PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT \#2 SOLUTIONS

(1) Consider a monatomic ideal gas in the presence of a temperature gradient $\boldsymbol{\nabla} T$. Answer the following questions within the framework of the relaxation time approximation to the Boltzmann equation.
(a) Compute the particle current \boldsymbol{j} and show that it vanishes.
(b) Compute the 'energy squared' current,

$$
\boldsymbol{j}_{\varepsilon^{2}}=\int d^{3} p \varepsilon^{2} \boldsymbol{v} f(\boldsymbol{r}, \boldsymbol{p}, t)
$$

(c) Suppose the gas is diatomic, so $c_{p}=\frac{7}{2} k_{\mathrm{B}}$. Show explicitly that the particle current j is zero. Hint: To do this, you will have to understand the derivation of eqn. 5.93 in the Lecture Notes and how this changes when the gas is diatomic. You may assume $\mathcal{Q}_{\alpha \beta}=\boldsymbol{F}=0$.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is $f=f^{0}+\delta f$, where f^{0} is the equilibrium distribution and

$$
\delta f=-\frac{\tau f^{0}}{k_{\mathrm{B}} T} \cdot \frac{\varepsilon-c_{p} T}{T} v \cdot \nabla T
$$

For the monatomic ideal gas, $c_{p}=\frac{5}{2} k_{\mathrm{B}}$. The particle current is

$$
\begin{aligned}
j^{\alpha} & =\int d^{3} p v^{\alpha} \delta f \\
& =-\frac{\tau}{k_{\mathrm{B}} T^{2}} \int d^{3} p f^{0}(\boldsymbol{p}) v^{\alpha} v^{\beta}\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right) \frac{\partial T}{\partial x^{\beta}} \\
& =-\frac{2 n \tau}{3 m k_{\mathrm{B}} T^{2}} \frac{\partial T}{\partial x^{\alpha}}\left\langle\varepsilon\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle,
\end{aligned}
$$

where the average over momentum/velocity is converted into an average over the energy distribution,

$$
\tilde{P}(\varepsilon)=4 \pi v^{2} \frac{d v}{d \varepsilon} P_{\mathrm{M}}(v)=\frac{2}{\sqrt{\pi}}\left(k_{\mathrm{B}} T\right)^{-3 / 2} \varepsilon^{1 / 2} \phi(\varepsilon) e^{-\varepsilon / k_{\mathrm{B}} T} .
$$

As discussed in the Lecture Notes, the average of a homogeneous function of ε under this distribution is given by

$$
\left\langle\varepsilon^{\alpha}\right\rangle=\frac{2}{\sqrt{\pi}} \Gamma\left(\alpha+\frac{3}{2}\right)\left(k_{\mathrm{B}} T\right)^{\alpha} .
$$

Thus,

$$
\left\langle\varepsilon\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle=\frac{2}{\sqrt{\pi}}\left(k_{\mathrm{B}} T\right)^{2}\left\{\Gamma\left(\frac{7}{2}\right)-\frac{5}{2} \Gamma\left(\frac{5}{2}\right)\right\}=0 .
$$

(b) Now we must compute

$$
\begin{aligned}
j_{\varepsilon^{2}}^{\alpha} & =\int d^{3} p v^{\alpha} \varepsilon^{2} \delta f \\
& =-\frac{2 n \tau}{3 m k_{\mathrm{B}} T^{2}} \frac{\partial T}{\partial x^{\alpha}}\left\langle\varepsilon^{3}\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle .
\end{aligned}
$$

We then have

$$
\left\langle\varepsilon^{3}\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle=\frac{2}{\sqrt{\pi}}\left(k_{\mathrm{B}} T\right)^{4}\left\{\Gamma\left(\frac{11}{2}\right)-\frac{5}{2} \Gamma\left(\frac{9}{2}\right)\right\}=\frac{105}{2}\left(k_{\mathrm{B}} T\right)^{4}
$$

and so

$$
\boldsymbol{j}_{\varepsilon^{2}}=-\frac{35 n \tau k_{\mathrm{B}}}{m}\left(k_{\mathrm{B}} T\right)^{2} \nabla T \text {. }
$$

(c) For diatomic gases in the presence of a temperature gradient, the solution to the linearized Boltzmann equation in the relaxation time approximation is

$$
\delta f=-\frac{\tau f^{0}}{k_{\mathrm{B}} T} \cdot \frac{\varepsilon(\Gamma)-c_{p} T}{T} \boldsymbol{v} \cdot \nabla T
$$

where

$$
\varepsilon(\Gamma)=\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}=\frac{1}{2} m \boldsymbol{v}^{2}+\frac{\mathrm{L}_{1}^{2}+\mathrm{L}_{2}^{2}}{2 I},
$$

where $\mathrm{L}_{1,2}$ are components of the angular momentum about the instantaneous body-fixed axes, with $I \equiv I_{1}=I_{2} \gg I_{3}$. We assume the rotations about axes 1 and 2 are effectively classical, so equipartition gives $\left\langle\varepsilon_{\mathrm{rot}}\right\rangle=2 \times \frac{1}{2} k_{\mathrm{B}}=k_{\mathrm{B}}$. We still have $\left\langle\varepsilon_{\mathrm{tr}}\right\rangle=\frac{3}{2} k_{\mathrm{B}}$. Now in the derivation of the factor $\varepsilon\left(\varepsilon-c_{p} T\right)$ above, the first factor of ε came from the $v^{\alpha} v^{\beta}$ term, so this is translational kinetic energy. Therefore, with $c_{p}=\frac{7}{2} k_{\mathrm{B}}$ now, we must compute

$$
\left\langle\varepsilon_{\mathrm{tr}}\left(\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}-\frac{7}{2} k_{\mathrm{B}} T\right)\right\rangle=\left\langle\varepsilon_{\mathrm{tr}}\left(\varepsilon_{\mathrm{tr}}-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle=0
$$

So again the particle current vanishes.
Note added :
It is interesting to note that there is no particle current flowing in response to a temperature gradient when τ is energy-independent. This is a consequence of the fact that the pressure gradient ∇p vanishes. Newton's Second Law for the fluid says that $n m \dot{\boldsymbol{V}}+\nabla p=0$, to lowest relevant order. With $\nabla p \neq 0$, the fluid will accelerate. In a pipe, for example, eventually a steady state is reached where the flow is determined by the fluid viscosity, which is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the local equilibrium distribution is

$$
f^{0}(\boldsymbol{r}, \boldsymbol{p})=\frac{p / k_{\mathrm{B}} T}{\left(2 \pi m k_{\mathrm{B}} T\right)^{3 / 2}} e^{-p^{2} / 2 m k_{\mathrm{B}} T}
$$

where $T=T(\boldsymbol{r})$. We then have

$$
f(\boldsymbol{r}, \boldsymbol{p})=f^{0}(\boldsymbol{r}-\boldsymbol{v} \tau, \boldsymbol{p})
$$

which says that no new collisions happen for a time τ after a given particle thermalizes. I.e. we evolve the streaming terms for a time τ. Expanding, we have

$$
\begin{aligned}
f & =f^{0}-\frac{\tau \boldsymbol{p}}{m} \cdot \frac{\partial f^{0}}{\partial \boldsymbol{r}}+\ldots \\
& =\left\{1-\frac{\tau}{2 k_{\mathrm{B}} T^{2}}\left(\varepsilon(\boldsymbol{p})-\frac{5}{2} k_{\mathrm{B}} T\right) \frac{\boldsymbol{p}}{m} \cdot \nabla T+\ldots\right\} f^{0}(\boldsymbol{r}, \boldsymbol{p})
\end{aligned}
$$

which leads to $\boldsymbol{j}=0$, assuming the relaxation time τ is energy-independent.
When the flow takes place in a restricted geometry, a dimensionless figure of merit known as the Knudsen number, $\mathrm{Kn}=\ell / L$, where ℓ is the mean free path and L is the characteristic linear dimension associated with the geometry. For $\mathrm{Kn} \ll 1$, our Boltzmann transport calculations of quantities like κ, η, and ζ hold, and we may apply the Navier-Stokes equations ${ }^{1}$. In the opposite limit $\mathrm{Kn} \gg 1$, the boundary conditions on the distribution are crucial. Consider, for example, the case $\ell=\infty$. Suppose we have ideal gas flow in a cylinder whose symmetry axis is $\hat{\boldsymbol{x}}$. Particles with $v_{x}>0$ enter from the left, and particles with $v_{x}<0$ enter from the right. Their respective velocity distributions are

$$
P_{j}(\boldsymbol{v})=n_{j}\left(\frac{m}{2 \pi k_{\mathrm{B}} T_{j}}\right)^{3 / 2} e^{-m \boldsymbol{v}^{2} / 2 k_{\mathrm{B}} T_{j}},
$$

where $j=\mathrm{L}$ or R . The average current is then

$$
\begin{aligned}
j_{x} & =\int d^{3} v\left\{n_{\mathrm{L}} v_{x} P_{\mathrm{L}}(\boldsymbol{v}) \Theta\left(v_{x}\right)+n_{\mathrm{R}} v_{x} P_{\mathrm{R}}(\boldsymbol{v}) \Theta\left(-v_{x}\right)\right\} \\
& =n_{\mathrm{L}} \sqrt{\frac{2 k_{\mathrm{B}} T_{\mathrm{L}}}{m}}-n_{\mathrm{R}} \sqrt{\frac{2 k_{\mathrm{B}} T_{\mathrm{R}}}{m}}
\end{aligned}
$$

(2) Consider a classical gas of charged particles in the presence of a magnetic field \boldsymbol{B}. The Boltzmann equation is then given by

$$
\frac{\varepsilon-h}{k_{\mathrm{B}} T^{2}} f^{0} \boldsymbol{v} \cdot \boldsymbol{\nabla} T-\frac{e}{m c} \boldsymbol{v} \times \boldsymbol{B} \cdot \frac{\partial \delta f}{\partial \boldsymbol{v}}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} .
$$

Consider the case where $T=T(x)$ and $\boldsymbol{B}=B \hat{\boldsymbol{z}}$. Making the relaxation time approximation, show that a solution to the above equation exists in the form $\delta f=\boldsymbol{v} \cdot \boldsymbol{A}(\varepsilon)$, where $\boldsymbol{A}(\varepsilon)$ is a vector-valued function of $\varepsilon(\boldsymbol{v})=\frac{1}{2} m \boldsymbol{v}^{2}$ which lies in the (x, y) plane. Find the energy current $\boldsymbol{j}_{\varepsilon}$. Interpret your result physically.

[^0]Solution: We'll use index notation and the Einstein summation convention for ease of presentation. Recall that the curl is given by $(\boldsymbol{A} \times \boldsymbol{B})_{\mu}=\epsilon_{\mu \nu \lambda} A_{\nu} B_{\lambda}$. We write $\delta f=$ $v_{\mu} A_{\mu}(\varepsilon)$, and compute

$$
\begin{aligned}
\frac{\partial \delta f}{\partial v_{\lambda}} & =A_{\lambda}+v_{\alpha} \frac{\partial A_{\alpha}}{\partial v_{\lambda}} \\
& =A_{\lambda}+m v_{\lambda} v_{\alpha} \frac{\partial A_{\alpha}}{\partial \varepsilon}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\boldsymbol{v} \times \boldsymbol{B} \cdot \frac{\partial \delta f}{\partial \boldsymbol{v}} & =\epsilon_{\mu \nu \lambda} v_{\mu} B_{\nu} \frac{\partial \delta f}{\partial v_{\lambda}} \\
& =\epsilon_{\mu \nu \lambda} v_{\mu} B_{\nu}\left(A_{\lambda}+m v_{\lambda} v_{\alpha} \frac{\partial A_{\alpha}}{\partial \varepsilon}\right) \\
& =\epsilon_{\mu \nu \lambda} v_{\mu} B_{\nu} A_{\lambda} .
\end{aligned}
$$

We then have

$$
\frac{\varepsilon-h}{k_{\mathrm{B}} T^{2}} f^{0} v_{\mu} \partial_{\mu} T=\frac{e}{m c} \epsilon_{\mu \nu \lambda} v_{\mu} B_{\nu} A_{\lambda}-\frac{v_{\mu} A_{\mu}}{\tau} .
$$

Since this must be true for all v, we have

$$
A_{\mu}-\frac{e B \tau}{m c} \epsilon_{\mu \nu \lambda} n_{\nu} A_{\lambda}=-\frac{(\varepsilon-h) \tau}{k_{\mathrm{B}} T^{2}} f^{0} \partial_{\mu} T,
$$

where $\boldsymbol{B} \equiv B \hat{\boldsymbol{n}}$. It is conventional to define the cyclotron frequency, $\omega_{\mathrm{c}}=e B / m c$, in which case

$$
\left(\delta_{\mu \nu}+\omega_{\mathrm{c}} \tau \epsilon_{\mu \nu \lambda} n_{\lambda}\right) A_{\nu}=X_{\mu}
$$

where $\boldsymbol{X}=-(\varepsilon-h) \tau f^{0} \nabla T / k_{\mathrm{B}} T^{2}$. So we must invert the matrix

$$
M_{\mu \nu}=\delta_{\mu \nu}+\omega_{\mathrm{c}} \tau \epsilon_{\mu \nu \lambda} n_{\lambda}
$$

To do so, we make the Ansatz,

$$
M_{\nu \sigma}^{-1}=A \delta_{\nu \sigma}+B n_{\nu} n_{\sigma}+C \epsilon_{\nu \sigma \rho} n_{\rho},
$$

and we determine the constants A, B, and C by demanding

$$
\begin{aligned}
M_{\mu \nu} M_{\nu \sigma}^{-1} & =\left(\delta_{\mu \nu}+\omega_{\mathrm{c}} \tau \epsilon_{\mu \nu \lambda} n_{\lambda}\right)\left(A \delta_{\nu \sigma}+B n_{\nu} n_{\sigma}+C \epsilon_{\nu \sigma \rho} n_{\rho}\right) \\
& =\left(A-C \omega_{\mathrm{c}} \tau\right) \delta_{\mu \sigma}+\left(B+C \omega_{\mathrm{c}} \tau\right) n_{\mu} n_{\sigma}+\left(C+A \omega_{\mathrm{c}} \tau\right) \epsilon_{\mu \sigma \rho} n_{\rho} \equiv \delta_{\mu \sigma}
\end{aligned}
$$

Here we have used the result

$$
\epsilon_{\mu \nu \lambda} \epsilon_{\nu \sigma \rho}=\epsilon_{\nu \lambda \mu} \epsilon_{\nu \sigma \rho}=\delta_{\lambda \sigma} \delta_{\mu \rho}-\delta_{\lambda \rho} \delta_{\mu \sigma},
$$

as well as the fact that $\hat{\boldsymbol{n}}$ is a unit vector: $n_{\mu} n_{\mu}=1$. We can now read off the results:

$$
A-C \omega_{\mathrm{c}} \tau=1 \quad, \quad B+C \omega_{\mathrm{c}} \tau=0 \quad, \quad C+A \omega_{\mathrm{c}} \tau=0
$$

which entail

$$
A=\frac{1}{1+\omega_{\mathrm{c}}^{2} \tau^{2}} \quad, \quad B=\frac{\omega_{c}^{2} \tau^{2}}{1+\omega_{\mathrm{c}}^{2} \tau^{2}} \quad, \quad C=-\frac{\omega_{\mathrm{c}} \tau}{1+\omega_{\mathrm{c}}^{2} \tau^{2}} .
$$

So we can now write

$$
A_{\mu}=M_{\mu \nu}^{-1} X_{\nu}=\frac{\delta_{\mu \nu}+\omega_{\mathrm{c}}^{2} \tau^{2} n_{\mu} n_{\nu}-\omega_{\mathrm{c}} \tau \epsilon_{\mu \nu \lambda} n_{\lambda}}{1+\omega_{\mathrm{c}}^{2} \tau^{2}} X_{\nu} .
$$

The α-component of the energy current is

$$
j_{\varepsilon}^{\alpha}=\int \frac{d^{3} p}{h^{3}} v_{\alpha} \varepsilon v_{\mu} A_{\mu}(\varepsilon)=\frac{2}{3 m} \int \frac{d^{3} p}{h^{3}} \varepsilon^{2} A_{\alpha}(\varepsilon)
$$

where we have replaced $v_{\alpha} v_{\mu} \rightarrow \frac{2}{3 m} \varepsilon \delta_{\alpha \mu}$. Next, we use

$$
\frac{2}{3 m} \int \frac{d^{3} p}{h^{3}} \varepsilon^{2} X_{\nu}=-\frac{5 \tau}{3 m} k_{\mathrm{B}}^{2} T \frac{\partial T}{\partial x_{\nu}}
$$

hence

$$
\boldsymbol{j}_{\varepsilon}=-\frac{5 \tau}{3 m} \frac{k_{\mathrm{B}}^{2} T}{1+\omega_{\mathrm{c}}^{2} \tau^{2}}\left(\nabla T+\omega_{c}^{2} \tau^{2} \hat{\boldsymbol{n}}(\hat{\boldsymbol{n}} \cdot \nabla T)+\omega_{\mathrm{c}} \tau \hat{\boldsymbol{n}} \times \nabla T\right)
$$

We are given that $\hat{\boldsymbol{n}}=\hat{\boldsymbol{z}}$ and $\nabla T=T^{\prime}(x) \hat{\boldsymbol{x}}$. We see that the energy current $\boldsymbol{j}_{\varepsilon}$ is flowing both along $-\hat{\boldsymbol{x}}$ and along $-\hat{\boldsymbol{y}}$. Why does heat flow along $\hat{\boldsymbol{y}}$? It is because the particles are charged, and as they individually flow along $-\hat{\boldsymbol{x}}$, there is a Lorentz force in the $-\hat{\boldsymbol{y}}$ direction, so the energy flows along $-\hat{\boldsymbol{y}}$ as well.
(3) A photon gas in equilibrium is described by the distribution function

$$
f^{0}(\boldsymbol{p})=\frac{2}{e^{c p / k_{\mathrm{B}} T}-1}
$$

where the factor of 2 comes from summing over the two independent polarization states.
(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady state under the influence of a temperature gradient ∇T. Write $f=f^{0}+\delta f$ and write the Boltzmann equation in the relaxation time approximation. Remember that $\varepsilon(\boldsymbol{p})=c p$ and $\boldsymbol{v}=\frac{\partial \varepsilon}{\partial p}=c \hat{\boldsymbol{p}}$, so the speed is always c.
(b) What is the formal expression for the energy current, expressed as an integral of something times the distribution f ?
(c) Compute the thermal conductivity κ. It is OK for your expression to involve dimensionless integrals.

Solution :

(a) We have

$$
d f^{0}=-\frac{2 c p e^{\beta c p}}{\left(e^{\beta c p}-1\right)^{2}} d \beta=\frac{2 c p e^{\beta c p}}{\left(e^{\beta c p}-1\right)^{2}} \frac{d T}{k_{\mathrm{B}} T^{2}} .
$$

The steady state Boltzmann equation is $\boldsymbol{v} \cdot \frac{\partial f^{0}}{\partial r}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}$, hence with $\boldsymbol{v}=c \hat{\boldsymbol{p}}$,

$$
\frac{2 c^{2} e^{c p / k_{\mathrm{B}} T}}{\left(e^{c p / k_{\mathrm{B}} T}-1\right)^{2}} \frac{1}{k_{\mathrm{B}} T^{2}} \boldsymbol{p} \cdot \boldsymbol{\nabla} T=-\frac{\delta f}{\tau} .
$$

(b) The energy current is given by

$$
\boldsymbol{j}_{\varepsilon}(\boldsymbol{r})=\int \frac{d^{3} p}{h^{3}} c^{2} \boldsymbol{p} f(\boldsymbol{p}, \boldsymbol{r})
$$

(c) Integrating, we find

$$
\begin{aligned}
\kappa & =\frac{2 c^{4} \tau}{3 h^{3} k_{\mathrm{B}} T^{2}} \int d^{3} p \frac{p^{2} e^{c p / k_{\mathrm{B}} T}}{\left(e^{c p / k_{\mathrm{B}} T}-1\right)^{2}} \\
& =\frac{8 \pi k_{\mathrm{B}} \tau}{3 c}\left(\frac{k_{\mathrm{B}} T}{h c}\right)^{3} \int_{0}^{\infty} d s \frac{s^{4} e^{s}}{\left(e^{s}-1\right)^{2}} \\
& =\frac{4 k_{\mathrm{B}} \tau}{3 \pi^{2} c}\left(\frac{k_{\mathrm{B}} T}{h c}\right)^{3} \int_{0}^{\infty} d s \frac{s^{3}}{e^{s}-1}
\end{aligned}
$$

where we simplified the integrand somewhat using integration by parts. The integral may be computed in closed form:

$$
\mathcal{I}_{n}=\int_{0}^{\infty} d s \frac{s^{n}}{e^{s}-1}=\Gamma(n+1) \zeta(n+1) \quad \Rightarrow \quad \mathcal{I}_{3}=\frac{\pi^{4}}{15}
$$

and therefore

$$
\kappa=\frac{\pi^{2} k_{\mathrm{B}} \tau}{45 c}\left(\frac{k_{\mathrm{B}} T}{h c}\right)^{3} .
$$

(4) Suppose the relaxation time is energy-dependent, with $\tau(\varepsilon)=\tau_{0} e^{-\varepsilon / \varepsilon_{0}}$. Compute the particle current \boldsymbol{j} and energy current $\boldsymbol{j}_{\varepsilon}$ flowing in response to a temperature gradient ∇T.
Solution :
Now we must compute

$$
\begin{aligned}
\left\{\begin{array}{c}
j^{\alpha} \\
j_{\varepsilon}^{\alpha}
\end{array}\right\} & =\int d^{3} p\left\{\begin{array}{c}
v^{\alpha} \\
\varepsilon v^{\alpha}
\end{array}\right\} \delta f \\
& =-\frac{2 n}{3 m k_{\mathrm{B}} T^{2}} \frac{\partial T}{\partial x^{\alpha}}\left\langle\tau(\varepsilon)\left\{\begin{array}{c}
\varepsilon \\
\varepsilon^{2}
\end{array}\right\}\left(\varepsilon-\frac{5}{2} k_{\mathrm{B}} T\right)\right\rangle,
\end{aligned}
$$

where $\tau(\varepsilon)=\tau_{0} e^{-\varepsilon / \varepsilon_{0}}$. We find

$$
\begin{aligned}
\left\langle e^{-\varepsilon / \varepsilon_{0}} \varepsilon^{\alpha}\right\rangle & =\frac{2}{\sqrt{\pi}}\left(k_{\mathrm{B}} T\right)^{-3 / 2} \int_{0}^{\infty} d \varepsilon \varepsilon^{\alpha+\frac{1}{2}} e^{-\varepsilon / k_{\mathrm{B}} T} e^{-\varepsilon / \varepsilon_{0}} \\
& =\frac{2}{\sqrt{\pi}} \Gamma\left(\alpha+\frac{3}{2}\right)\left(k_{\mathrm{B}} T\right)^{\alpha}\left(\frac{\varepsilon_{0}}{\varepsilon_{0}+k_{\mathrm{B}} T}\right)^{\alpha+\frac{3}{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\langle e^{-\varepsilon / \varepsilon_{0}} \varepsilon\right\rangle & =\frac{3}{2} k_{\mathrm{B}} T\left(\frac{\varepsilon_{0}}{\varepsilon_{0}+k_{\mathrm{B}} T}\right)^{5 / 2} \\
\left\langle e^{-\varepsilon / \varepsilon_{0}} \varepsilon^{2}\right\rangle & =\frac{15}{4}\left(k_{\mathrm{B}} T\right)^{2}\left(\frac{\varepsilon_{0}}{\varepsilon_{0}+k_{\mathrm{B}} T}\right)^{7 / 2} \\
\left\langle e^{-\varepsilon / \varepsilon_{0}} \varepsilon^{3}\right\rangle & =\frac{105}{8}\left(k_{\mathrm{B}} T\right)^{3}\left(\frac{\varepsilon_{0}}{\varepsilon_{0}+k_{\mathrm{B}} T}\right)^{9 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\boldsymbol{j} & =\frac{5 n \tau_{0} k_{\mathrm{B}}^{2} T}{2 m} \frac{\varepsilon_{0}^{5 / 2}}{\left(\varepsilon_{0}+k_{\mathrm{B}} T\right)^{7 / 2}} \nabla T \\
\boldsymbol{j}_{\varepsilon} & =-\frac{5 n \tau_{0} k_{\mathrm{B}}^{2} T}{4 m}\left(\frac{\varepsilon_{0}}{\varepsilon_{0}+k_{\mathrm{B}} T}\right)^{7 / 2}\left(\frac{2 \varepsilon_{0}-5 k_{\mathrm{B}} T}{\varepsilon_{0}+k_{\mathrm{B}} T}\right) \nabla T
\end{aligned}
$$

The previous results are obtained by setting $\varepsilon_{0}=\infty$ and $\tau_{0}=1 / \sqrt{2} n \bar{v} \sigma$. Note the strange result that κ becomes negative for $k_{\mathrm{B}} T>\frac{2}{5} \varepsilon_{0}$.
(5) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.
(a) Consider first the case of a monatomic ideal gas. Show that $\zeta=0$ within this approximation. Will your result change if the scattering time is energy-dependent?
(b) Compute ζ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the relaxation time approximation is

$$
\delta f=-\frac{\tau f^{0}}{k_{\mathrm{B}} T}\left\{m v^{\alpha} v^{\beta} \frac{\partial V_{\alpha}}{\partial x^{\beta}}-\left(\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}\right) \frac{k_{\mathrm{B}}}{c_{V}} \nabla \cdot \boldsymbol{V}\right\}
$$

We also have

$$
\operatorname{Tr} \Pi=n m\left\langle\boldsymbol{v}^{2}\right\rangle=2 n\left\langle\varepsilon_{\mathrm{tr}}\right\rangle=3 p-3 \zeta \boldsymbol{\nabla} \cdot \boldsymbol{V}
$$

We then compute $\operatorname{Tr} \Pi$:

$$
\begin{aligned}
\operatorname{Tr} \Pi & =2 n\left\langle\varepsilon_{\mathrm{tr}}\right\rangle=3 p-3 \zeta \boldsymbol{\nabla} \cdot \boldsymbol{V} \\
& =2 n \int d \Gamma\left(f^{0}+\delta f\right) \varepsilon_{\mathrm{tr}}
\end{aligned}
$$

The f^{0} term yields a contribution $3 n k_{\mathrm{B}} T=3 p$ in all cases, which agrees with the first term on the RHS of the equation for $\operatorname{Tr} \Pi$. Therefore

$$
\zeta \boldsymbol{\nabla} \cdot \boldsymbol{V}=-\frac{2}{3} n \int d \Gamma \delta f \varepsilon_{\mathrm{tr}}
$$

(a) For the monatomic gas, $\Gamma=\left\{p_{x}, p_{y}, p_{z}\right\}$. We then have

$$
\begin{aligned}
\zeta \boldsymbol{\nabla} \cdot \boldsymbol{V} & =\frac{2 n \tau}{3 k_{\mathrm{B}} T} \int d^{3} p f^{0}(\boldsymbol{p}) \varepsilon\left\{m v^{\alpha} v^{\beta} \frac{\partial V_{\alpha}}{\partial x^{\beta}}-\frac{\varepsilon}{c_{V} / k_{\mathrm{B}}} \boldsymbol{\nabla} \cdot \boldsymbol{V}\right\} \\
& =\frac{2 n \tau}{3 k_{\mathrm{B}} T}\left\langle\left(\frac{2}{3}-\frac{k_{\mathrm{B}}}{c_{V}}\right) \varepsilon\right\rangle \boldsymbol{\nabla} \cdot \boldsymbol{V}=0 .
\end{aligned}
$$

Here we have replaced $m v^{\alpha} v^{\beta} \rightarrow \frac{1}{3} m \boldsymbol{v}^{2}=\frac{2}{3} \varepsilon_{\text {tr }}$ under the integral. If the scattering time is energy dependent, then we put $\tau(\varepsilon)$ inside the energy integral when computing the average, but this does not affect the final result: $\zeta=0$.
(b) Now we must include the rotational kinetic energy in the expression for δf, and we have $c_{V}=\frac{5}{2} k_{\mathrm{B}}$. Thus,

$$
\begin{aligned}
\zeta \boldsymbol{\nabla} \cdot \boldsymbol{V} & =\frac{2 n \tau}{3 k_{\mathrm{B}} T} \int d \Gamma f^{0}(\Gamma) \varepsilon_{\mathrm{tr}}\left\{m v^{\alpha} v^{\beta} \frac{\partial V_{\alpha}}{\partial x^{\beta}}-\left(\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}\right) \frac{k_{\mathrm{B}}}{c_{V}} \boldsymbol{\nabla} \cdot \boldsymbol{V}\right\} \\
& =\frac{2 n \tau}{3 k_{\mathrm{B}} T}\left\langle\frac{2}{3} \varepsilon_{\mathrm{tr}}^{2}-\frac{k_{\mathrm{B}}}{c_{V}}\left(\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}\right) \varepsilon_{\mathrm{tr}}\right\rangle \boldsymbol{\nabla} \cdot \boldsymbol{V}
\end{aligned}
$$

and therefore

$$
\zeta=\frac{2 n \tau}{3 k_{\mathrm{B}} T}\left\langle\frac{4}{15} \varepsilon_{\mathrm{tr}}^{2}-\frac{2}{5} k_{\mathrm{B}} T \varepsilon_{\mathrm{tr}}\right\rangle=\frac{4}{15} n \tau k_{\mathrm{B}} T .
$$

(6) Consider a two-dimensional gas of particles with dispersion $\varepsilon(\boldsymbol{k})=J \boldsymbol{k}^{2}$, where \boldsymbol{k} is the wavevector. The particles obey photon statistics, so $\mu=0$ and the equilibrium distribution is given by

$$
f^{0}(\boldsymbol{k})=\frac{1}{e^{\varepsilon(\boldsymbol{k}) / k_{\mathrm{B}} T}-1}
$$

(a) Writing $f=f^{0}+\delta f$, solve for $\delta f(\boldsymbol{k})$ using the steady state Boltzmann equation in the relaxation time approximation,

$$
\boldsymbol{v} \cdot \frac{\partial f^{0}}{\partial \boldsymbol{r}}=-\frac{\delta f}{\tau} .
$$

Work to lowest order in $\boldsymbol{\nabla} T$. Remember that $\boldsymbol{v}=\frac{1}{\hbar} \frac{\partial \varepsilon}{\partial k}$ is the velocity.
(b) Show that $j=-\lambda \nabla T$, and find an expression for λ. Represent any integrals you cannot evaluate as dimensionless expressions.
(c) Show that $\boldsymbol{j}_{\varepsilon}=-\kappa \nabla T$, and find an expression for κ. Represent any integrals you cannot evaluate as dimensionless expressions.

Solution:
(a) We have

$$
\begin{aligned}
\delta f=-\tau \boldsymbol{v} \cdot \frac{\partial f^{0}}{\partial \boldsymbol{r}} & =-\tau \boldsymbol{v} \cdot \boldsymbol{\nabla} T \frac{\partial f^{0}}{\partial T} \\
& =-\frac{2 \tau}{\hbar} \frac{J^{2} k^{2}}{k_{\mathrm{B}} T^{2}} \frac{e^{\varepsilon(\boldsymbol{k}) / k_{\mathrm{B}} T}}{\left(e^{\varepsilon(k) / k_{\mathrm{B}} T}-1\right)^{2}} \boldsymbol{k} \cdot \boldsymbol{\nabla} T
\end{aligned}
$$

(b) The particle current is

$$
\begin{aligned}
j^{\mu} & =\frac{2 J}{\hbar} \int \frac{d^{2} k}{(2 \pi)^{2}} k^{\mu} \delta f(\boldsymbol{k})=-\lambda \frac{\partial T}{\partial x^{\mu}} \\
& =-\frac{4 \tau}{\hbar^{2}} \frac{J^{3}}{k_{\mathrm{B}} T^{2}} \frac{\partial T}{\partial x^{\nu}} \int \frac{d^{2} k}{(2 \pi)^{2}} k^{2} k^{\mu} k^{\nu} \frac{e^{J k^{2} / k_{\mathrm{B}} T}}{\left(e^{J k^{2} / k_{\mathrm{B}} T}-1\right)^{2}}
\end{aligned}
$$

We may now send $k^{\mu} k^{\nu} \rightarrow \frac{1}{2} k^{2} \delta^{\mu \nu}$ under the integral. We then read off

$$
\begin{aligned}
\lambda & =\frac{2 \tau}{\hbar^{2}} \frac{J^{3}}{k_{\mathrm{B}} T^{2}} \int \frac{d^{2} k}{(2 \pi)^{2}} k^{4} \frac{e^{J k^{2} / k_{\mathrm{B}} T}}{\left(e^{J k^{2} / k_{\mathrm{B}} T}-1\right)^{2}} \\
& =\frac{\tau k_{\mathrm{B}}^{2} T}{\pi \hbar^{2}} \int_{0}^{\infty} d s \frac{s^{2} e^{s}}{\left(e^{s}-1\right)^{2}}=\frac{\zeta(2)}{\pi} \frac{\tau k_{\mathrm{B}}^{2} T}{\hbar^{2}} .
\end{aligned}
$$

Here we have used

$$
\int_{0}^{\infty} d s \frac{s^{\alpha} e^{s}}{\left(e^{s}-1\right)^{2}}=\int_{0}^{\infty} d s \frac{\alpha s^{\alpha-1}}{e^{s}-1}=\Gamma(\alpha+1) \zeta(\alpha)
$$

(c) The energy current is

$$
j_{\varepsilon}^{\mu}=\frac{2 J}{\hbar} \int \frac{d^{2} k}{(2 \pi)^{2}} J k^{2} k^{\mu} \delta f(\boldsymbol{k})=-\kappa \frac{\partial T}{\partial x^{\mu}} .
$$

We therefore repeat the calculation from part (c), including an extra factor of $J k^{2}$ inside the integral. Thus,

$$
\begin{aligned}
\kappa & =\frac{2 \tau}{\hbar^{2}} \frac{J^{4}}{k_{\mathrm{B}} T^{2}} \int \frac{d^{2} k}{(2 \pi)^{2}} k^{6} \frac{e^{J k^{2} / k_{\mathrm{B}} T}}{\left(e^{J k^{2} / k_{\mathrm{B}} T}-1\right)^{2}} \\
& =\frac{\tau k_{\mathrm{B}}^{3} T^{2}}{\pi \hbar^{2}} \int_{0}^{\infty} d s \frac{s^{3} e^{s}}{\left(e^{s}-1\right)^{2}}=\frac{6 \zeta(3)}{\pi} \frac{\tau k_{\mathrm{B}}^{3} T^{2}}{\hbar^{2}} .
\end{aligned}
$$

[^0]: ${ }^{1}$ These equations may need to be supplemented by certain conditions which apply in the vicinity of solid boundaries.

