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A MODEL FOR THE TURBULENCE
IN THE SCRAPE-OFF LAYER OF TOKAMAKS

X. GARBET, L. LAURENT, J.-P. ROUBIN,
A. SAMAIN (Ddpartement de recherches sur la fusion
contr61e"e, Centre d'e"tudes nucle"aires de Cadarache,
Association Euratom-CEA sur la fusion, Saint-Paul-
lez-Durance, France)

ABSTRACT. The fluid theory of electrostatic perturbations in
a scrape-off layer (SOL) plasma is analysed. The main difficulty is
that the edge is theoretically found to be stable, while experimentally
it is unstable. A possible explanation relies on the fact that the
commonly used ballooning representation is not correct in the SOL.
An alternative representation is proposed which reproduces the
instability of the edge in several simple configurations and explains
many experimental features.

1. INTRODUCTION

In both divertor and limiter configurations, tokamak
plasmas are surrounded by a region with open field lines
— the scrape-off layer (SOL). Direct measurements of
the plasma density or potential with Langmuir probes
show that this region is highly turbulent, i.e. fl/n = 50%
[1-4]. Theoretical models greatly fail to find linearly

unstable modes, since the free motion of electrons
along flux lines stabilizes the rippling interchange
modes [5]; collisional drift modes are also found to be
stable [6]. Several models have been developed which
include specific edge effects to explain the large level
of turbulence, for example impurity radiation, the Zeff

gradient or ionization and charge exchange [7, 8].
Other attempts have been made to take into account
non-linear effects due to the large amplitude of the
turbulence [9, 10].

However, theoretical models of edge turbulence are
often expressed using a geometry of closed field lines.
The fluid equations relative to this case are summarized
in Section 2 and the rippling/interchange mode is briefly
discussed. In fact, the field lines in the SOL are open
— a feature which drastically changes the behaviour of
modes. Nedospasov [11] studied a model which takes
account of open field lines, showing that flute modes
could be unstable in the SOL owing to the boundary
conditions of the limiters. However, the exact spatial
mode structure and the stabilizing effect of the polari-
zation current were not taken into account in this
work. In Section 3, a full study of mode stability is
presented in the framework of fluid theory, demon-
strating that interchange modes are unstable in the
SOL. The consequences of this model are demon-
strated in Section 4 and it is shown that some experi-
mental facts could be explained with this model.
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2. STANDARD FLUID EQUATION

FOR EDGE TURBULENCE

We consider the plasma edge in a toroidal equilibrium

(major radius R, minor radius a), characterized by its

temperature T or its Spitzer resistivity rj and its density n.

Since modes with scales larger than the ion Larmor

radius are experimentally observed and the collisio-

nality is larger at the edge, it seems reasonable to use

a fluid model. Moreover, the mode is restricted to an

electrostatic perturbation, since the associated vector

potential fluctuation plays only a minor role in the case

of typical edge plasma parameters. The response to a

potential perturbation <l(r, 6) exp (?t - im0) is deduced

using the following standard equations:

Mass conservation

dn_

dt

with

V* =

+ div(nVE) = 0 (1)

X B

B1

and hence

n 7 T rflO

where

v; =
dn

eB ndr eBLN

is the diamagnetic velocity of electrons and e is the

algebraic electron charge.

Energy conservation

Neglecting perpendicular conduction and radiation,

the energy conservation can be expressed as an equation

for temperature or rather for resistivity eyolution, multi-

plying by drj/dT:

+ div(TVE) =

V*

77 7 + kjxtt T rdd
(2)

where x» is the parallel thermal conductivity, kg is the

parallel wave number and

V* = —
cBL.

is the diamagnetic velocity associated with the resistivity

gradient length Lv.

Charge conservation

The current response to the potential perturbation is

the sum of three terms:

(1) Jcurv is the response due to the curvature drift of

electrons (Vge) and ions (Vgi = -Vg e):

div Jcurv = div(2fieVge) =
2ne2v;vg

T 7 r

sin0

dddr dd d62\

eBR

(2) I™, is the polarization current (ion contribution):

div (!„„,) = div ( -

dr2 r dr
(4)

where mj is the ion mass.

(3) Jn is the parallel current response which can be

expressed as a function of the unperturbed loop voltage

loop1

iv a.) =

The charge conservation is given by

or div (Jcurv) + div (J,) + div = 0

(5)

(6)
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This problem is generally made unidimensional
assuming radial invariance. The perturbation is
expressed using the ballooning representation:

$ = periodified (g(0)) eim(q(r)e-<we1't

where g(0/skfl) is the Fourier transform of f(r) and r( is
the radius of the resonant surface, q = £/m. A simple
case is to consider highly localized modes, i.e. 6 « 0.
This tends to overestimate the growth rate. The charge
conservation appears as a Schrodinger equation in a
parabolic potential well for f:

d2f
2

Pthi
dx2

where x = r — rf and

Q(x) = -

= 0 (7)

me

v 2
h ieVioop

T me q2R2

k^sqx

V*

7"coll
/• \ 2"|Xl W J

2TT
(8)

where k̂  = Hit is the poloidal wave number, the
parallel wave vector has been replaced by its expansion,
kB = (kflS/qR) (r - rf) (s is the shear parameter, equal
to 2 at the edge) and i>coli is the collision frequency. The
four terms represent the inertia (stabilizing), the
interchange effect (destabilizing since VgeV* > 0),
the parallel current (stabilizing) and the rippling
term (destabilizing). For typical edge parameters
the conclusions that can be drawn from Eq. (8)
are the following:

(a) The parallel current response is so large that the
third term represents a very deep parabolic well. The
corresponding solutions in f(x) are very localized
(much less than an ion Larmor radius) and hence are
stabilized by the finite Larmor radius effect. Even
neglecting the latter effect, moderate growth rates are
found.

(b) The classical growth rate of rippling modes
(see, for instance, Ref. [9]) can be found from Eq. (8):

7R W
Z7

m e J>C O 1,R

(9)

is of order one in usual conditions. However, the cor-
responding mode is characterized by a radial scale 5:

me ĉoiiR T R /_q
vthi vlhi I s

1 1/4

Pi

which is much smaller than the ion Larmor radius px,
except at low temperatures, T < 10 eV. The ion
Larmor radius effects should therefore stabilize the
modes.

In conclusion, when fluid theory is used within the
ballooning formalism, very localized and weakly unstable
modes are found unless the plasma is very collisional.
This is due to the large parallel heat conductivity or
the current response which are strongly stabilizing for
finite k|.

3. STABILITY OF OPEN FLUX LINES

The standard fluid theory summarized in Section 2
cannot explain the edge turbulence. The rippling term
can be enhanced by adding specific edge effects such
as an effective charge gradient or .radiation [7, 8] and
non-linear effects [8-10]; enhanced instability is gener-
ally found. However, it has been shown [12] that the
rippling modes are stabilized in the SOL by line tying
effects. This is not true for interchange modes because
of the specific boundary condition for the current on a
limiter [11]. Moreover, according to the models based
on rippling modes, the edge turbulence should be very
sensitive to the wall material and the plasma parameters
(determining Zeff), and to the limiter geometry which
determines the current density in the SOL (through a
shadowing effect). Moreover, Thayer et al. [12] predict
that the edge turbulence should be stabilized during
current drive experiments since the loop voltage is
zero. All these effects have not been reported.

We propose here to take into account a more trivial
linear effect, based on the following points:

— It is not realistic to assume ballooning invariance
within the SOL;
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— The field lines are open and the modelling of the
parallel response is wrong; Equation (5) and (7)
have to be modified to take into account this
important feature.

Thus, the above representation is not well suited
for edge turbulence. Since the high parallel conduc-
tivity prevents any variation along the magnetic field,
realistic perturbations tend to be uniform along field
lines. Hence, we shall look for solutions of the form
f(r) e ' ^^^ ' ^e 7 ' (since the field lines are open, there
are no problems of multiple determination when 0
varies as 2TT). This representation has also the advan-
tage that it is well suited for an integral formulation of
quasi-neutrality (Eq. (6)); the problem is simplified by
expressing the quasi-neutrality of a flux tube rather
than using a local expression as in Eq. (7). In the
following, we shall neglect the rippling effect, which
is stabilized by the parallel thermal conductivity, even
with open field lines [12], and by the current density
limitation due to obstacles in the SOL.

b) (c)

FIG. 1. Three axisymmetric configurations with unfavourable
curvature, (a) Inner wall operation, (b) low field side in a divertor
double-null configuration (the short stabilizing part in the divertor
chamber is not represented), and (c) outer part in a belt limiter
configuration.

3.1. Charge conservation in a flux tube

For the sake of simplicity, we consider only the
case of an axisymmetric configuration (i.e inner wall
operation, belt limiter, standard divertor). Each field
line in the SOL intersects the wall or the limiter at two
poloidal angles, 6{ and 02, as shown in Fig. 1. Its length
is L = qR(02 — 0i)- The charge conservation in a flux
tube of vanishing cross-section can be expressed as

>82

(Jcurv + Jpo,)qRd0 Ja(02) = 0 (10)

JII(0i,2) represents the parallel current through the sheath
at both ends of the flux tube. When the plasma is in
equilibrium, the potential adjusts itself to a <l>0 value so
that the losses are ambipolar:

neVthi = neVthe exp -

where v,he = V2T/me is the electron thermal velocity.
When $0 is perturbed at the end of the flux tube by 4>,
the number of reflected electrons is slightly perturbed
and the resulting current is

= -ne2Vthi (11)

Note that Ju(0|,2) is generally much smaller than the
standard parallel current response discussed in Section 2,
knl>/77, by a factor Vm^/m" k|V(he/i>coll.

3.2. Stability of a flux tube

Equation (10) implies the differential equation in f(r):

where

- AH(0)]!2

0]

with G(0) = s203/3 + 0 and H(0) = (1 + s) sin0
- S0 COS0.

The quantity A = 4V;Vge/(p
2

hi7
2) « 2V2

hi/7
2RLN

represents the interchange effect (LN > 0 is the
characteristic length of the pressure gradient). Since
there is no resonant layer, it is reasonable to look for
radial variation in the eikonal form f(r) = eikr. The
dispersion equation is k2 = /x/r2 + v or

Vthi/qR

2q2R
[H(0)]£ = 0

(13)
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The first term (stabilizing) containts the effect of
the shear and inertia, and the second term (stabilizing)
represents the end losses. The third term represents the
curvature effect, which is stabilizing if H < 0. As in
the standard interchange mode theory, there are real
7 values only if H is positive, i.e. if the curvature is
unfavourable. The maximum growth rate corresponds
to k = 0. In practice, G is rather large and, thus, y is
only a weak function of k for k < kg. By superposing
several radial modes, it is possible to construct solutions
localized in the SOL where this model is correct. The
most unstable modes are found when the end loss term
can be neglected. This happens if

'.hi >
2LN

1/4
(typically « 0.1)

and the corresponding growth rate is

vthi / 2KiH(ff)j;; \ m

7 = R

In the opposite case, the growth rate is

7 = kJqp,V;[H0)]JJ

a formula which is similar to the expression obtained
by Nedospasov [11].

Three schematic cases corresponding to unfavourable
curvature are considered (see Fig. 1). The growth rate
for k = 0 has been computed, taking R/LN = 20:

Inner wall

Double- null
low field side

Belt limiter

- 7 T , 7T

-7T/2

- T T / 1 2 ,

TT/12

90

13

0.6

13

6

0.6

R

vlh

2.4

4

4. CONSEQUENCES AND
COMPARISON WITH EXPERIMENT

The contact of field lines with the wall causes
interchange modes to be unstable when the average
curvature is unfavourable, i.e. in many common
configurations. This could explain why the SOL is

unstable in the case of inner wall operation and
between two toroidal belt limiters (as in JET [13]),
and why the external part of the SOL is unstable in the
double-null configuration (as observed in ASDEX [14]).
This explains also other observations:

— The large radial scale of turbulence, i.e. kxpthi « 0.1
[2];

— Collisionality plays no role, as observed in CALTECH
[4];

— The large phase shift (60°) between density and
potential fluctuation [2];

— The very large phase velocity along field lines [3].

Though the limiter effect should be restricted to the
SOL, it is expected that mode coupling (non-linear or
toroidal) effects will ensure the continuity with the
plasma bulk turbulence [15], in agreement with the
radial continuity of fl/n observed experimentally [3, 4].

This model could have an impact on the design of
many plasma facing components, for example divertor
plates (asymmetric heat load) and the pump limiter (the
pumping efficiency depends on the stability of the flux
tube in the throat). The problem is not so simple in a
non-axisymmetric geometry (as in the case of discrete
limiters) where there is a mixture of stable and unstable
field lines. This model could explain the existence of
localized turbulent spots that are sensitive to the limiter
configuration and the current direction, such as those
observed in TEXT [16].

5. CONCLUSION

Up to now, standard models of turbulence have failed
to explain the edge turbulence, since it is stabilized by
the parallel dynamics of electrons. In the SOL, the
field lines intersect the wall so that the stabilizing
parallel currents are inhibited. When this effect is
taken into account, the finite length of the lines makes
interchange modes unstable when the radial scales are
large, provided kpthi « k*pthi > (LN/q2R)IM = 0.1.
Thus, it is possible to explain the existence of turbu-
lence in the SOL when the field line curvature is
locally unfavourable. It is also possible to understand
the radial scale of the turbulence as well as several
observations related to the in-out asymmetry of the
SOL.
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HIGHER HARMONIC DRIFT MODES
IN TOKAMAKS

R.R. DOMINGUEZ, R.E. WALTZ (General Atomics,
San Diego, California, United States of America)

ABSTRACT. The stability of higher harmonic electrostatic
electron drift waves in toroidal geometry in studied for a represen-
tative plasma profile. Using a model driving function, it is shown
that the dissipative trapped electron (DTE) mode admits solutions
«/we* > 1 («e* is the electron diamagnetic drift frequency) that may
relate to density fluctuation measurements which have suggested
the presence of such higher frequency modes. Comparison of analytic
and numerical results for both outward and inward ballooning DTE
modes gives good agreement for the former modes but generally
poor agreement for the latter ones. Further, it is found from the
numerical results that the inward ballooning modes may be more
unstable than the outward ballooning modes, even though the
trapped electron drive is maximized on the outboard midplane.

A number of recent theoretical works [1-3] on
anomalous energy transport in tokamaks attribute con-
finement degradation in ohmically heated and beam
heated tokamaks to the presence of electrostatic drift
wave turbulence. It has been conjectured that low
density neo-Alcator scaling of confinement time in
ohmically heated tokamaks results from dissipative

trapped electron (DTE) mode turbulence, while satura-
tion of the confinement time in high density ohmically
heated tokamaks and confinement degradation in beam
heated tokamaks results from ion temperature gradient
(ITG) mode turbulence. The simplified model of the
DTE mode employed in these analyses has been shown
[4] to apply only in the extreme collisionality regime,
ve((/a)*e > 10, with Vtff the effective trapped electron
collision frequency and co* the electron diamagnetic
drift frequency. Nevertheless, a more realistic model
[4] of the DTE mode still preserves the essential scaling
features of the energy confinement time. At present,
these two components, the DTE and ITG modes,
form the basis for the drift wave transport model,
which attempts to explain bulk plasma confinement
in tokamaks.

The DTE branch has received scant attention in
recent years, with much more theoretical activity being
devoted to the study of the ITG mode [5-10]. However,
there are several important features of the DTE mode
that bear directly on experimental results which have
not been previously noted in the literature. Specifically,
it is shown in the present work that in toroidal geometry
it is possible to obtain higher harmonic DTE eigenmodes
in the bulk of the plasma, r/a < 0.5, with frequencies
co >̂ co* in the long wavelength range, keps < 0.3
(kfl is the poloidal wavenumber, ps = cs/fij, with cs the
sound speed, cs = (Te/mj)l/2, and fy the ion cyclotron
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