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Molecular-dynamic studies of the behavior of the diffusion coefficient after a long time s

have shown that the velocity autocorrelation function decays as s~! for hard disks and as s

-3/2

for hard spheres, at least at intermediate fluid densities. A hydrodynamic similarity solution
of the decay in velocity of an initially moving volume element in an otherwise stationary com-

pressible viscous fluid agrees with a decay of (ns)~@

2, where 71 is the viscosity and d is the

dimensionality of the system. The slow decay, which would lead to a divergent diffusion co-
efficient in two dimensions, is caused by a vortex flow pattern which has been quantitatively
compared for the hydrodynamic and molecular-dynamic calculations.

A previous study' of the diffusion coefficient has
shown that the velocity autocorrelation function
has a long positive tail, indicating a surprising
persistence of velocities. Subsequently,? the col-
lective nature of this persistence was established
by the observation that the value of the diffusion
coefficient depends strongly on the number of par-
ticles, particularly in two dimensions where the
results did not seem to converge as larger systems
were investigated. Finally, by studying the veloc-
ity correlation between a molecule and its neigh-
borhood, a vortex flow pattern was found on a mi-
croscopic scale which could qualitatively explain
the tail. Since the persistence of the vortex flow
is long compared to the mean collision time, it is
natural to ask whether a hydrodynamic model could
calculate such vortex motion, and hence, the be-
havior of the velocity autocorrelation function for
long times. This paper addresses itself to that
question.

In such a hydrodynamic model, a fluid is imag-
ined to be at rest except that a small volume ele-
ment is given an initial velocity. A compression
wave develops in front of this region and a rar-
efaction wave to the rear. When the sound waves
have separated, the residual flow is in the form
of a double vortex in two dimensions, or a vortex
ring in three dimensions. At late times, the cir-
culatory flow approaches that of an incompressible
fluid, and hence the velocity decays solely due to
the influence of the shear viscosity. It should be
emphasized at the outset that this hydrodynamic
model differs conceptually from the Stokes-
Einstein model which also relates the diffusion
coefficient to the viscosity. In that model, a
sphere representing a molecule is assumed to
slow down adiabatically in a viscous fluid; that is,
the retarding force at each instant of time is as-
sumed to be the steady-state value, which is pro-
portional to the velocity, so that the velocity de-
cays exponentially. In the model described here,
on the other hand, a transient solution of the

Navier-Stokes equation is carried out to find the
long-time behavior of the initially moving volume
element.

The initially moving volume element is made
equal in size to the average volume per molecule
and is given a velocity comparable to the root-
mean-square molecular velocity. The subsequent
motion of the fluid is then calculated by direct nu-
merical integration of the Navier-Stokes equation. 3
Both Eulerian and Lagrangian formulations have
been used successfully. A comparison of the flow
pattern between the hydrodynamic and molecular-
dynamic calculation at a fairly late time is given
in Fig. 1. The nearly quantitative agreement ob-
tained lends credence to the applicability of the
model. The values for the viscosityn and y=Pv/
NPET-1 used in the hydrodynamic calculation were
obtained from molecular-dynamic calculations at
the same density. The comparison in Fig. 1 was
made at a fairly late time, so that the flow pattern
had approached the hydrodynamic regime, but not
so late that there was any interference from the
sound waves coming over the periodic border of
the finite system, nor so late that the velocity had
decayed to such a small value as to prevent an ac-
curate determination. A correction of 1/N-1 has
been added to the velocity autocorrelation function
as calculated by molecular dynamics. This is be-
cause whenever a given molecule has a velocity v,
the average velocity of the other molecules is
-v/N-1ina system of N molecules where momen-
tum is conserved.

Figure 2 illustrates, in the case of hard spheres,
the agreement of the autocorrelation function p(s)
from the molecular-dynamic calculation with that
from the hydrodynamic calculation. The latter is
simply the velocity at the center of the flow pattern
divided by the initial velocity. The two disagree
at short times, as might be expected. The molec-
ular-dynamic velocity autocorrelation function
shows an initial exponential decay lasting for a few
mean collision times s. However, at times great-
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FIG. 1. Statistically averaged velocity field around a
central disk from molecular dynamics (heavy arrows)
compared to that given by the hydrodynamic model (light
arrows). Because of symmetry only half the plane is
shown. The scale of distance is indicated by the size of
the central disk as shown by the smallest half-circle.
The sizes of the other four concentric circles have been
determined so as to include roughly six neighboring
particles each. These semicircles have been partitioned
further into four parts, as indicated by the lines, so as
to have a measure of direction relative to the velocity
vector of the central particle at zero time. The size of
the arrows indicates the magnitude of the velocity (the
scale of velocity is indicated as 0.01 of the initial veloc-
ity in the upper right-hand corner) and the direction of
the arrow is determined by the parallel and perpendicular
components of the velocity (relative to that of the central
particle initially) averaged over all the particles in that
section at a particular time. The arrow is hence drawn
at the center of the section. A correction of 1/N-1 has
been added to the parallel component. The comparison
is made at 9.9 collision times where the molecular-
dynamic and hydrodynamic velocity autocorrelations be-
gin to nearly agree, as seen on the graph by the velocity
vectors of the central particle. (See also Fig. 3.) In
the molecular-dynamics run, 224 hard disks were used
at an area relative to close packing of 2. For the hydro-
dynamic run, the conditions are given in Table I.

er than about 10 mean collision times, both calcu-
lations show a decay like s~3/2.

Figure 3 illustrates the same agreement at var-
ious densities in the case of hard disks where the
decay is like s”!. Figure 3 shows furthermore
that the 1/N-1 correction brings into agreement
the velocity autocorrelation functions calculated
in molecular-dynamic systems of various sizes
and that the long-time behavior of the hydrody-
namic solution is independent of the initial veloc-
ity. It was also found that the long-time hydrody-
namic solution does not depend upon the bulk vis-
cosity. Heat conductivity was not included in the

hydrodynamic calculation. The late-time kinks
seen in Fig. 3 in the velocity autocorrelation func-
tions calculated for 504 particle systems are
caused by the arrival of sound waves from the pe-
riodic images. The arrival time of these inter-
ferences can be predicted by the hydrodynamical
model.

A simple analysis of the hydrodynamical model
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FIG. 2. Comparison of the velocity autocorrelation
function p(s) as a function of time (in terms of mean col-
lision times s) between the hydrodynamic model (circles)
and a 500-hard-sphere molecular-dynamic calculation
(triangles) at a volume relative to close packing of 3 on
a log-log plot. The straight line is drawn with a slope
corresponding to s, To the molecular dynamics p(s)

a correction of 1/N-1 has been added. Furthermore,

the function has only been graphed up to the time where
serious interference between neighboring periodically
repeated systems is indicated. In the hydrodynamic
calculation the viscosity predicted by the Enskog theory
has been used while the molecular-dynamic calculations
indicate a 2% larger value. A value of pv/NkT of 3.03
was employed, and the initial velocity of the fluid volume
element was normalized to unity for comparison purposes.
If the initially moving cylindrical region is made to have
the same volume as that corresponding to the volume

per particle in the molecular system, adistance andhencea
time scale can be obtained to make the above comparison.
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FIG. 3. The decay of the velocity autocorrelation
function at large times for hard disks at three densities:
A/Ay=2,3, and 5. The closed and open triangles refer
to molecular-dynamic runs of 986 and 504 particles,
respectively. A 1/N=1 correction to the molecular-
dynamic results has been applied. At A/A;of 2 and 5
the 504-particle results include the initial deviations
due to the interference of neighboring cells at the bound-
ary while all other results have not been plotted beyond
the point where serious interference is indicated. The
dashed line represents the results of a hydrodynamic
run at A/A, of 2 (see Table I for conditions) in which the
initially moving square area element was given two
different velocities, the root-mean-square molecular
velocity (squares) and that'hth as large (circles).

shows that a similarity solution exists for the cir-
culatory flow at late times. The linear dimensions
of the flow pattern increase at (vs)*/2 and, since
total momentum is conserved, the velocity decays
as (vs)"d/2, where v is the kinematic viscosity (7
divided by the density) and d is the dimensionality
of the system. This result verifies the observed
behavior.

Table I lists the values of the decay constants «,
found by molecular dynamics in two dimensions,

where p(s)=as™!. Since the hydrodynamic model
predicts p(s) is proportional to (vs)™!, ag=ans/

MoSo= an/n,y should be a constant; the collision

rate being proportional to y. The zero subscript
indicates the low-density Boltzmann values for the
reference system. The value of af is 77!, as ac-
curately as it can be determined from the numer-
ical hydrodynamic calculations at a number of dif-
ferent densities and also according to the analytic
asymptotic solution. This solution does, however,
depend on the empirically supported assumption
that the two sound waves' carry off 3 of the origi-
nal momentum, independent of all parameters in-
volved in the calculation, the remaining half being
involved in the vortex flow. _

The slight remaining density dependence of ay
and its small disagreement with the hydrodynamic
solution can be ascribed to the unrealistic nature
of the hydrodynamical model. The hydrodynamic
flow will not carry the molecule appreciably away
from the center of the vortex pattern; but, in fact,
in an actual system a molecule has a density-
dependent probability of diffusing away from the
center. At low densities, particularly, intermo-
lecular diffusion can carry molecules away from
the center to a distance comparable with the size
of the vortex pattern. To account approximately
for the diffusive motion, the vortex flow pattern
has to be sampled over a spreading Gaussian dis-
tribution representing the probability that the mol-
ecule has moved away from the center. This ar-
gument leads to the following correction factor F:

i J exp(—rzpo/DEs)exp(—rzno/nsh’dr

F
2
f exp(-7 DO/DEs)vdr

n/n,
Dp/Dy+n/n,,

The Enskog value of the diffusion coefficient D

is used because it is intended to describe only the
diffusion of the molecules among its neighbors and
not the collective motion of the neighborhood for
which the hydrodynamic model is used.

A comparison of the last two columns of Table I
shows that this correction factor F accounts for
the density dependence of oy to within a'few per-
cemnt, that is, within the accuracy of the determina-

TABLE I. Values of the decay coefficient .

A/Aq a y n/Mg Dg/Dy ag=an/nyy agm F
2 0.206 2.42 3.39 0.375 0.29 0.91 0.90
3 0.157 1.08 1.66 0.560 0.24 0.76 0.75
5 0.082 0.50 1.29 0.725 0.21 0.66 0.64
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tion of @ and /n,. The above argument leads to
the prediction that in the low-density limit F = 3.
Thus, the velocity autocorrelation function in two
dimensions decays as s~' at any finite density,
leading to a divergent diffusion coefficient at any
nonzero density. This result is in contradiction
to previous theories on the density expansion of
the diffusion coefficient away from the low-density
limit. The study of the late-time autocorrelation
function at very low densities by molecular dynam-
ics is unfortunately very difficult since the system
must be so large that a molecule undergoes many
collisions before a sound wave travels across the
size of the system.

The hydrodynamic model, as discussed so far,
cannot reverse the velocity of the region initially
in motion, and thus cannot reproduce the negative

part of the velocity autocorrelation found at high
densities. This deficiency can be remedied at
least qualitatively by the inclusion of visco-elastic
forces in the Navier-Stokes equations. These
forces can be obtained from the autocorrelations
of the elements of the stress tensor as calculated
by molecular dynamics. A trial calculation at
A/A;=1.4 has shown that negative autocorrelation
functions can be obtained in this way, but that at
very late times, in agreement with molecular dy-
namics, the function becomes again positive and
decays like s™1.
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Cross sections for the production of hydrogen atoms in the 3s state by the impact of ground-
state hydrogen atoms on nitrogen molecules have been measured in the kinetic energy range
10-35 keV. The cross-section curve appears to have a maximum at the lower energies of

about 4 x 10~!% ¢m?.

This value is roughly 2% times less than the maximum cross section for

producing 3s atoms through electron capture by proton impact on nitrogen molecules in the

same energy range.

INTRODUCTION

Cross sections have been measured for electron
capture into the 3s, 3p, and 3d states by proton
impact on Ng in the energy range 10-35 keV.!

In this paper, we report the measurement of the
cross section for production of 3s hydrogen atoms
by the impact of ground-state hydrogen atoms on
No. :
gI‘his particular reaction is important in under-
standing the production of H, light (=3 -2 tran-

sitions) from fast hydrogen atoms in the aurora.
Fast protons which are incident on the upper at-
mosphere will undergo a series of electron cap-
ture and stripping reactions as they pass through
the atmosphere. These protons will spend much
of their fast-particle history in the form of ground-
state hydrogen atoms. Hence, collisional excita-
tion of ground-state hydrogen atoms of atmospher-
ic gases could be an important mechanism for the
production of the Balmer light, as well as direct
electron capture by protons into excited states. .



