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Abstract
An overview of the physics of intrinsic torque is presented, with special emphasis on the phenomenology of intrinsic
toroidal rotation in tokamaks, its theoretical understanding, and the variety of momentum transport bifurcation
dynamics. Ohmic reversals and electron cyclotron heating-driven counter torque are discussed in some detail.
Symmetry breaking by lower single null versus upper single null asymmetry is related to the origin of intrinsic
torque at the separatrix.

(Some figures may appear in colour only in the online journal)

1. Introduction

This overview (OV) surveys recent developments in the theory
and phenomenology of intrinsic torque. By intrinsic torque
we refer both to fluctuation-driven torque density, which
drives a local toroidal flow, and to the net fluctuation-driven
torque, which drives global toroidal rotation. Not surprisingly,
boundary torques and other effects play a special role in the
dynamics of net toroidal spin-up. Concern with intrinsic torque
has been driven by the surge of interest in intrinsic rotation—
a rare piece of good news for ITER—which is beneficial
to macrostability (i.e. rotation near q = 2 can mitigate or

stabilize RWMs) and to confinement (i.e. toroidal shear flows
contribute to E × B shear suppression of turbulence and
are of particular importance to ion transport barriers (ITBs)
and to states of reduced profile stiffness). The concept
of intrinsic torque emerged from the struggle to understand
asymmetries in co-counter torque scans [1] and to explain
and predict intrinsic rotation in H-mode plasmas, which is
triggered at the L–H transition [2, 3]. This phenomenon, which
was first described by the now famous ‘Rice scaling’ [2, 4]
�V ∼ �W/Ip, appears to be due to the build-up of a co-
intrinsic torque in the H-mode pedestal. Interestingly, a similar
rotation increment is observed in I-mode plasmas [5, 6]. Here
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I-mode is the improved confinement regime which sometimes
is encountered below the L → H transition threshold. Pedestal
structure, specifically the strong radial inhomogeneity due
to steep gradients and the boundary, effectively converts the
heat flux-driven relaxation (∼−Q∇T , the entropy production)
to a fluctuation Reynolds stress, which drives the pedestal
intrinsic torque density. This theme of heat engine ↔ radial
inhomogeneity + symmetry breaking → Reynolds stress →
intrinsic torque density is central to intrinsic rotation and will
recur many times in this OV. Note that the essence of this
approach is to model the intrinsic torque as a heat engine [7, 8],
which converts the thermodynamic force ∇rT , sustained by the
heat flux Q, to 〈Vφ(r)〉 via some symmetry breaking.

It is important to state that the phenomenology of intrinsic
torque is far broader than the familiar Rice scaling paradigm.
Indeed, intrinsic (azimuthal) torques have been observed
and investigated in basic plasma experiments [9]. More
importantly, it is also clearly dynamic and has led to the
discovery of new types of transport bifurcation phenomena.
These types of bifurcations, which include ohmic reversals
and electron cyclotron heating-driven counter torques, have the
distinguishing feature that a change in global rotation profile
structure occurs without any significant change in confinement.
These should be contrasted to the more familiar H-mode or
ITB-driven intrinsic rotation [10], where both rotation profiles
and confinement (i.e. density and/or temperature profiles)
undergo a significant change. Several types of intrinsic torque
bifurcation are thought to be related to a possible change in
the underlying microturbulence population, which results in a
change in direction of the mode group velocity and thus in the
non-diffusive stress. These will be discussed in depth here.

We emphasize at the outset that the scope of this OV is
limited to intrinsic torque, and that it is not a global review of
the transport of toroidal momentum. This paper is meant to
complement to previous OVs [11, 12], which focused more on
‘momentum pinch’ modelling. Also, since this paper is an OV,
many technical details are omitted. The reader is referred to
the original literature for such matters of detail.

The remainder of this paper is organized as follows.
Section 2 briefly summarizes the driving phenomenology and
basic ideas. Section 3 presents a general formulation of
the theory of intrinsic torque and residual stress, in terms
of fluctuation entropy dynamics. The heat engine analogy
is developed. Section 4 surveys the theory of intrinsic
torque from several perspectives. These are: (a) a physical
discussion of the most important stress contributions and
symmetry-breaking mechanisms, (b) a brief introduction to the
gyrokinetic theory of intrinsic torque, (c) a general formulation
of the theory of intrinsic torque, as derived from wave kinetics,
which provides a useful unified structure, highlights the role
of waves in momentum transport, and conveniently highlights
the two classes of momentum transport bifurcations, (d) the
role of explicit, boundary-related asymmetries on intrinsic
torque. In particular, we address the effect of upper single null
(USL) versus lower single null (LSN) asymmetry on intrinsic
torque, (e) nonlocal effects and their possible role in residual
stress. We present a general argument as to why intrinsic
torque and momentum transport appear ‘more nonlocal’ than
heat transport. Section 5 discusses how the theory fares upon
confrontation with the phenomenology. Section 6 contains

a critical assessment and discussion of open questions. This
includes a section on suggestions for programmatic goals.

2. Basic ideas and driving phenomenology

Historically, early theory and experiments suggested χφ ∼ χi

[13, 14]. However, the discovery of intrinsic rotation and the
results of perturbation experiments [15, 16] strongly suggested
that off-diagonal, non-diffusive components [17, 18] must
enter the momentum flux. Thus, we arrive at the basic form of
the �rφ stress tensor, which is [17]

�rφ = 〈n〉〈ṽr ṽφ〉 + 〈ṽr ñ〉〈vφ〉 + 〈ñṽr ṽφ〉. (1)

We do not discuss convection (the 2nd term of the flux) here.
Rather little is understood about the 〈ñṽr ṽφ〉 triplet so we do
not discuss it here, though there are indications that it may
contribute to intrinsic torque in strong turbulence regimes, such
as at blob ejection at the edge [19]. The Reynolds stress (i.e.
2nd order, nonconvective part) is given by

〈ṽr ṽφ〉 = −χφ

∂〈vφ〉
∂r

+ V 〈vφ〉 + �R
rφ. (2)

Here V is the momentum convection velocity or ‘momentum
pinch’. The pinch velocity here arises from toroidal effects,
which break Galilean invariance. Thus, concerns of Galilean
invariance are not relevant. The physics of the pinch velocity
V (r) has been exhaustively reviewed elsewhere [11, 12] and
will not be discussed here. A useful original reference is
by Yoon and Hahm [20]. This leaves �R

rφ—the residual
stress—which is the major focus of this OV. The intrinsic
torque density is then τ = −∂r�

R
rφ . Most generally, �R

rφ

is the piece of the Reynolds stress not directly proportional
to 〈vφ〉 or ∂〈vφ〉/∂r . �R

rφ is then proportional to ∇Pi,e,
∇Ti,e, or ∇n, and represents the process whereby electron or
ion free energy (i.e. stored in radial pressure gradients—the
thermodynamic forces) is converted to 〈vφ〉 by the turbulence.
�R

rφ is necessary to spin-up the plasma from rest to a state
of stationary rotation, i.e. ∂t

∫ a

0 〈pφ〉 dr = nmχφ∂〈vφ〉/∂r|a −
nm�R

rφ(a) − nmV (a)〈vφ(a)〉. Here the first term is from the
diffusive flux, the second is from the residual stress and the
third is from the pinch. Note the diffusive term is negative
for co-rotation (∂〈vφ〉/∂r < 0 for 〈pφ〉 > 0) and positive
for counter-rotation (∂〈vφ〉/∂r > 0 for 〈pφ〉 < 0), and acts
to oppose the net rotation. Observe that a finite residual
stress on the boundary (i.e. �R

rφ(a) �= 0) is required for a
net acceleration of the plasma from rest (i.e. from a state with
〈vφ〉 = ∂〈vφ〉/∂r = 0). Alternatively, boundary convection of
(either sign!) with 〈vφ(a)〉 �= 0 will drive spin-up. The net
sign of V 〈vφ(a)〉 determines whether the pinch contribution
will be co or counter. The crucial importance of the boundary
in intrinsic rotation dynamics is thus apparent. For a no-slip
boundary, taking external torque τext = 0 and considering a
state of zero momentum flux, we obtain the intrinsic velocity
profile 〈vφ(r)〉 = − ∫ a

0 dr ′�R
rφ(r ′)/χφ(r ′), which directly

links intrinsic (i.e. torque free) rotation to �R
rφ . Of course, the

〈Vφ〉 profile is determined by intrinsic torque density τ(r) =
−∂r�

R
rφ(r), as well as pinch, viscosity, and any external torque

present.
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Table 1. Selected phenomenology of intrinsic torque

Phenomenon Signature Sym. breaking Key physics Issue

spin-up at L → I or H, �res and ∇vφ ↑ Quantitative?
H-mode and Rice scaling Pedestal 〈vE〉′, I ′ as ∇pi, 〈vE〉 ↑ ∇Ti or ∇pi?
I-mode ETB vφ(0) ∼ ∇Ti, ∇pi and ETB forms. How achieve

Cancellation experiment. global cancellation?

∇vφ steepens πres and ∇vφ ↑ Quantitative?
ITB with ∇Ti in ITB 〈vE〉′, I ′ in ITB as ∇pi , 〈vE〉′ ↑ Relative hysteresis?

with τext = 0 Relative hysteresis of Role in de-stiffening?
∇Ti, ∇vφ observed

Inversion of vφ(r) vφ(r) invert at ν∗ ∼ ν∗OH Symmetry breaker?
around pivot for Open question without observable change Extended flip versus

OH inversions ν∗ > ν∗sat . Hysteresis I ′, 〈vE〉′, ...? in n, T profiles. localized flip
in n, I, B-ramp vgr flip at TEM ↔ ITG +spreading

transition. → πres flips Interplay with bndry

ECH induces �∇vφ(0) < 0 in Density profile
Co-NBI H-mode ECH + co-NBI → Open question NBI H-mode → co NBI + co peaking? Effect?
+ECH central flattening I ′, 〈vE〉′, ...? intr. ped. + cntr ECH. Extended flip versus

of vφ vgr flips at TEM ↔ ITG localized flip
transition +spreading

LSN ↔ USN LSN ↔ USN SOL flow direction Change in competition Boundary flow
L-mode Inversions jog → SOL flow or eddy tilt between B and E field shear penetration →
∇B asymmetry reversal → core due combination in USL versus LSN. Core ‘Tail + dog’ problem
in PT flow reversal in L-mode magnetic and electric responds to bndry Role of SOL flows?

∇B asym. in PT field shear +SOL flows

Figure 1. ‘Cancellation’ experiment of Solomon et al from
DIII-D [21]. A mix of 1 co and 2 counter beams yield a flat rotation
profile with 〈vφ〉 ∼= 0. This shows that the intrinsic torque for these
parameters is approximately that of 1 neutral beam, in the co-current
direction.

Regarding the phenomenology of intrinsic torque, an
interesting selected subset we discuss here is: (a) H-mode
edge transport barrier, (b) ITB, (c) OH-reversal, (d) co neutral
beam injection (NBI) H-mode + ECH, (e) LSN↔USN
L-mode rotation. This discussion and that of section 5 are
summarized in table 1. Of course, the classic example of
intrinsic torque and intrinsic rotation is the H-mode electron
transport barrier (ETB) [3]. In the absence of external
torque, a spin-up is initiated at the L→H transition and builds
inwards [3]. The basic trend is described by the Rice scaling
�Vφ(0) ∼ �W/Ip where W is energy content and � refers
to the change across the L→I or L→H transition. The
existence and location of the intrinsic torque have been rather
convincingly established by the ‘cancellation’ experiment by
Solomon et al [21]. The idea here was to exploit the asymmetry
between co and counter-NBI H-modes due to the presence
of a (hypothetical) ‘intrinsic torque’ τ . The result, shown in
figure 1, is striking: a net counter-torque H-mode yields a
rotation profile, which is flat (and zero) within the error bars!
The implication is clear: the on-axis counter-NBI torque is
exactly cancelled by a co-intrinsic pedestal torque! This result

strongly argues for the viability of the intrinsic torque concept.
It also suggests that intrinsic torque can give the appearance of
a non-local intrinsic torque phenomenon, in that the intrinsic
torque, situated in the pedestal, acts to flatten ∇〈Vφ〉 in the
core. To characterize the pedestal intrinsic torque, data base
studies from Alcator C-Mod [8] indicate that central rotation in
H-mode and I-mode tracks pedestal ∇Ti, i.e. Vφ(0) ∼ ∇Ti,ped,
suggesting that the pedestal intrinsic torque is ∇Ti-driven.

Intrinsic rotation in ITBs [22–25] has received far less
attention than intrinsic rotation in ETBs. This is due in part
to the fact that ITBs are usually formed in plasmas subject to
external torque. However, since the interaction of external and
intrinsic torques is important in low torque scenarios planned
for ITER, intrinsic rotation in ITBs and ‘de-stiffened’ states
should receive more attention. Here, a de-stiffened state is one
with a stronger response of the temperature gradient to heat flux
increments than that exhibited by a stiff state. De-stiffening can
be achieved by enhanced E×B shear, for example. One recent
experiment [10] obtained the scaling relation ∇Vφ ∼ ∇Ti for
intrinsic rotation gradients in ITBs. This is reminiscent of the
similar result for ETBs and again suggests that the intrinsic
rotation is temperature gradient driven, as in a heat engine. To
look beyond correlation to causality, that study investigated
relative hysteresis between ∇Vφ and ∇Ti. Results indicated
that hysteresis in ∇Vφ was stronger than in ∇Ti, possibly due
to the low residual Prandtl number (i.e. Prresid ∼ χφ/χi, in the
ITB. Here, χφ and χi are the true, not effective, diffusivities) in
the ITB. Since hysteresis of a transport barrier is a consequence
of the disparity between transport in the normal and the barrier
state, the fact that χi � χφ in the ITB implies that hysteresis
will be stronger in ∇vφ than in ∇Ti. Recall χi ∼ χφ in L-mode.

A particularly compelling case for the need to consider
intrinsic torque physics is the fascinating phenomenon of
rotation reversals in OH or L-mode plasmas. Reversals refer
to events in which the global rotation profile spontaneously
reverses direction. First studied in detail in TCV [26]
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Figure 2. Density ramp hysteresis loop for reversals on Alcator
C-Mod [28].

and C-Mod [27–29], reversals are spontaneous ‘flips’ in the
toroidal rotation profile from co to counter (in C-Mod) which
occur as n increases and exceeds nsat, the density at which
confinement transitions from the linear ohmic confinement
(LOC) to saturated ohmic confinement (SOC) regime. During
the reversal, the rotation profile effectively pivots around a
fixed point inside q � 3/2. Interestingly, up–down density
ramps reveal back flips, but with some hysteresis, i.e. the
velocity versus density plot is a closed loop enclosing finite
area, not a straight line, as shown in figure 2. In some cases,
a rotation ‘spike’ (i.e. a transient, spatially localized bump
in the toroidal rotation velocity profile) was observed near
the edge just after the reversal [28]. Also, experiments on
TCV do indicate some differences between reversals in limited
and diverted discharges [30], suggesting that the effective
boundary conditions play a role in reversal dynamics. Spikes
are particularly interesting, as they may hold a clue to the global
momentum balance and rotation profile dynamics. This is
because spikes may reveal the dynamics of momentum ejection
events which help understand how the total momentum balance
of the core plasma is maintained. Building on the long
standing idea that the evolution from LOC to SOC regimes
is due to a transition from trapped electron mode (TEM)
transport to ion temperature gradient (ITG) transport excited
by collisional coupling, a speculation has arisen that inversions
are a consequence of a change in the sign of �R

rφ as n >

nsat or more generally ν∗ > ν∗crit [31, 32]. This change
reflects the dependence of �R

rφ on vgr, the group velocity of
the underlying microinstability. Alcator C-Mod has pursued
fluctuation studies, the results of which are consistent with the
expected change in mode populations, but are not conclusive.
Further work is needed.

A somewhat related phenomenon, related to the effect
of ECH on co-NBI H-mode profiles, has been observed in
JT-60U [33], AUG [34], DIII-D [35], KSTAR [36] and HL-2A
[37]. Results indicate that ECH of NBI-driven H-modes tends
to flatten the otherwise peaked velocity profile, and reduce
central rotation speeds (�V/V ∼ −40%, in KSTAR), while

∇Te steepens. Profile studies indicate ∇Vφ ∼ ∇Te here,
suggestive of a TEM counter-torque in the core. Correlation
of ∇vφ and ∇n is also indicated [38]. The H-mode pedestal
rotation profile is unchanged by ECH, suggesting that the
torque balance here is: co-NBI + pedestal co-intrinsic versus
core counter torque related to ECH. KSTAR profiles with NBI
and NBI + ECH are shown in figure 3. The data suggest
a similar paradigm to that for the OH inversion, namely a
change in the direction of the core intrinsic torque from co
to counter, due to a flip in mode propagation direction from
v∗i to v∗e, as ITG gives way to TEM. Comparative gyrokinetic
stability analysis of NBI+ECH and NBI H-modes is, however,
somewhat incomplete. This follows from the sensitivity of the
results to density profile structure near the pivot radius, and
from uncertainty concerning the spatial extent of the region
where the mode population flips (according to purely linear
analysis). Fluctuation measurements are not yet available.
See [34, 36] for more details.

The importance of the edge in intrinsic rotation physics
should already be apparent. A classic example of this is the
LSN→USN jog experiments of LaBombard in C-Mod L-mode
plasmas [39]. Here, ‘jog’ refers to the process of swing the null
point from lower (LSN) to upper (USN) positions by controlled
variation of the magnetic configuration. These are often
described as a ‘tail-wags-the-dog’ phenomena, since changes
from LSN to USN reverses not only scrape-off layer (SOL)
flows, but also the direction of the core rotation. Interestingly,
the effect on core rotation vanishes in H-mode, suggesting
that the tail is ‘cut-off’ by the sheared flow in the ETB. The
dynamics of this fascinating phenomenon are not understood.
In particular, the issue of just how flow changes penetrate from
the SOL and boundary to the core remains open. Note that this
issue may be related to the long standing mystery concerning
the ∇B-drift asymmetry in the L→H power threshold [40]. It
is important to note here that at least two types of boundary
effects are possible. One is due to SOL flows, produced by
up–down SOL asymmetry (i.e. LSN versus USN) and driven
by in-out asymmetry of edge particle transport [39]. The other
is due to edge stresses, induced by eddy tilting [41].

3. Towards a fundamental theory: intrinsic rotation
as the consequence of a heat engine

Recent work [7, 8] has developed a quite general theory
of intrinsic rotation as the output of a heat engine, which
exploits a heat flux-driven temperature differential (i.e. locally,
a temperature gradient ∇T ) to drive turbulence in a bounded
domain. Magnetic geometry and boundary effects break
symmetry and total momentum conservation, so that a net
toroidal flow develops. Two heat engines, a car and a tokamak,
are compared in table 2. The engine process effectively
converts radial inhomogeneity into parallel flow via symmetry-
breaking induced non-diffusive component of the Reynolds
stress 〈ṽr ṽ‖〉, as shown in figure 4. The heat engine paradigm
was developed to explain the formation of geophysical flows
[42] and the solar differential rotation [43] (table 3). Both
are prime examples of flows produced by heat flux-driven
turbulence.

Here, we summarize the heat engine model, derived
from the consideration of fluctuation entropy balance. This
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Figure 3. CES profiles from KSTAR co-NBI H-mode + ECH experiments [36]. Note that injection of 400 kW of ECH on axis into 1.2 MW
co-NBI plasmas tends to flatten the 〈vφ〉 profile, sharply peak the 〈Te(r)〉 profile and leave the 〈Ti(r)〉 profile almost unchanged.

Table 2. Table comparing two heat engines, a car and intrinsic
rotation in tokamaks.

Car Intrinsic rotation

Fuel Gas Heating ⇒ ∇T
Conversion Burn ∇T driven DW turbulence
Work Cylinder/Cam Residual stress

symmetry breaking → direction
Result Wheel rotation Flow

Figure 4. Turbulent plasma and flow generation.

discussion is necessarily short—readers are referred to the
original literature for details [7]. Fluctuation entropy is an
especially convenient framework within which to consider
turbulent relaxation, since it is closely related to the phase
space density fluctuation intensity. For ITG turbulence, the
kinetic fluctuation entropy density 〈δf 2〉/(2〈f 〉) is

∂t

〈
δf 2

2〈f 〉
〉

+
1

r
∂r

(
r

〈
Ṽr

δf 2

2〈f 〉
〉)

− 〈δf C(δf )〉
〈f 〉

= −〈ṽr δf 〉 〈f 〉′
〈f 〉 − |e|

mi
〈Ẽ‖δf 〉 1

〈f 〉
∂〈f 〉
∂v‖

(3)

so the local fluctuation entropy balance is

∂t

∫
d


〈δf 2〉
2〈f 〉 =

∫
d3x(P − D). (4)

Here,
∫

d
 is an integral over phase space, P is production
and D is dissipation. Production P is given by

P =
∫

d3v

(
−〈ṽr δf 〉 〈f 〉′

〈f 〉 − |e|
mi

〈Ẽ‖δf 〉 1

〈f 〉
∂〈f 〉
∂v‖

)

∼= nχi

(∇T

T

)2

− nK

( 〈VE〉′
vthi

)2

+ nχφ

( 〈V‖〉′
vthi

)2

− n
�res

r‖
2

v2
thiχφ

. (5)

The first term in P is thermal relaxation, the second term is due
to E×B flow generation, the third is turbulent viscous heating
due to 〈V‖〉′ relaxation, and the fourth is related to intrinsic
rotation generation by �res

r‖ . Note terms 1,3 are positive
definite, reflecting entropy production by relaxation, while
terms 2, 4 are negative definite, reflecting entropy destruction
by flow generation. The zonal shear is controlled by the balance
of Reynolds force versus drag, so the system has the familiar
‘predator-prey’ structure. This formulation suggests a natural
definition of engine efficiency e ≡ ∫

d3xP d
flow/

∫
d3xP

p

total, as
the ratio of entropy destruction by toroidal flow generation to
total entropy production by relaxation. Detailed calculations
[7] give 〈V‖〉′ ∼= −(ρ∗/2)(χi/χφ)(Ls/cs)((∇T )/T )2v2

thi. For
no-slip boundary conditions, it follows that: 〈V‖〉/vthi

∼=
(ρ∗/2)(χi/χφ)(Ls/LT)

√
Ti/Te and e ∼= ρ2

∗(q
2/ŝ2)(R/LT)2.

The sign and magnitude of the predicted 〈V‖〉 agree with C-
Mod results [8]. Note that 〈V‖〉 scales with L−1

T , in accord
with experiments, and taking 1/LT ∼ �Wp and Ls ∼
q ∼ B−1

θ recovers the basic trend of the Rice scaling, i.e.
�vφ ∼ �Wp/Ip. Similarly, the 〈V‖〉 ∼ ∇T/Bθ scaling of
Ida et al [44] is also recovered. Note also the explicit, direct
ρ∗ scaling originates from the underlying turbulence model
and symmetry-breaking mechanism. Zonal shear intensity at
saturation is 〈V ′

E〉2 = (χi/K)v2
thi/L

2
T. Here K is quadratic in

fluctuation amplitude and originates from the perpendicular
Reynolds stress. The heat engine efficiency is e ∼ M2

i ,
where Mi is the toroidal Mach number, so e ∼ .01 → .1 for
Mi ∼ .1 → .3. e scales according to e ∼ ρ2

∗(q
2/ŝ2)R2/L2

T,
and e ∼ 〈(k‖/kθ )

2〉. Note that apart from the ρ∗ dependence,
the scaling behaviour of e is similar to the Rice scaling.
Of course, for CTEM turbulence, ∇n and ∇Te replace ∇Ti

as the relevant thermodynamic forces, which will enter the
scaling. Figure 5 shows a plot of intrinsic torque versus ∇Ti for
ITG turbulence [45], while figure 6 shows the corresponding
intrinsic torque versus ∇Te and ∇n for CTEM turbulence [46].
Note that in all cases, the residual stress scales directly with the
driving gradient (i.e. the relevant thermodynamic force). Of
course the ρ∗ scaling is a concern for possible extrapolations to
ITER, though ρ∗ scaling is not manifested in empirical studies
of intrinsic rotation scaling [4].

The main intrinsic limitation of this approach is its local
formulation and simplified boundary condition. In particular,
fluctuation entropy transport (i.e. turbulence avalanching and
spreading) and dynamics of heat flux relaxation [47] can
significantly modify the dependences. Research in these issues
is ongoing. Non-locality and intrinsic torque are discussed in
section 4.5.
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Table 3. Comparison of differential rotation in the sun and intrinsic rotation in tokamak.

Sun Tokamak

Heat source Fusion reaction in the core Heat deposition
Turbulence source ∇T ∇T
threshold Schwarzschild Criteria ITG

1

T

∣∣∣∣dT

dz

∣∣∣∣ > (γ − 1)
1

ρ

∣∣∣∣dρ

dz

∣∣∣∣ R/LT > R/LT,c

Turbulence Convective turbulence Drift-ITG turbulence
Symmetry breaking Rotation, β Velocity shear, 〈VE〉′

Stratification Intensity gradient, I (x), ...
Resultant flow Polar differential rotation Intrinsic rotation

vφ(θ) v‖(r)
Boundary condition Momentum loss to Edge stresses, SOL flow

solar wind effects, neutral drag

Figure 5. Intrinsic torque versus ITG as measured by simulations of
ITG turbulence [45].

Figure 6. Intrinsic torque versus electron pressure (electron
temperature and density) gradient as measured by simulations of
CTEM turbulence [46].

4. Theory of intrinsic torque

This section surveys the physics of the most relevant
symmetry-breaking mechanisms. This survey is necessarily

limited—other mechanisms do exist. We focus on the most
important physical properties of the mechanisms of interest.
The reader concerned with detailed calculations should consult
the primary literature. The discussion is summarized in
table 4.

The net residual stress �R
rφ is given by

�R
rφ = nmi

[
〈 ˜vE,r ṽ‖〉R +

〈
c

B
Ẽr

c

B
Ẽ‖

〉
− Bθ

BT
〈 ˜vE,r ṽθ 〉

]
. (6)

Each term represents a specific process and is determined by
a specific spectrally weighted correlator of two wavenumber
components. This correlator contains the essence of
the symmetry-breaking physics, much the same way the
turbulence helicity contains the essence of reflectional
symmetry breaking, which is crucial to the mean field theory
of the turbulent magnetic dynamo [48]. Indeed, symmetry
breaking is well to be central to large scale flow generation
in turbulent neutral fluids [49]. The first term is the residual
part of the parallel Reynolds stress, due to radial transport of
parallel velocity, which is determined by the spectral correlator
〈kθk‖〉. Here the bracket refers to a spectral average, i.e.
〈kθk‖〉 = ∑

k kθk‖|φ̃k|2/
∑

k |φ̃k|2 . The second term is the
polarization stress, which actually originates from parallel
acceleration of guiding centres by the gyrokinetic polarization
charge [50]. The key correlator here is 〈krk‖〉. The third term
is due to the toroidal projection of perpendicular forces, or,
equivalently, the 〈J〉radial ×Bθ force induced by a radial flux of
polarization charge. The relevant correlator is 〈kθkr〉, familiar
from the perpendicular Reynolds stress which drives zonal flow
(ZF) [51], etc.

The residual part of the parallel Reynolds stress,
determined by the 〈kθk‖〉 correlator, is effectively set by the
spatial structure of the spectrum |φ̃k(r)|2 , since radial structure
couples to parallel variation via k‖ = k‖(r), and since the sum
over modes implies a spatial integration. Hence, the 〈kθk‖〉
correlator is sensitive to asymmetries. The first of these is due
to spatial spectral shifts as shown in figure 7. Sheared flows
(i.e. 〈VE〉′) tend to shift modes off resonant surfaces [52, 53],
producing a skewed intensity profile, which in turn gives a finite
spectrally averaged value of 〈k‖〉. This produces an imbalance
in acoustic wave populations with ±k‖, and so gives a finite
〈kθk‖〉. A spectral intensity shift is thus the signature of k‖
symmetry breaking by E ×B shear. In ballooning space [32],
E×B shear produces an eddy shift and tilt. Note that the shift

6
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Table 4. Physics of symmetry breaking mechanisms.

Relevant stress Spatial Key Macro
and mechanism structure physics implication

〈ṽr ṽ‖〉, 〈vE〉′ k‖ from spectrum Centroid shift πres ∼ 〈vE〉′.
(Electric field shear) shift (config.) induces mean 〈k‖〉 Intrinsic torque

or eddy tilt from parallel peaked at barriers,
(ballooning) acoustic wave steep gradients

asymmetry πres can flip
with mode change

〈ṽr ṽ‖〉, I ′ k‖ from spectra Spectral dispersion πres ∼ I ′. relevant
(Intensity gradient) dispersion due from intensity to barriers but also
(I ≡ intensity) I ′ gradient. Linked for more general

to ⊥ Reyn. stress, inhomogeneity.
also Can change with

mode change.
Ultimately tied to
temp. profile curv.

Stress from 〈krk‖|φk|2〉 Guiding centre As yet unclear.
polarization stress due stress from Merits further
acceleration radial + parallel acceleration due study. Linked to
〈Ẽ‖∇2

⊥φ̃〉 propagation, polarization charge mode radial group
(r, ‖) tilting 〈krk‖〉 �= 0 needed velocity vgr and

can flip direction

Stress from (r, θ) tilting, J × B torque ∼ universal
∂r〈ṽr ṽ⊥〉 as for ZF originating from mechanism, closely
→ 〈Jr〉 → Bθ 〈Jr〉 Same physics polarization flux related to ZF,
→ toroidal for ZF I ′ �= 0, 〈krkθ 〉 �= 0 tied to I ′ and Ik

torque needed structure. Flips
with vgr. Merits
more study.

Figure 7. Symmetry breaking by 〈VE〉′-induced spectral shift [53].
Finite 〈VE〉′ renders the spectral centroid non-zero, and so
yields 〈k‖〉.

is necessarily proportional to 〈VE〉′, and cannot be so large that
the underlying shear turns the underlying instability off. The
correspondence between the configuration and the ballooning
space manifestations of shear flow induced symmetry breaking
is shown in figure 8. Note the connection between mean k‖ (i.e.
〈k‖〉) and net eddy tilt. Clearly the real space and ballooning
space approaches are equivalent.

A second, equally important mechanism for symmetry
breaking in 〈kθk‖〉 is due to spatial spectral dispersion, with
finite intensity gradient I ′ [54, 55]. This mechanism does not
require a spectral shift. Rather, the requisite asymmetry is
produced by the spatial profile of intensity. The origin of this

Figure 8. Shifted spectrum in real space and net eddy tilt in
ballooning space. Note a Fourier transform directly relates the
‘tilted’ spectrum in ballooning space to the shifted spectrum in
configuration space.

effect can be seen from

〈kθk‖|φ̃k|2〉 �
〈
k2
y

(r − r0)

Ls

{
|φ̃k|2 + (r − r0)

∂

∂r
| ˜φk(r0)|2

+ · · ·
}〉

≈
〈
k2
y

(r − r0)
2

Ls

∂

∂r
|φ̃k|2

〉
. (7)

Figure 9 gives an instructive heuristic sketch related to this
mechanism. Note that intensity gradients will surely be steep
at the boundary between regions with different confinement
properties (for example, at the ‘corners’, which bound transport
barriers where profile curvature is large). Thus, strong
intensity gradients will occur near regions with large changes
in 〈VE〉′. However, one can expect an intensity gradient in

7
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Figure 9. Symmetry breaking by I ′-induced spectral dispersion [54, 55].

any region of significant temperature profile curvature. This
may easily be seen by considering the condition of constant
total heat flux, taken as diffusive for simplicity. Then, for
Q = −(χT + χneo)∂r〈T 〉,

Q′ ∼= 0 (8)

requires

1

χT
∂rχT

∼= − 1

∂r〈T 〉∂
2
r 〈T 〉 − 1

χT

∂χneo

∂r
. (9)

Here χT is the turbulent heat diffusivity. For simplicity, we also
assume χT > χneo. Thus, noting ∂rχT/χT ∼ ∂rI/I , we find

∂rI

I
∼= −∂2

r 〈T 〉
∂r〈T 〉 , (10)

i.e. temperature profile curvature is seen to be closely related
to the fluctuation intensity gradient. Notice that it is
profile curvature, rather than profile shear, which ultimately
determines the residual stress and intrinsic torque nominally
produced by fluctuation intensity gradients. Also note that
both intensity gradient and electric field shear mechanisms
ultimately depend heavily on profile curvature, the latter via
{1/(en)}∂2

r 〈pi〉, from radial force balance. We see that the
intensity gradient mechanism is, in some sense, more general
than the E × B shear mechanism.

Given the complexity of symmetry-breaking physics,
it is natural to seek to test the theory via numerical
simulation. With the possible exception of full f , flux-
driven studies, gyrokinetic simulations have somewhat limited
capacity to investigate intrinsic rotation phenomena. Boundary
conditions—both for flow and for heat—remain especially
thorny issues. Simulations can, however, investigate
symmetry-breaking mechanisms. One study of flux-driven
ITG turbulence [45] compared the correlation between residual
stress and intrinsic torque, with parallel symmetry-breaking

mechanisms due to 〈VE〉′ and I ′ (intensity gradient). Figure 10
shows the correlations of residual stress and intrinsic torque
with the candidate mechanisms. The degrees of correlation
are quite comparable, with the intensity gradient mechanism
exhibiting the same level of correlation as the usually invoked
〈VE〉′. Interestingly, correlations with intrinsic torque are
stronger than with residual stress.

Another contribution to the residual stress is the second
term in equation (6), which actually originates from parallel
acceleration of guiding centres by GK polarization charge
∼〈Ẽ‖∇2

⊥φ̃〉 [50]. Ignoring other co-existing symmetry
breaking mechanisms, we can re-write this acceleration effect
as the divergence of a stress �R

rφ ∼ 〈Ẽ‖∂r φ̃〉. The key
correlator for this stress is 〈k‖kr〉 . Interestingly, this correlator
is typically non-zero for any out-going wave, i.e. with the
structure k‖ ∼ kθx/Ls , while kr = −µkx so 〈k‖kr〉 ∼
〈(kθµk)x

2/Ls〉 �= 0. There is no need to invoke additional
‘symmetry breaking’. In this sense, the polarization stress is a
universal contribution to �R, which is likely to be present in
all confinement and transport regimes. We comment that �R

pol
merits more attention than it has received to date.

A fourth mechanism, corresponding to the third term on
the right-hand side (RHS) of equation (6) follows from the
toroidal projection of the perpendicular Reynolds stress [56],
〈ṽr ṽ⊥〉. Since the stress 〈ṽr ṽ⊥〉 is fundamentally rooted in
wave propagation and necessarily depends upon radial group
velocity vgr [51], we refer to this as the wave residual stress
�R

w. The way by which �R
w drives toroidal rotation may be

thought of either as a result of a non-zero divergence of a
stress (∼(Bθ/BT)〈ṽr ṽ⊥〉), or as a toroidal torque 〈Jr〉Bθ/c.
The two approaches are precisely equivalent. Here 〈Jr〉 is
the radial current produced by the radial flux of polarization
charge (〈Jr〉 ∼ Bθ 〈ṽrρ

2
s ∇2

⊥φ̃〉/B0 ∼ (Bθ/B0)∂r〈ṽr ṽθ 〉, by the
Taylor identity [57, 58]). Now, the Reynolds stress is more
conveniently calculated by using wave kinetics and modulation
theory. The result, which follows from a standard calculation

8
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Figure 10. Comparison of symmetry-breaking mechanisms related to E × B shear 〈V 〉′ and intensity gradient I ′ [45]. The levels of
correlation with �rφ are comparable.

[51], is

�R
wave =

∑
k

{
− Dw

∂

∂r
(kθ 〈N〉)

− k2
θ ρ

2
s τck

(1 + k2
⊥ρ2

s )
2
kr

∂

∂kr

〈�〉〈VE〉′
}
, (11)

where Dw = v2
grτck and 〈�〉 is the wave enstrophy density,

proportional to the wave action density. Note that the first
term is effectively an intensity gradient contribution and is
determined by the radial profile of wave poloidal momentum
density itself, ∼kθ 〈N(k, x)〉. τck is the wave-flow correlation
time. The first term corresponds to spatial diffusion of wave
momentum density, due to the random walk (in the space)
of interacting wave packets. Dw is the spatial diffusion
coefficient for this walk. The second term is familiar from
ZF theory [51], and represents growth by ZF amplification.
Equation (11) states that both radial position and radial
wavenumber gradients of the spectral density contribute to
driving the mean stress and intrinsic flow. Physically speaking,
the second term describes how shear-induced eddy tilting
produces a stress, while the first describes how a gradient
in wave momentum density can drive a flow. Interestingly,
this mechanism is quite robust, and appears stronger than
conventionally invoked effects derived from 〈ṽr ṽ‖〉, since
usually |(Bθ/B0)〈ṽr ṽ⊥〉| > |〈ṽr ṽ‖〉|. Note also that the wave
stress does not require any special symmetry-breaking effect,
apart from the existence of a non-zero spectral gradient in either
x or k. Thus, the force induced by the toroidal projection of
the 〈ṽr ṽ⊥〉 intrinsic torque stress surely merits more attention
as a drive for intrinsic rotation.

We emphasize here that while this list includes the most
important and most frequently invoked symmetry-breaking
mechanisms, there are many others. The constraints on this
rather short OV paper preclude an exhaustive discussion. The
reader is referred to other OV papers and to the original
literature for additional details.

4.1. Gyrokinetic formulation of intrinsic torque

The approach of the previous section was intuitive and
heuristic. There, we sought to motivate and present the key
physics of the mechanisms which underpin intrinsic torque.
In this complementary section, we present a gyrokinetic
formulation of intrinsic torque. The approach is systematic
and deductive, and the aim is to indicate how and where the
effects discussed in section 4.1 originate in the gyrokinetic
equation.

For an electrostatic axisymmetric equilibrium, the
expression for the evolution of toroidal canonical momentum
pϕ ≡ msRbϕv‖ − qsψ/c may be written as [59]

∂

∂t

〈
pϕB∗

‖Fs

〉
+

1

V ′
∂

∂ψ
V ′ 〈pϕB∗

‖FsẊ · ∇ψ
〉

+
∂

∂v‖

〈
pϕB∗

‖FsV̇‖
〉 = −

〈
qsB

∗
‖ δFs

∂δφ

∂ϕ

〉
, (12)

where we have taken the limit of cold ions, so that finite Larmor
radius effects may be neglected. Here B∗ = B + (mic/e)∇ ×
(v‖b). This limit was taken for reasons of simplicity and may be
easily relaxed (see [50, 60, 61] for treatments of finite Larmor
radius terms). Integrating equation (12) over velocity space,
and summing over particle species, yields

∂

∂t

〈∑
s

∫
d3vpϕFs

〉
+

1

V ′
∂

∂ψ
V ′

〈∑
s

∫
d3vpϕFsẊ

〉

= −
〈∑

s

qs

∫
d3vδFs

∂δφ

∂ϕ

〉
, (13)

where the velocity space volume element is given by d3v ≡
2π dµ dv‖B∗

‖ . Equation (13) indicates that toroidal canonical
momentum is conserved up to the breaking of axisymmetry
by the fluctuating electrostatic field. This expression may be
transformed into an expression for the angular momentum
Lϕ ≡ msRbϕv‖ by multiplying the particle conservation
equation by qsψ/c and summing the result with equation (13),

9
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yielding

∂

∂t

〈∑
s

∫
d3vLϕFs

〉
+

1

V ′
∂

∂ψ
V ′ 〈Πϕ · ∇ψ

〉

= 〈
RδqpolδEϕ

〉
+ R

〈Jr〉 Bθ

c
. (14)

Here we have defined the polarization charge and radial
current by

δqpol =
∑

s

qs

∫
d3vδFs, Jr =

∑
s

qs

∫
d3vFsẊ · êr ,

the flux of angular momentum is given by

Πϕ ≡
∑

s

∫
d3vLϕFsẊ. (15)

and we have defined the radial unit vector by êr ≡ ∇ψ/|∇ψ |
where |∇ψ | = BθR. Equation (14) suggests that the plasma
may be accelerated by the radial flux of toroidal momentum,
the application of a J × B torque, or through the toroidal
acceleration of the plasma by the fluctuating electric field.

The J ×B torque appearing on the rhs of equation (14) can
be further constrained by considering the gyrokinetic Poisson
equation. Namely, taking the time derivative of the flux surface
averaged linearized gyrokinetic Poisson equation, yields〈
∇⊥ ·

(
ε⊥

∂

∂t
∇⊥φ

)〉
= −4π

〈∑
s

qs

∫
d3v

∂Fs

∂t

〉

= 4π

〈
∇⊥ ·

∑
s

qs

∫
d3vFsẊ

〉
, (16)

where ε⊥ ≡ c2/v2
A and we have utilized the conservative

form of the gyrokinetic Vlasov equation. After performing
an integration over the radial direction, the mean radial current
may be shown to be constrained by the temporal variation of
the mean radial electric field, i.e.

− ε⊥
4π

∂

∂t
〈Er〉 = 〈Jr〉 . (17)

The J × B torque on the rhs of equation (14) may then be
rewritten as

〈Jr〉 Bθ

c
= − ε⊥

4π

∂

∂t

〈Er〉 Bθ

c
, (18)

which may be recognized as the rate of change of the mean
toroidal field momentum. Similarly, utilizing the gyrokinetic
Poisson equation, the toroidal acceleration term may be
rewritten as〈
RδqpolδEϕ

〉 = 1

V ′
∂

∂ψ
V ′

〈
n0mi

c2

B2
∇⊥δφ · ∇ψ

∂δφ

∂ϕ

〉
, (19)

where we have exploited the axisymmetry of the magnetic
equilibrium. Hence, from equations (17), (19) and (14), the
evolution of the total toroidal momentum is described by

∂

∂t

(〈
Lmech

ϕ

〉
+

〈
Lfield

ϕ

〉)
+

1

V ′
∂

∂ψ
V ′

[〈
Πϕ · ∇ψ

〉

+

〈
Πpol · ∇ψ

〉]
= 0, (20)

where we have defined the flux

Πpol ≡ −n0mi
c2

B2
∇⊥δφ

∂δφ

∂ϕ
. (21)

Here the mechanical and field momenta are defined by

Lmech
ϕ ≡

∑
s

∫
d3vLϕFs, Lfield

ϕ ≡ R
ε⊥
4π

〈Er〉 Bθ

c
.

(22)
For practical purposes, it is often convenient to

decompose the polarization stress into perpendicular and
parallel components, i.e.〈

Πpol · êr

〉 = −n0mi

〈
R

Bθ

B
δuEB

y δuEB
r

〉

−n0mi

〈
R

Bϕ

B

c2

B2
δErδE‖

〉
.

Here the first contribution can be recognized as the toroidal
projection of the perpendicular Reynolds stress, whereas
the second contribution represents the toroidal projection
of a parallel stress associated with the acceleration of
gyrokinetic polarization charge. The second contribution
corresponds to the parallel Reynolds stress 〈ṽr ṽ‖〉 discussed in
section 4.1, while the second corresponds to (Bθ/BT)〈ṽr ṽ⊥〉,
also discussed there.

4.2. Alternative formulation by wave kinetics

In this section, we survey an alternative formulation of the
physics of residual stress [31]. The formulation here is
based on the same idea as the energy conservation balance
in basic quasi-linear theory. There, an appealing picture
of an energy balance between resonant particles and waves
emerges [62, 63]. In that spirit, here we calculate the net
momentum flux and residual stress by a decomposition into
resonant ion momentum flux and wave momentum flux. The
wave momentum flux is most conveniently calculated by a type
of Chapman–Enskog expansion of the wave kinetic response,
using the wave kinetic equation. The utility of this approach
is that it is rather systematic, yields a unified structure within
which to examine trade-offs and competition, and gives an
alternative perspective to the approach presented in section 4.1.
In particular, it elucidates the important links between wave
propagation, momentum transport, and intrinsic torque.

Here we briefly summarize the calculation and discuss
the physics of the principal results. We limit this discussion
to wave momentum (i.e. equivalent to non-resonant particle
momentum), as most ions which support drift-ITG turbulence
are non-resonant. Resonant particle momentum transport
is discussed in detail in [31]. The radial flux of parallel
wave momentum (which corresponds to the radial flux of
non-resonant particle parallel momentum) is given directly by∑

k k‖vgrN(k). This quantity is most expeditiously calculated
using a linear response approximation for the wave population
(i.e. action) density N(k, x), in the spirit of a Chapman–
Enskog expansion (see [31]). This yields the response of the
gas of waves to thermodynamic forces. Omitting details, the
result is:

�R
r‖ �

∫
dkk‖

{
− τc,kv

2
gr

∂

∂r
〈N〉

+τc,kvgrkθ 〈VE〉′ ∂

∂kr

〈N〉
}
. (23)

10



Nucl. Fusion 53 (2013) 104019 P.H. Diamond et al

Figure 11. Drives of wave residual stress [31]. (a) shows the effect of spectral inhomogeneity (intensity gradient) and (b) shows the effect
of shearing and shear-induced tilt.

The first term on the rhs accounts for spatial transport of parallel
wave momentum by scattering wave packets, which leads to
wave momentum density diffusion. It is effectively an intensity
gradient effect. As ∂〈N〉/∂r > 0 (i.e. since fluctuation
intensity increases with radius), the effect generates an inward
flux of positive wave momentum (k‖ > 0) and/or an outward
flux of negative wave momentum (k‖ < 0). Any intensity
gradient then necessarily must produce a finite flux and residual
stress. This effect is particularly strong at the edge, where
intensity gradients are steep. The second term accounts for
refraction induced wave quanta imbalance. This is evidently
important in regions of strong 〈VE〉′, such as for steep ∇P ,
relevant to barriers. It is important to notice that dependence
on the propagation direction of the underlying mode enters via
the vgr factor, which can flip sign when ITG → TEM. The
physics of �R

r‖ is schematically shown in figure 11. The 〈VE〉′
dependence follows from a refraction induced change in wave
population (and momentum) density due to shearing.

An interesting observation concerning the wave radiation
stress given in equation (23) is that it clearly can support
multiple types of transport bifurcations, implying multiple
states of toroidal momentum transport. In particular, a
glance at the 2nd term suggests that �R

r‖ associated with this
contribution (∼vgr〈VE〉′) can change either by: (a) a change
in 〈VE〉′ at constant vgr or (b) a change in vgr at constant
〈VE〉′. The former corresponds to the L → H spin-up, or
ITB formation, where 〈VE〉′ increases dramatically. Note
that changes in fluctuation intensity are largely irrelevant,
since for intrinsic rotation, 〈vφ〉′ ∼ �resit/χφ , so fluctuation
amplitude approximately cancels out. Of course, some residual
turbulence in the barrier is required to sustain �res. The
second type of momentum transport bifurcation corresponds
to reversals, where a change in sign of vgr, and thus �R,
can result from a v∗e ↔ v∗i flip (i.e. TEM ↔ ITG). Note
that in the former case, the momentum transport bifurcation
is closely linked to a confinement bifurcation (as 〈VE〉′
increases), as in the formation of ETBs and ITBs. In the
latter case, the residual stress and intrinsic rotation profile
can exhibit dramatic changes without any particular change
in confinement, ∇T , ∇n etc! Of course, other scenarios are
possible, involving trade-offs between radiative diffusion and
wave refraction effects. This issue will be discussed further in
section 5.

The issue of symmetry breaking can be profitably
illuminated by an approach via radiation hydrodynamics for
drift waves, as described here [64, 65]. In this framework,
〈k‖〉 = ∫

dkk‖N/
∫

dkN—i.e. mean k‖ emerges from a k‖
moment equation of wave kinetics, so the evolution of 〈k‖〉 is
described by a moment equation for 〈p‖〉 ∼ ∫

dkk‖N . Wave
parallel momentum density calculations give the result:

〈k‖〉 � τw
ck

{
− 1

r

∂

∂r
[r〈�w

r‖〉] −
∫

dk

(
∂k‖
∂kr

)
kθ 〈VE〉′〈N〉

+2
∫

dkk‖γk〈N〉
}
. (24)

Thus, we see that the net wave momentum density at a given
position is determined by the competition between nonlinear
decay (i.e. spectral transfer, or scrambling, with correlation
time τw

ck) and the following terms: (a) local inflow or outflow of
wave momentum density by transport, given by −∂r〈�w

r,‖〉. (b)
enhancement of 〈k‖〉 via synergy between electric field shear
(〈VE〉′) and magnetic shear (∂k‖/∂kr �= 0!). This is the same
process as the E × B shear induced mode shift or eddy tilting
process discussed in section 4.1. In eikonal space it may be
understood as a process of k‖ wind-up due to 〈VE〉′ shear-
induced eddy tilting. Since ∂k‖/∂kr ∼ kθ , the overall effect
is even in kθ and ∼k2

θ . (c) k‖ asymmetry in growth rate γ‖—a
rare occurence.

4.3. Boundary asymmetries

This section deals with the effect of boundary asymmetries
on intrinsic torque. Here we focus on LSN versus USN
asymmetry and its effect on residual stress. This issue is closely
related to the well-known LSN and USN asymmetry in the
H-mode power threshold.

One of the most persistent puzzles in L → H transition
phenomenology is why the power threshold is usually lower
for LSN configurations (with ∇B drift into the X-point)
than for USN configurations (with ∇B-drift away from the
X-point). Here, we briefly summarize recent progress on a
model which links this asymmetry to the interplay of magnetic
shear and E × B shear-induced eddy tilting, and its affect
on Reynolds stress generated E × B flows [41]. Simply put,
both magnetic and electric field shear act to tilt eddys. Tilting
eddys induce a perpendicular Reynolds stress, by rendering
〈Ṽr,EṼ⊥,E〉 �= 0. Thus, the local radial wavenumber is given
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by, kr(θ) = kr(θ0) + [(θ − θ0)ŝ −V ′
Eτc]kθ , where the first term

is due to magnetic shear tilting (which varies with angle θ ) and
the second term is due to E × B shear tilting, which grows in
time. Hereafter, we take τ = τc, the turbulent correlation time
and thus the eddy life time, and θ0 = 0. Given the structure of
kr(θ), the total non-diffusive (i.e. ‘residual’) Reynolds stress is

〈ṽr ṽθ 〉 = 〈ṽr
2
(0)〉F 2(θ)[−θ ŝ + V ′

Eτc] (25)

F 2(θ) refers to the potential fluctuation intensity as a function
of poloidal angle θ .

Now the point here is readily apparent from observing
that 〈θF 2(θ)〉θ will tend to vanish unless there is an imbalance
between contributions to the flux surface average from θ > 0
and θ < 0 – i.e. an up–down asymmetry, as for LSN
versus USN! The remaining question is to determine when the
magnetic shear-induced stress adds to or subtracts from the
E × B shear-induced stress and the related flow production.
To do that, the electric field shear must be computed self-
consistently, by solving the poloidal momentum balance
equation: ∂t 〈vθ 〉 + ∂r〈ṽr ṽθ 〉 = −γCX〈vθ 〉 where 〈ṽr ṽθ 〉 =
−χθ∂r〈vθ 〉 + �ŝ + �V ′

E
so

∂tvθ + ∂r(�ŝ + �V ′
E
) = −(γCX − ∂rχθ∂r)[VE + V∗i]. (26)

Here we have used radial force balance while neglecting
toroidal flow, and have accounted for turbulent viscosity (χθ )

and frictional damping (γCX), and retained both magnetic shear
(�ŝ) and electric field shear (�V ′

E
) driven residual stresses.

Of course, 〈VE〉′ in the latter also must satisfy radial force
balance. Equation (26) is solved while imposing the boundary
conditions Er = −3∂rTe (i.e. determined by SOL physics)
at the LCFS and VE = −V∗i in the core. Assuming gyro-
Bohm turbulence and using standard parameters, we calculate
VE/cs and V ′

E , as shown in figure 12. It is readily apparent that
favourable (i.e. LSN) configurations (where �ŝ and �v′

E
add)

give a larger and stronger edge electric field shear layer than
do unfavourable (i.e. USN) configurations (where �ŝ and �v′

E

subtract). The effect is significant—maximum shears are at
least twice as strong for LSN than for USN. The corresponding
Reynolds force is obtained, too. We also note that the effect
is not poloidally symmetric, when variation of intensity in θ is
considered.

The effect on toroidal rotation follows directly from
the relation between �R

rφ and perpendicular Reynolds
stress discussed above, i.e. �R

rφ � −(Bθ/BT)〈ṽr ṽ⊥〉.
The results above immediately suggest that ∂r〈vφ〉|a =
−(Bθ/BT)〈ṽr ṽ⊥〉/χφ , so edge rotation gradients differ
substantially for LSN and USN. In particular, in the
favourable, LSN configuration, ∂〈vφ〉/∂r|a > 0, while for
the unfavourable, USN configuration, ∂〈vφ〉/∂r|a < 0. These
trends are observed in DIII-D [66] and Tore Supra [67] L-mode.
Their implications for central rotation are unclear, as core
momentum transport physics also affects central rotation. The
relation of these results to the well-known C-Mod experiments
of LaBombard et al [39] is also unclear, since SOL flow effects
appears to be significant in that case. In that vein, some have
hypothesized that turbulent viscosity, resulting from parallel
shear flow instability [68] of strong SOL flows, may scatter
SOL flow momentum through the LCFS and into the core,
in such a way as to affect core rotation. In this scenario,
poloidally in-out asymmetric particle flux, driven by drift

( )

( )

Figure 12. (a) Radial profile of E × B velocity for unfavourable
(light grey) and favourable (dark grey) configurations. (b)
Associated electric shear profile [41].

wave turbulence, produces a SOL flow via the symmetry
breaking due to magnetic configuration (i.e. LSN versus USN).
Transport of this SOL flow momentum into the core plasma
is then hypothesized to spin-up core rotation. Of course,
the formation of an ETB, as by an L → H transition, will
block any influx of SOL momentum into the core, as indeed
observed in experiment. This interesting SOL-flow-based
scenario, motivated by observed LSN → USN jog induced
flow reversals in C-Mod L-mode plasmas, is as yet unsupported
by even semi-quantitative theoretical work. The details of how
that ‘tail wags the dog’ mechanism actually works, and how
efficient it is, remain exceedingly murky. Note there is a clear
distinction between the eddy tilting and SOL flow mechanism.
In the eddy tilting scheme, turbulence exerts a stress at the
separatrix, the sign of which is partially, but not exclusively,
determined by the magnetic geometry. In the SOL flow
scheme, turbulence is thought to transport momentum from
outside the separatrix into the core. Differentiating between
these two scenarios remains a challenge for experiment.

4.4. Non-local effects and their role in intrinsic torque

Though controversy still persists, there is mounting evidence
that turbulent transport in tokamaks is ‘non-local’, i.e. not
well described by a linear, local flux-gradient relation [69].
Specific processes which may be at work include avalanching
and turbulence spreading. Thus, non-locality surely must
also enter the story of momentum transport and intrinsic
torque. However, the evident importance of wave propagation
dynamics in the residual stress, along with the rather strong
effects of boundary stresses, SOL flows and pedestal intrinsic
torque suggest that momentum may, in some sense, be
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Figure 13. Conventional scenario of finite core ∇Ti(r) set by heat
flux from deposition. ∇Ti steepens at ETB where χi(r) is
suppressed.

‘more non-local’ than heat transport (figure 13). One
striking demonstration of this is the cancellation experiment of
Solomon et al [21], in which centrally deposited counter-NBI
and pedestal co-intrinsic torque combine to yield an essentially
flat rotation profile, with 〈vφ〉 = 0, from ρ = 0 to ρ = 1. This
result suggests a potentially non-local character of momentum
transport. In this section, we discuss the theory and simulation
of non-locality in momentum transport.

It is interesting and instructive to first observe that the
presence of an intrinsic torque can give the naive impression
that momentum transport is ‘non-local’, even within the
formulation of a purely local theory! To see this, consider
the rather relevant example of the Solomon cancellation
experiment—i.e. net counter-NBI torque triggering an L → H
transition which produces a co-intrinsic torque in the pedestal.
Ignoring the momentum pinch for simplicity, stationary
momentum balance for this case gives

∂r� = Text(r) (27)

� = −χφ∂r〈vφ〉 + �res (28)

So
− ∂rχφ∂r〈vφ〉 = Text(r) + Tintr(r) (29)

where Text is the external torque (assumed to be peaked on
axis) and Tintr is the intrinsic torque (∼−∂r�

res), and situated
in the H-mode pedestal [21]). For simplicity then, we take

Tintr = aTI δ(r − rped) (30)

where rped is the location of the top of the pedestal and TI gives
the strength of the intrinsic torque. Here TI > 0 (co-torque)
while Text < 0 (counter-NBI). Then, equation (29) gives

∂r〈vφ〉 = − 1

χφ

[∫ r

0
dr ′Text(r

′) + aTI�(rped − r)

]

= − 1

χφ

[∫ r

0
dr ′Text(r

′) + aTI

]
. (31)

Note that Text and TI oppose one another. Interestingly,
equation (31) suggests that the core velocity gradient ∂r〈vφ〉
appears to consist of a usual local piece ∼ ∫ r

0 dr ′Text(r
′),

driven by the NBI momentum deposited within the flux surface
at r , plus a piece originating from the pedestal intrinsic
torque, which self-organizes at the edge. The latter has the

Figure 14. In contrast, core ∇vφ is set by sum of outgoing NBI
torque induced flux and incoming intrinsic torque induced flux.
These cancel, leaving ∂r〈vφ〉 ∼= 0 in the core. The incoming
momentum flux from the ETB intrinsic torque thus gives the
appearance of a non-locality, in that an edge effect ‘back reacts’ on
the core—a ‘tail which wags the dog’. In the Solomon cancellation
experiment, the ‘tail’ and the ‘dog’ in fact cancel, leaving a flat
profile.

appearance of a ‘non-local’, or ‘tail-wags-the-dog’ effect,
since it originates at the edge yet it dramatically affects the
core velocity profile. Indeed, in the Solomon cancellation
experiment, TI cancels Text, leaving ∂r〈vφ〉 ∼= 0 (figure 14).
Thus, we see that localized localized intrinsic torques, such
as those due to ETBs and ITBs, can give the appearance of
a ‘non-local’ effect in the momentum balance, in spite of the
fact that the basic transport model from which they originate
is fundamentally local! This simple example illustrates the
subtlety of what may appear as non-locality in momentum
transport.

One well-known agent of genuine ‘non-locality’ is
avalanching, as in a sandpile self-organized criticality.
Avalanches can produce transient mesoscale and large scale
transport events, which connect large regions of the plasma.
An avalanche is a burst of correlated transport kicks by
interaction between adjacent modes extending over a range
of scales �c < l < Lmacro. This range falls in the range
of mesoscales. Heat flux avalanches have been observed
in many simulations [45, 69, 70] and some experiments [71].
An interesting question, then, is how momentum avalanches
behave in a heat flux-driven state without momentum
input (i.e. which corresponds to a state of purely intrinsic
rotation). To address this, we report on results of full
f , gyrokinetic simulations which compare the probability
distribution function of the heat flux and momentum flux [45].
Results are shown in figures 15 and 16. Figure 15 shows that
the pdf of the heat flux is very well correlated with the pdf
of the negative of the momentum flux, −�, i.e. pdf(Q) ∼
pdf(−�). This suggests that while avalanches transport heat
outwards, they tend to transport momentum inwards. In
contrast, figure 16, from the same study but from a different
simulation, indicates outward avalanching in both heat and
momentum. In that case, pdf(�) ∼ pdf(Q), including the
non-Gaussian tail on the pdf. A possible explanation of the
origin of the differences between the figures is that the profiles
for figure 15 are chosen so that ∇Ti is maximal near the edge,
due to the imposition of an artificial edge cooling. In some
sense, the simulation resembled an RI-mode plasma [72, 73],
the edge of which is strongly cooled by radiation due to
impurity injection. Thus, the heat engine picture (which links
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Figure 15. Pdf for heat flux and momentum flux with ∇Ti maximal
at the edge. Here, Pdf(Q)∼Pdf(−�), indicating close correlation by
opposite sign of the fluxes.

Figure 16. Pdf for heat flux and momentum flux with ∇Ti freely
evolving, becoming maximal at the core. Here, Pdf(Q)∼Pdf(�),
indicating close correlation and like direction of the fluxes.

�res to ∇Ti) tells us that it is not surprising that intrinsic rotation
is driven from the edge inwards. In case of figure 16, ∇Ti

evolves so there are turbulence and avalanches throughout the
domain, and ∇Ti is largest in the core. In that case, an in → out
development is to be expected, and is indeed realized. The
contrast between these two cases nicely illustrates the impact
of the global configuration, boundary conditions, etc. on the
development of the local structure of intrinsic rotation. Such
sensitivity to global structure can appear as ‘non-locality’.

We briefly comment here on what might qualify as an
unambiguous signature of non-locality in intrinsic torque.
Gyrokinetic simulations [70] have noted the existence of a
non-local relation between the turbulent heat flux Qi and ∇Ti,
given by Q(x) = − ∫

dx ′κ(x, x ′)∇Ti(x
′). Here, κ(x, x ′) is

a non-local kernel κ ∼= S0/{(x − x ′)2 + �2}, and LTi >

� > �c. Note that
∫

dx ′x ′2κ(x − x ′) diverges, suggesting
that the avalanches produce Levy flights as the origin of non-
locality. For ∇vφ �= 0, one would straightforwardly expect
that the diagonal part of the momentum flux would exhibit a
similar relation between �diag and ∇vφ , as a generalization
of χφ ∼ χi. More interesting, however, is the possibility

that �res(x) ∼ ∫
dx ′α(x, x ′)∇Ti(x

′), suggesting a non-local
relation between residual stress and ∇Ti! Here, α(x, x ′) is
an interaction kernel, related, but not necessarily identical to,
κ(x, x ′). Such a relation is the logical non-local extension of
the �res ∼ ∇Ti proportionality discussed at length above, in
the context of the engine model. We remark that it would be
quite interesting to investigate simulation data for evidence of
such a dependency.

Turbulence spreading-induced non-locality can also occur
from radiation transport of wave momentum by drift waves.
This idea builds upon the relation between wave propagation
and momentum transport, discussed above. A straightforward
calculation, which extends the Chapman–Enskog analysis
discussed in [31], yields the mean flux of parallel wave
momentum:

〈�w
r‖〉 = −Dw

∂

∂r
〈pw

‖ 〉 + Vw〈pw
‖ 〉, (32)

where Dw = ∫
dk(vgr(k)2/νk)〈N〉/ ∫

dk〈N〉 is the
drift wave quanta diffusion coefficient and Vw =
− ∫

dk[∂/∂kr(vgr(k)/νk)kθ 〈vE〉′〈N〉/ ∫
dk〈N〉] is the quanta

convection velocity, which is driven by 〈vE〉′, and νk =
(τw

c,k)
−1 is the wave packet decorrelation rate. For turbulence

levels near the mixing length level, Dw ∼ DGB = ρ2
s cs/a.

Thus, we see that non-resonant ion momentum is transported
by diffusive wave scattering and shearing-induced convection.
Of course, conservation of total momentum requires an
adjustment in mean flow momentum in response to that of
the wave momentum, thus leading to observable flow profile
evolution. This shows that the close connection between
non-resonant particle momentum and wave momentum allows
us to write an explicit, if somewhat theoretical, expression
for the diffusive and convective mean wave momentum flux,
which is given in equation (32). This supports the heuristic
arguments for the role of turbulence spreading in intrinsic
rotation dynamics, and strengthens the case that calculations
of intrinsic torque must address non-locality. In particular, this
simple example tells us (a) to expect a non-trivial ‘convective’
contribution to the residual stress due to wave transport,
and (b) that a more fundamentally sound approach to modelling
intrinsic rotation and momentum transport must evolve the
wave kinetic distribution (with spreading effects!) along with
the profiles.

5. Theory meets the phenomenology: a critical
appraisal

In this section, we discuss how the theory of intrinsic torque
fares upon confrontation with the phenomenology. The aim
here is to assess what is understood, where understanding is
developing, and what remains poorly understood. We do not
pretend to present a complete discussion, but rather a survey
of key points. A full review of the many interesting results on
intrinsic rotation, and our theoretical understanding thereof,
is far beyond the scope of this OV paper. Here we focus on
issues which are critical to the theory discussed here. This
discussion is organized into sections on: (a) general aspects
of intrinsic torque, (b) intrinsic rotation in ETB, (c) intrinsic
torque in ITB, (d) OH reversals, (e) intrinsic torque effects
in co-NBI H-mode with ECH, (f) LSN ↔ USN asymmetry
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Figure 17. Audit of residual stress contributions from gKPSP simulations [55]. Both E × B shear and intensity gradient contributions are
substantial and comparable. This figure shows there is no clearly and universally dominant symmetry-breaking mechanism which controls
the residual stress.

and L-mode flow reversals. The important topic of intrinsic
rotation in LHCD is beyond the scope of this paper and left for
future reviews.

5.1. General aspects

From sections 3 and 4, we saw that the essential elements
of the theory are the engine paradigm and the basic aspects
of symmetry-breaking mechanisms. Regarding the engine
paradigm, figure 5 illustrates the linear proportionality
of intrinsic torque (as measured from GK simulation of
ITG turbulence) to R/LT [45, 74]. Similar results have
been obtained from simulations of CTEM [46], i.e. τ ∼
1/LTe , 1/Ln, as shown in figure 6. Several physical
experiments support the heat engine concept that Vφ tracks
∇T [8, 10, 44]. The dynamic response has not yet been
addressed, i.e. the question of ‘is there a time delay between
the responses of ∇T and perturbation experiments?’ remains
unanswered. Interestingly, there is some hint from simulations
that such a time delay is, in fact, present [45]. Regarding
symmetry breaking, figure 17 shows the decomposition of
residual stress obtained from GK simulation [55] into pieces
proportional to 〈VE〉′, I ′, etc. Not surprisingly, under standard
conditions there is no clearly dominant piece, and all seem
to contribute. Most dedicated simulation studies confirm the
basic ideas on symmetry breaking and its role in residual
stress, which were discussed in section 4. Apart from indirect
inference from profiles, physical experiments have not been
able to address the theory of symmetry breaking, since to do so
requires careful measurement of the off-diagonal components
of the Reynolds stress tensor. It is also worth noting that
simulations have recovered the build-up of net macroscopic
intrinsic rotation, as shown in figure 18 from [45]. Likewise,
numerical cancellation experiments, after Solomon, have been
performed successfully.

5.2. H-mode ETB and pedestal intrinsic torque

The most studied case of intrinsic torque is that located in the H-
mode pedestal. This is then a natural phenomenon to attack by
modelling. Prime goals are to recover the Rice scaling trend,
and understand their underpinning. A reduced model based
on transport bifurcations in the presence of 〈VE〉′-triggered
intrinsic torque was developed [75]. Figure 19 illustrates
aspects of the edge rotation profile obtained from this simple
model by showing the (approximately) linear proportionality
of velocity at the pedestal to the pedestal width. Qualitatively
good results are obtained—i.e. the intrinsic rotation pedestal

Figure 18. Profile evolution in GYSELA simulation [45]. Note that
a flow with net momentum builds up from noise during the
simulations.

Figure 19. The relation between toroidal velocity and pedestal
width obtained from the solution of a reduced model [75]. The
figure shows that the velocity at the top of the pedestal increases
with the width of the pedestal.

builds up as part of the process of ETB formation. The rotation
pedestal clearly builds from the boundary inwards. Results
also indicate that the pedestal width effectively determines
the height of the rotation pedestal, i.e. �Vφ ∼ (w/a)VThi,
and �W ∼ w (increment in stored energy scales with
pedestal width). Thus, the dynamics are consistent with the
Rice scaling. If we use a frequently invoked semi-empirical
expression for the pedestal width w, i.e. w ∼ √

βpa [76], the
Rice scaling follows directly. Attempts to recover the I−1

p
trend of the Rice scaling from simulation studies of q or ŝ

dependence have also been successful, but are not entirely in
agreement with one another [46, 55]. All results suggest that
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Figure 20. Reversed shear ITB profiles from TRB GF simulations of ITG turbulence with Boltzmann electrons and no-slip boundary
conditions [79]. The ITB foot is located at r = 0.6. Strong intrinsic rotation builds within the ITB. Clearly, �∇vφ ∼ �∇Ti, i.e. ∇vφ

steepens with increasing ∇Ti.

the Rice scaling is a macroscopic realization of the engine
paradigm and the fundamental ∇Vφ ∼ ∇T scaling trend. We
also comment that the central velocity evolution (in terms of
which the Rice scaling is stated) may be affected by additional
physics, such as a momentum pinch. Finally, we note that the
proposed mechanism of orbit loss—which seems to survive
countless silver stakes driven through its heart—has also been
suggested as a driver of ETB-related intrinsic rotation [78].
For orbit loss, �vφ ∼ �T , rather than �∇vφ ∼ �∇T , is
predicted to be the key macroscopic scaling correlation. We
remark here that a careful study of the available edge rotation
data should be undertaken to compare these two predictions.
Published results from Alcator C-Mod are not consistent with
the orbit loss paradigm [8]. Finally, there is a clear need for
relevant fluctuation studies—including direct Reynolds stress
measurements—in regions beyond the base of the pedestal.

5.3. Intrinsic rotation in ITBs

Rather little is known about intrinsic rotation in ITBs and
the role of intrinsic torque in ITB dynamics, apart from
experiments from C-Mod [22–25] and Large Helical Device
(LHD) [10]. Here, we discuss a few aspect of the results
from recent TRB simulations of reversed shear ITB dynamics
[79]. These simulations are flux-driven gyrofluid (GF) studies
of ITG turbulence [80–83] which omit the effect of non-
resonant modes. These simulations may not be directly
relevant to the ITBs in Alcator C-Mod, where ∇n steepening
occurs and turbulence is likely collisionless trapped electron
mode (CTEM) [25]. Modulo the difference in magnetic
configurations of a tokamak and stellarator, they are, however,
relevant to LHD.

Simulation results indicate that ITBs form, and intrinsic
rotation develops, inside of the barrier location. This is
shown in figure 20. The Reynolds stress can be shown to
be decomposed into an outward diagonal diffusive piece plus
an inward residual, as shown in figure 21. The central velocity
scales with ∇Ti, until ITB suppression of turbulence to levels
where χTurb

i � χneo
i is achieved, as shown in figure 22.

At that point, neoclassical Prandtl number dependence (i.e.
dependence upon the ratio of neoclassical χφ and neoclassical
χi—namely χneo

φ /χneo
i ) appears in 〈V‖(0)〉 scaling trends, on

account of the difference between the residual transport of
momentum and heat. This Prandtl number dependence is
also related to the strength of relative hysteresis between ∇Vφ

and ∇Ti, which is observed in experiments. The strength
of the relative hysteresis of ∇Vφ with ∇Ti decreases with
neoclassical Prandtl number, as shown in figure 23, and seen
in experiment [10]. All told, results from experiment and this
rather basic simulation track expectations based on simple
ideas about ITBs, and on our experience (in both theory
and experiment) with ETBs. Considerable further study of
ITBs controlled by CTEMs is required. There, interaction of
particle and momentum transport will be especially important.
Interaction and possible competition between core and edge
intrinsic torque are particularly important issues. We remark
that intrinsic torque in ITBs rather clearly merits more study,
both as a means to test the theory and models, and as a
central element in a scenario for ‘de-stiffened low torque core
confinement’ [77].

Since this section has stressed the similarity between
ETB and ITB intrinsic torque, we remark on a few possible
differences. One major distinction is the possible role of
manifestly boundary-related effects in the ETB core. These
include upper and lower null point (USN versus LSN)
asymmetry, SOL flows, and orbit loss. Another possible
distinction is the ITG versus CTEM competition, which is
more likely in the core. Thus, care must be taken to avoid
over generalization from ETB to ITB.

5.4. OH reversals

The interesting subject of OH reversals was discussed in some
detail in section 2. Two central questions must be addressed
by experiment in order for a meaningful confrontation with
theory to occur. To test the key idea that the OH inversion is
a consequence of a change in the sign of �res due to a mode
population change or ‘flip’ from TEM (∼v∗e) to ITG (∼v∗i) as
confinement saturates, experiments must:

(i) find some indication, likely from macroscopics, of the
mechanism of symmetry breaking in this regime. It is
far from clear that the conventionally invoked 〈VE〉′, or
more generally, ‘profile shearing’ [32] is the dominant
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Figure 21. Decomposition of Reynolds stress in the same ITB
simulations as figure 20 [79]. An inward, non-diffusive residual
stress is evident.

mechanism in this regime. Intensity gradient and the wave
stress are viable alternative mechanisms,

(ii) perform coordinated fluctuation measurements which
unambiguously show a temporally coincident reversal
in the sign of the centroid of the frequency spectrum
in the region which controls the inversion. Note that
this amounts to revisiting earlier measurements [84] on
fluctuation spectral changes as n crosses nsat , in concert
with rotation profile studies.

Neither of these central questions has been substantively
addressed by experiment. Though some hints of changes
in fluctuation spectra have been observed during C-Mod
reversals, the evidence for a mode shift is far from conclusive
[27–29]. Theory has addressed the second question but has
largely ignored the first, while sticking to the conventional
wisdom concerning symmetry breaking. Furthermore, theory
has not substantively addressed the important and interesting
phenomenon of density hysteresis [26, 27], the role of
boundary conditions (results from TCV [26, 30] indicate a
change in direction between limited and diverted OH plasmas,
other factors being equal) or the origin and meaning of
boundary rotation spikes [28]. An interesting suggestion
concerning the impact of non-locality effects has recently
appeared [69, 85], but needs further development.

A speculative digression on the physics of OH reversals
seems appropriate here. First, the OH-reversal is a rather
clear-cut example of the second class of momentum transport
bifurcation discussed in section 4.3, in which �R

r,‖ flips sign
but confinement does not change. This idea and observation
go hand-in-hand with the hypothesized ‘mode flip’ scenario.
However, the observed hysteresis in density tells us clearly
that some asymmetry between transient states of increasing
and decreasing density is present. A hypothesis for the
origin of such asymmetry is that it is a consequence of
the inter-penetration of two competing gases of drift or
ITG mode quasiparticles, representative of TEM and ITG
turbulence respectively. In this picture, the plasma consists
of TEM regions, ITG regions, and ‘mixed states’, where both
populations coexists. Thus, as n increases, one might expect

Figure 22. 〈v‖(0)〉 versus −∇Ti for ITB intrinsic rotation plotted
for different neoclassical Prandtl numbers [79]. Note that a linear
phase at lower −∇Ti (akin to Rice scaling), is followed by
saturation when the ITB quenches turbulence, and a subsequent
slight increase due to relative hysteresis.

Figure 23. Change in ∇V‖, plotted versus neoclassical Prandtl
number [79]. The scaling is suggestive of relative hysteresis.

the ITG population to advance or ‘spread’ into the TEM
population and eventually squeeze it out. For decreasing n,
one might expect the reverse, but with a different front speed—
hence the hysteresis. This idea presents a real challenge
to both simulation and experiment—i.e. for the former to
realize a macroscopic inversion and for the latter to achieve
what amounts to ‘fluctuation propagation direction imaging’.
In this regard, nonlinear global delta-f gyrokinetic particle
simulations with the gkPSP code [86] have indeed noted
‘inverted’ rotation profiles when comparing otherwise similar
ITG and TEM dominated states [86]. This is shown in
figure 24. These results are the first non-trivial hint from
nonlinear gyrokinetic simulation that the ‘mode flip’ scenario
is viable. Much further work is required, however. It does seem
fair to say, though, that a purely quasi-linear approach which
ignores mixed states is too simple. At this stage, the bottom
line is that while the theory and experiment of OH reversals
have independently accomplished a significant amount, they
are only beginning to connect.
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Figure 24. gkPSP simulation of toroidal flow profile before and
after change from TEM → ITG state [86]. Note that the profiles are
suggestive of an inversion.

5.5. ECH + co-NBI H-mode and ECH H-mode

Understanding rotation in H-mode discharges with combined
co-NBI and ECH, and in H-mode discharges heated by ECH
only, is a high priority issue for ITER. Thus, it is puzzling as to
why a greater effort to understand the structure of the resulting
rotation profiles has not been made. Several experiments
[34–36, 87] tell us that for co-NBI with modest levels of
ECH, the effective torque balance is central co-NBI torque
plus pedestal co-intrinsic torque versus central counter-torque
associated with ECH. However, we note that this trend is not
universal since counter intrinsic rotation with ECH + co-NBI
H-mode was observed in JT-60U [33]. Exceptions do exist,
however. For pure ECH cases, the trend is a core counter torque
and rotation (consistent with the ECH+NBI findings) [35, 87],
and a pedestal co-torque and co-rotation. A connection region
or transition layer, where vφ passes through zero, links the
counter rotating core and the co-rotating edge pedestal regions.
The implications of what would happen if the vφ = 0 point
were located near the q = 2 radius of ITER are unpleasant to
contemplate. At the microscopic level, the central question
is the physics origin of the ECH-related intrinsic counter
torque. At the macroscopic level, an interesting question is
why a connection layer appears between a counter-core and
co-pedestal, in contrast to the cancellation experiments, where
core counter-NBI plus co-pedestal intrinsic torques combine to
produce a flat rotation profile. Related to this, the extent of the
central region with �vφ < 0 (i.e. the location of the so-called
pivot radius—analogous to the pivot point in inversions) and
the magnitude of �vφ are relevant issues for the co-NBI+ECH
cases.

Regarding the issue of the microscopic foundations of the
putative ECH-induced counter intrinsic torque, the observed
correlations of 1/Lvφ

with 1/LTe and/or 1/Ln [38] and the
steepening of ∇Te and ∇n in the core have motivated the
hypothesis that the ECH induces a flip in core turbulence
from ITG to TEM, with a resulting change in intrinsic torque
from co to counter [34, 36, 38]. Note that ITG modes (v∗i

direction) tend to drive co-direction torque (with intensity
gradient symmetry breaking), while trapped electron modes

Figure 25. A cartoon of the spatial spreading of TEM turbulence
into ITG turbulence. The direction of TEM turbulence spreading is
the same as that of the heat flux from the core to the edge.

(v∗e direction) tend to drive counter-direction torque [88].
Also note that the structure and evolution of the density
profile are critical here, since peaked ∇n profiles favour TEM.
Collisionality is also very important [28]. In NBI + ECH,
some on-axis peaking of ∇n is observed, which will hasten
the flip from ITG to TEM. Clearly, momentum and particle
transport are strongly coupled in this instance [87]. We add
the cautionary comment that more work on the global dynamics
of the reversal mechanism would be helpful to understand that
phenomenon. In pure ECH drive, n(r) is relatively flat, so the
path to the development of TEM is not so clear. Of course,
at higher density, collisional coupling of the species may heat
the ions and thus maintain the primacy of ITG. Reconciling
the fact that core intrinsic torque is clearly counter in both
ECH+co-NBI and pure ECH with the fact that ∇n peaks in the
NBI cases but is flat for the pure ECH cases is a challenge for
theory. Amazingly, though, despite the wealth of macroscopic
profile data and trends, very little in the way of simple linear
microstability analysis using experimental profiles has been
undertaken, and no relevant fluctuation measurements are
available. A recent study of KSTAR profiles from ECH+NBI
discharges [36] indicates that a mode population change may
occur, but is rather localized to the deep core. Results are
extremely sensitive to ∇n evolution. Further study is required,
and consideration should be given to heat avalanching, and
turbulence propagation, both of which might ‘spread’ the
domain of TEM excitation, once it is established. A cartoon
of this process is shown in figure 25. Of course, mixed
states, as sketched in figure 26, are likely to be encountered.
Another issue—virtually unmentioned except in very recent
work [36]—is the mechanism of symmetry breaking in the core
of ECH + NBI plasmas. Results indicate that VE×B actually
decreases when ECH is applied, in contrast to what happens in
transport barriers. The strong steepening of ∇Te suggests that
the TEM intensity gradient is a prime candidate mechanism.
For I ′/I ∼ 1/LTe > 0, results predict co-torque for ITG and
counter-torque to TEM, with the strength of the TEM-induced
counter torque τTEM ∼ 1/LTe . Note that 1/LTe is actually an
underestimate of I ′/I for TEM. Further work on this issue
is needed and ongoing. Clearly the full picture for the I ′

scenario must involve consideration of turbulence spreading,
as depicted in figures 25 and 26.

5.6. LSN ↔ USN asymmetry

This is an important topic, which has received rather little
attention, from either theory or experiment. Apart from the
pioneering work of LaBombard et al [39], experimental studies
have focused on edge profile measurements, but have not
addressed dynamics. Theoretical work has confronted the
question of magnetic shear + electric shear-induced boundary
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Figure 26. A cartoon of the advance of TEM turbulence into ITG
turbulence mediated by a mixed state buffer zone where the two
modes co-exist. Here the advance is left-to-right, which corresponds
to core-to-edge. The region of the mixed state corresponds loosely
to the neighbourhood of the pivot point.

stresses [41], but has not confronted the alternative scenario
of how SOL flows might penetrate the core or influence core
rotation. It is interesting, though, that results from DIII-D
and Tore Supra agree with the model of Fedorczak et al [41],
as mentioned in section 4. This hints that the scenario of
LaBombard et al [39] may not be universal, or that it is coupled
to eddy tilting processes [41]. Considerations concerning SOL
flow effects are limited to discussions of the parallel shear
flow instability. In particular, the interaction of shear SOL
flows with boundary stresses seems likely to introduce a new
element in the eddy tilt-induced shear stress discussed in [41].
This will surely impact the edge stresses which control intrinsic
toroidal flows. Of course, perpendicular stresses can drive
intrinsic toroidal rotation, via the mechanism discussed in
section 4.4. Clearly, there is much room for future work in
theory, experiment, and simulation.

6. Discussion and conclusion

6.1. Assessment

In this section, we present the conclusions of this OV of
intrinsic torque. The conclusions are presented and discussed
in the form of an assessment—i.e. outcomes are grouped
according to: (i) What we understand well, (ii) What we think
we understand, but could benefit from improvement in our
comprehension, (iii) What we don’t understand.

(i) What we understand well.

(i) Residual stress and intrinsic torque are driven by parallel
and (via projections) perpendicular Reynolds stresses.
Momentum convection together with a finite flow at the
boundary can also drive intrinsic rotation.

(ii) The heat engine paradigm of intrinsic rotation provides a
unifying framework within which to develop the theory in
terms of fluctuation entropy evolution.

(iii) The residual stress is driven by the thermodynamic forces
∇T , ∇p, ∇n, and produces a local intrinsic torque
−∂r�

R
r,φ . Residual stress can spin up the plasma from

rest, acting in concert with boundary conditions.
(iv) Residual parallel Reynolds stress requires symmetry

breaking, so as to convert radial inhomogeneity
into parallel spectral asymmetry. Symmetry-breaking
mechanisms include electric field shear 〈vE〉′ and intensity
gradient I ′—both of which are self-reinforcing and linked
to the driving heat flux. Additional symmetry-breaking

sets the polarization stress (〈krk‖〉 �= 0 → essentially a
quadrupole spatial moment of the spectrum is required)
and the poloidal Reynolds stress, which drives flow
through 〈Jr〉Bθ/c (again, 〈vE〉′ and intensity gradient are
the key elements).

(v) For ITG turbulence, �res increases with R/LT − R/LTc,
or more generally ∇Ti.

(vi) Residual stress is also robust in TEM. TEM-driven
residual stress scales with ∇Te and ∇n. The direction of
intrinsic torque produced by TEM turbulence can differ
from that produced by ITG turbulence.

(vii) Net intrinsic rotation (i.e. an increase in radially integrated
momentum) with a peak thermal Mach number MT ≡
〈v‖〉/vthi of 0.05 < MT < 0.15 can be produced
in flux-driven ITG simulations with no-slip boundary
conditions. Multiple symmetry-breaking mechanisms
can, and do, operate simultaneously. Avalanches in heat
and momentum are observed, and introduce non-locality
to momentum transport.

(viii) Strong intrinsic rotation can be generated by flux-driven
ITG turbulence in reverse shear ITBs with off-axis
minimum q(r), with no-slip boundary conditions.

(ii) What we think we understand but would benefit from more
work on.

(i) The importance of the mechanisms for generation of
toroidal rotation by fluctuation-driven radial currents—i.e.
via the toroidal projection of the perpendicular Reynolds
stress—needs to be assessed more accurately. Similarly,
the polarization stress merits deeper thought.

(ii) The basic structure of the Rice scaling (�vφ ∼ �Wp/Ip)
originates from (a) strong localized temperature gradients,
as in the pedestal and ITBs (i.e. the local origin of �Wp)
and (b) q(r) scaling (i.e. the origin of Ip). It is not
yet entirely clear how we relate the problem of pedestal
intrinsic torque to that of the scalings of the H-mode
pedestal width.

(iii) Relative hysteresis of ∇vφ and ∇Ti in ITG intrinsic
rotation, and its relation to neoclassical Prandtl number
Prneo. These have been observed in experiments [10] and
in simulations [79] of ITG turbulence with ITBs. Relative
hysteresis is likely present in the H-mode pedestal.

(iv) The precise relation between turbulence propagation
direction (i.e. v∗e versus v∗i) and toroidal rotation
direction has not yet been established. More
generally, our understanding of OH reversals and
other momentum transport bifurcations not related to
confinement bifurcations is still developing.

(v) Non-locality in momentum transport and intrinsic torque
is not understood. Seminal ideas have been proposed but
not critically analysed. Fundamental theoretical work at
the level of phase space entropy dynamics is required.

(vi) How pinch and intrinsic torque might interact to form
global profile structure needs further study.

(vii) The question of how intrinsic rotation in H-mode and in
ITBs ultimately saturates needs further consideration.
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(iii) What we do not yet really understand.

(i) The interplay of turbulence and wave scattering with
possible neoclassical effects and orbit loss in determining
the boundary condition for intrinsic torque is not
understood, at all.

(ii) Our understanding of the detailed interplay between core
and pedestal intrinsic torques and the edge boundary
physics, and their roles in determining global profiles is
in its infancy. This is a critical issue.

(iii) The connections between edge eddy tilting, edge stresses,
SOL flows and core rotation are unclear. Several scenarios
have been proposed, but not analysed.

(iv) The apparent absence of ρ∗ scaling of intrinsic rotation
signals a major gap in our understanding.

(v) The effect of energetic particles on intrinsic rotation and
torque are unknown.

(vi) Models for the detailed spatio-temporal dynamics of
intrinsic rotation profile build-up, degree of non-locality,
etc are not available.

(vii) The critical torque-to-power ratio that likely delimits
pinch versus residual stress dominated momentum
transport regimes is unknown.

(viii) The physics of H-mode rotation profiles with competing
and interacting NBI torque and ECH driven intrinsic
torque is unclear. Pure ECH H-mode rotation profiles
are also not understood. Two particular enigmas of the
latter are the apparent sensitivity to deposition location
and the structure and location of the core-pedestal
connection layer. Resolution of these questions requires
an understanding of mixed states and the role of turbulence
spreading.

(ix) Intrinsic torque and rotation in LHCD and ICRF driven
discharges are poorly understood. Of particular note is
the apparent change in the sign of the residual stress as
LH power is increased [89].

6.2. Programmatic suggestions

Since the principal purpose of the IAEA FEC is to identify
topics of programmatic focus, the paper concludes with
a section of highly simplified programmatic suggestions.
These are as follows.

(i) Contrary to the conventional wisdom, the problem of
intrinsic rotation is not ‘solved’. Research must continue.
Certain aspects of the ECH-driven rotation problem
seem especially critical (and dangerous) for ITER. The
vφ(r) = 0 null point which appears in ECH H-mode with
counter-core and co-pedestal profiles is potentially deadly
and merits much more attention.

(ii) Fluctuation studies must be undertaken in concert with
macroscopic profile experiments. Direct measurements
of Reynolds stress by HIBP and other means should be
pursued.

(iii) OH reversals and co-NBI H-mode + ECH have many
elements in common and should be pursued as part
of a comparative study, including studies of fluctuation
populations, particle transport, and momentum transport.

(iv) Comparative studies of related phenomena with different
boundary conditions (i.e. limited L-mode, diverted
L-mode, H-mode) would be extremely interesting and
useful. OH reversals and the ECH-related phenomena
are particularly strong candidates for this sort of study.

(v) Modelling and theory studies must address the question
of global profile structure, not only local stresses and
gradients. In particular, the incidence of global structural
bifurcations should be investigated.

(vi) Much greater attention should be given to dynamic
(i.e. perturbative) studies of intrinsic torque, and to
investigations of related non-locality phenomena.

(vii) The effect of boundary stresses and SOL flows on core
rotation is poorly understood and requires much more
work.

Clearly, the physics of intrinsic torque still offers many
fascinating challenges.
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[75] Gürcan Ö.D. et al 2010 Phys. Plasmas 17 032509
[76] Snyder P.B. et al 2009 Nucl. Fusion 49 085035
[77] Jhang H. et al 2012 Proc. 24th IAEA Fusion Energy Conf.

(San Diego, CA, 2012) www-pub.iaea.org/MTCD/
Meetings/PDFplus/2012/cn197/cn197 Programme.pdf
p 281

[78] deGrassie J.S. 2009 Plasma Phys. Control. Fusion 51 124047
[79] Kim S.S. et al 2011 Nucl. Fusion 51 073021
[80] Coppi B. et al 1967 Phys. Fluids 10 582
[81] Horton W. et al 1981 Phys. Fluids 24 1077
[82] Garbet X. et al 2001 Phys. Plasmas 8 2793
[83] Garbet X. et al 2002 Phys. Plasmas 9 3893
[84] Rettig C.L. et al 2001 Phys. Plasmas 8 2232
[85] Naulin V. 2012 Joint EU-US TTF Meeting (Padova, Italy,

2012) www.igi.cnr.it/eu us ttf 2012/sites/default/
files/attachments/BookOfAbstracts.pdf

[86] Kwon J.M. et al 2011 Plasma Conf. 2011 (Kanazawa,
Japan, 2011) www.jspf.or.jp/PLASMA2011/eng/
contents04a.html

[87] deGrassie J.S. 2004 Phys. Plasmas 11 4323
[88] Wang L. and Diamond P.H. 2013 Phys. Rev. Lett.

110 265006
[89] Rice J.E. et al 2013 Phys. Rev. Lett. 111 125003

21

http://dx.doi.org/10.1088/0029-5515/51/7/073039
http://dx.doi.org/10.1103/PhysRevLett.103.065003
http://dx.doi.org/10.1088/0741-3335/53/12/124013
http://dx.doi.org/10.1088/0029-5515/51/7/073010
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://www.swip.ac.cn/2012aptwg/program.htm
http://www.swip.ac.cn/2012aptwg/program.htm
http://dx.doi.org/10.1103/PhysRevLett.107.215003
http://dx.doi.org/10.1088/0029-5515/44/10/001
http://dx.doi.org/10.1088/0029-5515/45/4/005
http://dx.doi.org/10.1088/0029-5515/52/10/103013
http://dx.doi.org/10.1029/2002RG000113
http://dx.doi.org/10.1143/JPSJ.67.4089
http://dx.doi.org/10.1088/0029-5515/52/6/063013
http://dx.doi.org/10.1063/1.3575162
http://www.igi.cnr.it/eu_us_ttf_2012/sites/default/files/attachments/BookOfAbstracts.pdf
http://www.igi.cnr.it/eu_us_ttf_2012/sites/default/files/attachments/BookOfAbstracts.pdf
http://dx.doi.org/10.1016/0167-2789(87)90026-1
http://dx.doi.org/10.1103/PhysRevLett.103.205003
http://dx.doi.org/10.1088/0741-3335/47/5/R01
http://dx.doi.org/10.1063/1.860610
http://dx.doi.org/10.1063/1.2717891
http://dx.doi.org/10.1063/1.3503624
http://dx.doi.org/10.1088/0029-5515/52/1/013004
http://dx.doi.org/10.1063/1.859681
http://dx.doi.org/10.1098/rsta.1915.0001
http://dx.doi.org/10.1088/0741-3335/50/12/124018
http://dx.doi.org/10.1063/1.3507920
http://dx.doi.org/10.1063/1.3625554
http://dx.doi.org/10.1063/1.3620407
http://ocs.ciemat.es/EPS2010PAP/pdf/P1.1040.pdf
http://ocs.ciemat.es/EPS2010PAP/pdf/P1.1040.pdf
http://pof.aip.org/resource/1/pfldas/v16/i10/p1719_s1
http://pof.aip.org/resource/1/pfldas/v16/i10/p1719_s1
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://dx.doi.org/10.1103/PhysRevE.82.025401
http://dx.doi.org/10.1103/PhysRevLett.84.1192
http://dx.doi.org/10.1103/PhysRevLett.77.2487
http://dx.doi.org/10.1063/1.872343
http://dx.doi.org/10.1063/1.3459096
http://dx.doi.org/10.1063/1.3339909
http://dx.doi.org/10.1088/0029-5515/49/8/085035
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://www-pub.iaea.org/MTCD/Meetings/PDFplus/2012/cn197/cn197_Programme.pdf
http://dx.doi.org/10.1088/0741-3335/51/12/124047
http://dx.doi.org/10.1088/0029-5515/51/7/073021
http://dx.doi.org/10.1063/1.1762151
http://dx.doi.org/10.1063/1.863486
http://dx.doi.org/10.1063/1.1367320
http://dx.doi.org/10.1063/1.1499494
http://dx.doi.org/10.1063/1.1362537
http://www.igi.cnr.it/eu_us_ttf_2012/sites/default/files/attachments/BookOfAbstracts.pdf
http://www.igi.cnr.it/eu_us_ttf_2012/sites/default/files/attachments/BookOfAbstracts.pdf
http://www.jspf.or.jp/PLASMA2011/eng/contents04a.html
http://www.jspf.or.jp/PLASMA2011/eng/contents04a.html
http://dx.doi.org/10.1063/1.1778751
http://dx.doi.org/10.1103/PhysRevLett.110.265006
http://dx.doi.org/10.1103/PhysRevLett.111.125003

	1. Introduction
	2. Basic ideas and driving phenomenology
	3. Towards a fundamental theory: intrinsic rotation as the consequence of a heat engine
	4. Theory of intrinsic torque
	4.1. Gyrokinetic formulation of intrinsic torque
	4.2. Alternative formulation by wave kinetics
	4.3. Boundary asymmetries
	4.4. Non-local effects and their role in intrinsic torque

	5. Theory meets the phenomenology: a critical appraisal
	5.1. General aspects
	5.2. H-mode ETB and pedestal intrinsic torque
	5.3. Intrinsic rotation in ITBs
	5.4. OH reversals
	5.5. ECH +co-NBI H-mode and ECH H-mode
	5.6. LSN USN asymmetry

	6. Discussion and conclusion
	6.1. Assessment
	6.2. Programmatic suggestions

	 Acknowledgments
	 References

