PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT \#5

(1) Consider the following stochastic differential equation,

$$
d x=-\beta x d t+\sqrt{2 \beta\left(a^{2}-x^{2}\right)} d W(t),
$$

where $x \in[-a, a]$.
(i) Find the corresponding Fokker-Planck equation.
(ii) Find the normalized steady state probability $\mathcal{P}(x)$.
(iii) Find and solve for the eigenfunctions $P_{n}(x)$ and $Q_{n}(x)$. Hint: learn a bit about Chebyshev polynomials.
(iv) Find an expression for $\left\langle x^{3}(t) x^{3}(0)\right\rangle$, assuming $x_{0} \equiv x(0)$ is distributed according to $\mathcal{P}\left(x_{0}\right)$.
(2) A diffusing particle is confined to the interval $[0, L]$. The diffusion constant is D and the drift velocity is v_{D}. The boundary at $x=0$ is absorbing and that at $x=L$ is reflecting.
(a) Calculate the mean and mean square time for the particle to get absorbed at $x=0$ if it starts at $t=0$ from $x=L$. Examine in detail the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$.
(b) Compute the Laplace transform of the distribution of trapping times for the cases $v_{\mathrm{D}}>0, v_{\mathrm{D}}=0$, and $v_{\mathrm{D}}<0$, and discuss the asymptotic behaviors of these distributions in the limits $t \rightarrow 0$ and $t \rightarrow \infty$.

