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Abstract. We consider extinction times for a class of birth-death processes commonly found in
applications, where there is a control parameter which defines a threshold. Below the threshold, the
population quickly becomes extinct; above, it persists for a long time. We give an exact expression
for the mean time to extinction in the discrete case and its asymptotic expansion for large values of
the population scale. We have results below the threshold, at the threshold, and above the threshold,
and we observe that the Fokker–Planck approximation is valid only quite near the threshold. We
compare our asymptotic results to exact numerical evaluations for the susceptible-infected-susceptible
epidemic model, which is in the class that we treat. This is an interesting example of the delicate
relationship between discrete and continuum treatments of the same problem.
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1. Introduction. Birth-death processes are widely used as a description of phe-
nomena in physics, chemistry [1, 2], population biology [3], and many other areas.
These are Markov processes on states which we label by n = 0, 1, . . . , R, where R
denotes the largest value allowed (which could be ∞). They are defined by the birth
and death rates:

λn, n → n + 1,

µn, n → n− 1.(1)

The processes we will consider have an absorbing state (“extinction”), which we
set to n = 0. That is, λ0 = 0. In what follows we will be mainly concerned with
the mean time to extinction, τk, i.e., the mean first passage time to the state n = 0
starting at n = k. For any such Markov process with an absorbing state, extinction
will occur as t → ∞ with unit probability. For example, if n denotes the size of a
population of organisms, we seek the mean time to biological extinction.

In this paper we will give exact expressions for the extinction time for a class
of birth-death processes, and asymptotic expressions for cases where the typical n
is large, i.e., in a “continuum” limit. We will investigate the validity of a popular
approximation, the Fokker–Planck or diffusion method [1]. We will see that the
Fokker–Planck method gives the correct asymptotic continuum behavior of τ only in
very special circumstances.
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284 C. R. DOERING, K. V. SARGSYAN, AND L. M. SANDER

As a basis for the subsequent discussion, consider the following two processes
taken from the literature of epidemiology and population biology.

• The susceptible-infected-susceptible (SIS) model of epidemiology [4]. Imagine
a population of size N within which n individuals suffer from an infection and
the rest, N−n, are susceptible. Suppose that the infection rate per contact is
Λ/N , the number of contacts is n(N−n), and the recovery rate is unity (fixing
the unit of time). A recovered individual immediately becomes susceptible.
Then

λn = Λn
(
1 − n

N

)
,

µn = n.(2)

At the deterministic (nonstochastic, continuum) level there may then be a
nonzero steady state number, ne, of infected individuals, the solution of
λn = µn. In this SIS model ne = N(1 − 1/Λ), provided that Λ > 1. This
model has a threshold, Λ = 1, above which the infection persists in the con-
tinuum approximation. When the Λ ≤ 1, the infection dies out. In the
stochastic model, however, above threshold the number of infected individ-
uals remains near ne for a long time (the quasi-stationary state) before the
infection eventually goes extinct [5, 6].

• A logistic model from ecology [7], often called the Verhulst model. This
population dynamics model assumes a birth rate per individual, B, and unit
death rate per individual at low populations. In order account for competition
for resources, the death rate is assumed to increase proportional to n2. We
write

λn = Bn,

µn = n +
Bn2

N
.(3)

At the deterministic level, ne = (B − 1)N/B, provided B > 1. In the con-
tinuum, for B > 1 the population stabilizes at ne, while for B ≤ 1 it goes
extinct. In the stochastic model there is a quasi-stationary state for B > 1
in which the population fluctuates near ne before eventually going extinct.

These two examples, both of whose continuum dynamics is the simple logistic
(Verhulst) differential equation, are representative of the class of models that we
consider in this paper. In these models there is a large number, N , and we assume
that both λ and µ involve such a number in a special way:

λn = Nλ(x),

µn = Nµ(x),(4)

where x = n/N and λ, µ are smooth functions of x.
These processes have the following properties: First, we assume that λn = Nλ(x)

is concave downward (or linear) and µn = Nµ(x) concave upward (or linear). (We
will not consider the general degenerate case in which both functions are linear.) Both
functions are taken to have finite nonzero slopes near n = 0. The processes are most
interesting when there is a control parameter so that there can be an intersection of
the two curves (superthreshold) or not (subthreshold), depending on the parameter.
We are also interested in the case when the parameter is very near threshold, in a
sense that we will define below; see Figure 1.
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Fig. 1. Regimes for the rates λn, µn: (a) above threshold, (b) near threshold, (c) below threshold.

We are interested in the mean time to extinction starting at state n. The proba-
bilities, πn(t), for the various states obey the master equation

dπn(t)

dt
= λn−1πn−1(t) − (λn + µn)πn(t) + µn+1πn+1(t).(5)

It is an elementary exercise [1, 2] to show that τn obeys

−1 = λnτn+1 − (λn + µn)τn + µnτn−1.(6)

We will solve this equation exactly and give expressions for the asymptotic behavior
of τk as N → ∞. In the context of the SIS model, there is a very large literature on
this question [8, 9, 6, 10]. Our general expression agrees with the main results of [10]
for this case. However, in some cases we find different results; see below.

For N � 1, near the continuum limit, it is tempting to work directly with (6),
and to try to replace it by a differential equation in x. A naive Taylor expansion gives

−1 = f(x)T ′(x) +
1

2N
g2(x)T ′′(x),(7)

where x = n/N is the continuum variable, T (n/N) = τn, and we define

f(x) = λ̄(x) − µ̄(x),

g2(x) = λ̄(x) + µ̄(x).(8)

The smooth functions f(x) and g2(x)/2N are, respectively, the drift (sometimes called
the “force”) and the diffusion coefficient.

The operator on the right-hand side of the equation for T (x) above is the adjoint
of the operator in the Fokker–Planck equation (FPE) [1, 2],

∂tP (x, t) =

(
1

2N

)
∂xx(g2P ) − ∂x(fP ),(9)

which is the apparent “near-continuum” limit of (5). It can be viewed as the evolution
equation for the probability transition density of a random walker with diffusion
coefficient g2/2N subject to a drift velocity f . This approach, which is particularly
popular in the natural sciences, is based on the observation that we can think of
the birth-death process as a biased random walk in n. From the work of Einstein
and Schmoluchowski (see [1, 2]), we can describe a continuum random walk with a
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286 C. R. DOERING, K. V. SARGSYAN, AND L. M. SANDER

diffusion equation, namely (9). The extinction time is the first passage time to the
origin of the random walker. This approximation is attractive because the ordinary
differential equation in (7) is very easy to solve, yielding a tractable formula for T in
the limit of large N . Grasman and collaborators used this approach for the logistic
model [7, 11] and apparently verified their results by numerical calculations. It is
also possible to interpret the FPE in terms of a stochastic differential equation of the
Langevin type [2], which has attractive properties.

However, as we will see below, this series of manipulations gives the correct asymp-
totic behavior of τ only under very special circumstances, namely when the two terms
in (7) are comparable in size. In our case, this means that f = λ − µ must be very
small. There are several ways in which this can happen. For example, if we are
interested in small fluctuations near xe ≡ ne/N , then we can almost certainly use a
Gaussian approximation and get reliable results (though we do not verify this explic-
itly here). This is what van Kampen [2] calls the “system size expansion,” and it is a
standard method in applications.

For the extinction problem we expect that the important n’s will be all those
between n = ne and n = 0. For the force to be small for the whole range we must be
near threshold, as in Figure 1(b). As we will see below, in order for (7) to correctly
describe the asymptotic behavior, we need ρn = λn/µn = 1+O(1/N1/3+ε), ε > 0, or,
equivalently, xe = O(N−1/3−ε). We will discuss the work in [7] below and show that
the case they treated was, in fact, sufficiently near threshold. This accounts for the
agreement between their FPE results and numerical calculations.

This result is counterintuitive and demonstrates the delicacy of the continuum
limit even for the very simple class of processes that we consider here. Explicitly,
the continuum FPE is useful not for large populations, as one might guess, but only
near threshold, where the quasi-equilibrium population is much smaller than N . The
upshot is that a diffusion treatment is valid only when the drift is small. In fact, we
will go further below: we will show that no diffusion description is possible for these
processes (except just above threshold) in the sense that no diffusion equation can
simultaneously give τ correctly and also give a good approximation to the quasi-steady
state.

In section 2 we will state our results. In section 3 we give some numerical illustra-
tions for the SIS process. In section 4 we will discuss the implications of our findings
for applications. We will relegate the actual computations to the appendices.

2. Results. In this section we summarize our main results. First we briefly
discuss the exact solution for the mean extinction time as a function of the initial n.
Subsequently we present the large N asymptotic expansions of the solutions in the
superthreshold, threshold, and subthreshold cases.

2.1. Extinction time. The first problem is to solve the second order difference
equation (6) for 1 ≤ n ≤ R−1, with absorption at site n = 0 and a reflecting boundary
condition (λR = 0) at site n = R, i.e.,

τ0 = 0, τR − τR−1 =
1

µR
.(10)

This is straightforward [12]: let αk = τk − τk−1 for k = 1, . . . , R so that

−1 = λnαn+1 − µnαn(11)
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EXTINCTION TIMES FOR BIRTH-DEATH PROCESSES 287

for 1 ≤ n ≤ R− 1 with the single boundary condition αR = 1
µR

. Then the solution of
this first order difference equation for αm, 1 ≤ m ≤ R− 1, is easily written down:

αm =
1

µm
+

R−m∑
j=1

1

µm+j

j∏
i=1

ρm+i−1,(12)

where

ρi =
λi

µi
.(13)

Then the mean extinction time, τn, is recovered from

τn =

n∑
m=1

αm.(14)

By regrouping the product in (12), we find the explicit solution with no approximation:

τn =

n∑
m=1

⎡
⎣ 1

µm
+

m−1∏
i=1

1

ρi

R∑
j=m+1

1

µj

j−1∏
k=1

ρk

⎤
⎦ .(15)

2.2. Expansion for large N . Now write λn = Nλ̄(n/N) and µn = Nµ̄(n/N)
with λ̄(x) and µ̄(x) uniformly smooth functions on [0, r], where r = R/N . We can
define ρn = ρ̄(n/N), where ρ̄(x) is a bounded, smooth, and nonnegative function on
[0, r]. We will call the following quantity the “effective potential,”

Φ(x) = −
∫ x

0

log ρ̄(ξ)dξ,(16)

to facilitate comparison to the FPE, below. Note that ρ̄(0) = λ̄′(0)/µ̄′(0) is an
indicator of the subthreshold (ρ̄(0) < 1), threshold (ρ̄(0) = 1), and superthreshold
(ρ̄(0) < 1) cases.

For large N the products in (15) can be estimated by the trapezoid rule of nu-
merical analysis. Using the continuous variables z = j/N and y = m/N ,

j−1∏
k=1

ρk = exp

(
j−1∑
k=1

log ρ̄

(
k

N

))

= exp

(
N

∫ z

0

log ρ̄(w)dw − 1

2
(log ρ̄(0) + log ρ̄(z)) + O

(
1

N

))

=
1√

ρ̄(0)ρ̄(z)
exp

(
N

∫ z

0

log ρ̄(w)dw

)
×
(

1 + O
(

1

N

))

=
1√

ρ̄(0)ρ̄(z)
e−NΦ(z) ×

(
1 + O

(
1

N

))
.(17)

Similarly,

m−1∏
i=1

1

ρi
=

√
ρ̄(0)ρ̄(y) eNΦ(y) ×

(
1 + O

(
1

N

))
.(18)
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288 C. R. DOERING, K. V. SARGSYAN, AND L. M. SANDER

In these estimates and others to follow, the coefficients of the O(N−β) error terms
depend on the regularity of the rate functions λ̄(x) and µ̄(x). We proceed under the
assumption of sufficient smoothness so that the estimates are valid.

In the following we write x = n/N for the initial point. The large N asymptotic
behavior of τ̄(x) = τn, as given in (15), is very different for the superthreshold,
threshold, and subthreshold cases, as follows.

• Superthreshold case. When λ̄′(0) > µ̄′(0), there is a unique “equilibrium”
state ne where λne = µne , or equivalently a unique “deterministic steady
state” xe = ne/N > 0 where λ̄(xe) = µ̄(xe). (In the SIS and logistic models
this corresponds, respectively, to the conditions Λ > 1 and B > 1.) For the
stochastic processes, the extinction time is exponentially large as N → ∞.
We find that τ̄(x) ∼ τne = τ̄(xe) for n = O(N), i.e., x = O(1). Further,

τ̄(xe) =

√
2πρ̄(0)

N [λ̄(xe)µ
′(xe) − λ

′
(xe)µ̄(xe)]

× e−NΦ(xe)

ρ̄(0) − 1
×
(

1 + O
(

1

N

))
.

(19)

In this region τ̄(x) is independent of x. For x = O(∞/N ) there is a boundary
layer where τ̄(x) depends on x. However, we have found a simple correction
factor which allows us to give, for all x ∈ [0, r = R/N), a uniform asymptotic
approximation,

τ̄(x) =
(
1 − e−N log ρ̄(0)x

)
τ̄(xe).(20)

• Threshold case. Here λn < µn for n ≥ 1, but the derivatives of λ̄(x) and µ̄(x)
at 0 are equal. (In the SIS and logistic models this corresponds, respectively,
to Λ = 1 and B = 1.) In this critical situation the dominant term in the

large N asymptotic expansion of the extinction time is ∝ N
1
2 :

τ̄(x) =
(π/2)

3
2√

Φ′′(0)λ̄′(0)µ̄′(0)
×
√
N +

logNx

µ̄′(0)
+ O(1)(21)

for n/N = x = O(1).
• Subthreshold case. Below threshold, λn < µn for all n ≥ 1, and so ρ̄(x) < 1

for all x ≥ 0. Moreover, the derivative of λ̄(x) is strictly smaller than the
derivative of µ̄(x) for all x ≥ 0. (In the SIS and logistic models this cor-
responds, respectively, to Λ < 1 and B < 1.) The deterministic evolution
tends rapidly towards extinction in this case. For the stochastic process, the
extinction time is logarithmic in N as N → ∞:

τ̄(x) =
1

µ̄′(0)(1 − ρ̄(0))
logNx + O(1)(22)

for n/N = x = O(1).

3. Numerical estimates and the failure of the Fokker–Planck approxi-
mation. In this section we compare our asymptotic results to numerical calculations
and to the FPE approximation for the SIS model. The numerical results here are a
direct evaluation of the exact formula (15).
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EXTINCTION TIMES FOR BIRTH-DEATH PROCESSES 289

3.1. Numerical and analytical results for the SIS model. As we pointed
out above, an example of the family of models considered here is the SIS model defined
by

λn = Λn
(
1 − n

N

)
, µn = n.(23)

For this case 0 ≤ x ≤ 1 and

λ̄(x) = Λx(1 − x), µ̄(x) = x,(24)

so that

ρ̄(x) = Λ(1 − x)(25)

and

Φ(x) = −
∫ x

0

log Λ(1 − ξ)dξ = (1 − x) log Λ(1 − x) + x− log Λ.(26)

It is easy to check that Φ(x) is a convex function.
The analytical results for this model based on (19), (21), and (22) are presented

in the following table.

Table 1

Λ Φ(x) τn for n/N = x = O(1)

Superthreshold Λ > 1 Φ
′
(0) < 0 Λ

(Λ−1)2

√
2π
N

eN(log Λ−1+1/Λ) ×
(
1 + O

(
1
N

))
Figure 2

Threshold Λ = 1 Φ
′
(0) = 0 (π

2
)
3
2
√
N + logNx + O(1) Figure 4

Subthreshold Λ < 1 Φ
′
(0) > 0 1

1−Λ
logNx + O(1) Figure 5

The superthreshold case is compared with numerical simulations in Figure 2. Our
formula agrees with the results of [10] and with the exact results.

We can go further and test the validity of our error estimate in the first line of
the table above, and also our treatment of the boundary layer. We define the relative
error as τ̄ /τ̄asy−1, where τ̄asy is given in (19) and (20). We plot N times this quantity
in Figure 3 to show that the relative error is of order 1/N uniformly in x.

The threshold case is shown in Figure 4; we find good agreement between our
asymptotic formula and the exact results. For the subthreshold case our formulas do
not agree with [10], but they do agree with the numerical results. This is shown in
Figure 5.

3.2. Fokker–Planck approximation. The Fokker–Planck approach approx-
imates the finite difference equation (6) by the differential equation (7), solves it,
and then extracts the large N asymptotics. This has the advantage of producing a
tractable and generally useful partial differential equation, (9). However, as we will
see, it does not give the correct answers in general for our class of processes. In this
section we will be concerned only with the superthreshold case.

3.2.1. Asymptotic estimates. The solution to (7) is (neglecting O(1/N2))

T (x) =
1

µ̄(r)

∫ x

0

e−N(V (r)−V (y)) dy + 2N

∫ x

0

∫ r

y

e−N(V (z)−V (y))

λ̄(z) + µ̄(z)
dz dy,(27)
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290 C. R. DOERING, K. V. SARGSYAN, AND L. M. SANDER

Fig. 2. Comparison of analytical and numerical results for the SIS model in the superthreshold
case. log τ̄(xe)/N is plotted as a function of N for three values of Λ.

Fig. 3. N times the relative error for the superthreshold case of the SIS model as a function
of x for various N and Λ = 3.

where

V (x) = −2

∫ x

0

λ̄(ξ) − µ̄(ξ)

λ̄(ξ) + µ̄(ξ)
dξ ≡ −2

∫ x

0

f(ξ)

g2(ξ)
dξ(28)

plays the role of the effective potential.
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EXTINCTION TIMES FOR BIRTH-DEATH PROCESSES 291

Fig. 4. Comparison of analytical and numerical results for the SIS model in the threshold case.
τ̄(x) is plotted as a function of N1/2 for various values of x. The symbols are exact results of (15),
and the dashed lines are guides for the eye. The solid line shows the prediction for the slope in (21).
The vertical position of the solid line is arbitrary.

Fig. 5. Comparison of analytical and numerical results for τ̄(x) in the subthreshold case of the
SIS model for Λ = 1/2. τ̄(x) is plotted as a function of logN for several values of x. The symbols
are exact results, and the dashed lines are guides for the eye. The solid line shows the prediction
for the slope from (22). The vertical position of the solid line is arbitrary. The results of [10] are
also shown as dotted lines which correspond to x = 1/4, 1/2, 3/4, 1 (from top to bottom).

The asymptotic behavior, using standard techniques [1], is

T (x) ≈ T (xe) =
2

|V ′(0)|

√
2π

NV ′′(xe)

e−NV (xe)

g2(xe)
×
(

1 + O
(

1

N

))
.(29)

D
ow

nl
oa

de
d 

11
/1

4/
13

 to
 1

32
.2

39
.6

9.
20

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



292 C. R. DOERING, K. V. SARGSYAN, AND L. M. SANDER

Fig. 6. Comparison of the FPE and numerical results for the SIS model in the superthreshold
case. log τ̄(xe)/N is plotted as a function of N for several values of Λ.

For the special case of the SIS model we find

T (x) ≈ Λ + 1

2
√

Λ

Λ

(Λ − 1)2

√
2π

N
e−NV (xe) ×

(
1 + O

(
1

N

))
,(30)

where

−V (xe) =
4

Λ
log

2

Λ + 1
+ 2

Λ − 1

Λ
.(31)

This expression is quite different from the first line of Table 1 (which agrees with the
exact results). In Figure 6 we show a comparison of (30) with the exact results. It is
clear that there is a significant discrepancy for large values of Λ, that is, far from the
threshold at Λ = 1. Note that log τ̄(xe)/N is plotted in the figure. From the figure
we see that, for N = 1000, T is a factor of about 107 smaller than the exact result.

We have done a similar calculation for the logistic model. The numerical results
of [7] are all near to threshold, so that the apparent numerical verification of their
FPE calculation is of only limited validity. Far above threshold there are similar very
large discrepancies between T and τ̄ .

3.2.2. The effective potentials. We now turn to the source of the problem
with the FPE estimate of τ̄ . For the superthreshold case, τ̄ in (29) is of the standard
form of a relatively slowly varying prefactor multiplied by exp(−NV ), where V is
given in (28). In the following discussion we will ignore the prefactor and consider
only the dominant exponential term. The FPE gives a V which is not the same as
the correct answer, Φ, from (16).

However, V is close to Φ quite near the threshold, in which case the force is small
over the important range of x, namely [0, xe]. To see this, set λ̄(x) − µ̄(x) = fN (x).
Assume that the force is, in fact, small: fN (x) → 0 appropriately uniformly in x as
N → ∞. Then
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dΦ(x)

dx
= −fN (x)

µ̄(x)
+

1

2

(
fN (x)

µ̄(x)

)2

− 1

3

(
fN (x)

µ̄(x)

)3

+ · · · ,(32)

while

dV (x)

dx
= −fN (x)

µ̄(x)
+

1

2

(
fN (x)

µ̄(x)

)2

− 1

4

(
fN (x)

µ̄(x)

)3

+ · · · .(33)

Hence the exponential terms formally agree to a factor of (1+O(1/N)) only if fN (x) =
λ̄(x) − µ̄(x) ≤ O(N−1/3); that is, the drift must be small over the whole range
of x. Equivalently, we can write ρn = λn/µn = 1 + O(1/N1/3+ε), ε > 0, or xe =
O(N−1/3−ε). If this is true then the two estimates of τ̄ differ by factors of order
unity.

3.2.3. “Corrected” FPE. We might be tempted to define a corrected FPE,
with an effective potential Φ, by redefining f and g2 in (9). A suitable f and g2 could
be found to do this, but the corrected FPE would not be particularly useful in general.
The point of using (9) is to have a unified description of the process, equivalent in the
continuum limit, for the original master equation. In particular, we should be able to
describe the quasi-stationary distribution with the same equation. We will show that
this is not possible.

A version of the quasi-stationary distribution [6] is obtained by changing the
boundary condition at the origin to reflecting; that is, we set λ0 = 1. Then a stationary
distribution exists. We can find this by returning to (5), setting dπn(t) = 0, and
solving the equation. The result is

πn =

∏n−1
j=0 [λj/µj+1]

1 +
∑∞

k=1

∏k−1
j=0 [λj/µj+1]

.(34)

We take the continuum limit by defining p(n/N) = Nπn and using the method of (17).
We have

p(x) ∝ 1√
λ̄(x)µ̄(x)

e−NΦ(x)

(
1 + O

(
1

N

))
.(35)

We can also solve for the stationary state of (9), with the requirement that the
effective potential be Φ. This gives

P (x) ∝ e−NΦ(x)

g2
.(36)

Comparing these two equations, we see that we must set

g2(x) = K
√

λ̄(x)µ̄(x),

f(x) = 2K
√

λ̄(x)µ̄(x) log
λ̄(x)

µ̄(x)
,(37)

where K is a constant. We can also recalculate T , as in (29). If we compare the result
to (19), we see that, while we have the correct effective potential (by construction),
we do not get the correct prefactor, so that T is inconsistent with τ̄ .
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4. Summary and discussion. We have described two sorts of results in this
paper. On the one hand, we have shown how to generalize previous work on the SIS
model [8, 9, 6, 10] to a large class of birth-death processes as well as to the threshold
and subthreshold cases. We have extended and improved the mean extinction time
results of [10] for the threshold and subthreshold cases.

Our treatment of the FPE should be viewed mainly as a warning about the
subtlety of the relationship between discrete and continuum approaches. In cases
where the continuum equation (9) should work, it fails if the drift is too large. This
is reflected in the fact that the exact effective potential, Φ = −

∫
[log(1 + f/g2) −

log(1 − f/g2)], is different from the FPE expression, V = −2
∫

[f/g2]. They are the
same for uniformly small f/g2. For practical purposes, if the process in not immedi-
ately above threshold, it is preferable to use (19), or even the exact expression, (15).
The best diffusion approximation that we can propose would use the exact potential Φ,
and would give only the dominant exponential in τ̄ but not the prefactor.

For a problem with a wide separation of scales, the option of using an exact ex-
pression is often not available. For example, in work on modeling calcium waves in
cells [13], the underlying processes are too complex to allow a practical exact calcu-
lation. One method for circumventing this difficulty is to use a Langevin equation,
replacing some of the rapid processes by noise terms. In practice, however, there is
some evidence that such a method gives acceptable results only near an appropriately
defined threshold [14] (see also [15]). It is possible that the diffusion approximation
mentioned at the end of the last paragraph would be useful in this case.

We have tried to produce a heuristic argument for the quantitative failure of the
FPE approximation for the mean extinction time in case the drift is not sufficiently
small. We approach the problem from the other direction by asking when it is possible
to accurately approximate a continuum diffusion process by a discrete state Markov
process. When the state space is discretized, the difficulty is that the transition times
between neighboring states (separated by distance 1/N) are not exponentially dis-
tributed for the diffusion process, so the “imbedded” process is not Markovian. In
order for the discrete state process to mimic a Markov process, the transition times
must be close to exponential random variables. Although a more precise condition
relating the drift and diffusion (and N) would require calculations that we do not
perform here, we speculate that when the diffusion coefficient is O(1/N) and the
state-space discretization O(1/N) as well, it is simply impossible to sufficiently ap-
proximate an exponential distribution for the transition time between neighboring
states as N → ∞ unless the drift is small enough.

Appendix. In this appendix we give the details of the large N expansion of (15),
which we repeat here for convenience:

τn =

n∑
m=1

[
1

µm
+

Am︷ ︸︸ ︷
m−1∏
i=1

1

ρi

R∑
j=m+1

1

µj

j−1∏
k=1

ρk

]
.(38)

In the following sections we discuss the superthreshold, threshold, and subthreshold
cases. The major computations are of the term

∑
Am in (38).

Appendix A.1. Superthreshold case. In this situation Φ(x) is convex with
a quadratic minimum at xe, the unique solution of λ̄(xe) = µ̄(xe). Thus, putting
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s = m/N and invoking standard integral estimates,

R∑
j=m+1

1

µj

j−1∏
k=1

ρk =

R∑
j=m+1

1

µj

1√
ρ̄(0)ρ̄(j/N)

e−NΦ( j
N ) ×

(
1 + O

(
1

N

))
(39)

=

∫ r

s

dz√
ρ̄(0)ρ̄(z)µ̄(z)

e−NΦ(z) ×
(

1 + O
(

1

N

))
.

For the next step we use the fact that if h is a smooth function with h(xe) �= 0, then
for s < xe,∫ r

s

h(ξ)e−NΦ(ξ)dξ = h(xe)

√
2π

NΦ′′(xe)
e−NΦ(xe) ×

(
1 + O

(
1

N

))
.(40)

We now use n = O(N), Φ
′
(0) < 0, Φ(0) = 0 and the smoothness of ρ̄ to compute the

geometric sum after expanding Φ(m/N) around 0. Thus,

n∑
m=1

Am =

n∑
m=1

1

µ̄(xe)

√
ρ̄(m/N)

ρ̄(xe)

√
2π

NΦ′′(xe)
e−NΦ(xe)eNΦ(m

N ) ×
(

1 + O
(

1

N

))

=

√
2π

NΦ′′(xe)

e−NΦ(xe)

µ̄(xe)
√
ρ̄(xe)

n∑
m=1

√
ρ̄
(m
N

)
eNΦ(m

N ) ×
(

1 + O
(

1

N

))

=

√
2π

NΦ′′(xe)

e−NΦ(xe)

µ̄(xe)
√
ρ̄(xe)

√
ρ̄(0)

1 − eΦ′ (0)
×
(

1 + O
(

1

N

))
.(41)

The last expression is exponentially large in N , and thus
∑n

m=1
1

µm
, which we estimate

in the subthreshold case below, is completely negligible. Eliminating derivatives of
Φ(x), we then find

τn =

√
2πρ̄(0)

N [λ̄(xe)µ̄
′(xe) − λ̄′(xe)µ̄(xe)]

e−NΦ(xe)

ρ̄(0) − 1
×
(

1 + O
(

1

N

))
,(42)

independent of n for n = O(N). The boundary layer correction follows simply from
a finite geometric series approximation to the sum in the penultimate line in (41).

Appendix A.2. Threshold case. Here the potential function Φ(x) is convex
with vanishing derivative but nonvanishing curvature at x = 0. Referring to the
terms in the exact solution (38), invoking the trapezoid approximation, and setting
s = m/N ,

n∑
m=1

Am =

n∑
m=1

∫ r

m/N

√
ρ̄(m/N)√
ρ̄(z)µ̄(z)

e−N(Φ(z)−Φ(m
N ))dz ×

(
1 + O

(
1

N

))

= N

∫ x

0

ds

∫ r

s

dz

√
ρ̄(s)√

λ̄(z)µ̄(z)
e−N(Φ(z)−Φ(s)) ×

(
1 + O

(
1

N

))
.(43)

Most of the contribution to the integral comes from a neighborhood of the origin, so
we proceed making standard integral approximations. Expand Φ(x), ρ̄(s), λ̄(z), and
µ̄(z) using λ̄(0) = µ̄(0) = Φ(0) = Φ

′
(0) = 0:

n∑
m=1

Am = N

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∫ x

0

ds

∫ r

s

dz
e−NΦ

′′
(0)( z2

2 − s2

2 )

z
×

(
1 + O

(
1

N

))
.(44)
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Switching the integrals,

n∑
m=1

Am = N

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∫ r

0

e−NΦ
′′

(0) z2

2

z
dz

∫ min(z,x)

0

eNΦ
′′

(0) s2

2 ds×
(

1 + O
(

1

N

))
,

(45)

and changing variables,

=

√
N

Φ′′(0)

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∫ r
√

NΦ′′ (0)

0

e−
v2

2

v
dv

∫ min(v,
√

NΦ′′ (0)x)

0

e
u2

2 du×
(

1 + O
(

1

N

))
.

(46)

Then because N is large we may modify the limits of the integrals:

n∑
m=1

Am =

√
N

Φ′′(0)

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∫ ∞

0

dv
e−

v2

2

v

∫ v

0

due
u2

2 ×
(

1 + O

(
1

N

))
.(47)

Integrate eu
2/2 using its Taylor expansion and use the formula for the even moments

of a Gaussian to obtain

n∑
m=1

Am =

√
N

Φ′′(0)

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∞∑
k=0

1

2kk!(2k + 1)

∫ ∞

0

v2ke−
v2

2 dv

(
1 + O

(
1

N

))

=

√
N

Φ′′(0)

√
ρ̄(0)√

λ̄′(0)µ̄′(0)

∞∑
k=0

(2k)!

(2kk!)2(2k + 1)

√
π

2
×
(

1 + O
(

1

N

))
.(48)

The sum above converges (slowly) to π
2 , and thus

n∑
m=1

Am =
π

2

√
π

2Φ′′(0)

√
ρ̄(0)

λ̄′(0)µ̄′(0)

√
N + O

(
1√
N

)
.(49)

We show in the next section that
n∑

m=1

1

µm
=

1

µ̄′(0)
log n + O(1).(50)

Thus, recalling ρ̄(0) = 1 in this case,

τn =

(
π
2

) 3
2√

Φ′′(0)λ̄′(0)µ̄′(0)

√
N +

1

µ̄′(0)
log n + O(1).(51)

Appendix A.3. Subthreshold case. Here the potential function Φ(x) is a
convex function with positive derivative at 0. From (38),

Am =

√
ρ̄
(m
N

) R∑
j=m+1

1

Nµ̄(j/N)
√

ρ̄(j/N)
eN(Φ(m

N )−Φ( j
N ))

(
1 + O

(
1

N

))
(52)

=

√
ρ̄
(m
N

) R∑
j=m+1

ρ̄(m/N)j−m

N
√
λ̄(j/N)µ̄(j/N)

(
1 + O

(
1

N

))

= ρ̄
(m
N

)−m+ 1
2

R∑
j=m+1

ρ̄(m/N)j

N
√
λ̄(j/N)µ̄(j/N)

(
1 + O

(
1

N

))
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Adding and subtracting

R∑
j=m+1

ρ̄(m/N)j−m+ 1
2

N
√
λ̄(m/N)µ̄(m/N)

(53)

and recalling that in the subthreshold case ρ̄(x) < 1 uniformly for x ∈ [0, r], we have

Am = ρ̄
(m
N

)−m+ 1
2

R∑
j=m+1

(
ρ̄(m/N)j

N
√
λ̄(j/N)µ̄(j/N)

− ρ̄(m/N)j

N
√
λ̄(m/N)µ̄(m/N)

)
(54)

+
R∑

j=m+1

ρ̄(m/N)j−m+ 1
2

N
√
λ̄(m/N)µ̄(m/N)

= ρ̄
(m
N

)−m+ 1
2

∫ r

s

(
ρ̄(s)Nξ√
λ̄(ξ)µ̄(ξ)

− ρ̄(s)Nξ√
λ̄(s)µ̄(s)

)
dξ

︸ ︷︷ ︸
Bm

+
ρ̄(m/N)

1 − ρ̄(m/N)

1

Nµ̄(m/N)︸ ︷︷ ︸
Cm

+ O
(

1

N

)

= Bm + Cm + O
(

1

N

)
.

Now we evaluate
∑n

m=1 Bm and
∑n

m=1 Cm separately as n = Nx → ∞. Changing

variables in the integral in Bm and using the facts that, for small s,
√
λ̄(s)µ̄(s) =√

λ̄(0)µ̄(0) s + O(s2), or
√
λ̄(s)µ̄(s) =

√
λ̄(0)µ̄(0) s × (1 + O(s)), and ρ̄(s) = O(1),

we find

Bm =

∫ r−s

0

(
ρ̄(s)Nξ+ 1

2√
λ̄(ξ + s)µ̄(ξ + s)

− ρ̄(s)Nξ+ 1
2√

λ̄(s)µ̄(s)

)
dξ(55)

= O(1) ×
∫ r−s

0

ρ̄(s)Nξ+ 1
2

ξ

s(ξ + s)
dξ

= O(1) ×
∫ r−s

0

eNξ log ρ̄(s) ξ

s(ξ + s)
dξ

= O(1) ×
∫ r/s−1

0

e(sα)z z

1 + z
dz

≤ O(1) ×
∫ r/s−1

0

e(sα)zzdz

≤ O(1) × 1

(sα)
2 ,

where we define α = N log ρ̄(s). Then, recalling s = m/N , we conclude

n∑
m=1

Bm ≤ O(1) ×
n∑

m=1

1

m2(log ρ̄(m/N))
2 = O(1)(56)

as N → ∞ (which means n → ∞ as well).
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On the other hand, the Cm terms may be written

n∑
m=1

Cm =

n∑
m=1

η
(m
N

) 1

Nµ̄(m/N)
,(57)

where we define

η
(m
N

)
=

ρ̄(m/N)

1 − ρ̄(m/N)
.(58)

Then subtract and add the “divergent part” of the sum:

n∑
m=1

Cm =

n∑
m=1

[
η (m/N)

Nµ̄(m/N)
− η(0)

mµ̄′(0)

]
+

n∑
m=1

η(0)

mµ̄′(0)
(59)

=

∫ x

0

η(ξ)ξµ̄′(0) − η(0)µ̄(ξ)

ξµ̄′(0)µ̄(ξ)
dξ︸ ︷︷ ︸

O(1)

+
η(0)

µ̄′(0)
(γ + log n) + O

(
1

N

)

=
η(0)

µ̄′(0)
log (n) + O(1),

where γ = 0.5772 . . . is Euler’s constant.
Finally,

n∑
m=1

1

µm
=

n∑
m=1

1

Nµ̄(m/N)
(60)

=
γ + log (n)

µ̄′(0)
+

∫ x

0

ξµ̄′(0) − µ̄(ξ)

ξµ̄′(0)µ̄(ξ)
dξ︸ ︷︷ ︸

O(1)

+ O
(

1

N

)

=
1

µ̄′(0)
log (n) + O(1).

Putting these calculations together, we conclude

τn = τ̄(x) =
η(0)

µ̄′(0)
log n +

1

µ̄′(0)
log n + O(1) =

1

µ̄′(0)(1 − ρ̄(0))
logNx + O(1).

(61)
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