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Rare event statistics in reaction-diffusion systems
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We present an efficient method to calculate probabilities of large deviations from the typical behangor
events in reaction-diffusion systems. This method is based on a semiclassical treatment of an underlying
“quantum” Hamiltonian, encoding the system’s evolution. To this end, we formulate the corresponding canoni-
cal dynamical system and investigate its phase portrait. This method is presented for a number of pedagogical
examples.
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[. INTRODUCTION accurately predict the long-time scaling of the system’s char-
Reaction-diffusion models have a vast area of application@Ctéristics, such ~as particle concentration. The field-
[1,2] from the kinetics of chemical reactioni8], biological ~ theoretical renormalization grou®G) methods were devel-
populations[4—6] and epidemicg7,8] to the dynamics of ©OP€d, and successfully applied, to a number of examples
financial market§9] and ecology{10]. The models describe [16-19. In particular, the directed percolation universality
the dynamics of a number of particles whose reactions arglass was identified and studied as the most robust universal-

specified by a certain set of rules. The rules have a probabl lcla:;‘]s for the dynarknic phijs(? transitio[ﬂsﬂf,ZCr)]—Z%_ﬁ
listic nature and are most conveniently formulated on a lat- h the present work, we address a somewhat different set

tice in ad-dimensional space. We shall restrict our attentionOf questions. We consider a generic reaction-diffusion system

to a wide subclass of such models, where the particles e>{-hat either does not exhibit, or is far enough from, the phase

ecute random walkediffuse) on the lattice, while the reac- ransition. A typical evolution scenario, and the probability

i bet th I lod@n-site. O the lat of small deviations, are well described by the mean-field
lons between them are purely od n-st @ nce the fat theory and the FP equation. We shall look, however, for the
tice, the reaction rules, and the initial conditions are

o o X o > £robability of large deviations from typical behavior. A
specified, one is interested to find statistical characteristics iarge" deviation may be loosely characterized as being of

the system’s subsequent evolution. This goal may be accomne same order a@r larger thai the typical valueas op-
plished with various degrees of detailing and accuracy.  posed to the “small” one, which is of the order of the square
The most detailed information is contained in the prob-root of the typical valug Since the occurrence of such large
ability distribution functiongPDF) of every possible micro-  deviations has a very small probability, they may be dubbed
scopic state of the system. The PDF is a solution of an extrare events.” Despite being rare, these “rare events” may be
ponentially large system of Master equations, which specifyof great interest, especially if they have extreme conse-
the probabilities of transition between every two microscopicquences. Some examples are as follows: the proliferation of a
states of the system. The analytical solution of the Mastevirus after immunization(causing the death of a patignt
equations is usually unrealistic and the information containedarge fluctuations in the number of neutrons in a nuclear
within them is excessive. Therefore, various approximatiorreactor(causing explosion etc. Clearly, in these and many
schemes are in order. The simplest one is the mean-fieldther examples, one is interested to know rather precisely
approximation, where a closed set of equations for averageow improbable improbable events are.
quantities(e.g., concentrationss obtained by an approxi- Rare events in stochastic reaction-diffusion models, with
mate decoupling of higher moments. The mean-field theorghermal fluctuations described by white noise, were studied
describes a typical evolution of the system, if the fluctuationdy many authors. For a review, see, el@3]. For recent
are weak in some way. The probability of small deviationsworks, see[24,25. It is assumed in this approach that the
from the mean-field predictions may be found with the helpdynamics of the system is governed by the Langevin equa-
of the Fokker-PlanckFP) equation. It substitutes the discrete tion. In general, reaction-diffusion problems cannot be de-
Master equation by a continuutbiased diffusion equation scribed by Langevin dynamics with a white additive noise.
in the space of concentrations. Analysis of the FP equation islsually, the noise happens to be coloed., correlated with
usually complicatedl1,2], moreover the approximation is re- a reaction coordinajeand is not necessarily ref26]. The
liable for small deviations only and fails to provide the prob- presence of the absorbing states does not allow the treatment
ability of large deviations from the typical evolution. of reaction-diffusion systems as Gaussian noise models.
Much attention was attracted recently to reaction-There exists no conventional Fokker-Planck equation in this
diffusion systems that are in a close proximity to dynamiccase, and hence the calculus of the rare events is different.
phase transitionfl1-13 (for recent reviews see, e.g., Refs. The escape rate from the metastable state to the absorbing
[14,15). By fine-tuning one of the parameters, some systemstate cannot be established following the well-developed
may be brought to a point of quantitative change of theirKramers theory23].
behavior(e.g., stable finite concentration versus extinction Here we develop a rigorous, simple, and efficient method
In a vicinity of the transition, neither mean field nor FP canto calculate the rare event statistics in reaction-diffusion sys-
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tems. To this end, we develop a Hamiltonian formulation ofsical method may be used to calculate the lifetime of such a
reaction-diffusion dynamics. Although the system is speciimetastable state. Finally, some conclusions and open prob-
fied by a set of rules, rather than a Hamiltonian, one mayems are discussed in Sec. VI.

nevertheless show that there is a certain canonical Hamil-
tonian associated with the system’s dynamics. More pre-
cisely, the Master equation may be reformulated as a “quan-
tum” (many-body Schrddinger equation with some  The simplest reaction, which we use to introduce nota-
“‘quantum” Hamiltonian. This observation is not new and istions and set the stage for further discussions, is the binary
sometimes referred to as Doi's operator techniff&28. In  5nnihilation process. It describes a chemical reaction, where

eraal e weamen of e et phose nanapanli denicl pariles o an et aggreate i e prb
. . . bility N. This aggregate is not involved in further reactions:
[16—19. Here we notice that thelassical (or rather semi- yx goreg

classical dynamics of the very same Hamiltonian carries aA+A—@. We start from the zero-dimensional version of the
lot of useful information about reaction-diffusion systems. Inmodel, where every particle may react with every other. Such

particular, it provides all the information about the rare eventy reaction is fully described by the following Master equa-
statistics. To extract this information, it is convenient to for- tjon:

mulate the underlying Hamiltonian in classical terfas a
function of momenta and coordinajesather than creation
and annihilation operators, as is customary in the “quantum”
approach27-29. . . ] ) ]
A particularly convenient tool to visualize the system’s WherePy(t) is the probability to finch particles at time. The
dynamics is a phase portrait of the Corresponding HamilMaster equation is to be Supplemented with an initial distri-
tonian. It consists of linegor surfacesof constant “energy”  bution, e.g.,P,(0)=e"ng/n! for the Poisson distribution
(the integral of motion naturally existing in a Hamiltonian with the mean value, or P(0)=3,,, for the fixed initial
system in the space of canonical momenta and coordinatesparticle number. Let us now define tenerating functioms
The mean-fieldtypical) evolution corresponds to a particu-
lar manifold of zero energy, given by the fixed value of the
canonical momentgy=1. Rare events may be specified by
certain initial and finite conditions in the phase space of the
dynamical system, which, in general, dot belong to the Knowing the generating function, one may find a probability
mean-field manifold. The probability of the rare event is pro-of having (integey n particles at timet as Py(t)
portional to exg-S}, whereS is the classical action on a =dG(p,t)|=o/n!. If N>1, it is more convenient to use an
unique trajectory, satisfying the specified boundary condialternative representation,
tions. The problem is therefore reduced to finding an evolu-
tion of the classical dynamical system, whose quantized P, (t) = ifﬁ d—pG(p,t)p‘“, (3)
Hamiltonian encodes the Master equation. This task is sub- 2mi p

stannglly simpler than solving thg_full quantum- 'V!aSteT where integration is performed over a closed contour on the
equation. In fact, even the probability of small deviations is

- . . ; omple lane, encirclingp=0 and going through the re-
much more efficiently calculated in our semiclassical method; piexp p reingp going U9

. . . . ion of analyticity ofG(p,t).
than_wa solution of the FP e_quatumhough the latter is also The poin%lp:1y playspa special role in this formulation.
appllcable_). For large dewatlons,_ however, t_he FP. approacrhrst of all, the conservation of probability demands the fun-
leads to inaccurate results, while the semiclassical methogamental hormalization condition
provides a simple and accurate prescription. A similar strat- '
egy was recently applied for the calculation of the full cur- Gl =1. (4)

rent statistics of mesoscopic conductf@8—-32.

In this paper, we develop the semiclassical method using &econdly, the moments of the PLI(t), may be expressed
number of reaction-diffusion models as examples. We triedhrough derivatives of the generating functionpat1, e.g.,
to keep the presentation self-contained and pedagogical. (1)) =ZnPy(t)=3,G(P, 1) |p=1.
S.ec. II, we start from the model of.binary annihilation i_n zero |, ternms of the generating function, the Master equation
_d|men5|on_s. In Sec. I, we compl!cat_e the model_ by mclud-(l) may beidentically rewritten as
ing branching and discuss the extinction probability of a sys-
tem having a stable population in the mean-field approxima- G _ N, , PG
tion. Section IV is devoted to the extension of the formalism i E(p -1 (9_p2 (5)
to ad-dimensional space. As an example, we find an extinc-
tion probability of a finite cluster. In Sec. V, a population This equation is to be solved with some initial condition,
dynamics model with three reaction channels—reproductiorg.g., G(p,0)=expny(p—1)} for the Poisson initial distribu-
death, and emigration—is considered indadimensional tion or G(p,0)=p" for a rigidly fixed initial particle number.
space. The model possesses a long-lasting metastable staitge solution should satisfy the normalization condition, Eq.
with a fixed population that eventually escapes into the staté4), at any time. In addition, all physically acceptable solu-
of unlimited population growth. We show how the semiclas-tions must have alp derivatives ap=0 non-negative.

II. BINARY ANNIHILATION

R0 =31+ 21+ VP o) ~n(n= DR, (1)

G(p,t) = X p"Py(1). (2)

n=0
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One may consider E@5) as the “Schrddinger” equation, . oH
q=————>\pq2 (123
Y6=-HG (6)
- | oH
~ N=—= 2 _
where the “quantum” Hamiltonian operatd, in the p P aq Mp®-1)q (12D

(“momentum’) representation is .
and the boundary conditions:

H(p, >=—<p - DR (7) q(0) =ny, (133

Here we have introduced the “coordinate” operdias p(t) =p, (13b)

. oA wherep andt are the arguments of the generating function
a= "o’ [p.a]=1. (8 G(p,t). Notice that, while the coordinate is fixed at an initial
time (pas), momentum is imposed at a finite tinfiiture).

The "Hamiltonian,” Eq(7), is normally ordered and not Her- These equations admit the integral of motion, which we call
mitian. However, the last fact does not present any S'gn'f'“energy E=0, where

cant difficulties.
If the “quantum” fluctuations are weakwhich in the B -~ )

present case is true as long @st))> 1), one may employ E=H(p(t).q(v) = Z[p(t) - 1]a™(®). (14

the WKB approximation to solve the “Schrédinger’-Master

equation. Using ansa@(p,t)=expg-S(p,t)} and expanding As a re_sult, th_e actioon a plassical trajectorynay be writ-

S(p,t) to the leading order in IV, one obtains the classical t€n as(in continuous notations

Hamilton-Jacobi equation,

S aS )\ 5 . [9S
a - HPap) =2 DG
P P To find the low moments, one needs to kn@p,t) in

Instead of directly solving the Hamilton-Jacobi equation, wethe immediate vicinity ofp=1. In this case, the Hamilton
will develop the Hamilton approach, which is much more equationg12) with boundary condition§13) may be solved

t
2 9p,q] =Et- f qpdt—ng[p(0) - 1]. (15
) 9 0

convenient for finite-dimensional applications. with the mean-fieldansatz,
To this end, we employ the Feynman path-integral repre- _
sentation, which may be derived, introducing the resolution p() =1, (163
of unity at each infinitesimal time step and employing the
Porm_al ordering. As a result, one finds for the generating d_q:_ H — (16
unction dt p
p=1

. dpdo g The last equation constitutes the mean-field approximation
TR K S Py Akl 2
G(p,t)“L|anf kE[O 20 e =, (10) for the reaction coordinate,=n=(n). The classical action,
. . . Eqg. (15), is obviously nullified by the mean-field solution:
where the discrete representation for the actbp,q] is  gp,q]=0. This enforces the normalization, E() (it is

given by straightforward to show that the fluctuation determinant
M around the mean-field trajectory is unityn fact, any legiti-
_ mate Hamiltonian must satisfy the conditiéi(1,9)=0 to
S= = k1) + H(P, Q1) St . Lo ) X
gl[pk(QK Ght) *+ H(Pro 1) ] insure normalization. As a result, the mean-field solutjon,
_ B _ =1, is bound to have zero enerdy=0.
+ Potdo = Pw ~ Mo(Po~ 1) (1) However, the assumption thpt1 is not always a legiti-

andst=t/(M+1). The last term in this expression is specific mate one. The probability of any event other than the mean-
to Poisson’s initial conditions. If the initial number of par- field prediction is automatically described pyt)=p differ-
ticles is fixed to beny, and thereforeG(p,0)=p", then the  ent from unity. Rare events definitely belong to this category.
last term is changed to, In py. The same path integral may For such cases, the mean-field ansatz,(&6), is not appli-
be derived, of course, using Doi's operator algebra and cocable and one must go back to the full dynamical system,
herent states. We summarize this derivation in Appendix AEQs.(12) (provided the semiclassical approximation is justi-
The convergency of the path integral may be achieved by §ed). For example, let us imagine doing the contour integral,
proper rotation in the complep, and g, planes. Eq. (3), by the stationary point method. Approximating,
In what follows, we are interested in the semiclassicalG(p,t)=exg-S(p,t)}, with the classical actiorf, one finds
treatment of this path integral. Varying the action with re-the saddle-point conditiom=-pdS/dp=p(t)q(t), since on
spect top, andg, for k=0,1, ... M, one obtains the classical the classical trajectoryS/dp=—q(t). Therefore, if one is in-
equations of motior§in continuous notations terested im, which is different from the mean-field predic-
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FIG. 1. The phase portrait of the binary annihilation process. Ratio of the particles number n and average <n>

Thick lines represent the solution B p,q) =0; the fat dot is a fixed
point. Thinner lines represent dynamical trajectories with nonzero FIG. 2. The logarithm of the PDP,(t) as a function of/n(t)
energy. Linep=1 gives the mean-field dynamics. at a fixed timet. The semiclassical result, E(L.8), is a dashed line;
the exact solution produced by the numerical simulation of the Mas-
tion q(t), one must considep(t)=p to be different from ter equation(1) is a dashed-dotted line; the numerical solution of
unity. the FP equationP=\{[(n®-n)P]"+(n?P)'}, is a full line.
In the case of the binary annihilation, the mean-field pre-
diction is a solution of the equatiosq=-¢? henceq(t)  the same plot for comparison. The two exponents coincide
=n(t)=ny/(L+noAt) = (A\t)™* for 1<(At)"'<n,. We are for small deviations from the mean-field resiit/n-1|<1.
looking for a probability to finch=n(t)=(\t)~! particles at  For larger deviationgrare events n/n~O(1), the Fokker-
time t> (Any) L. The phase portrait of the dynamical system,Planck results are significantly off the correct ones. Finally,
Egs.(12), is plotted in Fig. 1. Dynamical trajectories for a the normalization factaV=1/3/(4mn) is simply determined
given energy,E, are given byq=42Ex"Y/(p?-1). Since by the immediate vicinity of the maximum of the distribu-
q(0)=ny>1, one findsp(0)=1+2E/(Anj)~1. Substituting tion, [n-n[<n.
this trajectory into Eqg.(12b), and integrating it between
P(0)=1 and p(t)=p, one findsE=-arccos p/(2\t%). The IIl. BRANCHING AND ANNIHILATION
corresponding classical action, Ed5), is given by
1 Let us consider now a more interesting example of binary
S(p,t) = Eﬁ(t)arcco§p. (17)  annihilation with branching. The model consists of the two

A o
. . . . , ) reactions: annihilatio+A— @ and branchingA—2A. The
This action solves the Hamilton-Jacobi equati® and is  \5ster equation is written as

nullified at the mean-field trajectory=1. As a result, the

generating function is given b(p,t) ~exp(—S(p,t)} with d N
the classical action, Eq17). —Pn(t) = Z[(n+2)(n+ 1)Pp.o(t) - n(n— 1)PL(1)]
We are now in the position to find the rare event statistics: dt 2
namely, we are looking for the probability to fimdparticles +ol(n—1)P,_1(t) —nP,(1)]. (20)

after timet, that is, P,(t), wheren is significantly different
from the mean-field predictiom=(\t)™1. To this end, one One may check that the corresponding Hamiltonian takes the

may perform integration, required by E@), in the station- form
ary point approximation to obtain the probability distribution

S N o o s
Pn(t):/\/exp{—‘(%arcco§ps+%ln ps)}, (18) H(p,g) =5 (p* - DG - o(p - 1)pG. (21)

where p.=p4(n/n) is the solution of the saddle-point equa- As exE)ected, it satisfies the normali;ation condition,
tion: ps(pg—l)‘l’zarccospszn/ﬁ In limiting cases, the ex- H(1,9)=0. The classical equations of motion are

ponent takes the form

, 4=-\pf+o(2p-1)q, (229
%ﬁ— niny., n<n;
-InP® =\ 3n-nm%n, |n-n<n; (19 p=\p?-1)q-o(p-1)p, (22b)

12— —
sni/n-nin2, n>n. . . . .
2 with the same boundary conditions as in the previous ex-

The logarithm of the PDF is plotted in Fig. 2 versugn  ample, Egs.(13). The classically conserved energy B
for a fixed n=n(t). The corresponding exponent, resulting =H(p(t),q(t)). The mean-field ansatpn(t)=1, leads to the
from the solution of the Fokker-Planck equation, is shown inmean-field equation for the reaction coordinates (n),
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q time without changing the actiaizero modg Since the dis-

tant(in time) bounces interact with each other only exponen-
tially weakly, the escape attempts are practically uncorre-
lated. As a result, the probability to find an empty system,

ns Po(t)=G(0,1), is
Pot) =1 -€7V7, (25)
where the decay time is given by
A r=o ! exp(+ ). (26)

The semiclassical calculation is valid as long®s-1 and

FIG. 3. The phase portrait of the branching annihilation processthus the decay time is much longer than the microscopic
Thick lines are lines of zero energil(p,q)=0. Fat dots are fixed time, >0 L

points.
IV. DIFFUSION
dq . We turn now to the discussion of finite-dimensional sys-
— =A@+ oq (23) i i i
dt . tems. To characterize a microscopic state, one needs to

specify the number of particles at every site of the lattice:
This equation possesses two stationary states, namely, thy., ... .Nn}, whereN~L% is the total number of sites. The
active state=o/\ =ngand the passive statg=0. Below we  probability of a given microscopic state may be written as
show that the active state i@t actually thermodynamically Py ...n (1) and the corresponding generating function is
stable(in the O system and in a finite time decays into the
passive one. G(py, .- Pat) = E PIte - PNPhy,. (D (27)

To proceed with the discussion of the rare event statistics, M- AN

we need a phase portrait of the system. It contains three linggssuming that the reaction rules are purely logai-site,

of zero energy: the mean-field ling=1, the empty system \yhjle the motion on the lattice is diffusive, one finds that the
line g=0, and the nontrivial ling=2n,p/(1+p). These lines  Hamiltonian takes the form

determine the topology of the phase diagram, Fig. 3, where R
the arrows show the positive time direction. According to the  H(py, ... P81, - .- 0n) = > [Ho(P1,8) + DV P, - V &,
mean-field equatioii23), from any initial state withny# 0, [
the system reaches the active state wiftparticles during (28)
the timet= o1, Hereafter, we assume that=c/\>1. We
shall look for a probability to fineh # ng particles after atime where Ho(p Q) is a zero-dimensional on-site Hamiltonian
t>o L given, for example, by Eqg.7) or (21); D is a diffusion

Of particular interest, of course, is the probability of go- constant andV is the lattice gradient. To shorten notations,
ing to the passive state, nameiy 0, during a large timé¢.  we pass to the continuowsdimensional variable and in-
According to the definition of the generating function, Eq.troduce the fieldp(x) andq(x). The generating function be-
(2), this probability is given byG(0,t). We are interested, comes a generating function&(p(x),t). The latter may be
therefore, in the trajectory which starts at some initial coorwritten as a functional integral over canonically conjugated
dinatego=ng (and arbitrary momentuyrand ends apy=0 fields p(x,t) andq(x,t), living in (d+1)-dimensional space,
(and arbitrary coordinajeafter timet. In a long time limit,  with the action
t— oo, such a trajectory approaches the lines of zero energy. .
The system first evolves along the mean-field trajectpry, _ d .
=1, towards the active statg=n,, and then goes along the Sp.al= JO dtJ d*[Ho(p,q) +DV p- V.a-qp].
nontrivial line, g=2n¢p/(1+p), towards the passive stafe

=g=0, cf. Fig. 3. The action is zero on the mean-field part of (29)
the evolution, while it is The initial term, e.g., the Poisson termydony(x)[1
—-p(x,0)], should also be added to the action. The corre-
S = f dp n2(1-1n2) (24)  sponding classical equations of motions are
o owzy - OHo
along the nontrivial line. q=DViq- op (309
According to the standard semiclassical description of
tunneling[33], to find an escape probability, one has to sum SHo

up the contributions of all classical trajectories with an arbi- p=-DV?p+ - (30b)
trary number of bounces froil ,n,) to (0, 0) and back. Each q

bounce brings the factarte™, where the prefactor reflects These equations are to be solved with the following bound-
the fact that the center of the bounce may take place at angry conditions:
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0)= , 31 -
d(x,0) = ne(x) (313 (X, 1) = > a ety (x), (36)
n=0

xt) =p(x), 31b . . .
P(x1) = p(X) (315 where Y,(x) are normalized eigenfunctions of the Laplace

whereny(x) is an initial space-dependent concentration and®Perator in the regiok with zero boundary conditions and
p(x) is the source field in the generating functional €igenvalues x,<0; coefficients«, depend on an initial
G(p(x),1). The mean-field approximation is obtained by put- condition. Therefore, if the smallest eigenvalyg, is larger

ting p(x,.t)=1 and is described by the reaction-diffusion Nan unity(the cluster is small enoughany initial distribu-
tion evolves towards the empty system. The characteristic

equation, lifetime of the system is thus
_ 6Ho(p.Q) = N-D7H N> 1. 37
G = DV2q- o(p, @) , (32) =0 "(\o—1) 0 (37)
p p=p=1 If A\g<<1 (the cluster is larger than some critical izthe
. ) . mean-field evolution, Eq35), leads to a stable nonvanishing
that is the subject of numerous studies. concentrationg,(r), which is given by the solution of the

Equations (30) admit the integral of motion:E  equationVZp,+¢,—¢2=0 with zero boundary conditions. It
=Jd%Ho(p,q)+DVpVq]. In some casegsee below; an s clear, however, that such a solution is actually a metastable
additional infinite sequence of integrals of motion may bestate of the system. Namely, after a long enough time, the
found, making the classical problem, E¢80), analytically  system will find itself in the emptypassive state. Our task
solvable. In a general case, these equations must be solvegto find the system’s lifetimer, for the metastable case,

numerically. We notice, however, that such a numerical proby ;< 1. According to our previous discussions, the lifetime is
lem is orders of magnitude simpler than the numerical soluexpected to be exponentially long,

tion of the Master and even the FP equations, or direct mod- _ s
eling of the stochastic system. Below, we discuss a fast, T=0 el <1, (38)

efficient algorithm for the numerical solution of Eq®80)  \yhere S, is the action along the semiclassical trajectory,
with the boundary conditions Eqe31). Moreover, a lot of \yhich solves Eqs(34a and (34b) with the initial condition
insight may be gained by investigating the phase portrait of,(x 0)=¢,(x) and the final conditio(x,t,)=1. The extinc-
the zero-dimensional Hamiltoniakly(p,q), which allows to o time, t,, is to be sent to infinity. IndeedS,/dt.=E(t,)
make some semiquantitative predictions without a numericak 0, and thus the longer the extinction time, the smaller the

solution. _ action. In practice, however, the action almost saturates at
To illustrate how the method works, we consider theq,oqest values of,.

branching annihilation problem of Sec. [lH, is given by In general, the problem cannot be solved analytically and
Eq. (21)] on a compact-dimensional cluster—the refuge” one needs to resort to numerical approaches. The following
[34]—denoted ask. Outside of the refuge, there is a Very jiaration scheme rapidly converges to the desired solution:
hlgh morjahty rate A— @, which is eve_htua”y taken to in-  5ne first fixes the momenta to kke(x,t)=1 at any time and
finity. This dictates the boundary condition solves Eq(34 with the initial conditione(x,0)=¢o(X) by
forward iteration fromt=0 to t=t.. The result of this proce-
dure, ¢1(x,1), is kept fixed during the next step, which is the
solution of Eq.(34b) with the conditiong(x,t)=1 by the
backward iteration front=t, to t=0. This way, one finds
@,(x,t), which is kept fixed while the next approximation
©o(x,t) is obtained by the forward iteration of E¢34a.
Repeating successively forward and backward iterations, the
0algorithm rapidly converges to the required solution. The ac-
tion §4=S,(to) is then calculated according to E@9). Fi-
nally, one has to check th&;(t,) does not decrease signifi-

q(drR,1) =0, (33

wheredR is the boundary of the clust&. It is convenient
to pass to the dimensionless tinmd—t and coordinates
xl é—X, where ¢é= VD/o. We also introduce the rescaled
fields q(x,t)=nse(x,t) (where ns=c/\) and p(x,t)=1
-o(x,1). In these notations, the semiclassical equations, E
(30), take the symmetric form

e =V + o= ¢+ b¢® - 200, (348 cantly upon increasing.
The action,S,, for a one-dimensional cluster of siz& %
— 0=V + b - P+ 0P - 205. (34h) plotted in Fig. 4 as a function dR. The critical radiusR.

=r/2 (in units of §) is found from the conditior\y=1. For
Consider first the mean-fieltb=0) evolution, described R<R,, there is no metastable state and tBys0, while the
by the equation cluster lifetime is given by Eq.37). For R>R,, the lifetime
is given by Eq(38), with the numerically calculate§ plot-
e =V2p+ - ¢? (35)  ted in Fig. 4. The asymptotic behavior of the actipfor
R>R. (\g<1) and R-R,<R; (1-\y<<1) may be readily
and subject to the boundary conditigiidR ,t)=0. For the  found analytically.
small concentrationgy <1, the last term may be omitted and  ForR> R, (\g<<1), the concentration throughout the bulk
the solution takes the form of the cluster is practically uniform, apart from a surface
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FIG. 5. Trajectories on thép, ¢) plane are shown for the center
FIG. 4. The semiclassical actiqin units of £9n) for the ex-  point of the 1D clusterx=0. The horizontal axis i$ variable and
tinction of a one-dimensional cluster is shown as a function of thethe vertical axis isp. Different curves are distinguished by their

cluster’s radiusR (in units of &), full line; the large radius approxi- escape time, marked in dimensionless units €7Y,(0)=0.3.
mation, Eq.(39), is shown by the dashed line; the near-critical,

7I2=<R, approximation, Eq(45), is shown by the dashed-dotted
line.

P(x,1) = 2 Ba(H)Yn(), (42b)
n=0
layer of thicknesst. One may therefore apply the results of

the zero-dimensional problem, E@4), to find wherea,(t) and B,(t) are assumed to be small. One can now

_ _ diyy substitute these deviations into the dynamical equatidds
S=21 -2V -cS), (39) and linearize them with respect @, 8. It is easy to see
where)V and S are the cluster’'s dimensionless volume andth(ten. thgt _'Phthe Iealdmg orde(;.motnly a and S should be
surface area correspondingly aods a numerical constant, retained. fhey evolve according to
which we shall not evaluate here. For the 1D case, the cor-

responding line is plotted in Fig. 4 by the dashed line. d(ag -1 -2\(a

We turn finally to the clusters that are only slightly larger dt Bo "o 1 Bo +0(€?) (43)
than the critical sizee=1-\y<1 [e.g., for a spherical clus-
ter with the radiusR one findse=1-(R./R)?, whereR; is a The matrix on the right-hand side has two eigenvectors,

critical radius, found from\y=1]. In this case, only the ze- (1,0) and(1,-1), with the eigenvalues -1 and 1 correspond-
roth eigenfunctionYy(x) is the unstable direction of the lin- ingly. The first eigenvector describes deviation in the mean-
earized mean-field equation. The full nonlinear mean-fieldield direction,¢=0, and leads to the restoring force back to
equation(35) possesses, therefore, the stable solutighx),  the metastable state. The second one gives the most unstable
that is expected to be of order One may thus look for this direction, which describes the way the system escapes to-

solution in the following form: wards the empty state. The corresponding trajectory on the
(¢,¢) plane is plotted in Fig. 5 for the center point of the 1D
@o(r) = € pYo(X) + €@1(X)], (40)  cluster,x=0. Different lines correspond to a few valuestof

For t.— «, the energyE, approaches zero and the trajectory
where ¢;(x) is orthogonal toYy(x). One can now substitute approaches thél,-1) direction that leads from the meta-
this trial solution in Eq(35), keeping only the leadingsec-  stable point (0,enY,) to a symmetric metastable point
ond) order of e terms, and project oY, using its orthogo-  (e7Y,,0). [The existence of the latter follows directly from

nality to ¢;. As a result, the coefficieny is found to be the symmetry of Eqs(34).] For e<1, the small deviation
analysis describes the entire transition between the two meta-
77_1:J ddrYg(r). (41) Is_table points that takes place, therefore, along the straight
® ine,
The metastable solution of E(B4) in the leading order ire @(X,1) = enYy(X) = B(X,1), (44)
is thereforepy(x) = enYy(x) andg(x)=0. To find the optimal
escape trajectory, let us parametrize deviations from this - .
metastable state as on the(g, ¢) plane. Further evolution takes place along the
¢=0 direction. As a result, in the limi— o, and therefore
o E— 0, the semiclassical escape action is given by the area of
(X,) = enYo(X) + X an(t)Ya(X), (429  the straight triangle, with the heiglat;Y,(x), integrated over
n=0 the cluster, cf. Eq(29),
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Sd:_f ddXJqdp: nsgdf ddXJ ¢d§0:1(ﬂ6)2ns§d-
R R 2
(45)

For the 1D clustefe=1-(7/2R)?> and 7°=97°/128], Eq.
(45) is shown in Fig. 4 by a dashed-dotted li€or a cir-
cular cluster in 2DR.=2.4 andz7?=9.4, while for a spherical
3D cluster,R,=7 and 7°=51.7) One may observe that the
large and small cluster asymptotic results, E§8) and(45)
correspondingly, provide a reasonable approximation for the
exact numerical calculation of the semiclassical actigp, FIG. 6. The phase portrait of the runaway process, @6).

Finally, the Pmbab"'ty of the system st_aymg |n. thg meta'Thick lines represent the solution &f(p,q)=0. The fat dots are
stable state i®(t)=exp(-t/ 7}, where the lifetimer is given g o4 points.52=1/2.

by Eq.(38).

concentrations:n:=n41+ §), where ng=c¢/\. The point
V. RUNAWAY SYSTEMS g=n_ is the stable one, whilg=n, is unstable. In this case
In this section, we consider a qualitatively different sys-(the only one we discuss hereajtethe mean field predicts
tem that exhibits a runaway behavior, characterized by unthat for the range of initial concentrations<i,<n, the
limited proliferation of the number of particles. The simplest SyStem evolves towards the stable populationif the initial
example is given by the population dynamics model, consist€oncentration exceeds,, the system runs away and the

ing of three reactions: binary reproduction, death, and emiPoPulation diverges. _
gration, characterized by probabilities o, and u corre- If one goes beyond the mean-field treatment, however,
spondingly. The schematic way to write it is O"€ realizes that the state is actually ametastableone. To

\ o “ see this fact, and calculate the lifetime of the metastable
A+A—3A, A—0, and@—A. The Master equation for the state, it is convenient to draw the phase portrait, Fig. 6. It has
zero-dimensional system has the form two lines of zerg gnergy: the mean-field lines1, and the
nontrivial line \p=g“/2-oq+u=0. These two lines intersect
P, _ A (n-Dn-2) P, - nn-1) at the mean-field stable points=1,q=n- and determine the
dt 2 " 2 " topology of the phase diagram. It is clear from the phase
— - portrait that the poinp=1,q=n_ is not stable once motion
+ol+ Dy =P+ 4lPry =Pl (46) with p# 1 (non-mean-fielglis allowed. More precisely, there
The corresponding zero-dimensional Hamiltonian is is a non-mean-field path that brings the system from the
A N point g=n_ to the pointg=n,. Once the pointq=n, is
Ho(P,0) = =(p? - PI&P+ o(Pp— 1+ w(1-Pp) (47 reached, the system may continue to evolve according to the
2 mean field towards indefinite population growth. Repeating
the calculations, similar in spirit to the calculations of the
decay time in Sec. lll, one finds for the lifetime of the meta-
a=-Mp-3p) - 0q+pu, (48a  stable stateg=n_,

p=Np?-pdg+o(p-1). (48b) 7= o texpl+ S}, (51)

As always, the mean-field equation of motion for the reacwhere$, is the classical action along the nontrivial line of
tion coordinateq~(n) is obtained by the ansafz=1 and  zero energy between point¢,n_) and(1,n,). Calculating
takes the form the integral, one finds$=f(n,)-f(n.), where f(x)=x
—\8u/\ arctarixV\/2u).

Two limiting cases are of particular interegf the “near-
critical” system, 6< 8°< 1 and(ii) the system with almost no
According to the mean-field equation, there are two qua”tajmmigrgtion, ’“._>0+’5_).1_' In the former case, the two
tively different scenarios of the systerﬁ’s evolution. They aremean-fleld stationary points approach cea ch other, making t.h c
distinguished by the parameter ' escape from the metastable state relatively easy. Expanding

the f function up to the third order, one findg=2n.%/3
2\ <ng As expected, the action is small and correspondingly
&= 1—?- (50)  the lifetime is short(notice that the quasiclassical picture
applies as long a§>1). In the latter case, the two mean-
If $°<0, the right-hand side of Eq49) is strictly positive field stationary points tend to_—0 andn,— 2n, If the
and the reaction coordinate always grows to infinity. This isimmigration is absentu=0, the mean-field stable point,
the scenario, where the population proliferates indefinitelyn_=0, coincides with the empty state of the system. The

Alternatively, for >0 the system possesses two stationaryempty state is absolutely stable since no fluctuations are pos-

and the classical equations of motions are

dg_N_
gt o4 ToAt (49)
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sible. Naively, one may expect that in this limit the lifetime , N .

of the metastable statand thusS,) diverges. This isiot the dp=Vp- 2o e (553
case, however. The calculation sho®s— 2n,. As a result, ?
even a negligibly small probability of immigratiop, leads v
to a finite probability of unlimited population expansion. ap=-Vp+ . (55b)
(Strictly speaking, one also needs to show that the preexpo- dp

nential factor does not go to zero onge-0.) The energy density, corresponding to these two equations, is

We consider now a finite-dimensional generalization Ofdefined aE(x, 1) =—p(V2o— N/ do+ ). The global energy,

this po.pulat|on dynam'lcs model. Thg physl'cs of the phenom'E:fd“xE(x,t), is, of course, conserved. However, in the
ena, discussed here, is as follows: if a critically large cluster

“tunnels” into the runaway state, both diffusion and reactionf.res_egz Cgieo |f|£(>(;,0); (:h It keeps :oldl_?goca_llyh at ? nyth
dynamics work to expand the cluster and flip the entire sys;'me' X,1)=1. Indeed, Ine energy density vanishes 1t either

=0 or p=-V2p+iV/dp=2p-dp, and thusp=d,p, Where

tem into the runaway mode. The situation is similar to nucle- h loved E@55a. It i heck that in both
ation of a critical domain in the supercooled state of a syster?{"e ave employed E¢553. Itis easy to check that in bot

close to a first-order phase transition. To simplify the algebraC3S€S EAS5D is satisfied automatically. Therefore, the evo-

we shall consider only the case of the “near-critical” system,u'{Ion with zero-energy density is described by eitfgp

w2 o " :
0< &<1, where the apparatus turns out to be rather similar V¢~ 9¥/d¢. which is the mean-field equation, or @y

to that of the theory of the first-order phase transitions. =-V2p+V/ e, which gives the motion along the nontrivial
As discussed above, the finite-dimensional generalizatioHne of.zero energy. . .

of the Hamiltonian isH[p,q]=/dHy(p,q)+DVpVq]. Notice that_ the last equation happens to be the time-

For §<1, it is convenient to make a change of variablesreverseoI Version of the mean fiefd6). If one starts, j[hus,

(p,9)— (&,¢), as p=1+p and q=ny(1+¢), where ¢~ 5, from the stationary solut!orp=—5 and perturbs it infinitesi-

while &~ &. Substituting it into thse reaction part of the mally, then the perturbation grows until it reaches the stable

Hamiltonian, Eq.(47), and keeping terms up t&*, one ob- configuration, satisfying

tains Ho(®,0)=ond p(°—¢?)/12-¢%]. As a result, the , N
d-dimensional action, Eq(29), for the conjugated fields v ‘P_£:0- (56)
o(x,t) and ¢(x,t) takes the form
The critical domain is given, therefore, by a localized solu-
t . -\ . tion of Eq. (56). Since the energy along the nucleation dy-
—ned d 2 ¢ 2 S X i, -
S=ns . dt | d°%| ¢| ¢ =V + 2 BAE namics is zero, the action to nucleate the critical domain is

given by S=n9fd% [ dtpdo=nt [ dx [ dt(-V2p
(52)  +4V/de)de. Performing the time integration in this expres-

. ) ) ) sion, one finds for the action
where we have introduced the dimensionless tirhes t and

coordinatex/ £ —x, whereé=+D/¢. The functional integra- Y ! )

tion over the fieldp should be understood as running along Si=ng” | dx E(V¢d) +Vlgg) =V(=9) ], (57

the imaginary axis. The field theory with the action, Esp),

may be considered as a Martin-Sigia-R¢886] representa- Where ¢4=¢4(x) is a stationary localized solution of Eq.

tion of the following Langevin equation: (56), which is an extremum of the functionéd7). As a re-
sult, the problem of the dynamical escape from the meta-

Ip o N stable configuration is reduced to the static Landau theory of
e V- 90 i, (53) the first-order transitions. As far as we know, such reduction
is not a general statement, but rather is a consequence of the
where{(x,1) is a Gaussian noise with the correlator assumptions<1 and the resultindocal energy conserva-
tion, E(x,t)=0. In a general situation, one still has to solve a
2 considerably more complicated problem of dynamic equa-

XX 1)) = o gdé(x— x)o(t-t') (54 tions (48) for ¢(x,t) and &(x,1).
° From the scaling analysis of E@56), one finds thatp

and the potential i¥(¢p)=—¢%/6+8%¢@/2. This potential has ~ J in the core of the critical domain. Employing this fact,
a metastable minimum at=—4 and an unstable maximum at ©ne finds that the characteristic spatial scale of the domain is

¢=24. The barrier height i¥/(8) - V(-8)=28%/3 and therefore  given by §2>1 (distance is measured in units &f

the lifetime of the zero-dimensiongh=0) system is ex- =D/ o). Therefore, the action cost to create the critical do-
pected to be given by the activation exponpmith (n& 9=t  mainis

X 3 :
playing the role of temperature~exp{ns26°/3}, in agree- Sy = cyngg 963792, (59)

ment with Eq.(51).
To discuss the lifetime of the finite-dimensional system,where ¢4 is a numerical factor of the order of Ic,
we shall not use the Langevin approach, but rather return ts2/3,c,=24/5. This result suggests that for 6, the state
the action, Eq(52), and write down the classical equations with finite population densitp=n41-4) is stable, while for
of motion, d<6 the state is metastable. The concentration of critical
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domains is given by %exp{-S;} and the typical distance even before any calculations. On one hand, the Hamiltonians
between them ig exp(S,/d}. They grow diffusively until the  underlying the Master equations of reaction systems are typi-
entire system is flipped over to the runaway state in time cally notof the type traditionally considered in the theory of

~ ot exp(2Sy/d}. The semiclassical calculation is applicable dynamical systems. For example, they usuaiiynotbe cast

as long asS,>1 and therefores is not too small. For very iNto the familiar formH(p,q)=p*/2+A(q)p+V(q). On the
small 5, the escape is driven by the fluctuations rather thaiPther hand, they possess some universal features, such as
the semiclassical dynamics. H(1,9)=0, or, if there is an empty absor_b_mg statté(p, 0)

=0, etc. These features dictate a specific topology of the
phase portrait. It would be extremely interesting to explore
VI. CONCLUSIONS this class of Hamiltonians from the point of view of the

Rare events play an important role in a variety of systemghathematical theory of dynamical systef@]. A question
in nature; the immediate practical application may be a sto®f particular interest is a possible, exact integrability of the

chastic evolution in virology45]. The process of evolution res_:_JrI1ting Hamiltoniagl eql;atior(sstp;leﬁially indt= %j)d[%]' dinth
is a consequence of the interplay of mutation and selection Ere aré a number ol ISSUes that are not addressed in the

on a population of organisms, leading to an observabl resent paper and require further investigation. Let us men-

change in its genetic makeup. Because of their simple ge->n S0Me of them(i) Throughout the paper we have dis-
9 9 P- P'€ 9€ussed rare event probability with exponential accuracy. In

nomes, viruses mak:e 909,d models for studying and teStingome cases, this is not enough and one would like to know
evolutionary theory. “Rare” events are thought to be respong, . hreexponential factor rather precisely. This requires a cal-
sible for processes such as creating new populations witfation of the fluctuation determinant on top of the non-
properties altered dramatically, such as evasion of the iMgijyia| classical trajectory. This task is relatively straightfor-
mune response or resistance to antiviral therapy. ward for thed=0 systems, where it may be addressed by
The examples, considered above, are meant to illustratgriting down “quantum” corrections to the Hamilton-Jacobi
the general technique to calculate the probability of rareequation and treating them iterativeliyn the way it is usu-
events in reaction-diffusion systems. The technique is baseslly done in the single-particle WKB methpd-or extended
on the existence of the many-body “quantum” Hamiltonian,systems, the task is reduced to the spectral problem of a
which fully encodes the microscopic Master equation. Thecertain matrix differential operator. At present, we are not
very same Hamiltonian, in its second quantized representaware of a general recipe to solve it. One may show, how-
tion, serves as a starting point for field-theoretical treatmentsver, that on any mean-field trajectopyx,t)=1, the fluctua-
of dynamic phase transitions in the reaction-diffusion systention determinant is equal to unity. The simplest way of doing
[11-19. For our present purposes, we have deliberately choit is to use the discrete representation of the functional inte-
sen to work with systems that are away from a possible congral, Eq.(10), and notice that the quadratic fluctuation matrix
tinuous phase-transition point. Namely, we focus on the part§as a triangular structure with unities on the main diagonal
of the phase diagram where the mean-field consideratiori@nd, hence, unit determinantnfortunately, this is not the
suggest a nonvanishing population of particies at least Case away from the mean field: 1. _ _
transiently nonvanishing populatipnin such cases, the (i) We have restricted ourselves to systems with a single
“quantum” fluctuations are small and one may treat the unSOrt Of species only. It is straightforward to generalize the
derlying “quantum” dynamics in a semiclassical way. technique to any number of speci&s, The difficulty is that

We stress that the semiclassical treatmemdsequiva- the phase portrait becomes &-Bimensional construction,

lent to that of the mean field. The latter requires a very spe\-NhICh I not easy to visualize. Correspondingly, the mean-

. . . ; field line becomes &-dimensional hyperplane. Moreover,
cial assumption abo_ut dynamlc_s of the CafFO”!C_a' momentay, e gualitatively new physics may arise, such as stable
namely,p(x,t) =1. This assumption may be justified, as long oscillatory limiting cycles on the mean-field hyperplane. A

as one is interested in a typical system’s behatwen this oo ragigm of such behavior is a Lotka-Voltef@9] system:
is not guaranteed if the system possesses metastable states, as

in our last example In such cases, the problem is reduced top BLZA; Ai@ and BiZB. An example of a rare event

a partial differential equation for the reaction coordinates,may be an “escape” from the periodic limiting cycle on the

a(x,t), only. However, if questions about atypical, rare o.g mean-field plane into the empty state in a finite-size

events are asked, the mean-field assumppén,t)=1, must  system. Finding an optimal “reaction path” for such an es-

be abandoned. As a result, one has to deal with the canonicghpe is not an obvious matter, however.

pair of Hamilton equations for reaction coordinatgéx, t), (iii ) We have not treated long-range interactions @ochl

and momentap(x,t). The degree of deviation from the or nonloca) constraints. The simplegtfermionic”) con-

mean-field linep=1, is specifiedthrough proper initial and  straint is that of a maximum single occupancy of each lattice

finite boundary conditionsby the concrete sort of the rare site. It was shown recently that such a constraint may be

event of interest. Finally, the probability of the rare event isincorporated into the “bosonic” formulatig@Q], leading to

proportional to the exponentiated action along the classicah new class of the interesting Hamiltonians. Studying rare

trajectory, satisfying specified boundary conditions. event statistics for such hard-core partigleg studying clas-
We found it especially useful to work with the phase por-sical dynamics of the corresponding Hamiltonipissa very

trait of the corresponding dynamical system on fipeq) interesting subject.

plane. The emerging structures are fairly intuitive and can (iv) There is a close resemblance between the formalism

tell a great deal about the qualitative behavior of the systerpresented here for essentially classical systems and the

041106-10



RARE EVENT STATISTICS IN REACTION-DIFFUSION.. PHYSICAL REVIEW E 70, 041106(2004)

Keldysh technique for nonequilibrium quantum statisticsinto a single “imaginary time” Schrédinger equation

[41]. The semiclassical solutions with# 1, considered here, g

correspond to saddle-point configurations of the Keldysh ac- a _ 0

tion with a different behavior on the forward and backward dt|\P(t)> =~ H[¥(©), (A5)
branches of the time contour. Although examples of such A

saddle points were considered in the literat{4@,43, it  whereH is the “Hamiltonian” operator. One may check that
would be interesting to learn more about possible applicathe Hamiltonian of the binary annihilation process, E,
tions of the present technique for true quantum problems. has the form
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APPENDIX A: OPERATOR TECHNIQUE One may formally solve the Schrddinger equation:

We give here a brief account of the operator techniquélp(t»:ex"’{_H(aT'a)t}w(o»'TAn initial state, |W(0)), is
[27-29,44 for completeness. Define the ket-vechoras the  specified as, e.g|¥(0))=e @ V|0) for the Poisson initial
microscopic state witt particles. Let us also define the distribution, or|¥(0))=(a")"|0) for the fixed particle num-
vector ber. The generating function E) is given by

(W) =X Py(t)In). (A1) G(p.) = (0l (0)). (A7)
=0 The normalizationG(1,t=0)=1, is guaranteed by the iden-

Notice that the weightP,, is the probability rather than the tity (0|e?ny=1 for anyn [this fact may be checked using Eq.
amplitude. It is convenient to introduce the creation and an¢A4)] and the constraink,P,(0)=1. The normalization is

nihilation operators with the following properties: kept intact at any time if0|eaI:|(aT,a)=O. Since the coherent

alln)y=|n+ 1y, (A2a) state(0|e? is an eigenstate of the creation operatéfg®a’
=(0|e?, one arrives at the conclusion that any legitimate
alny=nln-1). (A2b) Hamiltonian must obey
As a byproduct, one haa|0>:9. One_ ”may immediately I:|(aT=1,a)=0. (A8)
check that such operators are “bosonic”:
[aal]=1. (A3) For in_:stance, thg Hamilt_onian o_f_the binary annihilation, Eq.
(A6), indeed satisfies this condition.
As for any pair of operators satisfying E¢A3), one may One may now employ the standard bosonic coherent state
prove the identity technique to write the generating function, E47), as the

a = 4 1)ed functional integral. The result coincides identically with Eq.
e'f(aa)=flaa +1)e, (A4) (10) of the main text. One notices, thus, the formal corre-
wheref is an arbitrary operator-value function. In these no-spondence between the operatatsanda, and operator$
tations, the whole set of the Master equations may be recasndq correspondingly.
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