation of zonal flows
in the azimuthal direction in cylindrical plasma for the first time. On the other hand,
the inverse cascade concept of the two-dimensional Navier–Stokes turbulence led to
isotropic cascade and smaller wavenumbers. The choice between the weak turbulence
and the hydrodynamic turbulence seemed to depend on the level or strength of the
turbulence.

Recognition of the analogy of the drift wave turbulence and two-dimensional
hydrodynamic turbulence also led Hasegawa et al. (1979) to relate the drift wave
to the Rossby wave (Rossby et al., 1939) on the surface of the atmosphere of rotating
planets. Here the gradient of the Coriolis parameter influences the density gradient
in forming the wave frequency. More precise comparison between the Rossby wave
and a drift wave in a plasma holds when a gradient of the magnetic field intensity,
rather than the density, is introduced in the plasma. The mathematical structure of
the Hasegawa–Mima equation, however, is quite analogous to that of the Charney
equation (Charney, 1948) that describes the turbulent nature of the Rossby wave.
The analogy is quite indicative of production of asymmetric property of vortices
depending on whether they have a high pressure or low pressure core as well as pos-
sible excitation of azimuthal zonal flows in plasma similar to the one observed in the
Jovian atmosphere (Williams, 1978; Hasegawa, 1983).

The model equation derived by Hasegawa and Mima successfully describes nonlin-
ear evolution of the drift wave, but lacks a dissipation process that would drive (and
dissipate) the drift wave instability. In other words, the linearized equation does not
produce an unstable wave. In order to show the instability, either electron Landau
damping or resistivity that provides phase lag in electron motion (in the direction of
the ambient magnetic field) with respect to the potential field is required. Without
a driving mechanism, the dynamical process that leads to strong turbulence cannot
be properly studied.

Computer simulation is a powerful tool for analyzing the dynamical process that
leads to full turbulence. However, to simulate the full development of the instability
starting from the linear instability, one needs a computer sufficiently powerful to fol-
low electron inertia as well as ion inertia that have a time difference of three orders
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of magnitude. Unlike hydrodynamic turbulence, the mass ratio problem in plasma
particles has been a major obstacle in the numerical study of plasma turbulence
(until recently). However, representing electron inertia by electron resistivity that
can provide effective time lag in the electron response in the parallel motion can also
drive drift wave instability. Based on this concept, Hasegawa, together with the late
Professor Masahiro Wakatani of Kyoto University (Wakatani and Hasegawa, 1984),
developed a simulation model that allows resistive growth of the drift wave and sink
by ion viscosity to study turbulent spectra cascades based on the Hasegawa–Mima
model. As shown in Section 3, the model equation now involves two dependent field
variables, potential ϕ and number density n. The wave number spectrum obtained
reveals two-dimensional inertial range spectrum of the enstrophy in large wave num-
ber regime of the type k−3. This result indicates that the energy spectrum will have
an inverse cascade nature and will form a self-organized structure. The collaborative
works of Hasegawa and Wakatani continued and in 1987 (Hasegawa and Wakatani,
1987), we examined the self-organized state of the turbulence via inverse cascade of
energy in a cylindrical plasma (Hasegawa, 1987). Wakatani suggested introducing
magnetic curvature that can drive global hydrodynamic instability, as well. If the
free energy source is large enough, the level of wave amplitude will become larger
than the ratio of the drift wave frequency to the ion cyclotron frequency and strong
turbulence is expected to result globally. This may be the case when the wave is
generated by a combination of magnetic field curvature and a pressure gradient. The
model equation again involves two dependent variables, the electrostatic potential,
ϕ and the density fluctuation, n. With this model equation, we showed that the
excited turbulence forms macroscopic (azimuthal) zonal flow. The structure of the
zonal flow was explained in terms of the hydrodynamical self-organization concept
with the help of the variational principle of minimizing the potential enstrophy with
constraints of constant energy and fluid angular momentum. Furthermore, the macro-
scopic zonal flow produces a radial potential barrier, i.e. closed equipotential line in
the azimuthal direction. Hasegawa and Wakatani claimed that the potential barrier
would stop radial electron heat flow, aiding confinement of the plasma. The result was
surprising, because plasma turbulence was shown to reduce radial transport for the
first time, rather than enhance transport, unlike earlier predictions. It is now believed
that the inhibition of radial particle transport by the azimuthal flow (zonal and mean)
can account for the H-mode operation of tokamak plasmas (e.g. Biglari et al., 1990;
Diamond et al., 2005). The derivation of the Hasegawa and Wakatani equation and
the simulation result are introduced in Section 3. It was later recognized that the
zonal flow excites the geodesic acoustic mode (GAM) in toroidal plasmas, which has
a characteristic frequency that depends on the geometry of the device (e.g. Hamada
et al., 2012). This has been helpful in experimental identification of the zonal flow.

For over a quarter of a century, the fundamental properties of plasma turbulence –
the existence of strong turbulence, inverse cascade of turbulent energy and formation
of zonal flow, as well as the reduction of the radial transport by the excitation of the
zonal flow – have been verified by a large number of experiments, theory and simula-
tions [see reviews by Diamond et al. (2005), Fujisawa (2009) and Kikuchi and Azumi
(2015)]. It is now understood that the drift wave amplitude is regulated by zonal
flows, the transport flux depends upon the drift wave amplitudes, and the transport
flux decreases when the zonal flow amplitudes increase. Therefore, the transport flux
depends upon the dissipation rate of the zonal flows (Fig. 1). The system is open to
external energy input and energy sink. The quasi-equilibrium pressure profile is main-
tained by the injected low entropy energy. The increased system entropy is exhausted
by the energy sink, which allows maintenance of the low entropy state of the system.

In this way, the energy and particle transport phenomena are closely related to
the drift wave turbulence and the zonal flows. The existence of zonal flows is verified
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Fig. 1. Schematic of system of drift wave and zonal flow plasma turbulences and transport.
Inhomogeneity of plasmas (density and temperature gradient) generates the drift wave that
produces enhancement of transport and simultaneously zonal flow turbulence that reduces
transport [see more detail in Fujisawa (2009)]. Note that the system is open to external
energy input and energy sink. Increased system entropy is exhausted, which in return allows
maintenance of a low entropy state of the system.

experimentally by observing, for example, the correlation of the potential fluctua-
tions in the toroidal direction by the HIBP’s (Heavy Ion Beam Probes) (Fujisawa,
2009). The experimental results show the characteristics of the zonal flows, which
are (1) symmetric around the magnetic axis, (2) of finite radial wavelength, and (3)
nonlinearly coupled with drift waves.

It may also be helpful to contrast weak versus strong turbulence theory in the
context of their historical evolution. The frequency spectra of the turbulent fluctu-
ations, and the implications of these for the temporal evolution of the system, have
been common foci of studies of various types of plasma turbulence, including those
of drift waves, Langmuir waves, whistler waves, Alfven waves, etc. In those systems,
two nonlinear wave interaction processes are widely investigated, as they play impor-
tant roles in the spectral evolution. These are mode–mode coupling and modulational
instability (Taniuti and Washimi, 1968), which often trigger inverse cascades.

In the mode–mode coupling and/or wave particle scattering (nonlinear Landau
damping), the total number of quanta (the total action) is conserved (the Manley–
Rowe relation) for the non-zero frequency fluctuations and the spectra cascade into
lower frequency modes. Through these processes, the turbulent fluctuation energy
is transferred into long wavelength modes. As the final state of the inverse cas-
cade, all the wave energy is expected to condensate into the minimum frequency
mode of the system. These processes are common in various turbulences, such as
drift wave turbulence (Hasegawa et al., 1979), Langmuir wave turbulence (Zakharov,
1972), kinetic Alfven wave (Hasegawa and Chen, 1975) turbulence, EMHD turbulence
(Biskamp et al., 1996) and whistler wave turbulence (Galtier and Bhattacharjee,
2003).

The second process is the modulational instability, which generates long wave-
length fluctuations, namely the low frequency modes. The modulational insta-
bility of drift wave turbulence has been investigated by Mima and Lee (1980),
Diamond and Kim (1991), and Tynan et al. (2001). The coupling between drift
waves and zero frequency modes, namely the axisymmetric mode, and zonal flow
has been investigated by Rosenbluth and Hinton (1998), Diamond et al. (2000), and
Nagashima et al. (2009). The modulational instability is driven by Reynolds stress in
the drift wave turbulence. In drift wave turbulence theory, the shearing of drift waves
by the zonal flows plays an important role in reducing the radial correlation of the
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E ×B vortices to decrease the fluctuation level and the transport (Diamond et al.,
2000). These ideas are described in Section 4.

It is worthwhile to present in this account an alternative plasma confinement
scheme where the self-organization is achieved by maximizing the global entropy of a
plasma in a closed system (Hasegawa, 1987). The idea is based on the observed high
beta stable plasma confinement in planetary magnetosphere where plasma confine-
ment is achieved by distribution of plasma energy uniformly among magnetic flux
tubes in the dipole magnetic field. In an ideal point dipole, the flux tube volume
increases in proportion to r4, where r is the distance from the point dipole core. A
uniformly distributed energy among flux tubes presents a rather steep pressure pro-
file p ∼ r−20/3, which can provide sufficiently large energy density near the core for
fusion to take place. Such a confinement scheme will be presented in Section 5.

2 Hasegawa–Mima equation

When Mima was visiting Hasegawa at Bell Laboratories in 1976, Surko and Slusher
(1976) brought back interesting laser scattering data from the tokamak at Princeton.
The data supported those obtained by Mazzucato (1976) obtained using microwave
scattering, showing a very broad frequency spectrum – one wider than the expected
drift frequency itself. Hasegawa and Mima were intrigued by the data and immedi-
ately constructed a theory of drift wave turbulence to account for this unexpected
result. In response to criticism suggesting that the broad spectra might have been due
the path averaging of the scattering date, Slusher and Surko (1978) later performed
a pinpoint scattering experiment by means of two lasers, demonstrating the validly
of the earlier date.

We recognized that in order to account for the density fluctuation observed in
those data, it was necessary to take compressible ion flow into account. Since E ×B
drift is incompressible, we recognized the importance of the polarization drift, which
is intrinsically nonlinear because of the convective electric field. We then realized
that this nonlinear polarization drift could best represent the nonlinearity needed
to account for the observed broad spectrum and constructed the mass conserva-
tion equation, taking into account the ion polarization drift and Boltzmann electron
response. The resulting nonlinear equation, which is now called the Hasegawa–Mima
equation, is shown to properly account for the observed broad frequency of the den-
sity fluctuation. The nonlinear frequency shift caused by the nonlinear polarization
drift can become comparable to the linear drift wave frequency itself, even at the
level of density fluctuation relative to the background density much less than unity.

Thanks to a number of intensive discussions with the late Professor Taniuti, close
connections were recognized between the Hasegawa–Mima equation and hydrody-
namic equations for two-dimensional fluids as well as waves in atmospheres. The
discussion further identified the Hasegawa–Mima equation as being nothing but the
two-dimensional ion vortex equation.

2.1 Derivation of Hasegawa–Mima equation

Let us re-derive the Hasegawa–Mima equation based on the ion vortex concept. The
ion vorticity Ω due to the E ×B drift can describe the Laplacian of the electrostatic
potential, ϕ

Ω = (∇× v⊥) · ẑ = ∇×
(
−∇φ× ẑ

B0

)
=
∇2
⊥φ

B0

_
z . (1)
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Here, B0 is the flux density of the ambient magnetic field and ∇2
⊥ is the Laplacian

operator in the direction perpendicular to the magnetic field. The equation of ion
vorticity can be constructed by taking the curl of the ion equation of motion in the
direction normal to the ambient magnetic field. If the pressure and density gradients
are parallel (no baroclinic effect), we obtain a conservation equation for the total ion
vorticity,

d

dt
(Ω + ωci) + (Ω + ωci)∇ · v⊥ = 0. (2)

Here ωci is the ion cyclotron frequency and represents the magnetic vorticity and the
time derivative is a Lagrangian (or convective) derivative to be explicitly shown in
equation (4). The compressible ion flow is related to the ion density fluctuation, n,
through the continuity equation,

∇ · v⊥ = − d

dt
lnn =

d

dt

(
lnn0 +

eφ

Te

)
. (3)

The quasi-neutrality condition relates the ion density fluctuation to that of electrons,
which will obey the Boltzmann equilibrium in this frequency range due to their
inertia-less motions along the magnetic field. Even if ion dynamics are treated in a
two-dimensional plane perpendicular to the direction of the magnetic field, electrons
move freely in three dimensions. From equations (2) and (3), we can construct the
equation for ion vorticity for its compressible flow,

d

dt

(
ln
ωci
n0

+
Ω

ωci
+
eφ

Te

)
≡

(
∂

∂t
− ∇φ×

_
z

B0
· ∇

)(
ln
ωci
n0

+
Ω

ωci
+
eφ

Te

)
= 0. (4)

We note here that we made no assumption on the amplitude of the variables and
thus equations (1) and (4) are exact and fully nonlinear. Equation (4) also shows
that the time evolution of vorticity and potential becomes nonlinear due to the non-
linear convection of the ion vorticity, as is expected, while the nonlinear convection
of the potential does not contribute to nonlinear responses since ∇ϕ× ẑ is orthogo-
nal to ∇ϕ. We further note that in equations (1) and (4), the wave amplitudes are
represented by normalized ion vorticity and field potential, which by themselves, are
small quantities. However, their space-time evolutions are balanced with the spatial
scale of background magnetic field and density, which are also small since spatial
variation of them are small in a distance of the ion Lamor radius. Therefore, the
space-time evolution of the potential field becomes fully nonlinear if the normalized
potential field, eϕ/Te becomes on the order of the Larmor radius to the scale size of
the plasma density variation, which is typically the size of the plasma minor radius.
Thus, for these space-time scales, the evolution of the potential field becomes fully
nonlinear and is given by,

∂

∂t
(∇2
⊥φ− φ)− [(∇φ− _

z ) · ∇]

[
∇2
⊥φ−

1

ε
ln

(
n0

ωci

)]
= 0. (5)

Here the small parameter ε represents the normalized amplitude as well as the time
as shown below,

εωcit ≡ t, x/ρs ≡ x, eφ/Te ≡ εφ, where ρs =
√
Te/mi/ωci. (6)
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Equation (5) describes the fundamental property of electrostatic plasma turbulence
in the drift wave frequency range in the absence of dissipations and is often referred
to as the Hasegawa–Mima equation.

Inspection of equation (5) reveals several important properties of the potential
field:

1. The time evolution scale is much smaller than the ion cyclotron frequency.

2. The (drift) wave nature is produced by inhomogeneity of plasma density and/or
magnetic fields.

3. All the terms have comparable magnitudes if the scale of inhomogeneity within
the distance of the ion Larmor radius is on the order of the normalized
amplitude, ε, or less, and the equation becomes fully nonlinear.

4. Any potential function that depends only on the coordinate orthogonal to the
direction of inhomogeneity is an exact solution.

Property #3 immediately accounts for the broad frequency spectra of drift wave
turbulence observed by Mazzucato and by Surko and Slusher. This occurs when the
drift wave becomes fully nonlinear – if the normalized amplitude becomes on the order
of the ratio of ion Lamor radius over the scale length of the plasma density variation.
In addition, property #4 indicates the appearance of zonal flow since a potential field
that is any function of radius (if the background density and or magnetic field varies
only in the direction of radius) is an exact solution.

2.2 Conservation laws, inverse cascades in kinetic and hydrodynamic regime

The model equation (5) that describes the drift wave turbulence demonstrates that
drift wave becomes fully nonlinear even at a very low fluctuation level. In this section,
we describe general properties of drift wave turbulence in hydrodynamic as well as
in kinetic regimes based on this model equation.

2.2.1 Conservation laws

In the absence of inhomogeneity (the conservation laws in the presence of inhomo-
geneity will be discussed in Sect. 3), equation (5) has interesting conservation laws
and consequences. First, it has energy conservation, which can be constructed by
multiplying it with ϕ and integrating over the volume surrounded by a conductor
wall,

∂W

∂t
≡ ∂

∂t

∫ [
(∇⊥φ)2 + φ2

]
dV = 0. (7)

Thus, the sum of the kinetic and potential energies is conserved. The interesting part
of the conservation law is that there exists additional conservation. The additional
conservation is the sum of the enstrophy, the squared vorticity, and the kinetic energy,
sometimes called as potential enstrophy,

∂U

∂t
≡ ∂

∂t

∫ [
(∇⊥φ)2 + (∇2

⊥φ)2
]
dV = 0. (8)
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The presence of conservation of the (potential) enstrophy, in addition to the energy, is
familiar in two-dimensional hydrodynamics. As a result, interesting turbulence phe-
nomena, such as dual cascades of turbulent spectra, is expected (see Kraichnan, 1967).
We will discuss the physical mechanism and indication of the dual cascades in plasmas
later in this section.

2.2.2 Boltzmann statistics

In the absence of dissipation, the Boltzmann statistics that are obtained by maximiz-
ing the entropy in such a system has a strange character because of the additional
constraint that comes from the enstrophy conservation: the distribution function f
that maximizes entropy with constraints of conservation of energy and enstrophy is
obtained by variational principle,

δ

(∫
f ln fdV − λ1W − λ2U

)
= 0. (9)

Here λs are Lagrange multipliers, and the resultant distribution function is given by

f ∼ exp(−λ1W − λ2U). (10)

In the wave number space, since Uk = k2Wk, the average energy per mode becomes,
from equation (10),

〈Wk〉 =
1

λ1 + k2λ2
. (11)

As pointed out by Onsager (1949), this result not only violates the equipartition law
but also could result in a negative temperature if the product of λ1 and λ2 is negative.
Thus, modal statistics can be strange, indicating consequences such as unexpected
states.

2.2.3 Self-organized state in hydrodynamic regime

In the presence of dissipation, turbulence described by the Hasegawa–Mima equation
for a homogeneous plasma may lead to a dual cascade of the spectrum as a result
of the two conserved quantities, the energy and the enstrophy, in a way similar to
the two dimensional Navier–Stokes turbulence, as described by Kraichnan (1967).
The inertial range Kolmogorov spectra (Kolmogorov, 1941) can be defined dually,
one for energy and the other for enstrophy. Kraichnan argues that when a two-
dimensional fluid is excited at a wave number ks, the enstrophy spectrum would
cascade to large wave numbers, because it will be dissipated by viscosity, owing to
higher order dependence of wavenumber k than the energy. This will lead to inertial
range spectrum of enstrophy, where the omnidirectional energy spectrum will be
given by k−3. Kraichnan showed that in this spectrum range there is no energy
cascade. On the other hand, the omnidirectional Kolmogorov spectrum given by
k−5/3, applies to the range of wave numbers that give energy cascade, which applied
to wave numbers smaller than ks in two-dimensional fluids. Here there is no enstrophy
cascade. In hydrodynamic turbulence, the energy cascades to small wave numbers and
condensates to the minimum wave number that the system allows, while the enstrophy
cascades to large wavenumbers where it is dissipated by viscosity. This is a process
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of self-organization of two-dimensional turbulence. In homogeneous plasma, the self-
organized state can simply be described by variation of minimizing the enstrophy
with the constraint of constant energy, Hasegawa (1985),

δ

(∫
U − λW

)
= 0. (12)

With the help of the definition of the energy and the enstrophy in equations (7), (9)
and (12) gives the eigenvalue equation for ϕ,

∇2φ+ λφ = 0. (13)

This equation may be solved for a given boundary condition and the smallest
eigenvalue gives the self-organized state.

2.2.4 Weak turbulence theory

If the normalized amplitude of the wave is much smaller than the ratio of the drift
wave frequency to the ion cyclotron frequency, the nonlinear term in the Hasegawa–
Mima equation may be treated as perturbation and the evolution of the turbulent
spectrum may be studied using the weak turbulence theory. We take three waves with
wave numbers k1,k2, and k3, such that

k2
1 ≤ k2

2 ≤ k2
3.

The linearized Hasegawa–Mima equation gives the drift wave frequency as

ωk =
(k× _

z ) · ∇ln(n0/ωci)

ε(1 + k2)
, (14)

and the nonlinear term can be treated as a perturbation to produce coupling of the
three waves (Hasegawa et al., 1979). In the three-wave couplings, the number of wave
quanta may be defined by

Np = (1 + k2
p)|ϕp|2/|k2

q − k2
r |, k2

p 6= k2
r , (15)

where ϕp is the Fourier amplitude of the pth mode. The wave quanta are conserved
such that,

N3 −N1 = const., N1 +N2 = const., N2 +N3 = const.

This result shows that a loss of one quantum of the wave with wave number k2

appears as a gain in one quantum of the wave with the wave numbers given by k1 or
k3. This indicates a dual cascade of energy to smaller and larger wave numbers. A
clearer picture that is consistent with the well-known weak turbulence result can be
obtained by requiring resonant three wave interactions such that the wave matching
condition is satisfied. This is possible in small wave number region such that,

k2
p − k2

q = kqy/ωq − kry/ωr = ωpM, (16)
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Fig. 2. Zonal flow pattern predicted from the weak turbulence theory.

where ky is the wave number in the direction of
_
z ×∇lnn0 and

M =
ωp(kry − kqy) + ωq(kpy − kry) + ωr(kqy − kpy)

3ωpωqωr
. (17)

In this regime, the wave energy decays into smaller frequencies since the wave quanta
defined by

Nk = Wk/~ωk, (18)

is conserved. Since the drift wave frequency is proportional to ky, this result indicates
that the wave energy decays to that with smaller ky, keeping kx more or less constant
at 1/ρs (≡kc). In cylindrical plasma, this indicates that the wave energy cascades to
a mode having zero azimuthal wave numbers as shown in Figure 2, with radial wave
number being kept at kc.

The theory presented by Hasegawa et al. (1979) is the first prediction of the
formation of the zonal flow. It should be noticed, however, that at the limit of zero-
frequency the wave-quantum concept of weak turbulence theory breaks down, thus
the introduction of hydrodynamical turbulence is unavoidable.

3 Hasegawa–Wakatani model, prediction of the zonal flow
in hydrodynamic regime and plasma confinement

The model equation derived by Hasegawa and Mima successfully describes nonlinear
evolution of the drift wave but lacks a dissipation process that drives the drift wave
instability. Representing electron inertia by electron resistivity that can provide effec-
tive time lag in the electron parallel motion can also drive drift wave instability. Based
on this concept, Hasegawa together with Wakatani (Hasegawa and Wakatani, 1983),
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developed a simulation model that allows resistive growth of the drift wave and sink
by ion viscosity and studied turbulent spectra cascade based on the Hasegawa–Mima
model. The model equation involves two dependent variables, potential ϕ and number
density n. The wave number spectrum obtained has revealed two-dimensional inertial
range spectrum of the enstrophy in large wave number regime of the type k−3. This
result indicates that the energy spectrum will have inverse cascade nature and will
form a self-organized structure. The collaborative works of Hasegawa with Wakatani
continued and in 1987 (Hasegawa and Wakatani, 1987), we decided to look into the
self-organized state of the turbulence via inverse cascade of energy in a cylindrical
plasma. Wakatani suggested introducing magnetic curvature that could drive global
hydrodynamic instability, as well. The model equation again involves two dependent
variables, the electrostatic potential, φ, and the density fluctuation, n. In a cylindrical
geometry, the equation of vorticity reads,

ρ2
s

a2

d

dt
∇2
⊥φ = (∇ lnn×∇∆)· _z +

ωce
vei

( a
R

)2

∇2
||(lnn− φ) +

µ

ωcia2
∇4
⊥φ. (19)

Here ∆ represents the curvature of the toroidal magnetic field, ωce and υei are electron
cyclotron frequency and electron–ion collision frequency, a and R are minor and major
radia of the toroidal container, and µ represents the ion viscosity. The equation of
continuity is also modified due to the curvature and reads,

d

dt
lnn = (∇ lnn×∇∆)· _z +

ωce
vei

( a
R

)2

∇2
||(lnn− φ). (20)

Equations (19) and (20) form a closed set of nonlinear equations that describe evolu-
tion of the potential and density fields. Even in the presence of the curvature term, it
can be shown that in the in viscid limit, the total energy, W and potential enstrophy,
U are conserved;

W =
1

2

∫ [
(lnn)2 +

ρ2
s

a2
(∇⊥φ)2

]
dV, (21)

and

U =
1

2

∫ [
ρ2
s

a2
∇2
⊥φ− lnn

]2

dV. (22)

3.1 Result of simulation and discovery of the zonal flow

The conservation of W and U indicates that the existence of inverse cascade of
energy spectrum as discussed earlier. In the case of toroidal plasma, in addition to
these two conservations, the total angular momentum in the poloidal direction (which
should be zero) should also be conserved. Thus, the self-organized state should be
obtained by minimizing the potential enstrophy (22), with constrains of conservation
of energy (21) as well as the total toroidal angular momentum. The minimization of
the potential enstrophy with these constraints will lead to a self-organized structure in
which the minimum eigenvalue having a node between the center and the wall will give
the self-organized potential field. As a result, at self-organization, the radial electric
field reverses its sign at some radial position. This will lead to generation of global
azimuthal flow of the plasma that will have a shear. Equations (19) and (20) trace
the evolution of the turbulence field excited by the magnetic field curvature, together
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Fig. 3. Equipotential contours of simulation results obtained from equations (19) and
(20). The solid (dotted) lines are for positive (negative) equipotential. The curvature-driven
plasma turbulence produces a self-organized state in which a global equipotential that a
ϕ = 0 closed surface near outer edge of the plasma. We note here that positive potential
regions near the core region designated by solid lines have large structures while negative
potential regions designated by dotted lines near the edge have small structures.

with given density gradient. Results of the simulation are shown in Figure 3. Here the
left figure is the initial potential profile (stream function), which is randomly given,
and the right figure shows the potential profile at a final time. Here solid (dotted)
lines show positive (negative) equipotential lines.

As illustrated in Figure 3b, the self-organized state produces an equipotential line
that has a closed node at some outer radial position indicating the formation of a
global azimuthal shear flow. In Figure 4, we show the evolution of the radial potential
profile in the simulation. Here, the solid line indicates the theoretically predicted self-
organized state based on the minimization of the potential enstrophy with constraints
of both the total energy and the global angular momentum. This figure shows that
the self-organized state produces a global radial electric field that reverses its sign.
This electric field creates an E ×B rotation of the plasma in the azimuthal direction
that changes direction at some radius, indicating a generation of an azimuthal shear
flow. This is the first observation of a zonal flow generation in turbulent plasma. The
zonal flow structure is global rather than microscopic, unlike that indicated by kinetic
theory (Fig. 1). It may be due to the fact that the instability here is driven by global
magnetic field curvature that is hydrodynamic.

3.2 What are the effects of zonal flow on plasma transport?

Zonal flows have been observed to inhibit transport of vortex eddies across the flows.
One well-known example is the atmospheric dynamics of the planet Jupiter. As has
been demonstrated by Hasegawa et al. (1979), the Hasegawa–Mima equation has a
structure mathematically identical to that which describes the horizontal motion of
planet atmosphere with gravity and gradient of Coriolis force. On a planet surface,
the latitudinal direction in which the Coriolis parameter varies corresponds to the
radial direction in cylindrical plasma, the longitudinal direction corresponds to the
azimuthal direction and the vertical direction to the axial direction. Figure 5 is a
well-known photograph of the Jovian atmosphere.

Existence of longitudinal zonal flow is clearly visible. The zonal flows inhibit
convection of atmospheric vortices in the latitudinal direction across the zonal flows.
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Fig. 4. Temporal variations of the radial profile of axis symmetric potential profile are shown
for different time. The solid line is the theoretically predicted potential profile obtained from
the self-organization theory.

Fig. 5. A profile of atmospheric motion on Jovian surface. Existence of longitudinal zonal
flows is clearly visible. The zonal flows are seen to inhibit convection of atmospheric vortices
in the latitudinal direction crossing the flow.

For example, the red spot seen on the right lower side of the picture is found to be
stably trapped over several centuries.

Comparison of the mathematical structure of the model equation that describes
the plasma turbulence in the magnetic field to that of the planetary atmospheric
motion indicates that a similar turbulent dynamic may also operate in plasmas.
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Fig. 6. Simulation result obtained by Xiao et al. (2010). The figure shows time evolution
of electron heat transports. The solid line is the heat transport obtained in the simulation
where self-generated zonal flow is present, while the dotted lines is the heat transport in
which the zonal flows are artificially removed.

The simulation result obtained by Hasegawa (1987) indicates that convection of
the plasma vortices seems to be inhibited across the equipotential surface of ϕ = 0.
Because electrons are expected to move on the constant ϕ surface, they cannot move
across the equipotential surface. Furthermore, if vortices cannot convect across this
surface, zonal flows are expected to inhibit ion motion also in the radial direction.
Interestingly, this indicates that instability which excites a self-organized state of
plasma may inhibit anomalous plasma transport in the radial direction. This contra-
dicts the prediction of anomalous diffusion. The role of zonal flow in good confinement
phase of tokamak plasmas called H-mode, is now believed to be related to the appear-
ance of the zonal flow. A recent simulation result obtained by Xiao et al. (2010) shows
the reduction of the electron heat conduction in the presence of zonal flows, as shown
in Figure 6.

The figure shows time evolution of electron heat transport. The solid line is
the heat transport obtained in the simulation where the self-generated zonal flow
is present, while the dotted line is the heat transport in which the zonal flows are
artificially removed.

Although, at present, the existence of zonal flows and their possible role in the
reduction of anomalous transport have been confirmed in various experiments (e.g.
Fujisawa, 2009) and in theoretical studies (e.g. Kikuchi and Azumi, 2015), the sta-
bility of the zonal flow and its influence on plasma transport are still being actively
pursued.

3.3 Indication of asymmetric properties of vortices having positive and negative
core charges

As is well known in the atmosphere of rotating planets, two types of vortices – one
with high pressure in the core and the other with low pressure in the core – have
different nonlinear properties. Vortices that have a low pressure core tend to increase
in intensity as they shrink and grow to typhoon strength, while those with high pres-
sure core tend to expand their scale. In plasmas, a vortex with positive (or negative)
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Fig. 7. Generation of larger wave number spectra due to shearing of vortices.

charge in the core, which corresponds to a high (or low) pressure vortex in the atmo-
sphere, expands (or shrinks) its size because the centrifugal force (i.e., polarization
drift) on the ions rotating around the core tends to weaken (or strengthen) the core
charge. This indicates that vortices with a positive (or negative) core charge tend to
increase (or decrease) their size over time, producing asymmetric evolution of these
two types of vortices. As a result, the positive (negative) charge vortex shifts its spec-
trum to smaller (or larger) wavelengths. Consequently, randomly distributed vortices
with positive and negative core charges will cascade its spectra to both large and
small wave numbers depending on the signs of the core charge. This may be inter-
preted as the physical process of the dual cascade that takes place as a result of two
conserved quantities, energy and enstrophy. These are shown in equations (7) and (9)
as well as in equations (21) and (22). Furthermore, the positive (or negative) charge
vortices carry energy (enstrophy) spectrum to long (or short) wavelengths since the
enstrophy spectrum has larger wavenumber dependence than energy. As a matter
of fact, close observation of the simulation result of Hasegawa and Wakatani shown
in Figure 3 reveals the coarser (or finer) structures in positive (negative) potential
region near the core (or edge). These differences will have effects on transport; the
so-called convective cell dominates in the regions of positive charge vortices while
turbulent or microscopic transport will dominate in the negative charge vortices.

4 Nonlinear mode coupling between drift waves and zonal flows: a
predator–prey model

4.1 Modulational instability as a generation mechanism of zonal flows

Zonal flows may be generated in the drift wave turbulence by the process relating
to the modulation of drift wave amplitudes. This process has a positive feedback
loop when the zonal flow amplitude is low. However, when the zonal flow amplitudes
are higher, the shear flows convert lower mode number drift waves to higher mode
number waves through the shearing of drift waves, as illustrated in Figure 7.

The wave kinetic equations for the coupling of short wavelength drift waves
and the long wavelength fluctuations (long wavelength drift waves and/or zonal
flows) have been studied by Mima and Lee (1980) in the modulational instabil-
ity of long wavelength drift wave, and in the modulational instability of zonal flow
(Tynan et al., 2001; Diamond and Kim, 1991). The nonlinear coupling between short
and long wavelength modes is due to the Reynolds stress, which is produced by the
nonlinear polarization drift. The radial (in x direction) and azimuthal momentum
equation (in y direction) are given as follows:

mi

[
∂

ðt
nivi +∇ · (nivivi)

]
= eni(E + vi × ẑB0)−∇Pi. (23)
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The slowly varying Reynolds stress force per ion in the radial direction (x direction)
is obtained by taking the time average of the second term of the right hand side of
equation (23) for the incompressible ion fluid,

F = −Te(x̂k2
⊥ρ

2
s

∂

∂x
|ϕk|2 − 2ŷ kxkyρ

2
s

∂

∂x
|ϕk|2), (24)

where cs is the ion sound velocity, kx and ky are the radial (in x direction) and the
azimuthal (in y direction) wave numbers respectively, and

eφ

Te
= ϕk(x, t)eikxx+kyy−iωt + c.c. (25)

Here ϕk(x, t) is the normalized amplitude of the electrostatic potential fluctuation
of a drift wave, which varies slowly in x and t. The Reynolds stress: equation (24)
excites the low frequency drift flow: V ZF as follows Hasegawa and Mima (1978) and
Diamond et al. (2005),

V ZF =
~F × ẑ

eB
+V E×B = ρscs

(
ŷk2

yρ
2
s

∂

∂x
|ϕk|2 + 2x̂kxkyρ

2
s

∂

∂x
|ϕk|2 + ẑ ×∇ΦZF

)
.

(26)

Here ΦZF is the normalized electrostatic potential associated with a zonal flow. When
the drift wave amplitude and the zonal flow amplitude are time dependent, then the
polarization drift associated with the drift of equation (26) becomes,

V ZFp = −x̂cs
∂

ωci∂t

(
k2
yρ

2
s

∂

∂x
|ϕk|2 + ρs

∂ΦZF
∂x

)
. (27)

The divergence of equations (26) and (27) should be zero if the ion density fluctuation
associated with the zonal flow is negligible. Then the following equation for the zonal
flow excitation is obtained (Diamond et al., 2005).

∂

∂t

∂2 ΦZF
∂x2

= 2kxkyρscs
∂2

∂x2
|ϕk|2 − γD

∂2 ΦZF
∂x2

. (28)

This indicates that zonal flows may be generated by the Reynolds stress, which is
a consequence of the nonlinear polarization drift. The last term of equation (28) is
introduced here to take into account the viscous dumping of the shear flow.

The coupling between low frequency modes and the drift waves is induced by
the nonlinear frequency shift: ∆ωNL included in k · V ZF . The nonlinear frequency
shift is dominated by the slowly varying potential fluctuations of ΦZF , namely the
zonal flows that are induced by the Reynolds stress. This frequency shift couples two
drift waves to induce the modulational instability of drift waves. The original drift
instability will be suppressed by the modulation of the drift wave.

For the drift wave turbulence, many modes are coupled simultaneously and the
equation (28) is rewritten as,

∂

∂t
V

′

ZF = 2
∑
kx, ky

kxkyρscs
∂2

∂x2
|ϕk|2 − γDV

′

ZF , (29)

where V
′

ZF = ∂VZF

∂x = ∂2 ΦZF

∂x2 is the vorticity.
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Let us introduce the action for the drift waves by N (k, x, t) = ε(k, x, t)/ωk,

where ε (k, x, t) = (1 + k2) |ϕk|2 is the normalized drift wave energy, wave number

k is normalized by ρs, and ωk =
kyvd

ωci(1+k2) is the normalized drift wave fre-

quency. The equation for the slowly varying drift wave amplitude introduced by
equation (25) in the zonal flows is derived from the Hasegawa–Mima equation as
follows:

1

1 + k2

ϑ

ϑt
(1 + k2)2 |ϕk (x, t)|2 − 2ωkkx

∂

∂x
|ϕk (x, t)|2

−∂kyVZF
∂x

∂

∂kx
(1 + k2) |ϕk (x, t)|2 = 0.

Here, as before, the time t is normalized by ωci and x is normalized by ρs.
Since Nk = (1 + k2) |ϕk (x, t)|2 /ωk, the modulation of Nk is described by the

wave kinetic equation in the zonal flows as follows,

∂Nk
∂t

+ vgx
∂Nk
ðx
− ∂ωk

∂x

∂Nk
∂k

= γgNk. (30)

Here vgx = ∂ωk

∂kx
is the group velocity and γg/2 is the growth rate of the drift wave.

Equation (30) relates the modulation of the drift wave amplitude: δN = N − 〈N〉 to
the shear flow as follows,

∂δN

∂t
+ vg

∂δN

ðx
− ∂VZF

∂x

∂〈N〉
∂k

= γgδN. (31)

Equations (29) and (31) describe the coupling between the zonal flow and the drift
wave to find the growth of the modulation.

4.2 Predator–prey

The coupling between low frequency (or zero frequency modes, i.e. zonal flows) and
drift waves are analogous to “predator–prey model” (Hoppensteadt, 2006). Diamond
et al. (2005) claim that “drift waves excite zonal flows, while zonal flows suppress
drift waves. The degree of excitation or suppression depends upon the amplitudes of
the drift waves and the zonal flows”. The predator–prey model can be described by
equations (28) and (31). Namely, the drift wave spectral intensity evolves according
to the quasi-linear diffusion equation in the wave number space as follows (Diamond
et al., 2005),

∂〈Nk〉
∂t

− ∂

∂kx
Dk

∂〈Nk〉
∂kx

= γk〈Nk〉 −
∆ωk
N0
〈Nk〉2 (32)

∂ |φZFq|2

∂t
= Γq

[
∂〈Nk〉
∂kx

]
|φZFq|2 − γd |φZFq|2 − γNL

[
|φZFq|2

]
|φZFq|2 . (33)

Note here that all the quantities are normalized as in Section 4.1. The second term
of the left hand side of equation (32) is the diffusion of drift waves in the wave
number space by the zonal flow-drift wave scattering. The diffusion coefficient, Dk,
proportional to the zonal flow amplitude: |φZFq|2. The last term of the right hand
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side of equation (32) represents the nonlinear self-interaction, which is proportional
to 〈Nk〉2. The second term of the right hand side of equation (32) is the nonlinear
wave scattering. Equations (32) and (33) are further reduced to the rate equation by

assuming
∑
k
∂
∂kr

Dk
∂
∂kr
〈Nk〉 ≈ −α

∑
q |φZFq|

2∑
k〈Nk〉, as

∂

∂t
〈N〉 = γL〈N〉 − γNL〈N〉2 − α〈U2〉〈N〉 (34)

∂

∂t
〈U2〉 = −γdamp〈U2〉+ α〈U2〉〈N〉. (35)

Here, drift wave fluctuation: 〈N〉 =
∑
k〈Nk〉 ↔ Prey and zonal flow: 〈U2〉 =∑

q |φZFq|
2 ↔ Predator.

Equations (34) and (35) have two stationary solutions. One has no zonal flows:
〈U2〉 = 0, then

〈N〉 =
γL
γNL

.

This means that the drift wave instability is saturated through the mode coupling
among drift waves. The other stationary solution has the finite amplitude of zonal
flows, which is,

〈N〉 = γdamp

〈U2〉 =
αγL − γNLγdamp

α2
.

It is known that the model equations include the limit cycle, bifurcations and chaotic
transitions between high and low zonal flow amplitude. These behaviors may be
relevant to transition phenomena observed in tokamaks.

We note here, however, that the mode coupling theory based on the weak turbu-
lence concept (presented in this section) applies to the weakly nonlinear state, while
experimentally observed turbulence of the drift wave frequency range by Slusher
and Surko (1978) has spectral width much larger than the drift wave frequency
itself. Thus, the weak turbulence theory – while it provides a physical view at
an early stage of turbulence – may not be applicable at a stage of fully devel-
oped turbulence. There, the hydrodynamic concept of turbulence, such as inertial
range spectra and self-organized structure, becomes the only reliable theoretical
approach. In this case, the dynamical process may be found only by computer
simulations.

5 Plasma confinement in a dipole magnetic field

While plasma confinement based on the self-organized state of turbulence described
in Sections 2 and 3 may be applicable to an open system with continuous energy
injection and exhaust, there exists a plasma container of a closed system in which
the self-organized state is obtained by maximization of the entropy of the sys-
tem. Hasegawa (1987) presented one such scheme based on a dipole magnetic
field.
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In an axisymmetric system, the plasma pressure, p, is given by a function of the
magnetic flux function ψ. Thus, if the energy content is uniformly distributed among
all the flux tubes, plasma is absolutely stable. In a cylindrical plasma where the axial
magnetic field is uniform, the stable equilibrium is achieved only when the plasma
pressure is uniformly distributed. Rather, for a plasma pressure to peak near the axis,
the curvature of the magnetic line of force should be convex toward the plasma for
the plasma to be stable with respect to interchange of flux tube. A mirror machine
with the Joffe bar is one such example. Magnetic field configuration with a concave
structure is often called a bad curvature, because the plasma becomes hydromag-
netically unstable. Thus, it was a surprise for many laboratory plasma physicists
to find magnetospheric plasmas of various planets. NASA’s interplanetary missions
have demonstrated stable plasma confinement, having plasma beta often exceeding
unity in spite of their bad curvatures of dipole magnetic fields. Hasegawa recognized
that the flux tube volume, V = ∫ dl/B, in a dipole field increases radially outward in
proportion to r4, the energy content per flux tube, pV γ , (γ = 5/3) becomes uniform
if the pressure varies as r−20/3. Thus, if the pressure as a function of radius from the
center of a point dipole varies slower than r−20/3, plasma in a dipole magnetic field
is absolutely stable, in spite of its bad curvature. This observation indicates that if a
plasma and/or its energy is injected into a dipole magnetic field, plasma will diffuse
inward with a help of low frequency fluctuations (that may destroy the third adiabatic
invariant, the flux function), toward the core region until it reaches the maximum
entropy state where the plasma energy content is uniformly distributed among flux
tubes. At this point, the plasma pressure achieves coordinate space distribution of
r−20/3, which may be sharp enough for fusion ignition near the core.

We can also describe the confinement scheme in terms of an action-angle variable
in particle phase space. In a dipole magnetic field where the magnetic field is axis
symmetric, the magnetic field may be described by the flux function, ψ (r, θ), in the
spherical coordinate system where the appropriate action variables of the guiding
center particle motion are the magnetic moment, µ, the second adiabatic invariant,
J, associated with the bounce motion and the third invariant, the flux function, ψ.
Since the Hamiltonian of the motion has no dependency on angle variables associ-
ated with these actions, the stationary phase space distribution may be given by a
function of these actions, f (µ, J, ψ). The flux function at the particle position is the
only coordinate space variable, thus the phase space distribution, f (µ, J), that has
no dependence on ψ represents a maximum entropy state of the plasma in these coor-
dinate systems. A plasma described by the distribution function is absolutely stable
with respect to any instabilities that originate from coordinate space inhomogene-
ity such as drift wave and/or interchange, provided that µ and J remain invariants
of motion. What is interesting is that fluid variables such as density, pressure and
temperature are rather steep functions of the real coordinate space, r, because the
phase space volume of the flux tube, increases as r4 in a dipole field, such that
n ∼ r−4, P ∼ r−20/3, T ∼ r−8/3.

The plasma with this profile is absolutely stable provided a proper pressure con-
finement scheme is provided at the outer edge where the pressure is sufficiently
low.

The proposed trap based on the dipole magnetic field structure has been built at
the University of Tokyo as well as MIT-Columbia where the magnetic field is produced
by a floating super conducting ring current. Both of the devices have demonstrated
absolutely stable plasma confinement in these devices (Kawazura et al., 2015; Davis
et al., 2014). A plasma container using a dipole magnetic field is suitable for an
advanced fusion reactor because of its capacity to stably confine high-beta plasma.
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6 Concluding remarks

The theoretical picture of plasma confinement that is described in Sections 2–4
requires excitation of zonal flow via turbulent self-organization. For this idea to be
applied to the design of fusion devices, additional fundamental knowledge is necessary
to make the stationary operation possible. Let us recall that the inertial range spec-
trum of turbulent energy that was first described by Kolmogorov in three-dimensional
fluids is a driven-dissipative spectrum where fluid viscosity provides necessary dissi-
pation. The inertial range spectrum is established by the balance of the drive and the
viscous dissipation. This means that Kolmogorov’s system is an open system, energy-
wise, where continuous energy injection at a wave number as well as an energy sink
at large wave numbers is conjectured. Similarly, for the process described in this
manuscript to operate stably, it requires proper energy injection as well as energy
dissipation in order for the zonal flow to be maintained to confine the plasma. We
must assume the system to be open, energy-wise. The zonal flow required for the
plasma confinement cannot be maintained without proper energy input and appro-
priate energy dissipation. Unlike a two-dimensional fluid where no energy sink exists
at long wavelengths – whereby stationary energy spectrum may be difficult to estab-
lish – plasma can provide energy dissipation processes at long wavelengths by means
of low frequency RF out-coupling and/or by thermal flow to the wall. Without dissipa-
tion, the zonal flow that represents a condensed state of turbulent energy will collapse.
The predator–prey model presented by Diamond et al. (2005, 2011) presents one way
to avoid the collapse. Here, we propose an alternative process to achieve stationary
state. In a standard tokamak operation, there exists continuous energy input in the
form of neutral beam, RF and/or current drive and the like. Thus, the concept of
plasma confinement by means of zonal flow driven by turbulent self-organization in
the presence of continuous energy input requires a perception of plasma as an open
system, energy-wise. Here, maintenance of a proper pressure profile is required for
ignition but not necessarily the confinement of injected energy as a whole. As a result,
the Lawson criterion that requires certain confinement time of plasma energy density
for fusion ignition should be replaced by another criterion in such an open system.

For a stationary fusion fuel burning to take place in the present system, the
injected power for the heating and current drive should escape at approximately the
same rate via RF and/or thermal flow. Here, the injected power is used to heat the
plasma as well as to maintain the proper pressure profile, thus work is done to the
plasma even if the injected power is lost from the plasma at the same rate. Here,
the role of the injected energy is to provide low entropy, or high quality of energy
to the system needed to maintain proper heat and pressure profile. In this regard,
a new scenario of plasma confinement is required to establish the confinement of
low entropy state, rather than energy. Plasma with a desired pressure profile (as a
function of magnetic flux function) has a low entropy state spatially as compared
with plasma with uniform pressure profile in flux function.

Ignition and burning of fusion fuel can still be achieved in such a system, even
though the energy is not confined as assumed in a classical fusion system. If a fusion
device is to depend on the turbulent sustained zonal flow that requires a continuous
cascade of energy spectra to lower wave numbers and a sink of cascaded energy to
maintain stationary structure, the relevant new parameter for ignition is the time
scale of maintenance of such a structure or a low entropy state, rather than that of
energy confinement. Here, the new Lawson criterion should be given for the time of
maintenance of the low entropy state or a state of geographically localized plasma
pressure by means of the turbulence-driven zonal flow. The continuously injected
energy is needed to sustain this low entropy state, and thus the energy source should
have a low entropy property – or the injected energy should be of a high quality energy.
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In fact, high frequency monochromatic RF or particle beam used for the plasma
heating and current drive do satisfy this requirement. In contrast, the exhausted
energy – either in a form of low frequency RF having a wide spectrum or in a form of
particle diffusion – has much higher entropy than that of the injected energy. Thus,
work is done by the input energy whose low entropy state is used to maintain the
plasma profile and heating and the increased entropy is exhausted out of the system.
In exchange, plasma can maintain the low entropy state. The energy cycle of the
system is analogous to a biological system (Schrödinger, 1944) where life processes are
maintained by consumption of food, which provides low entropy energy or negentropy
and exhausting increased entropy out of the body.

In Section 5, an alternative plasma confinement scheme is presented in this regard,
where the plasma is contained in a closed system and has a maximum entropy state.
The maximum entropy state is provided by a uniform distribution of plasma energy
among all the flux tubes and yet has a steep pressure profile in the real coordinate.
The scheme utilizes a dipole magnetic field generated by a superconducting floating
ring current. The idea was provided by Hasegawa and experimental verifications were
made by Kawazura et al. (2015) and Davis et al. (2014). A plasma container using
the dipole magnetic field is suitable for advanced fuel fusions because of its nature of
high-beta plasma confinement.
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