Notes 1: Pection VI
$\rightarrow$ Onsager Matrix and Onsagen Symm etry.

- Recall can cakculate by chaomanEnokeg method (lineas reospenoe) the vector af fluxer:

$$
\Pi=\left(\begin{array}{c}
\Gamma_{1} \\
\Pi_{2} \\
\dot{\Gamma}_{N}
\end{array}\right)=\left(\begin{array}{c}
\Pi \\
Q \\
\vdots
\end{array}\right)
$$

- $\nabla$ fé ultiñtely drivér fluxes

$$
F_{e q}^{(0)}=f_{e p}^{a}(n(x), T(x), V(x) \cdots)
$$

$\rightarrow$ determanid by thermodynamic qustifities
so
$\nabla f_{a q}^{d} \rightarrow$ determmied Ay gredients of thermodynamic quantities, cie. on, $\nabla T$, $\underline{V}$,
$\Rightarrow$ thermody $\sim$ smic forces i.e. drive relaxation
$\mapsto$ vector of thermod ynomic
so $\Gamma=-\underline{E} \cdot \underline{P}_{T h}$

Matrix of tronskert
coefficiciente $\rightarrow$ "Onsogen Matrix"
N.B. - Of courres, diagond praceuser
i-l. $\square T$ driver $p$

$$
\binom{\Gamma}{Q}=-\left(\begin{array}{ll}
D & d_{n, T} \\
d_{\sigma_{n}} & x
\end{array}\right)\binom{\nabla T}{v T}
$$

D, $X \rightarrow$ diagonats.

- Bet Dt can draís Et $\ln _{3} \tau_{\text {, }} d_{T_{n}} \rightarrow$ off-diagonstr."
$\Rightarrow$ Entropy prodection: $(H$-Thm.).

$$
\frac{d v}{d t}=+f_{-\omega}^{T} \cdot K \cdot f_{F h}
$$

$\rightarrow$ If microsconir procers is timè reversitsle (li-e. detriled $\Delta=\operatorname{lsn} \omega l$ ).

$$
H_{i, j}=K_{i j i} \rightarrow \underset{\text { onsegen }}{\text { symmet }}
$$ symmetry.

$\rightarrow$ Digoncls $>0 \rightarrow$ tronspert down gradient
off-diggancls can be <o though $H$-thm. demads $\frac{d s}{d t} \geq 0$.

$$
\begin{aligned}
=0 \text { here } & \Rightarrow \text { uniform } \\
& \Rightarrow D \text { feq }=0
\end{aligned}
$$

An example: Eluid

$$
\begin{aligned}
& d U=T d S-p d V+\mu d V Y \text { (Thorno). } \\
& \text { it chenarsy chomizal. } \\
& \text { fixel } \\
& d u=T d s-\rho d N \text { * } \mu d e
\end{aligned}
$$

To
entrop chongo, from first hau

$$
d s=\frac{d u}{T}-\frac{\mu}{T} d \infty
$$

$\rightarrow$ interrive $\rightarrow$ enilogar to petentics enersios.

$$
-\nabla(\nu / \tau), \quad \nabla(\mu / \tau) \rightarrow
$$

thermady armid varishber - elrive flous.

Fows - Continuity Equr.:

$$
\begin{aligned}
& \frac{\partial 0}{\partial t}+\underline{D \cdot} \cdot \underline{d}=0 \\
& \text { mass flux } \\
& \text { (li.e. diffn) } \\
& \frac{\partial u}{\partial t}+\nabla \cdot \underline{\sigma}_{4}=0
\end{aligned}
$$

onternal enersy flux
(i.e. hect cudretion)
(were assime macro velocity neg(igible)

Fon entropy, have form:

$$
\begin{aligned}
& \frac{\partial s}{\partial t}+\underline{D} \cdot J_{s}=\frac{\partial s_{c}}{\partial t} \\
& \begin{array}{c}
b \\
\text { entopy }
\end{array} \\
& \text { plux } \\
& \longrightarrow \text { increster in entropy } \\
& \text { due crrevoribibl } \\
& \text { proces of reloxition } \\
& \text { (i-e. CCE)) -Loc\%. }
\end{aligned}
$$

For the Fluxeo:

$$
{\underline{J_{4}}}^{-}=-k \nabla T \quad \text {; if } D T
$$

Chert flux dinven hy $\nabla \tau)$
can Gurt as ectrily write:

$$
\underline{U}_{4}=k T^{2} \nabla(1 / \tau)
$$

and

$$
\bar{U}_{\infty}=-N \underline{E} \omega
$$

but $\mu=\mu(\theta), \delta \mu / \delta_{0}>0$ can jeat as earity write

$$
J_{\infty}=\theta^{\prime} D(-\mu / \tau)
$$

In geveral:

$$
\begin{aligned}
& \underline{J}_{4}=L_{u_{0} 4} \underline{D}(1 / \tau)+L_{a_{0} D} D\left(\frac{-\mu}{T}\right) \\
& \underline{J}_{D}=L_{2, \mu} \underline{\theta}(1 / \tau)+L_{20} \underline{D}\left(\frac{-\mu}{T}\right)
\end{aligned}
$$

$\stackrel{\infty}{\infty}$

$$
\underline{\Xi}_{x}=\sum_{\bar{\beta}} L_{\theta_{1} \beta} \nabla f_{\beta}
$$

thermedynamic ferror

$$
\begin{aligned}
& \nabla f_{4}=\underline{\nabla}(\eta T) \\
& \underline{D} f_{0}=-\nabla\left(-\frac{-\mu}{\sigma}\right)
\end{aligned}
$$

$L_{\alpha, B} B($ Lats $)$ Onoiger M. MriAs
$\rightarrow$ Entropy Production Rote
expect: $\quad \frac{d W_{u}}{d t}=I \cdot(\underline{t})$
To show:

$$
\begin{aligned}
\frac{\partial s}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{d y}{T}-\frac{\mu}{T} d \theta\right) \\
& =\frac{I}{T} \frac{\partial y}{\partial t}-\frac{y}{T} \frac{\partial \theta}{\partial t}
\end{aligned}
$$

and:

$$
\underline{J_{s}}=\frac{1}{T} \underline{J}_{y}-\mu J_{s}
$$

but:
$\rightarrow$ local entropy motuction

$$
\begin{aligned}
\frac{\partial S_{0}}{\partial t}= & \frac{\partial s}{\partial t}+\underline{\nabla} \cdot \underline{J_{s}} \\
= & \frac{\mu}{\tau} \cdot \frac{\partial u}{\partial t}-\mu \frac{\partial \Delta}{\bar{\tau}} \frac{\partial t}{\partial t} \cdot\left(\frac{\mu}{J_{t}}\right) \\
& \underline{\sigma} \cdot\left(\frac{\sigma_{4}}{\tau}\right)-\underline{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+J_{y} \cdot \nabla\left(\frac{\Delta}{\tau}\right)-J_{0} \frac{\pi}{\frac{y}{T}}\right) \\
& \frac{\partial S_{0}}{\alpha t}=\sum_{\alpha} J_{\alpha} \cdot \underline{D} f_{\alpha}
\end{aligned}
$$

but

$$
\begin{aligned}
& \underline{J_{\alpha}}=L_{\alpha \beta} \cdot \underline{\nabla} f_{\beta} \\
& \frac{\partial S_{6}}{\bar{\alpha}}=\sum_{\infty} \sum_{B} \underline{\nabla} f_{\alpha} \cdot L_{\alpha, \beta} \cdot \underline{D} \mathcal{E}_{B}
\end{aligned}
$$

Now, entrapy preduction must be puritive:
for $2 x^{2}$

$$
\begin{aligned}
\frac{\partial s_{6}}{\partial t}= & D_{1}\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+D_{2}\left(\frac{\partial f_{3}}{\partial x}\right)^{2} \\
& +d_{1,2}\left(\frac{\partial f_{1} * \frac{\partial f_{3}}{\partial x}}{\partial x}\right)+d_{3}\left(\frac{\partial f_{c}}{\underline{\partial x}} \frac{\partial f_{2}}{\partial x}\right) \\
& \geq 0,
\end{aligned}
$$

-need $D_{1}, N_{2}>0$.

- more geserally, $L_{\alpha}$ e positivo semi-definite matryx

Now; Symmetry;
$\rightarrow$ W, Il show $L_{\alpha, 0}=L_{0, \alpha}$ geveriaslly,
for time-neversable micro-dynamila.

$$
\cdots x_{0} x_{2,} x_{3} \ldots x_{n}
$$

$\rightarrow$ Eluctuctions from eqbrm i) thempdynamix quantifien

$$
\sigma\left(x_{1}, x_{2}, \cdots x_{n}\right) \rightarrow \text { entrapy }
$$

then porbability

$$
W=c \exp [S]
$$

For omrl) flectustions about equilionium:

$$
\begin{aligned}
& \approx-\left(\frac{-\partial^{2}}{2 \Delta x_{i} \partial x_{k}}\right) x_{i} x_{k} \\
& =-\frac{B_{i}, k}{2} x_{i} x_{n}
\end{aligned}
$$

Jo

$$
w=C \exp \left[-\frac{B_{i}}{2} k x_{i} x_{\pi}\right]
$$

Bi,n pusitivo defincte.
Now, assuming:

- small Plucturtions
- small cheviations from equilibrium

$$
\dot{x}_{i}=-\lambda_{i j k} x_{i r}
$$

b
relaxatiós

And can define thermodynamically conjugate (ire. Flux-gredient) Ureter:

$$
\begin{aligned}
& X_{i}=\frac{-25}{\partial x_{i}}=B_{i, \pi} x_{4} \\
& \overline{X_{i}}=\beta_{i, k} x_{T} \\
& \text { thus } \\
& \left\{\begin{aligned}
\ddot{x}_{c} & =-\lambda_{i j k} x_{k} \\
& =-\gamma_{i k k} \frac{X_{k}}{}
\end{aligned}\right]
\end{aligned}
$$

Symmetry : $\left\{\gamma_{i k}=\gamma_{k j c}\right.$.
To show:

$$
\begin{aligned}
& \varepsilon_{i}=\varepsilon_{i}(t)=\overline{\bar{x}_{i}} \\
& \Xi_{i}=\bar{I}_{i}(t)={\overline{x_{i}}}_{i}^{T}
\end{aligned} \quad \begin{aligned}
& \text { time aus }
\end{aligned}
$$

then

$$
x_{i} \cdot(t)=-\gamma_{i j k} \bar{X}_{i k}
$$

so, avg.

$$
\Sigma_{c}(t)=-\gamma_{c_{0}, v_{i}}=r
$$

Now: major assumption:

$$
\begin{aligned}
& \left\{\begin{aligned}
& \text { time reversible dynamics } \\
& \text { Detailed balance } \text { vo time } \\
& \text { cornetation } \\
& \text { fetor. }
\end{aligned}\right. \\
& \Rightarrow \quad \left\lvert\, \begin{aligned}
\left\langle X_{i}(t) X_{k}(0)\right\rangle & =\left\langle X_{i}(-t) X_{t}(0)\right\rangle \\
& =\left\langle X_{i}(0) X_{v i}(t)\right\rangle
\end{aligned}\right.
\end{aligned}
$$

Aside: Correl at ion fetus.
$\langle a(0) a(t)\rangle$ measures memory or time coherence of a.
 us.
 decay rate - correlation time
N.B. Curr elaticin functions can be power lawt (self-señler)
C.e. $\langle a(0) a(t)\rangle \sim a_{0}^{2}\left(t / \Gamma_{q}\right)^{-\alpha}$

$$
\alpha>0
$$

not neveosarily expenertizl

$$
<a(0) a(t)>\sim a_{0}^{2} e^{-\mid t / / r_{0}}
$$

What do the brackets mern?
$\leadsto$ ensemble ang.

$$
\langle q(0) a(t)[\theta]\rangle=\frac{\int d \sigma P(\sigma)(a(\Delta) a(t)[\nabla])}{\int d \sigma P\left(\sigma^{-}\right)}
$$

$P(\nabla)$ spenfies $x \notin f$ of $V$.
on
$\Rightarrow$ time avi.

$$
\left.\int \frac{d t}{T} a(t) a(t+\tau)\right\rangle=\langle\alpha \operatorname{coc} a(\lambda)\rangle
$$

obviousbly $T>$ Ve $n$ eeded.
and rymuetry of fluctrections under tinis revertal $\Rightarrow$

$$
\begin{aligned}
\left\langle x_{i}(0) x_{k}(t)\right\rangle & =\left\langle x_{2}(-\theta) x_{k}(0)\right\rangle \\
& =\left\langle x_{i}\left(-\theta x_{k}(0)\right\rangle\right.
\end{aligned}
$$

oumilarly, if:

$$
\left.\left\langle x_{i}(t) x_{k}\right\rangle=\left\langle x_{i}\right\rangle x_{f}(t)\right\rangle
$$

then avg:

$$
\begin{aligned}
& \left\langle\overline{x_{i}(t)} x_{k}\right\rangle=\left\langle x_{i} \bar{x}_{k_{1}}(t)\right\rangle \\
\Rightarrow & \left\langle\varepsilon_{i}(t) x_{k}\right\rangle=\left\langle x_{i} \varepsilon_{k_{1}}(t)\right\rangle
\end{aligned}
$$

so

$$
\begin{aligned}
& \left\langle\dot{\varepsilon}_{0}(t) x_{k}\right\rangle=\left\langle x_{i} \dot{\varepsilon}_{k}(t)\right\rangle \\
& -\left\langle\gamma_{i e} \bar{z}(t) x_{k}\right\rangle=-\left\langle x_{i} \gamma_{k_{l}} \overline{-}{ }_{p}^{(t)}\right\rangle
\end{aligned}
$$

so evalunting at $t=0$

$$
\begin{aligned}
\gamma_{i e}\left\langle 三(0) x_{r}\right\rangle & =\gamma_{k e}\left\langle x_{0} \bar{I}_{e}\right\rangle \\
\gamma_{i e}\left\langle\bar{X}_{e} x_{k}\right\rangle & =\gamma_{k e}\left\langle x_{i} \bar{X}_{b}\right\rangle \\
& =\gamma_{k e}\left\langle\bar{X}_{l} x_{i}\right\rangle
\end{aligned}
$$

but $\left\langle\bar{X}_{i} X_{k}\right\rangle=\delta_{i, k}$ dist).

$$
\Rightarrow \quad \begin{aligned}
\gamma_{i l} \delta_{\xi_{k}} & =\gamma_{k, l} \delta_{e_{j} i} \\
\Rightarrow \quad \gamma_{i_{j} k} & =\gamma_{k_{i}}
\end{aligned}
$$

$\rightarrow$ Matrix of Kinetic confficreato symmetri
\# Onseger symmetry seeh. Onsager peper.
"Reciprocnl Relations in Irreveríable pracessea"

