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We develop a theory of first passage processes in stochastic nonequilibrium systems of birth-death type
using two closely related epidemiological models as examples. Our method employs the probability generating
function technique in conjunction with the eikonal approximation. In this way the problem is reduced to
finding the optimal path to extinction: a heteroclinic trajectory of an effective multidimensional classical
Hamiltonian system. We compute this trajectory and mean extinction time of the disease numerically and
uncover a nonmonotone, spiral path to extinction of a disease. We also obtain analytical results close to a
bifurcation point, where the problem is described by a Hamiltonian previously identified in one-species popu-
lation models.
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Statistics of large fluctuations in stochastic nonequilib-
rium systems has received much attention �1�. While the
equilibrium fluctuation probability is determined by the Bolt-
zmann distribution, there is no similar general principle away
from equilibrium. The underlying reason is the absence of
time reversal symmetry between the relaxation and excita-
tion dynamics in out-of-equilibrium systems. As a conse-
quence, the most probable fluctuation path is not determined
by the relaxation trajectory of the underlying deterministic
system.

An important class of stochastic nonequilibrium systems
is reaction kinetics, or birth-death, systems �2�. Rather than
being caused by external factors, the noise in these systems
is intrinsic, as it originates from discreteness of the reacting
agents and random character of their interactions. When the
typical number of agents is large, the Fokker-Planck �FP�
approximation to the master equation, see, e.g., Ref. �2�, can
accurately describe small deviations from the probability dis-
tribution maxima. It fails, however, in determining the prob-
ability of large fluctuations �3–5�. Therefore, developing ad-
equate theoretical tools for dealing with large fluctuations is
an important task.

One of the areas where the birth-death models have been
very successful is mathematical epidemiology, see Ref. �6�.
In this work we consider two closely related models of the
spread of disease in a population. Although they have served
as standard multipopulation epidemiological models, the
analysis of large fluctuations in each of these models has not
been satisfactory. We will use the two models as prototypical
examples of multidimensional stochastic nonequilibrium sys-
tems.

Observing the dynamics of a disease in a finite popula-
tion, one notices the remarkable phenomenon of extinction
of the disease in a finite time. The expected time to extinc-
tion �and the possibility to affect it� is of great practical in-
terest. Here we develop an efficient theoretical approach ca-
pable of computing, among other things, this quantity. The
approach employs the probability generating function for-
malism in conjunction with the eikonal approximation. In
this way the problem is reduced to the dynamics of an ef-
fective classical Hamiltonian system. The intrinsic-noise-
induced extinction of the disease proceeds, with a high prob-

ability, along the optimal path: a special �heteroclinic� trajec-
tory in the phase space of the classical Hamiltonian flow. An
additional challenge of this type of problem is in the fact that
the emerging multidimensional Hamiltonian flows are gener-
ally nonintegrable. We compute the optimal path, and the
mean extinction time of the disease, numerically and also
obtain analytical results close to a bifurcation point.

Model. Let us consider two stochastic epidemiological
models: the endemic SI model and the endemic SIR model.
In the SI model the host population is divided into two dy-
namic subpopulations: Susceptible �S� and Infected �I�. The
model is specified by the set of reactions and their rates
given in Table I. We can always represent the renewal rate
�an independent parameter of the model� as �N, where N
scales as the total population size in a steady state. Taking
�I��, one allows for an increased death rate of the infected.

The endemic SIR model deals, in addition to the S and I
subpopulations, with a third subpopulation: Recovered �R�,
with the recovery rate �I. It is assumed that the recovered
cannot become susceptible. The death rate of the recovered is
�RR. The endemic SIR model �which generalizes the original
SIR model: the one without renewal and death� gives a sat-
isfactory description to the spread of measles, mumps, and
rubella �6�.

Let us briefly review the deterministic, or mean-field, ver-
sion of the SIR model:

Ṡ = �N − �S − ��/N�SI , �1�

İ = − �II − �I + ��/N�SI , �2�

TABLE I. Transition rates for the stochastic SI model.

Event Type of transition Rate

Infection S→S−1, I→ I+1 �� /N�SI

Renewal of susceptible S→S+1 �N

Death of susceptible S→S−1 �S

Death of infected I→ I−1 �II
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Ṙ = − �RR + �I . �3�

As the dynamics of S and I decouples from that of R, the SIR
model is effectively two population, and we will not deal
with the R dynamics. Furthermore, one immediately notices
that, by setting �I+�=�, the S and I dynamics in the SIR
model becomes identical to that in the SI model, up to inter-
change of �I and �. This also holds for the stochastic ver-
sions of the two models, and so we can treat them on equal
footing, using � for the effective death rate constant of the
infected.

For a sufficiently high infection rate, ���, there is an
attracting fixed point

S̄ =
�

�
N, Ī =

��� − ��
��

N �4�

which describes an endemic infection level, and an unstable

fixed point S̄=N , Ī=0 which describes an uninfected popu-
lation. At ��4��−���� /��2 the attracting fixed point is a
stable focus, while in the opposite case it is a stable node.
The inverse of the real part of the eigenvalues �for the focus�
or the inverse of the smaller of the eigenvalues �for the node�
yields the characteristic relaxation time �r toward the “en-
demic point.”

The stochastic formulation of the SI and SIR models ac-
counts for the demographic stochasticity and random charac-
ter of contacts between the susceptible and infected. The
master equation for the probability Pn,m�t� of finding n sus-
ceptible and m infected individuals has the form

Ṗn,m = ��N�Pn−1,m − Pn,m� + �n + 1�Pn+1,m − nPn,m�

+ ���m + 1�Pn,m+1 − mPn,m�

+ ��/N���n + 1��m − 1�Pn+1,m−1 − nmPn,m� , �5�

and the total population size is fluctuating in time. We will be
interested in the regime where the fluctuations are relatively
weak �but still very important�. In this case, after the relax-
ation time �r a long-lived �quasistationary� distribution is
formed that has a bivariate Gaussian peak with relative width
�N−1/2 around the stable state �4� of the mean-field descrip-
tion �7–9�. The long-time behavior of the stochastic model is
quite remarkable: Owing to a rare sequence of discrete
events the disease goes extinct in a finite time. Given that a
major outbreak of the disease occurred, what is the mean
extinction time � of the disease? For the endemic SIR model
this question was addressed previously �7,8� in the frame-
work of the van Kampen system size expansion that brings
about the approximate FP equation �2�. Our approach con-
siderably �exponentially� improves on these earlier results. In
the regime we are interested in � is exponentially large com-
pared with the relaxation time �r. The presence of the large
parameter facilitates the use of the �fully controlled� eikonal
approximation: either directly in the master equation, as sug-
gested by Dykman et al. �10�, or in the evolution equation
for the probability generating function, as suggested by El-
gart and Kamenev �4�.

Probability generation function and eikonal approxima-
tion. We adopt the latter approach and introduce the prob-

ability generating function G�pS , pI , t�=�n,m=0
	 pS

npI
mPn,m�t�.

Once G�pS , pI , t� is found, the probabilities Pn,m�t� are given
by the coefficients of its Taylor expansion around pS= pI=0.
Using the master equation �5�, we obtain an evolution equa-

tion for G: �tG= ĤG with the effective Hamiltonian operator

Ĥ = ��pS − 1��N − �pS
� − ��pI − 1��pI

− ��/N��pS − pI�pI�pSpI

2 .

�6�

In contrast to the FP equation this equation is exact �11�.
The eikonal ansatz is G�pS , pI , t�=exp�−S�pS , pI , t��,

where S
1. Neglecting the second derivatives of S with
respect to pS and pI, we arrive at a Hamilton-Jacobi equation
�tS+H=0 in the p space with the classical Hamiltonian
H�S , I , pS , pI�,

H = ��pS − 1��N − S� − ��pI − 1�I − ��/N��pS − pI�pISI ,

�7�

where S=−�pS
S and I=−�pI

S. The structure of four-
dimensional �4D� phase space, defined by the Hamiltonian
�7�, provides a fascinating and instructive insight into the
disease extinction dynamics. As H does not depend explicitly
on time, it is an integral of motion, H�S , I , pS , pI�=E=const.
All the mean-field trajectories, described by Eqs. �1� and �2�,
lie in the zero energy, E=0, two-dimensional plane pS= pI
=1. The attracting fixed point �4� of the mean-field theory

becomes a hyperbolic point A= �S̄ , Ī ,1 ,1� in the 4D phase
space with two stable and two unstable eigenvalues �the sum
of which is zero� and respective eigenvectors. There are two
more zero-energy fixed points in the system: the point C
= �N ,0 ,1 ,1� which is present in the mean-field description
and the non-mean-field point B= �N ,0 ,1 ,� /�� which we call
fluctuational. Both of them are hyperbolic and describe ex-
tinction of the disease. The presence of a fluctuational fixed
point, related to extinction, is characteristic of a class of sto-
chastic birth-death systems �4,7,12,13�.

The most probable sequence of discrete events, bringing
the system from the endemic state to extinction of the dis-
ease, is given by the optimal path that minimizes the action S
�10,14�. The optimal path must be a zero-energy heteroclinic
trajectory. This trajectory exits, at t=−	, the “endemic”
point A along its two-dimensional unstable manifold and en-
ters, at t=	, the fluctuational disease extinction point B,
along its two-dimensional stable manifold. As in one-
dimensional birth-death systems �4,12�, one can show that
there is no trajectory going directly from A to C. Therefore,
the fluctuational extinction point B, not present in the mean-
field dynamics, plays a crucial role in the disease extinction.

Up to a pre-exponent, the mean extinction time of the
disease is ���r exp�S0� �15�, where

S0 = �
−	

	

�pSṠ + pIİ�dt , �8�

and the integration is performed along the �zero-energy� op-
timal path. As in any generic multidimensional Hamiltonian
system, the optimal path can be computed only numerically.
In the following we present two typical examples of such
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computation, and also consider an important limit when the
computation can be performed analytically, by exploiting
time-scale separation. First we introduce new coordinates x
=S /N−1 and y= I /N, time t̃=�t, momenta px,y = pS,I−1, and
bifurcation parameter �=1−� /�, 0���1. The action �8�
can now be rewritten as S0=N, where �K ,�� is the action
along the optimal path, generated by the Hamiltonian

H̃ = − pxx − K��1 − ��py + �px − py��py + 1��x + 1��y �9�

and K=� /��1. The fixed points A, B, and C become

�− �,
�

K�1 − ��
,0,0	, �0,0,0,− ��, and �0,0,0,0� ,

respectively.
Optimal path and action: Numerical examples. We com-

puted the optimal path numerically for different parameters.

To find the optimal path one needs to adjust a single shooting
parameter: the angle between two unstable eigendirections of
the endemic fixed point A. Two typical examples of numeri-
cally computed optimal paths are shown in Figs. 1 and 2
�where 4K��1−��2�1, and the endemic point is a focus� and
in Figs. 3 and 4 �where 4K��1−��2�1, and the endemic
point is a node�. Figures 1�a� and 3�a� show projections of
the optimal paths on the �x ,y� plane. For comparison, they
also show the mean-field trajectories �px= py =0� originating
in the vicinity of the no-disease point x=y=0, describing an
epidemic outbreak and approaching the endemic point. In
contrast to equilibrium systems, the optimal path of a large
fluctuation is different from the corresponding relaxation
path. Notice that, although for K=20 the extinction proceeds
along a spiral, the difference between the two spirals is strik-
ing. Figures 1�b� and 3�b� show projections of the optimal
paths on the �px , py� plane. The optimal paths are presented
in more detail in Figs. 2 and 4, where the time dependences
of x, y, px, and py are shown. The rescaled action along the
optimal path in this example is 
6.12�10−3 for K=20 and

0.145 for K=1.8, providing sharp estimates to the loga-

FIG. 1. �Color online� �a� Projection of the optimal path on the
�x ,y� plane �thick black line� and the mean-field trajectory �px

= py =0� describing an epidemic outbreak �thin red line�. �b� Projec-
tion of the optimal path on the �px , py� plane. x=S /N−1, y= I /N;
K=20 and �=0.5.
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FIG. 2. Optimal path for K=20 and �=0.5. Shown are x=S /N
−1 �a�, y= I /N �b�, px= pS−1 �c�, and py = pI−1 �d� vs rescaled time.

FIG. 3. �Color online� Same as in Fig. 1 but for K=1.8.
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FIG. 4. Same as in Fig. 2 but for K=1.8.
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rithm of the corresponding mean extinction times of the dis-
ease.

Optimal path and action: Asymptotic theory in the vicinity
of the bifurcation point. For K��1 we can compute the op-
timal path and the rescaled action �K ,�� analytically, by
exploiting time-scale separation. Let us introduce rescaled
variables, q1=x /�, q2=yK /�, p1= px /�2, and p2= py /�. This
rescaling is motivated by the values of the coordinates of the
fixed points, and reflects the important feature that, at ��1,
the fluctuations in the number of susceptible are much
weaker than the fluctuations in the number of infected. Ne-
glecting higher-order terms in �, we arrive at the following
approximate equations of motion:

q̇1 = − q1 − q2, q̇2 = K�q2�1 + q1 + 2p2� ,

ṗ1 = p1 − q2p2, ṗ2 = K��p1 − p2 − p2
2 − q1p2� . �10�

The fixed points become A= �−1,1 ,0 ,0�, B= �0,0 ,0 ,−1�,
and C= �0,0 ,0 ,0�. For K��1 the subsystem �q1 , p1� is fast,
whereas �q2 , p2� is slow. On the fast time scale �that is, the
time scale �−1 in the original, dimensional variables� the fast
subsystem approaches the state q1
−q2 and p1
q2p2 which
then slowly evolves according to the equations

q̇2 
 K�q2�1 − q2 + 2p2�, ṗ2 
 K�p2�2q2 − 1 − p2�
�11�

that are Hamiltonian, as they follow from the reduced Hamil-
tonian Hr�q2 , p2�=K�q2p2�1−q2+ p2�. This Hamiltonian ap-
pears in the theory of a class of single-species models in the
vicinity of a bifurcation point �12�. As Hr�q2 , p2� is indepen-

dent of time, it is an integral of motion. The optimal extinc-
tion path goes along the zero-energy trajectory 1−q2+ p2=0
�16�. Evaluating the action �8� along this line, we find in the
leading order S0
�N�3 / �K����1

0p2dq2=N�2 / �2K�. For the
mean extinction time of the disease we obtain

ln���/N 
 �2/�2K� = ��/�2����1 − �/��2; �12�

this asymptote is valid when S0
1.
Dykman et al. �13� have recently shown that reduced

Hamiltonian dynamics of the same type as Eqs. �11� holds,
close to the bifurcation point, in the endemic SIS model: still
another two-population stochastic epidemic model where the
infected individuals again become susceptible upon recovery.

In summary, we have developed the eikonal theory for
stochastic multipopulation birth-death systems. The theory is
especially suitable for analysis of large fluctuations, such as
disease extinction. For the SI and SIR models we have found
the optimal path to extinction of the disease and the mean
extinction time. The optimal path to extinction, including its
remarkable oscillatory behavior, is not model specific. It
should be observable in stochastic simulations of a broad
class of models, and in real data on fade out, of infectious
diseases in small communities.
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