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1 Electron drift-wave and TEM
Last time, we talked about the three players in the game of electron drift-wave (DW):

• resonant electrons,
• waves, and
• zonal mode.

1.1 Review
We discussed collisionless drift waves ( vi,th ≤ ω/k‖� vth,e) with non-adiabatic density
h̃ such that ñ/n0 ' eφ̃

T + h̃. Hereafter, we write φ̃

T ≡ Φ̃ and ñ/n0 ≡ Ñ for simplicity. And
we derived the energy theorem for the collisionless DW (energetics of the internal wave
energy)

∂

∂ t
Eω =−

∫
dx3〈Φ̃ ∂

∂ t
h̃〉︸ ︷︷ ︸

electron cooling
into waves

−
∫

d3x〈v′E×B〉〈ṽx,E×Bṽy,E×B〉︸ ︷︷ ︸
wave stresses (Reynolds) power

exert on flow

+dissipation, (1)

where Eω is the wave energy, v′E×B ≡ ∂xvE×B, and under the cartisian coordinate where x
is in radial and y is in poloidal direction. Note that is we include ion Landau Damping,
where parallel compression is included (∇‖ṽ‖ 6= 0), we have

∂

∂ t
Eω =−

∫
dx3〈Φ̃ ∂

∂ t
h̃〉︸ ︷︷ ︸

electron cooling
into waves

−
∫

d3x〈Φ̃∇‖ṽ‖〉︸ ︷︷ ︸
compressional coupling

to waves

−
∫

d3x〈vE×B〉′〈ṽx,E×Bṽy,E×B〉︸ ︷︷ ︸
wave stresses (Reynolds) power

exert on flow

+dissipation.

(2)
The second term on RHS can be calculated via ion-drift kinetics response f̃ such that

ṽ‖ '
∫

d3v v‖ f̃ . (3)

This term have two contribution:
• generates Landau damping that stabilize the the wave, and
• geneartes acoustic wave radiation (important when consider wave energy in a

bounded domain).
The acoustic wave radiation can be derive from Φ̃∇‖ṽ‖ = ∇‖(Φ̃ṽ‖)− ṽ‖∇‖Φ̃, and do the
integral of reals space ∫ d3x on the former.

Now, we are interested in resonant electrons, which will produce wave energy evolution
and create the collisionless trapped lectron mode. This is important to the DW energy
balance theorem

∂

∂ t
TWED︸ ︷︷ ︸

total wave
energy density

+
∂

∂ t
REED︸ ︷︷ ︸

resonant electron
energy density

+
∂

∂ t
RIED︸ ︷︷ ︸

resonant ion
energy density

+
∂

∂ t
ZED︸ ︷︷ ︸

zonal
energy density

= 0, (4)
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where total wave energy consist of electric energy density (EED) plus the non-resonant
particle kinetic energy density (NRPKED). Hence, we need to study the resonant kinetic
electron energy evolution, which amounts to a quasi-linear (QL) type equation for elec-
trons.

1.2 Energy Theorem for Resonant Electrons
Recall the Vlasov equation

∂

∂ t
f + vz ·∇z f + v⊥ ·∇⊥ f +az ·∇z f = 0, (5)

where we have parallel velocity vz = v‖, (E×B)y drift-wave velocity −∇⊥φ × ẑ/B0, and
electron parallel acceleration az = −|e|E‖/me. Hence, we have electron-drift (kinetic)
equation

∂

∂ t
f̃ + v‖∇‖ f̃ − 1

B0
∇⊥φ × ẑ ·∇⊥ f0−

e
me

E‖
∂

∂v‖
f0 = 0, (6)

where f ≡ f0+ f̃ is the mean distribution function and its perturbation. The last term in
Eq.6 e

me
E‖

∂

∂v‖
f0 is important to the parallel nonlinearity, i.e. intrinsic rotation if look at

the ion. Eq.6 can be decomposed in to two equations:
• the guiding center equation of plasma

∂

∂ t
f̃⊥−

1
B0

∇⊥φ × ẑ ·∇⊥ f0 = 0, (7)

where f⊥ evolved by E×B advection1.
• And the 1D parallel kinetic equation (along B0 field line)

∂

∂ t
f̃‖+ v‖∇‖ f̃ − e

me
E‖

∂

∂v‖
f0,‖ = 0. (8)

The linear response f̃ is
f̃ω,k =

φ̃Lk

−i(ω− k‖v‖)
f0, (9)

where Lk is 2D operator that contains two pieces

Lk =−ik‖
|e|
me

∂

∂v‖︸ ︷︷ ︸
parallel

acceleration

− ikθ

B0

∂

∂x︸ ︷︷ ︸
radial

scattering

. (10)

Since the non-resonant particle are weak, we consider resonant particle only. The Eq.9
gives

f̃ω,k =
|e|φ̃
T

(
1− ω−ω∗

ω− k‖v‖︸ ︷︷ ︸
non-Boltzmann

)
f0, , (11)

1If we are in torous, we need to consider the magnetic drift term ωD ·∇ f0,⊥.
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whereω∗ ≡−
∂n0

n0∂x
kyTe

|e|B
. When ω−ω∗ < 0 there is an instability, where fluctuation gains

more energy from from relaxing in space and loses energy by heating. We also derived
non-adiabatic response

h̃k,ω '
−iπ(ω−ω∗)

|k‖vth,e|
|e|φ̃k

T
. (12)

This non-adiabatic response is small because the electron transit time is short τ‖≡
1

|k‖vth,e|
�

1. The non-Boltzmann effect only has short time to react to the wave, and this is why
the trapped electron effect is important (discuss in later classes).

How does energy transfer? Originally, energy stored in electron (thermally). Gradi-
ent of electron pressure ∇pe ' Te∇n drives the wave, by the electron-wave resonance
(only resonant electron matters). Energy in waves goes to zonal structure (i.e. zonal
flow...etc.), via Reynolds stress and ∇ · J⊥. And ultimately energy can be dissipated by
damping (nonlinear damping and turbulent frictions) and we have the ion heating (see
Fig.1).

Electron-wave resonance

Waves

Electron thermal energy

drive: ∇pe ≃ Te ∇n

Zonal structure

drive: Reynolds stress and  ∇ ⋅ J⊥Predator eats prey

Ions

nonlinear damping &  
turbulent friction via: ion heating 

Figure 1: How energy transfer from resonant electrons to ions.

Now, we have evolution of mean distribution function
∂

∂ t
f0 +

∂

∂x
〈ṽx f̃ 〉+ ∂

∂v‖
〈−|e|

me
Ẽ‖ f̃ 〉= 0. (13)

From this, we can get the electron energy theorem
∂

∂ t
εe︸︷︷︸

evol. of tot. electron kinetic
energy density

+
∂

∂x
Qx︸ ︷︷ ︸

divergence of turbulent
electron heat flux

− 〈Ẽ‖J̃e,‖〉︸ ︷︷ ︸
turbulent heating/cooling

of electron to waves

= 0. (14)
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By applying volume integration this equation, we have
∂

∂ t
Ee︸ ︷︷ ︸

tot. electron kineticenergy

+ Qx| fixed
boundary︸ ︷︷ ︸

heat flux
at the boundary

−
∫

d3x〈Ẽ‖J̃e,‖〉= 0, (15)

where the heat flux, usually, in a fixed boundary is zero Qx = 0.

1.3 Energy Theorem for waves
Similarly, we have wave energy theorem

∂

∂ t
εω︸ ︷︷ ︸

evol. of tot. wave
energy density

+
∂

∂x
Sx︸ ︷︷ ︸

div. of wave energy
density flux

+ 〈E ·J〉︸ ︷︷ ︸
wave-(tot.)particle

coupling

= 0, (16)

where Sx ≡ vgrεω and 〈E ·J〉 can be decomposed into parallel and perpendicular pieces
〈E ·J〉= 〈E‖ · Je,‖〉︸ ︷︷ ︸

electron cooling
to waves

+ 〈E⊥ · J⊥〉︸ ︷︷ ︸
Reynolds power

to ZF

, (17)

where J⊥ is from the nonlinear polarization of ion velocity vi = vE×B + Jpol.. And this
nonlinear polarization drift 〈E⊥ · J⊥〉 is

〈E⊥ · J⊥〉=
∫

d3x〈vE×B〉′〈ṽx,E×Bṽy,E×B〉, (18)

which is the second term on RHS of Eq. 1. One should notice that the Reynolds stress
〈ṽx,E×Bṽy,E×B〉 can be write down as vorticity flux such that 〈ṽx,E×Bṽy,E×B〉= 〈ṽx,E×B∇2φ̃〉.
And one can find the linear response of electrical potential is in proportional to the res-
onance piece φ̃ ∝ 1/−i(ω − kyvy,E×B). This is very much the Landau resonance effect,
and this is the origin of ‘irreversibility’ of the DW/ZF coupling. And again, we apply the
volume integration on the wave energy density equation (Eq.16) and obatin

Sx| fixed
boundary︸ ︷︷ ︸

wave energy flux
out thru. boundary

+
∫

d3x〈E⊥ · J⊥〉︸ ︷︷ ︸
output to
zonal flow

=−
∫

d3x〈E‖ · Je,‖〉︸ ︷︷ ︸
input from

electron cooling

. (19)

If Sx = 0, then we have ∫
d3x〈E⊥ · J⊥〉+

∫
d3x〈E‖ · Je,‖〉= 0, (20)

which is the competition between the electron cooling effect (energy input) and the
Reynolds power exerts on zonal flow (energy output). In conclusion, there are three
player in the energy transfer

• energy transfer from resonant electrons to the wave via electron cooling, and
• energy transfer from wave to zonal flow via Reynolds stress power via wave/zonal

flow coupling.
See Fig.2 for details.
The same game is also in energetic particles (EP), Alfvén eigen mode (i.e. TAE), and
zonal flow interaction.
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Electron-wave resonance

Electron thermal energy

drive:  

electron cooling:  

∇pe ≃ Te ∇n

∫ d3x⟨E∥ ⋅ Je,∥⟩

Zonal structure

Waves

drive: Reynolds stress and   

Reynolds stress power:  

∇ ⋅ J⊥

∫ d3x⟨E⊥ ⋅ J⊥⟩
DW/ZF coupling 

(Predator eats prey)

Ions

nonlinear damping &  
turbulent friction via: ion heating 

Energy Flux:  S

Figure 2: How energy transfer from resonant electrons to ions.

2 Evolution of Distribution Function

2.1 Quasi-Linear Equation
We start with QL equation for the electrons

∂

∂ t
f0 = ∑

k
Lk|φ̃k|2

(
i

ω− k‖v‖

)
Lk f0, (21)

where Lk is the propagator in Eq.10. The above will lead us to
∂

∂ t
f0 =

∂

∂ r
Dr,r

∂

∂ r
f0 +

∂

∂ r
Dr,v‖

∂

∂v‖
f0

+
∂

∂v‖
Dv‖,r

∂

∂ r
f0 +

∂

∂v‖
Dv‖,v‖

∂

∂v‖
f0. (22)

This is the 2D quasi-linear equation due to two gradience in distribution function:
• in space: the radial diffusion,
• in velocity: the parallel velocity diffusion.

The propagator Lk will gives Lk ∝ (1−(ω−ω∗)) (see Eq.11). This indicates that to release
the energy from the spatial gradient, the system pay the penalty for heating. The Dr,r is
basic E×B diffusivity

Dr,r = Re
[
∑
k

k2
y

B2
0
|φ̃k|2

i
ω− k‖v‖

]
, (23)
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where i
ω− k‖v‖

= πδ (ω− k‖v‖) for resonant particles. The Dv,v is the velocity diffusion

Dv,v = Re
[
∑
k

|e|2kz

m2
e
|φ̃k|2

i
ω− k‖v‖

]
. (24)

The cross-terms are the same

Dr,v = Dv,r = Re
[
∑
k

|e|kykz

B0me
|φ̃k|2

i
ω− k‖v‖

]
. (25)

The non-zero cross term Dr,v = Dv,r 6= 0 requires spectral asymmetry 〈kykz〉 6= 0.
Homework: Do the ion drift kinetic equation and find out the cross-correlation
kykz. Recover the intrinsic equation from 2D QL equation.

The validity of QL theory is Kubo number small Ku < 1

Ku≡ radial scattering length
correlation length (eddy size) ≡

ṽxτc

∆⊥
(26)

Ku ' kyρsCs
|e|φ̃
T

Ln|kx|
∆kyρsCs

'
ky

∆ky
Ln|kx|

|e|φ̃
T

. (27)

For the criterion of valid QL, we have Ku < 1 such that

|e|φ̃
T

<
1

kxLn

∆ky

ky
. (28)

To examine validity of QL theory, one can also start from the auto-correlation rate and
the trapping rate. Since we’ll linearize our equation, the particle should behave diffu-
sively instead of the non-linear scattering. This indicates that the auto-correlation rate
larger than the trapping rate

1/τac > 1/τtr. (29)
The trapping rate 1D plasma is bounce frequency (see Fig.3). The auto-correlation rate
can be calculated from

1/τac ' |
dω

dkz
− ω

kz
|∆kz + |

dω

dky
|∆ky, (30)

if wave is non-dispersive, we’ll have |dω

dkz
−ω

kz
|= 0. Now, since we have the wave frequency

only varies on poloidal direction ω = ω(ky), the
dω

dkz
= 0. So we have

1/τac '
ω

kz
∆kz + |

dω

dky
|∆ky (31)

7



Particle trajectory

Wave

Lage auto-  
correlation rate

Small auto-  
correlation rate

Figure 3: Auto-correlation rate. Top: wave, particle, and its trajectory at time t = 0. Bottom: At time t = 1.
When the wave have fast auto-correlation rate, the particle won’t be bounced. The ‘trapping’ of particle
happens when bouncing rate is larger than the auto-correlation rate.

, where ω

kz
is parallel phase velocity and |dω

dky
|∼ v∗, except kyρs ' 1. This is the 2D di-

mensional auto-correlation rate and more robust than that of 1D, which is dispersion
sensitive. One can calculate the trapping rate

1/τTr ' k⊥ṽ⊥

'
kykx

B0
φ̃

' kxCskyρs
|e|φ̃
T

(32)

Hence, the condition for valid QL theory (Ku < 1) is

∆ky

ky

1
kxLn

>
|e|φ̃
T

∝
ñ
n0

, (33)

which reduces back to the criterion of Ku < 1 (see Eq.28). When we have ∆ky ' ky, we
obtain

n0

Ln
> kxñ (34)

vx,0
∂

∂x
n0︸ ︷︷ ︸

linear
advection

> ṽx∇xñ︸ ︷︷ ︸
nonlinerar
advection

, where vx,0 ' vx,0. (35)

This leads us to the importance of mixing length model, where the term 1/kxLn is an
guideline that can estimate whether the system has large enough fluctuation to enter a
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strong nonlinear regime. Hence, the Ku' 1 level is equivalent to the vx,0
∂

∂x
n0 ' ṽx∇xñ in

mixing length theory. More details of mixing length theory can be fond in Kadomtsev
(1994).
Note that in the topic in tokamak, the idea of Kubo number Ku is obscure since it is the
parallel streaming, instead of advections, that defines the ‘response time’.

Homework: What is the mixing length result/estimation for ITG?

Hint: What is mixed in ITG? Answer: ion temperature is mixed in ITG ( T̃i

Ti
'

1
kxLTi

). Start from mixing of ion temperature and then work out on potential

fluctuation level (i.e. relate T̃i

Ti
→ |e|φ̃

T
).

2.2 Saturation State
How does f0 evolve when the growth is turned off? Consider the mean distribution
function evolution again, we have

∂

∂ t
f0 = ∑

k
Lk|φ̃k|2

(
i

ω− k‖v‖

)
Lk f0, (36)

where
Lk =−ik‖

|e|
me

∂

∂v‖︸ ︷︷ ︸
parallel

acceleration

− ikθ

B0

∂

∂x︸ ︷︷ ︸
radial

scattering

Taking integrate the f 2
0 /2 over velocity and space, we obtain

∂

∂ t

∫ f 2
0
2

d3v ·dr =−∑
k
|φ̃k|2

∫ ( i
ω− k‖v‖

)
(Lk f0)

2

2
d3v ·dr < 0, (37)

indicating that f 2
0 /2 will decay until

Lk f0 = 0.

The Lk f0 = 0 defines a 2D plateau. Recall that in 1 D we’ll only have ∂v‖ f0 = 0, where the
f0 evolves to a flat spot. Now, we have 2D plateau due to having ∂v‖ f0 = 0 and ∂x f0 = 0.
We should calculate leveled lines (curves) of constant f0 in 2D plateau that satisfy

−ik‖
|e|
me

∂

∂v‖
− ikθ

B0

∂

∂x
' 0,

which defines the structure of f0 = f0(vr,x). And we can get the level lines satisfy

x−
kyv2
‖

2ωkωc,e
= const., (38)

where ωc,e ≡ |e|B/me is cyclotron frequency of electron. This defines 2D QL plateau, i.e.
can be view as a parabola in x and v‖ space. The saturated f0 will be a constant along
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the leveled curve lines. More over, we investigate the Eq.eq: 2D plateau and find that if
there is an scattering in space δx, then will results in a scattering in energy δv2

‖:

δx'
kyδv2

‖
2ωkωc,e

.

This is reflecting the fact that transport in space will results in heating, which can be
expressed as

δx '
kyδv2

‖
2ωkωc,e

(39)

≡ ��ky
αv2

e,thLn

��kyρsCsΩc,e︸ ︷︷ ︸
electron adiabatic

heating

' αLn
v2

e,th

C2
s

me

mi
, (40)

The electron adiabatic heating is small since we have α � 1 as the transit time τT ≡
1/|l‖ve,th| is small. Hence,

δx� Ln.

This 2D plateau also imposes a constraint on transport-heating relation. The following
helps us to sum up:

• transport accompanied by heating,
• QL plateau has weak saturation level (δx� Ln),
• the plateau can be reset by collisions, or external pumping or heating would avoid

plateau,
• the formation of plateau is formed via zonal mode damping (by viscous friction,

nonlinear heating...etc.).
• electron drift-wave is the prototype of this saturation.

3 Trapped Electron Mode (TEM)
Trapped Electron Mode (TEM) is from electron DW, with dissipation. It has separate
response for trapped electron and circulating electrons. The trapping is due to the radial
variation of the field, and occurs in the bad curvature region (i.e. in outer radius, see
Fig.4). Trapped particles are bouncing poloidaly and toroidally in this banana region
and have more perpendicular energy than toroidal. Trapped electron have narrower
(and hence negligible) banana widths than those for ions. The population of trapped
particle is small ntr/ntot '

√
ε, where ε is the inverse aspect ratio. There are several

reasons why trapped electrons are important:
• they have longer DW-electron coherence time.
• they make larger contribution to the growth—trapped electron exhibit more fluid-

like response
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Figure 4: The region that have trapped particles. Because of its shape, the region that has TEM is also
called ‘banana’ region. Electrons and ions will bouncing back and forth in this banana region. Ion, with
larger inertia, will drift in a bigger banana width a (in r-direction), i.e. a ' ωi,bvr,mag ∝ ρi,θ , where ωi,b is
bouncing frequency of ions and vr,mag is radial component of magnetic drift.

• they, in some cases, can resemble the interchange (but usually irrelevant).
The story of trapped electron modes is all in timescales. The timescale ordering is

ωe,b ' k‖v‖ '
√

ε/τe,T︸ ︷︷ ︸
bouncing freq

for trapped particle

> ω ' ωe,∗ > ωe,D︸︷︷︸
magnetic drift

frequency

,γe,e, (41)

where τe,T is ve,th/Rq and drift frequency is function of energy (i.e. ωe,D = kyρsCs/R =
ωe,D(

√
ε))—the processional frequency. The processional frequency describes particles

drifting along toroidal field line. This is a slower process, so there is a stronger coherence
between the wave and the particles, hence leading to the strong electron TEM instabil-
ity. This electron TEM instability works precisely the same way the electron DW does,
but is stronger. When ωe,D > γe,e, we have collisionless TEM (CTEM); while if we have
γe,e > ωe,D, we have dissipative TEM (DTEM). If we average the bouncing back and
forth, along the trapped particle orbit, Considering η , r, yb, the Fourier transform of k‖
(i.e. implication when there is a shear), radial variable (i.e. flux surface), the binormal
variable (in poloidal dierction). Hence, one can have the total distribution function

f =
|e|φ̃
T

f0︸ ︷︷ ︸
Boltzmann effect

+ g̃︸︷︷︸
non-adiabatic of trapping
and circulating particles

(42)
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Now, we can have the electron drift-kinetic equation (DKE)

−i(ω−ωe,D(
√

ε))g̃+
v‖
Rq

∂

∂η
g̃︸ ︷︷ ︸

biggest term

+γe,eg̃ = i
|e|
T
(ω−ω∗)φ̃ f0, (43)

where k‖
∂

∂η
g̃ is k‖v‖.

To solve this electron DKE, the perturbation is a way. The zeroth order k‖v‖g0 =
v‖
Rq

∂g0

∂η
→

0, which indicates that g0 is independent of position (η) along the field line (i.e. ‖ direc-
tion). We can have

g =��>
0g0 +g(1)+g(2)+ ... (44)

The first order equation of DKE is

−i(ω−ωe,D(
√

ε))g̃0 +
v‖
Rq

∂

∂η
g̃(1)+ γe,eg̃0 = i

|e|
T
(ω−ω∗)φ̃ f0, (45)

Now, one can average over the bouncing trajectory, which is along η (parallel) direction.
So, we have the trajectory average operator

ηb∫
−ηb

dz
∫

dy

︸ ︷︷ ︸
forward

+

−ηb∫
ηb

dz
∫

dy

︸ ︷︷ ︸
backward

≡ 〈 〉b =
∮ dl
|v‖|

, (46)

where the bracket indicate the bouncing average that also average over a broad poloidal
angle—hence, we can approximate 〈φ〉b = φ0 for simplicity. We apply this to the first
order DKE (see Eq.45), we have

−i(ω−〈ωe,D(
√

ε)〉b)〈g0〉b +
��

��
�
��
�*0

〈
v‖
Rq

∂

∂η
g̃(1)〉b + γe,e〈g0〉b = i

|e|
T
(ω−ω∗)〈φ̃〉b f0, (47)

where the second term on LHS becomes zero because the forward and backward inte-
gration cancels for v‖ will change its sign.

〈g0〉b = i
|e|
T

[
(ω−ω∗)〈φ̃〉b f0

−iω(ω−〈ωe,D〉b + iγe,e)

]
(48)

where ω∗ is ω∗ = ω∗(1 + Ln
LTe

(ε − 1
2)). For trapped particles Ln/LTe � 1—the electron

temperature gradient juices up the instability process from the temperature gradient,
because the temperature gradient favors the higher energy particle. Eq. 48 indicates that
the response time of bounce average distribution function 〈g0〉b to the bounce aver-
age potential 〈φ̃〉b is controlled by the bounce-averaged curvature drift (i.e. 〈ωe,D〉b)
or by the collisions (i.e. γe,e). The drift is for the CTEM case, while the collision is for
the DTEM case. One should notice that both have some properties

12



• Both the instability from electron DW and CTEM are due to the non-Boltzmann
effect. For electron drift wave, the non-Boltzmann factor is (ω−ω∗

k‖ve,th
. For the CTEM,

the non-Boltzmann factor is (ω−ω∗
ωe,D

e−R/Ln

√
R
Ln

).

• Drift (depends on ωe,D, i.e. collisionless trapped electron): the wave particle co-
herence time (τc ' 1/ωe,D) is very long (have longer time to growth the wave).
This indicates that the instability due to the collisionless TEM is stronger than the
electron DW (τtr ' 1/(k‖ve,th)), such that 1/ωe,D > 1/(k‖ve,th).

• the collisionless TEM (or even TIM) is an excellence playground for the wave-
particle resonance effect.

Hence, the electron DW in magnetic confinement devices usually refers to CTEM.

3.1 Collisionless Trapped Electron Mode (CTEM)
One could derive the trapped particle density from Eq.48

ñTr '
∫

d3v〈g0〉b, (49)

while the density of circulating particle is

ñcir '
|e|φ̃
T

ω−ω∗
|k‖ve,th|

f0→ 0, (50)

for small transit frequency τtr ' 1/|k‖ve,th|� 1.
If we combine Eq.42 and Eq.48 and ignore the circulating (un-trapped) particles, we
have [

ω∗
ω
− k2
⊥ρ

2
s

]
φ̃︸ ︷︷ ︸

diamagnetic vel.
and FLR

= φ̃︸︷︷︸
Boltzmannterm

−
∫
tr

d3v
[

(ω−ω∗)〈φ̃〉b f0

ω−〈ωe,D〉b + iγe,e

]
〈φ̃〉b︸ ︷︷ ︸

non-Boltzmann
trapped electrons

. (51)

By draping the collision frequency (for CTEM requires 〈ωe,D〉b > γe,e ), we obtain

ω∗
ω
− k2
⊥ρ

2
s =

[
1+
√

ε
iπ(ω−ω∗)

|〈ωe,D〉b|
e−ω/〈ωe,D〉b︸ ︷︷ ︸

resonance on the
fat tails of PDF

√
ω

〈ωe,D〉b

]
, (52)

where√ε is the fraction of trapped particle, iπ(ω−ω∗)

|〈ωe,D〉b|
' iπ(ω−ω∗)τc, the fat tail is due

to small 〈ωe,D〉b, and
√

ω

〈ωe,D〉b
is an enhancement factor from volume integral. The fat

tail demonstrate the trade-off that because of small 〈ωe,D〉b, we have long time to growth
the wave, but the particle will move to higher frequency in distribution function hence
have a fat tail, on which particle has shorter processional timescale. Notice that for ∫ d3v,
the temperature gradient weighted more then 1D, because ω∗ = ω∗(1+ Ln

LTe
(ε− 3

2)).
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Finally, we obtain the growth rate of CTEM

γtr

ω
'
[

iπ(ω−ω∗)

|〈ωe,D〉b|
e−R/Ln

√
R
Ln
� ω−ω∗

k‖ve,th
.

]
(53)

This indicates that CTEM is electron DW, but more virulent than eDW due to long coher-
ence time due to 〈ωe,D〉b.

Homework: calculate (a) χe and Dn for CTEM via QL theory, (b) CTEM correc-
tion to ITG growth, (c) ITG-driven particle flux using CTEM response.

Note that the CTEM nonlinear evolution is prime candidate for the study of strong wave-
particle interaction. The dispersion in the wave-particle resonance is from the doppler
shift of the frequency (∆(ω− kv))

∆|(ω−ωe,D)| =
dω

dky
∆ky−∆〈ωe,D〉b (54)

= |dω

dky
− ω

ky
|∆ky, (55)

where dω

dky
− ω

ky
has 1D structure because we eliminate the degree of freedom by bouncing

average. Hence, we have auto-correlation time is

1/τac = |
dω

dky
− ω

ky
|∆ky︸︷︷︸

spread of
poloidal spectrum

. (56)

This indicates that because of bouncing average, this dispersion relation has 1D structure
and is sensitive to the dispersion. In particular, if a system with long wavelength in y-
direction (i.e. ρsky � 1 or with TIM), the coherence time will become very long and
will lead to the strong resonance effect (i.e. dispersion becomes weak) and strong wave-
particle interaction.

3.2 Dissipative Trapped Electron Mode (DTEM)
In DTEM, we have collision rate larger than the processional drift rate

γe,e > 〈ωe,D〉b, (57)

High collision The growth rate of DTEM is

γtr

ω
'
[

iπ(ω−ω∗)

γe,e

]
' 1/n0. (58)

Recall that before the experiment of ITG is conducted, the poster child of Alcator C pellet
experiment in 1984. When they shot in pellets, they recovered the linear scaling in
confinement. Probably what they were seeing is the recover of the 1/n scaling. They
peak the n profile and hence kill the ITG. This is probably the high density (after the
peaking) drove the system in to the DTEM regime, and hence gives the 1/n type of

14



growth. The relation χe ∝ 1/n in heat pulse propagation (HPP) post-pellet experiment
might just the DTEM in action.
The competition between CTEM and DTEM is extremely sensitive to the temperature,
because

〈ωe,D〉b ∝ T 1/2 (59)
γe,e ∝ T−3/2, (60)

indicating that a small temperature change can knock the system from one regime to the
other, since 〈ωe,D〉b/γe,e ' T 2.
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4 Geometry and Dynamics in Tokamak
Until now, we have been talk about physics of plasma in homogeneous media in a slab.
Homogeneous refers to modes like k. However, in fusion plasma (i.e. tokamak) has highly
non-trivial geometry which enters physics! The different aspect of geometry have a com-
patibility issues. In this chapter, we’ll talk about the geometry in a sense of magnetic
field and E×B effect, on an equal footing.
The elements in geometry are

• Resonances and its surface. There can be spatial resonances (magnetic geometry)
and also the wave-particle resonances (which involves in E×B shear).

• Shears. Shear will affect how you represent modes. Shear can be (a) magnetic,
leading us to quasi-modes (or so called twisted slicing modes) which is an ancestor
of ballooning mode. or can due to (b) E×B shear.

• Toroidicity (or so called ballooning). It is coupled block modes—an analogy of this
is the modes of chain of a spring. The toroidicity is related to trapped particle.

A paper from Roberts & Taylor (1965) focuses on the central physics of the magnetic
shear and how it works. Connor et al. (1978) discuss the ballooning formalism. Goldre-
ich & Lynden-Bell (1965) investigate velocity shearing and shearing coordinates. Rhines
& Young (1982) discuss the interaction of fluctuation (diffusive scattering) and shears.

4.1 Resonances
Demand the poloidal and toroidal periodicity, we have

φ̃ = φ̃m,n(r)ei(mθnφ), (61)

where m and n are poloidal and toroidal mode number and m/n is the pitch of the mode.
The field lines should have their pitch too, because they wind. The equation of magnetic
field line is

dr
Br

= r
dθ

Bθ

=
Rdφ

Bz
, (62)

where Br, Bθ , and Bz are radial, poloidal, and toroidal magnetic field, respectively. We
also have

θ = φ/q(r)+θ0, (63)
where q is the safety factor, a variable defines the winding rate (i.e. the pitch) of the
magnetic field lines

q(r) =
rBz

RBθ (r)
. (64)

The q = q(r) leading to the magnetic shear because pitches varies radially. At the region
where the pitch of magnetic field lines matches the pitch of themode is by definition rational
surfaces (RS). At rational surface, we have

q(r) =
m
n
. (65)

16



At the rational surface, k‖→ 0. This can be derived

k‖ =
k ·B
|B0|

=
m

q(r)
−n, (66)

And when at rational surface, we obtain

k‖|@RS= (
m

q(r)
−n)|m=qn= 0, (67)

k ·B = 0. (68)

The properties, due to the fact that k‖→ 0, for the RS are
• there is no Landau damping at RSs. This is because that the resonant factor

1
ω− k‖v‖

→ 1
ω
, since k‖→ 0. (69)

• RSs can grow instabilities. Ideal MHD energy principal yields

δW =
∫

d3x
[
(∇×ξ ×B0)

2

4π
+ compression term +∇p term + current term + curvature term .

]
,

(70)
where δW is the energy and ξ is a displacement. The (∇×ξ ×B0)

2

4π
> 0 means it

is stable, and is proportional to B2
0k2
‖ξ

2. This indicates that there is no penalty for
bending field lines perpendicularly—δW > 0 when bending a field line to with
a displacement ξ .

• most of modes are related to/situated at RSs.
• Tearing, reconnection can occur at RSs. And this is also where magnetic islands

form. At low q (i.e. q = 3/2,5/3 ), tearing and NTM (MHD instability that leads to
disruptions) can occur.

• At RSs, resonances are coupled to toroidicity.
• At RSs, resonances overlap and creates stochasticity and chaos.

Hence, a lot of fun can happen at RSs.
When study the physics in a tokamak, it is important to know what happen along the
total magnetic field lines. Hence, an operator

B ·∇ (71)

is important. This is because that everything in magnetic confinement is sort of a
variant on shear ALfvén wave. Hence, the operator B ·∇ that is from shear Alfvén wave
(i.e. ω = k2

‖v
2
A) is of importance. It can also appear as kinetic version, i.e. v‖n̂ ·∇, where

n̂ = B/|B|. Moreover, this operator can also be expressed as a Vlasov-type operator

b ·∇ =
∂

∂ z
+

1
Rq(r)

∂

∂θ
+ b̃ ·∇︸︷︷︸

perturbation
term

, (72)
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where b indicate the normalized magnetic field b = B/|B| and the second term 1
Rq(r)

∂

∂θ

indicates that the magnetic shear defines the a variable of winding rate. This operator
analogies to

d
dt

=
∂

∂ t
+ 〈vE×B,y〉

∂

∂y
+ ṽ ·∇︸︷︷︸

vel. scattering
term

. (73)

Both Eq.72 and Eqq.73 are important operator in physics of fusion plasma. These two
operators also show that the velocity shear and geometry of magnetic fields are closely
linked.
Noted that the velocity shear can enter the particle resonance

1
ω− k‖v‖

→ 1
ω− ky〈vE×B,y〉− k‖v‖

. (74)

4.2 Shears
The importance of shears is that they introduce a variable for winding of magnetic filed
and flow rate. And that says the excitation have to twist. These twists affect the co-
herence of fluctuation in space and time—fluctuations want to align with the shear.
But with demands of periodicity, the fluctuation cannot really align with the shear. The
representation of fluctuations encounters difficulty because the direction of the flow or
the direction of magnetic fields changes as a function of position due to the shear. Hence,
the shearing coordinates, a natural way to describe fluctuation in shears, are critical to
describe fluctuations. However, in this coordinate, we will loose normal mode descrip-
tion. Instead, we are taking about shearing ‘quasi-modes’ in the shearing coordinate.
But should we care? The fixation of eigen-modes is artifact of linear theory; however, in
real world, there is no linear theory. Hence, the shearing coordinate are useful.
We start in a cartesian coordinate where x, y, and z represent radial, poloidal, and
toroidal direction, respectively. We have Vlasov equation

(
∂

∂ t
+ 〈vE×B,y〉

∂

∂y︸ ︷︷ ︸
shearing
term

+ṽ ·∇)ρ = 0, (75)

and we want to eliminate the shearing term.

4.2.1 Shearing Coordinate (for flow)

Themethod is to change the coordinate to a coordinate that are co-moving with the shear
flow in velocity 〈vE×B,y〉. Hence, we have shearing coordinate (or tilting coordinate). So
we define that in shearing coordinate (x′, y

′, z
′) from old coordinate (x, y, z)

x
′
= x (76)

y
′
= y−〈vE×B,y〉

′ · t (77)
z
′
= z, and (78)
t
′
= t. (79)
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And the derivatives in shearing coordinate is
∂

∂x
=

∂

∂x′
−

∂ 〈vE×B,y〉
′

∂x
t

∂

∂y′
(80)

∂

∂y
=

∂

∂y′
(81)

∂

∂ z
=

∂

∂ z′
. (82)

∂

∂ t
=

∂

∂ t ′
−〈vE×B,y〉

′ ∂

∂y′
. (83)

Hence, in shear coordinate, we have
∂

∂ t
+ 〈vE×B,y〉

′
x

∂

∂y
=

∂

∂ t ′
(easy operator), (84)

indicating that shearing coordinate eliminates fast variation (shearing) term. In this
shearing coordinate, the fast shearing mode is absorbed in to the phase of shear flow, i.e.

eik·x→ eik′ ·x′−ik
′
yt∂x〈vE×B,y〉

′
(85)

This can also be illustrated in Eikonal equation
∂

∂ t
kx =−

∂

∂x
(ω +k ·v). (86)

Here, kx = k(0)x − kyt∂xvE×B,y, which matches Eq.105. Moreover, the physical picture of
the term

kx = k(0)x − kyt∂xvE×B,y (87)
is the shear tilting and thinning effect (see Week 4 Lecture note). This indicating
that the shearing coordinate follow the eddy as it is tilted in a shear flow, and naturally
account for the thinning and during the tilt—the shearing coordinate is natural to
describe how the eddy is tilted in the flow.

time

eddy

shear flow

Figure 5: Shear-eddy tilting feedback loop. The E ×B shear generates the 〈kxky〉 correlation and hence
support the non-zero Reynolds stress. The Reynold stress, in turn, modifies the shear via momentum
transport. Hence, the shear flow reinforce the self-tilting.

Now, how to describe the diffusion/advection in a shear flow? One can write down[
∂

∂ t
+ vE×B,y

∂

∂y
+D(

∂ 2

∂x2 +
∂ 2

∂y2 )

]
c = 0, (88)
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where c = c0eik·x is an arbitrary parameter. One can find that

c ∝ exp
[−k

′2
y t3(∂xvE×B,y)

2D
3

]
, (89)

indicating that the shear enhance the decorrelation decay. In other words, the shear
stretch the eddy and amplify the effect of diffusion. More details can be font in Goldreich
& Lynden-Bell (1965).

4.2.2 Twisted Slicing Coordinate (for B-field)

Now, we are considering the shear of magnetic fields. This topic has been studied in the
paper of Roberts & Taylor (1965). The shearing in magnetic fields creates ‘twisted slicing
modes’. Recall that the operator

∇‖ =
∂

∂ z
+

1
Rq(r)

∂

∂y
(90)

where 1/Rq(r) can be rewritten as

1
Rq(r)

'
(

r
Rq(r0)

+
x
Ls

)
∂

∂y
. (91)

In above equation, 1/Ls is magnetic shear length that can be defined as
1
Ls
'− ŝ

Rq
, (92)

where ŝ≡ r∂rq/q is the shear parameter. Hence, the parallel operator can be written as

∇‖ =
∂

∂ z
+

x
Ls

∂

∂y
(93)

And know, we can have shearing coordinate to describe the shearing magnetic field. We
will do the same derivation as in the shear-flow coordinate. The only difference is the
tilting is in x and z direction, instead of x and t in the shear-flow coordinate. Hence, the
relation between the shear-flow and mag.-shear coordinate is

t→ z (94)

x/Ls→
∂ 〈vE×B,y〉

′

∂x
t (95)

The ‘twisted slicing’ coordinate is

x
′
= x (96)

y
′
= y− x

Ls
z (97)

z
′
= z, and (98)
t
′
= t. (99)
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And the derivatives in ‘twisted slicing’ coordinate is

∂

∂x
=

∂

∂x′
− x

′

Ls

∂

∂y′
(100)

∂

∂y
=

∂

∂y′
(101)

∂

∂ z
=

∂

∂ z′
− x

′

Ls

∂

∂y′
(102)

∂

∂ t
=

∂

∂ t ′
. (103)

Hence, in ‘twisted slicing’ coordinate, we have
∂

∂ t
+

x
Ls

∂

∂y
=

∂

∂ z′
(easy operator). (104)

The ‘twisted slicing’ coordinate annihilate the leading behavior of ∇‖. Similarly, we can
obtain the rapidly evolving phase factor

eik·x→ eik′ ·x′−ik
′
y

x
Ls z. (105)

This is where the idea of ballooning representation comes from. And similarly, the ‘ef-
fective’ Eikonal equation

∂

∂ z
kx =−

∂

∂x
(k
′
y
By

B0
), (106)

indicating that the ‘effective’ Eikonal kx evolving in z. And the magnetic diffusion (DM)
can be found [

∂

∂ z
+

x
Ls

∂

∂y
+DM(

∂ 2

∂x2 +
∂ 2

∂y2 )

]
c = 0, (107)

where c becomes
c ∝ exp

[−k
′2
y z3DM

3L2
s

]
, (108)

indicating that the shear enhances the decoorelation (amplifies the magnetic diffusion).
Then, one can have the decoreelation rate

1/τc =

(k2
yv2

e,thD

3Ls

)1/3

. (109)
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