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Chapter 16

Hamiltonian Mechanics
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2 CHAPTER 16. HAMILTONIAN MECHANICS

16.2 The Hamiltonian

Recall that L = L(q, q̇, t), and

pσ =
∂L

∂q̇σ
, (16.1)

with n = Nd for a system of N particles in d space dimensions. The Hamiltonian, H(q, p, t) is obtained
by a Legendre transformation,

H(q, p) =

n∑

σ=1

pσ q̇σ − L(q, q̇, t) . (16.2)

Note that

dH =
n∑

σ=1

(
pσ dq̇σ + q̇σ dpσ −

∂L

∂qσ
dqσ −

∂L

∂q̇σ
dq̇σ

)
− ∂L

∂t
dt

=

n∑

σ=1

(
q̇σ dpσ −

∂L

∂qσ
dqσ

)
− ∂L

∂t
dt .

(16.3)

Thus, we obtain Hamilton’s equations of motion,

∂H

∂pσ
= q̇σ ,

∂H

∂qσ
= − ∂L

∂qσ
= −ṗσ (16.4)

and
dH

dt
=
∂H

∂t
= −∂L

∂t
. (16.5)

Some remarks:

• As an example, consider a particle moving in three dimensions, described by spherical polar coor-
dinates (r, θ, φ). Then

L = 1
2m
(
ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2

)
− U(r, θ, φ) . (16.6)

We have

pr =
∂L

∂ṙ
= mṙ , pθ =

∂L

∂θ̇
= mr2 θ̇ , pφ =

∂L

∂φ̇
= mr2 sin2θ φ̇ , (16.7)

and thus

H = pr ṙ + pθ θ̇ + pφ φ̇− L

=
p2r
2m

+
p2θ

2mr2
+

p2φ

2mr2 sin2θ
+ U(r, θ, φ) .

(16.8)

Note that H is time-independent, hence ∂H
∂t = dH

dt = 0, and thereforeH is a constant of the motion.
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• In order to obtain H(q, p) we must invert the relation pσ = ∂L
∂q̇σ

= pσ(q, q̇) to obtain q̇σ(q, p). This is
possible if the Hessian,

∂pα
∂q̇β

=
∂2L

∂q̇α ∂q̇β
(16.9)

is nonsingular. This is the content of the ‘inverse function theorem’ of multivariable calculus.

• Define the rank 2n vector, ξ, by its components,

ξi =

{
qi if 1 ≤ i ≤ n
pi−n if n < i ≤ 2n .

(16.10)

Then we may write Hamilton’s equations compactly as

ξ̇i = Jij
∂H

∂ξj
, (16.11)

where

J =

(
On×n In×n

−In×n On×n

)
(16.12)

is a rank 2n matrix. Note that Jt = −J, i.e. J is antisymmetric, and that J2 = −I2n×2n. We shall
utilize this ‘symplectic structure’ to Hamilton’s equations shortly.

16.2.1 Modified Hamilton’s principle

Let’s vary the action now with respect to both {qσ} and {pσ}, considering them as independent variations.
We then have

0 = δ

tb∫

ta

dtL = δ

tb∫

ta

dt
(
pσ q̇σ −H

)

=

tb∫

ta

dt

{
pσ δq̇σ + q̇σ δpσ −

∂H

∂qσ
δqσ −

∂H

∂pσ
δpσ

}

=

tb∫

ta

dt

{
−
(
ṗσ +

∂H

∂qσ

)
δqσ +

(
q̇σ −

∂H

∂pσ

)
δpσ

}
+
(
pσ δqσ

)∣∣∣
tb

ta
.

(16.13)

Assuming δqσ(ta) = δqσ(tb) = 0, and setting the coefficients of δqσ and δpσ to zero, we recover Hamil-
ton’s equations.
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16.2.2 Phase flow is incompressible

A flow for which ∇ · v = 0 is incompressible – we shall see why in a moment. Let’s check that the
divergence of the phase space velocity does indeed vanish:

∇ · ξ̇ =
n∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=

2n∑

i=1

∂ξ̇i
∂ξi

=
∑

i,j

Jij
∂2H

∂ξi ∂ξj
= 0 .

(16.14)

Now let ρ(ξ, t) be a distribution on phase space. Continuity implies

∂ρ

∂t
+∇ · (ρ ξ̇) = 0 . (16.15)

Invoking ∇ · ξ̇ = 0, we have that
Dρ

Dt
=
∂ρ

∂t
+ ξ̇ ·∇ρ = 0 , (16.16)

where Dρ/Dt is sometimes called the convective derivative – it is the total derivative of the function
ρ
(
ξ(t), t

)
, evaluated at a point ξ(t) in phase space which moves according to the dynamics. This says

that the density in the “comoving frame” is locally constant.

16.2.3 Poincaré recurrence theorem

Let gτ be the ‘τ -advance mapping’ which evolves points in phase space according to Hamilton’s equa-
tions

q̇σ = +
∂H

∂pσ
, ṗσ = − ∂H

∂qσ
(16.17)

for a time interval ∆t = τ . Consider a region Ω in phase space. Define gnτΩ to be the nth image of
Ω under the mapping gτ . Clearly gτ is invertible; the inverse is obtained by integrating the equations
of motion backward in time. We denote the inverse of gτ by g−1

τ . By Liouville’s theorem, gτ is volume
preserving when acting on regions in phase space, since the evolution of any given point is Hamiltonian.
This follows from the continuity equation for the phase space density,

∂̺

∂t
+∇ · (u̺) = 0 (16.18)

where u = {q̇, ṗ} is the velocity vector in phase space, and Hamilton’s equations, which say that the
phase flow is incompressible, i.e. ∇ · u = 0:

∇ · u =
n∑

σ=1

{
∂q̇σ
∂qσ

+
∂ṗσ
∂pσ

}

=

n∑

σ=1

{
∂

∂qσ

(
∂H

∂pσ

)
+

∂

∂pσ

(
− ∂H

∂qσ

)}
= 0 . (16.19)
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Thus, we have that the convective derivative vanishes, viz.

D̺

Dt
≡ ∂̺

∂t
+ u · ∇̺ = 0 , (16.20)

which guarantees that the density remains constant in a frame moving with the flow.

The proof of the recurrence theorem is simple. Assume that gτ is invertible and volume-preserving, as
is the case for Hamiltonian flow. Further assume that phase space volume is finite. Since the energy is
preserved in the case of time-independent Hamiltonians, we simply ask that the volume of phase space
at fixed total energy E be finite, i.e. ∫

dµ δ
(
E −H(q,p)

)
<∞ , (16.21)

where dµ =
∏
i dqi dpi is the phase space uniform integration measure.

Theorem: In any finite neighborhood Ω of phase space there exists a point ϕ0 which will return to Ω
after n applications of gτ , where n is finite.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the
set Υ formed from the union of all sets gmτ Ω for all m:

Υ =

∞⋃

m=0

gmτ Ω (16.22)

We assume that the set {gmτ Ω |m ∈ Z≥0} is disjoint. The volume of a union of disjoint sets is the sum of
the individual volumes. Thus,

vol(Υ) =

∞∑

m=0

vol(gmτ Ω) = vol(Ω) ·
∞∑

m=1

1 =∞ , (16.23)

since vol(gmτ Ω) = vol(Ω) from volume preservation. But clearly Υ is a subset of the entire phase space,
hence we have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set {gmτ Ω |m ∈ Z ,m ≥ 0} is disjoint fails. This means that there exists
some pair of integers k and l, with k 6= l, such that gkτ Ω ∩ glτ Ω 6= ∅. Without loss of generality we may
assume k > l. Apply the inverse g−1

τ to this relation l times to get gk−lτ Ω∩Ω 6= ∅. Now choose any point

ϕ ∈ gnτ Ω∩Ω, where n = k− l, and defineϕ0 = g−nτ ϕ. Then by construction bothϕ0 and gnτ ϕ0 lie within
Ω and the theorem is proven.

Each of the two central assumptions – invertibility and volume preservation – is crucial. Without either
of them, the proof fails. Consider, for example, a volume-preserving map which is not invertible. An
example might be a mapping f : R → R which takes any real number to its fractional part. Thus,
f(π) = 0.14159265 . . .. Let us restrict our attention to intervals of width less than unity. Clearly f is
then volume preserving. The action of f on the interval [2, 3) is to map it to the interval [0, 1). But [0, 1)
remains fixed under the action of f , so no point within the interval [2, 3) will ever return under repeated
iterations of f . Thus, f does not exhibit Poincaré recurrence.
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Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract.
For a one-dimensional oscillator obeying ẍ+2βẋ+Ω2

0x = 0 one has∇·u = −2β < 0 (β > 0 for damping).

Thus the convective derivative is equal toDt̺ = −(∇·u)̺ = +2β̺which says that the density increases
exponentially in the comoving frame, as ̺(t) = e2βt ̺(0). Thus, phase space volumes collapse, and are
not preserved by the dynamics. In this case, it is possible for the set Υ to be of finite volume, even if it
is the union of an infinite number of sets gnτ Ω, because the volumes of these component sets themselves
decrease exponentially, as vol(gnτ Ω) = e−2nβτ vol(Ω). A damped pendulum, released from rest at some

small angle θ0 , will not return arbitrarily close to these initial conditions.

16.2.4 Poisson brackets

The time evolution of any function F (q,p) over phase space is given by

d

dt
F
(
q(t),p(t), t

)
=
∂F

∂t
+

n∑

σ=1

{
∂F

∂qσ
q̇σ +

∂F

∂pσ
ṗσ

}

≡ ∂F

∂t
+
{
F,H

}
,

(16.24)

where the Poisson bracket {· , ·} is given by

{
A,B

}
≡

n∑

σ=1

(
∂A

∂qσ

∂B

∂pσ
− ∂A

∂pσ

∂B

∂qσ

)

=

2n∑

i,j=1

Jij
∂A

∂ξi

∂B

∂ξj
.

(16.25)

Properties of the Poisson bracket:

• Antisymmetry: {
f, g
}
= −

{
g, f
}

. (16.26)

• Bilinearity: if λ is a constant, and f , g, and h are functions on phase space, then

{
f + λ g, h

}
=
{
f, h
}
+ λ{g, h

}
. (16.27)

Linearity in the second argument follows from this and the antisymmetry condition.

• Associativity: {
fg, h

}
= f

{
g, h
}
+ g
{
f, h
}

. (16.28)

• Jacobi identity: {
f, {g, h}

}
+
{
g, {h, f}

}
+
{
h, {f, g}

}
= 0 . (16.29)

Some other useful properties:
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◦ If {A,H} = 0 and ∂A
∂t = 0, then dA

dt = 0 , i.e. A(q, p) is a constant of the motion.

◦ If {A,H} = 0 and {B,H} = 0, then
{
{A,B},H

}
= 0. If in addition A and B have no explicit time

dependence, we conclude that {A,B} is a constant of the motion.

◦ It is easily established that

{qα, qβ} = 0 , {pα, pβ} = 0 , {qα, pβ} = δαβ . (16.30)

16.3 Canonical Transformations

16.3.1 Point transformations in Lagrangian mechanics

In Lagrangian mechanics, we are free to redefine our generalized coordinates, viz.

Qσ = Qσ(q1, . . . , qn, t) . (16.31)

This is called a “point transformation.” The transformation is invertible if

det

(
∂Qα
∂qβ

)
6= 0 . (16.32)

The transformed Lagrangian, L̃, written as a function of the new coordinatesQ and velocities Q̇, is

L̃
(
Q, Q̇, t) = L

(
q(Q, t), q̇(Q, Q̇, t), t

)
+
d

dt
F
(
q(Q, t), t

)
, (16.33)

where F (q, t) is a function only of the coordinates qσ(Q, t) and time1. Finally, Hamilton’s principle,

δ

tb∫

t1

dt L̃(Q, Q̇, t) = 0 (16.34)

with δQσ(ta) = δQσ(tb) = 0, still holds, and the form of the Euler-Lagrange equations remains un-
changed:

∂L̃

∂Qσ
− d

dt

(
∂L̃

∂Q̇σ

)
= 0 . (16.35)

The invariance of the equations of motion under a point transformation may be verified explicitly. We
first evaluate

d

dt

(
∂L̃

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂q̇α

∂Q̇σ

)
=

d

dt

(
∂L

∂q̇α

∂qα
∂Qσ

)
, (16.36)

1We must have that the relation Qσ = Qσ(q, t) is invertible.
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where the relation ∂q̇α/∂Q̇σ = ∂qα/∂Qσ follows from q̇α = ∂qα
∂Qσ

Q̇σ+
∂qα
∂t .We know that adding a total

time derivative of a function F̃ (Q, t) = F
(
q(Q, t), t

)
to the Lagrangian does not alter the equations of

motion. Hence we can set F = 0 and compute

∂L̃

∂Qσ
=

∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

∂q̇α
∂Qσ

=
∂L

∂qα

∂qα
∂Qσ

+
∂L

∂q̇α

(
∂2qα

∂Qσ ∂Qσ′
Q̇σ′ +

∂2qα
∂Qσ ∂t

)

=
d

dt

(
∂L

∂q̇σ

)
∂qα
∂Qσ

+
∂L

∂q̇α

d

dt

(
∂qα
∂Qσ

)

=
d

dt

(
∂L

∂q̇σ

∂qα
∂Qσ

)
=

d

dt

(
∂L̃

∂Q̇σ

)
,

(16.37)

where the last equality is what we obtained earlier in eqn. 16.36.

16.3.2 Canonical transformations in Hamiltonian mechanics

In Hamiltonian mechanics, we will deal with a much broader class of transformations – ones which mix
all the q’s and p’s. The general form for a canonical transformation (CT) is

qσ = qσ
(
Q1, . . . , Qn ;P1, . . . , Pn; t

)

pσ = pσ
(
Q1, . . . , Qn ;P1, . . . , Pn; t

)
,

(16.38)

with σ ∈ {1, . . . , n}. We may also write

ξi = ξi
(
Ξ1, . . . , Ξ2n; t

)
, (16.39)

with i ∈ {1, . . . , 2n}. The transformed Hamiltonian is H̃(Q,P , t)., where, as we shall see below, H̃(Q,P , t) =
H(q,p, t) + ∂

∂tF (q,Q, t).

What sorts of transformations are allowed? Well, if Hamilton’s equations are to remain invariant, then

Q̇σ =
∂H̃

∂Pσ
, Ṗσ = − ∂H̃

∂Qσ
, (16.40)

which gives

∂Q̇σ
∂Qσ

+
∂Ṗσ
∂Pσ

= 0 =
∂Ξ̇i
∂Ξi

. (16.41)

I.e. the flow remains incompressible in the new (Q,P ) variables. We will also require that phase space
volumes are preserved by the transformation, i.e.

det

(
∂Ξi
∂ξj

)
=

∣∣∣∣
∣∣∣∣
∂(Q,P )

∂(q,p)

∣∣∣∣
∣∣∣∣ = 1 . (16.42)

Additional conditions will be discussed below.
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16.3.3 Hamiltonian evolution

Hamiltonian evolution itself defines a canonical transformation. Let ξi = ξi(t) and let ξ′i = ξi(t + dt).

Then from the dynamics ξ̇i = Jij ∂H/∂ξj , we have

ξi(t+ dt) = ξi(t) + Jij
∂H

∂ξj
dt+O

(
dt2
)

. (16.43)

Thus,

∂ξ′i
∂ξj

=
∂

∂ξj

(
ξi + Jik

∂H

∂ξk
dt+O

(
dt2
))

= δij + Jik
∂2H

∂ξj ∂ξk
dt+O

(
dt2
)

.

(16.44)

Now, using the result det
(
1 + ǫM

)
= 1 + ǫ Tr M +O(ǫ2) , we have

∣∣∣∣
∣∣∣∣
∂ξ′i
∂ξj

∣∣∣∣
∣∣∣∣ = 1 + Jjk

∂2H

∂ξj ∂ξk
dt+O

(
dt2
)
= 1 +O

(
dt2
)

. (16.45)

16.3.4 Symplectic structure

We have that

ξ̇i = Jij
∂H

∂ξj
. (16.46)

Suppose we make a time-independent canonical transformation from {ξi} to new phase space coordi-

nates {Ξa}, where Ξa = Ξa(ξ). We then have

Ξ̇a =
∂Ξa
∂ξj

ξ̇j =
∂Ξa
∂ξj

Jjk
∂H

∂ξk
. (16.47)

But if the transformation is canonical, then the equations of motion are preserved, and we also have

Ξ̇a = Jab
∂H̃

∂Ξb
= Jab

∂H

∂ξk

∂ξk
∂Ξb

. (16.48)

Equating these two expressions, we have

Maj Jjk
∂H

∂ξk
= JabM

−1
kb

∂H

∂ξk
, (16.49)

where Maj ≡ ∂Ξa/∂ξj is the Jacobian of the transformation. Since the equality must hold for all ξ, we
conclude

MJ = J
(
M t
)−1

=⇒ MJM t = J . (16.50)

A matrix M satisfying MM t = I is an orthogonal matrix. A matrix M satisfying MJM t = J is called
symplectic. We write M ∈ Sp(2n), i.e. M is an element of the group of symplectic matrices2 of rank 2n.

2Note that the rank of a symplectic matrix is always even. Note also MJM t = J implies M tJM = J.
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The symplectic property of M guarantees that the Poisson brackets are preserved under a canonical
transformation:

{
A,B

}
ξ
= Jij

∂A

∂ξi

∂B

∂ξj
= Jij

∂A

∂Ξa

∂Ξa
∂ξi

∂B

∂Ξb

∂Ξb
∂ξj

=
(
Mai JijM

t
jb

) ∂A
∂Ξa

∂B

∂Ξb
= Jab

∂A

∂Ξa

∂B

∂Ξb
=
{
A,B

}
Ξ

.

(16.51)

16.3.5 Generating functions for canonical transformations

For a transformation to be canonical, we require

δ

tb∫

ta

dt
{
pσ q̇σ −H(q,p, t)

}
= 0 = δ

tb∫

ta

dt
{
Pσ Q̇σ − H̃(Q,P , t)

}
. (16.52)

This is satisfied provided

{
pσ q̇σ −H(q,p, t)

}
= λ

{
Pσ Q̇σ − H̃(Q,P , t) +

d

dt
F (q,Q, t)

}
, (16.53)

where λ is a constant. For canonical transformations3, λ = 1. Thus,

H̃(Q,P , t) = H(q,p, t) + Pσ Q̇σ − pσ q̇σ +
∂F

∂qσ
q̇σ +

∂F

∂Qσ
Q̇σ +

∂F

∂t
. (16.54)

Thus, we require

∂F

∂qσ
= pσ ,

∂F

∂Qσ
= −Pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Pσ
= 0 , (16.55)

which says that F = F (q,Q, t) is only a function of (q,Q, t) and not a function of any of the momentum
variables p and P . The transformed Hamiltonian is then

H̃(Q,P , t) = H(q,p, t) +
∂F (q,Q, t)

∂t
. (16.56)

There are four possibilities, corresponding to the freedom to make Legendre transformations with re-
spect to the coordinate arguments of F (q,Q, t) :

F (q,Q, t) =





F1(q,Q, t) ; pσ = +∂F1
∂qσ

, Pσ = − ∂F1
∂Qσ

(type I)

F2(q,P , t)− Pσ Qσ ; pσ = +∂F2
∂qσ

, Qσ = + ∂F2
∂Pσ

(type II)

F3(p,Q, t) + pσ qσ ; qσ = −∂F3
∂pσ

, Pσ = − ∂F3
∂Qσ

(type III)

F4(p,P , t) + pσ qσ − Pσ Qσ ; qσ = −∂F4
∂pσ

, Qσ = + ∂F4
∂Pσ

(type IV)

(16.57)

3Solutions of eqn. 16.53 with λ 6= 1 are known as extended canonical transformations. We can always rescale coordinates
and/or momenta to achieve λ = 1.



16.3. CANONICAL TRANSFORMATIONS 11

In each case (γ = 1, 2, 3, 4), we have

H̃(Q,P , t) = H(q,p, t) +
∂Fγ
∂t

. (16.58)

Let’s work out some examples:

• Consider the type-II transformation generated by

F2(q,P ) = Aσ(q)Pσ , (16.59)

where Aσ(q) is an arbitrary function of the {qσ}. We then have

Qσ =
∂F2

∂Pσ
= Aσ(q) , pσ =

∂F2

∂qσ
=
∂Aα
∂qσ

Pα . (16.60)

Thus,

Qσ = Aσ(q) , Pσ =
∂qα
∂Qσ

pα . (16.61)

This is a general point transformation of the kind discussed in eqn. 16.31. For a general linear point

transformation, Qα =Mαβ qβ , we have Pα = pβM
−1
βα , i.e. Q = Mq, P = pM−1. If Mαβ = δαβ , this

is the identity transformation. F2 = q1P3 + q3P1 interchanges labels 1 and 3, etc.

• Consider the type-I transformation generated by

F1(q,Q) = Aσ(q)Qσ . (16.62)

We then have

pσ =
∂F1

∂qσ
=
∂Aα
∂qσ

Qα

Pσ = − ∂F1

∂Qσ
= −Aσ(q) .

(16.63)

Note that Aσ(q) = qσ generates the transformation

(
q

p

)
−→

(
−P
+Q

)
. (16.64)

• A mixed transformation is also permitted. For example,

F (q,Q) = q1Q1 + (q3 −Q2)P2 + (q2 −Q3)P3 (16.65)

is of type-I with respect to index σ = 1 and type-II with respect to indices σ = 2, 3. The transfor-
mation effected is

Q1 = p1 , Q2 = q3 , Q3 = q2 , P1 = −q1 , P2 = p3 , P3 = p2 . (16.66)
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• Consider the n = 1 harmonic oscillator,

H(q, p) =
p2

2m
+ 1

2kq
2 . (16.67)

If we could find a time-independent canonical transformation such that

p =
√

2mf(P ) cosQ , q =

√
2 f(P )

k
sinQ , (16.68)

where f(P ) is some function of P , then we’d have H̃(Q,P ) = f(P ), which is cyclic in Q. To find
this transformation, we take the ratio of p and q to obtain

p =
√
mk q ctnQ , (16.69)

which suggests the type-I transformation

F1(q,Q) = 1
2

√
mk q2 ctnQ . (16.70)

This leads to

p =
∂F1

∂q
=
√
mk q ctnQ , P = −∂F1

∂Q
=

√
mk q2

2 sin2Q
. (16.71)

Thus,

q =

√
2P

4
√
mk

sinQ =⇒ f(P ) =

√
k

m
P = ωP , (16.72)

where ω =
√
k/m is the oscillation frequency. We therefore have that H̃(Q,P ) = ωP , whence

P = E/ω. The equations of motion are

Ṗ = −∂H̃
∂Q

= 0 , Q̇ =
∂H̃

∂P
= ω , (16.73)

which yields

Q(t) = ωt+ ϕ0 , q(t) =

√
2E

mω2
sin
(
ωt+ ϕ0

)
. (16.74)

16.4 Hamilton-Jacobi Theory

We’ve stressed the great freedom involved in making canonical transformations. Coordinates and mo-
menta, for example, may be interchanged – the distinction between them is purely a matter of conven-
tion! We now ask: is there any specially preferred canonical transformation? In this regard, one obvious

goal is to make the Hamiltonian H̃(Q,P , t) and the corresponding equations of motion as simple as
possible.

Recall the general form of the canonical transformation:

H̃(Q,P , t) = H(q,p, t) +
∂F (q,Q, t)

∂t
, (16.75)
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with

∂F

∂qσ
= pσ ,

∂F

∂pσ
= 0 ,

∂F

∂Qσ
= −Pσ ,

∂F

∂Pσ
= 0 . (16.76)

We now ask that this transformation result in the simplest Hamiltonian possible, that is, H̃(Q,P , t) = 0.
This requires we find a function F such that

∂F

∂t
= −H ,

∂F

∂qσ
= pσ . (16.77)

The remaining functional dependence may be taken to be either on Q (type I) or on P (type II). As it
turns out, the generating function F we seek is in fact the action, S, which is the integral of L with
respect to time, expressed as a function of its endpoint values.

16.4.1 The action as a function of coordinates and time

We have seen how the action S[η(τ)] is a functional of the path η(τ) and a function of the endpoint values

{qa, ta} and {qb, tb}. Let us define the action function S(q, t) as

S(q, t) =

t∫

ta

dτ L
(
η, η̇, τ) , (16.78)

where η(τ) starts at (qa, ta) and ends at (q, t). We also require that η(τ) satisfy the Euler-Lagrange
equations,

∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)
= 0 (16.79)

Let us now consider a new path, η̃(τ), also starting at (qa, ta), but ending at (q + dq, t + dt), and also
satisfying the equations of motion. The differential of S is

dS = S
[
η̃(τ)

]
− S

[
η(τ)

]
=

t+dt∫

ta

dτ L(η̃, ˙̃η, τ)−
t∫

ta

dτ L
(
η, η̇, τ)

=

t∫

ta

dτ

{
∂L

∂ησ

[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

[
˙̃ησ(τ)− η̇σ(τ)

]}
+ L

(
η̃(t), ˙̃η(t), t

)
dt

=

t∫

ta

dτ

{
∂L

∂ησ
− d

dτ

(
∂L

∂η̇σ

)}[
η̃σ(τ)− ησ(τ)

]
+
∂L

∂η̇σ

∣∣∣∣
t

[
η̃σ(t)− ησ(t)

]
+ L

(
η̃(t), ˙̃η(t), t

)
dt

= 0 + πσ(t) δησ(t) + L
(
η(t), η̇(t), t

)
dt+O(δq dt) , (16.80)

where we have defined πσ = ∂L/∂η̇σ , and δησ(τ) ≡ η̃σ(τ)− ησ(τ) .
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Figure 16.1: The paths η(τ) and η̃(τ).

Note that the differential dqσ is given by

dqσ = η̃σ(t+ dt)− ησ(t)
= η̃σ(t+ dt)− η̃σ(t) + η̃σ(t)− ησ(t)
= ˙̃ησ(t) dt+ δησ(t) = q̇σ(t) dt+ δησ(t) +O(δq dt) .

(16.81)

Thus, with πσ(t) ≡ pσ, we have

dS = pσ dqσ +
(
L− pσ q̇σ

)
dt

= pσ dqσ −H dt .
(16.82)

We therefore obtain
∂S

∂qσ
= pσ ,

∂S

∂t
= −H ,

dS

dt
= L . (16.83)

What about the lower limit at ta? Clearly there are n + 1 constants associated with this limit, and those

are:
{
q1(ta), . . . , qn(ta) ; ta

}
. Thus, we may write

S = S(q1, . . . , qn;Λ1, . . . , Λn, t) + Λn+1 , (16.84)

where our n + 1 constants are {Λ1, . . . , Λn+1}. If we regard S as a mixed generator, which is type-I in

some variables and type-II in others, then each Λσ for 1 ≤ σ ≤ n may be chosen to be either Qσ or Pσ.
We will define

Γσ =
∂S

∂Λσ
=

{
+Qσ if Λσ = Pσ

−Pσ if Λσ = Qσ
(16.85)

For each σ, the two possibilities Λσ = Qσ or Λσ = Pσ are of course rendered equivalent by a canonical

transformation (Qσ, Pσ)→ (Pσ,−Qσ).
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16.4.2 The Hamilton-Jacobi equation

Since the action S(q,Λ, t) generates a canonical transformation for which H̃(Q,P ) = 0, this requirement
may be written as

H
(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, t
)
+
∂S

∂t
= 0 . (16.86)

This is the Hamilton-Jacobi equation (HJE). It is a first order partial differential equation in n+1 variables,
and in general is nonlinear (since kinetic energy is generally a quadratic function of momenta). Since

H̃(Q,P , t) = 0, the equations of motion are trivial, and

Qσ(t) = const. , Pσ(t) = const. (16.87)

Once the HJE is solved, one must invert the relations Γσ = ∂S(q,Λ, t)/∂Λσ to obtain the qσ(Q,P , t).
This is possible only if

det

(
∂2S

∂qα ∂Λβ

)
6= 0 , (16.88)

which is known as the Hessian condition.

It is worth noting that the HJE may have several solutions. For example, consider the case of the free
particle in one dimension, with H(q, p) = p2/2m. The HJE is

1

2m

(
∂S

∂q

)2
+
∂S

∂t
= 0 . (16.89)

One solution of the HJE is

S(q, Λ, t) =
m (q − Λ)2

2t
. (16.90)

For this we find

Γ =
∂S

∂Λ
= −m

t
(q − Λ) ⇒ q(t) = Λ− Γ

m
t . (16.91)

Here Λ = q(0) is the initial value of q, and Γ = −p is minus the momentum.

Another equally valid solution to the HJE is

S(q, Λ, t) = q
√
2mΛ − Λ t . (16.92)

This yields

Γ =
∂S

∂Λ
= q

√
m

2Λ
− t ⇒ q(t) =

√
2Λ

m
(t+ Γ ) . (16.93)

For this solution, Λ = 1
2mv

2 is the energy and Γ may be related to the initial value q(0) = Γ
√
2Λ/m.
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16.4.3 Time-independent Hamiltonians

When H has no explicit time dependence, we may reduce the order of the HJE by one, writing

S(q,Λ, t) =W (q,Λ) + T (Λ, t) . (16.94)

The HJE becomes

H

(
q ,
∂W

∂q

)
= −∂T

∂t
. (16.95)

Note that the LHS of the above equation is independent of t, and the RHS is independent of q. Therefore,
each side must only depend on the constants Λ, which is to say that each side must be a constant, which,

without loss of generality, we take to be Λ1. Therefore

S(q,Λ, t) =W (q,Λ) − Λ1t . (16.96)

The function W (q,Λ) is called Hamilton’s characteristic function. The HJE now takes the form

H

(
q1, . . . , qn ,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= Λ1 . (16.97)

Note that adding an arbitrary constant C to S generates the same equation, and simply shifts the last

constant Λn+1 → Λn+1 + C . According to eqn. 16.96, this is equivalent to replacing t by t − t0 with

t0 = C/Λ1, i.e. it just redefines the zero of the time variable.

16.4.4 Example: one-dimensional motion

As an example of the method, consider the one-dimensional system,

H(q, p) =
p2

2m
+ U(q) . (16.98)

The HJE is
1

2m

(
∂W

∂q

)2
+ U(q) = Λ . (16.99)

Clearly Λ = E is the total energy. The HJE may be recast as

∂W

∂q
= ±

√
2m
[
Λ− U(q)

]
, (16.100)

with solution

W (q, Λ) = ±
√
2m

q∫
dq′
√
Λ− U(q′) , (16.101)

with S(q, Λ, t) =W (q, Λ)− Λt . We now have

p =
∂W

∂q
= ±

√
2m
[
Λ− U(q)

]
, (16.102)
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as well as

Γ =
∂S

∂Λ
=
∂W

∂Λ
− t = ±

√
m

2

q(t)∫
dq′√

Λ− U(q′)
− t . (16.103)

Thus, the motion q(t) is given by quadrature:

Γ + t = ±
√
m

2

q(t)∫
dq′√

Λ− U(q′)
, (16.104)

where Λ and Γ are constants. The lower limit on the integral is arbitrary and merely shifts t by another
constant. The characteristic function W (q, Λ) is actually double-valued in q, corresponding to right-
moving and left-moving parts of the motion.

16.4.5 Separation of variables

It is convenient to first work an example before discussing the general theory. Consider the following
Hamiltonian, written in spherical polar coordinates:

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2θ

)
+

potential U(r,θ,φ)︷ ︸︸ ︷
A(r) +

B(θ)

r2
+

C(φ)

r2 sin2θ
. (16.105)

We seek a characteristic function of the form W (r, θ, φ) =Wr(r) +Wθ(θ) +Wφ(φ) . The HJE is then

1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wφ

∂φ

)2

+A(r) +
B(θ)

r2
+

C(φ)

r2 sin2θ
= Λ1 = E .

(16.106)

Multiply through by r2 sin2θ to obtain

1

2m

(
∂Wφ

∂φ

)2
+C(φ) = − sin2θ

{
1

2m

(
∂Wθ

∂θ

)2
+B(θ)

}

− r2 sin2θ
{

1

2m

(
∂Wr

∂r

)2
+A(r)− Λ1

}
.

(16.107)

The LHS is independent of (r, θ), and the RHS is independent of φ. Therefore, we may set

1

2m

(
∂Wφ

∂φ

)2
+C(φ) = Λ2 . (16.108)

Proceeding, we replace the LHS in eqn. 16.107 with Λ2, arriving at

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= −r2

{
1

2m

(
∂Wr

∂r

)2
+A(r)− Λ1

}
. (16.109)
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The LHS of this equation is independent of r, and the RHS is independent of θ. Therefore,

1

2m

(
∂Wθ

∂θ

)2
+B(θ) +

Λ2

sin2θ
= Λ3 . (16.110)

We’re left with
1

2m

(
∂Wr

∂r

)2
+A(r) +

Λ3

r2
= Λ1 . (16.111)

The full solution is therefore

S(q,Λ, t) =
√
2m

r∫
dr′
√
Λ1 −A(r′)−

Λ3

r′2
+
√
2m

θ∫
dθ′
√
Λ3 −B(θ′)− Λ2

sin2θ′

+
√
2m

φ∫
dφ′

√
Λ2 −C(φ′)− Λ1t .

(16.112)

We then have

Γ1 =
∂S

∂Λ1
=
√

m
2

r(t)∫
dr′√

Λ1 −A(r′)− Λ3 r
′−2
− t

Γ2 =
∂S

∂Λ2
= −

√
m
2

θ(t)∫
dθ′

sin2θ′
√
Λ3 −B(θ′)− Λ2 csc

2θ′
+
√

m
2

φ(t)∫
dφ′√

Λ2 − C(φ′)
(16.113)

Γ3 =
∂S

∂Λ3
= −

√
m
2

r(t)∫
dr′

r′2
√
Λ1 −A(r′)− Λ3 r

′−2
+
√

m
2

θ(t)∫
dθ′√

Λ3 −B(θ′)− Λ2 csc
2θ′

.

The game plan here is as follows. The first of the above trio of equations is inverted to yield r(t) in terms
of t and constants. This solution is then invoked in the last equation (the upper limit on the first integral
on the RHS) in order to obtain an implicit equation for θ(t), which is invoked in the second equation to
yield an implicit equation for φ(t). The net result is the motion of the system in terms of time t and the

six constants (Λ1, Λ2, Λ3, Γ1, Γ2, Γ3). A seventh constant, associated with an overall shift of the zero of t,
arises due to the arbitrary lower limits of the integrals.

In general, the separation of variables method begins with4

W (q,Λ) =
n∑

σ=1

Wσ(qσ ,Λ) . (16.114)

Each Wσ(qσ,Λ) may be regarded as a function of the single variable qσ, and is obtained by satisfying an
ODE of the form5

Hσ

(
qσ,

dWσ

dqσ

)
= Λσ . (16.115)

4Here we assume complete separability. A given system may only be partially separable.
5Note that Hσ(qσ, pσ) may itself depend on several of the constants Λα . For example, eqn. 16.111 is of the form
Hr

(
r, ∂rWr, Λ3

)
= Λ1.
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We then have

pσ =
∂Wσ

∂qσ
, Γσ =

∂Wσ

∂Λσ
+ δσ,1 t . (16.116)

Note that while each Wσ depends on only a single qσ, it may depend on several of the Λσ.

16.5 Action-angle vriables

16.5.1 Circular phase orbits: librations and rotations

In a completely integrable system, the Hamilton-Jacobi equation may be solved by separation of vari-

ables. Each momentum pσ is a function of only its corresponding coordinate qσ plus constants – no other
coordinates enter:

pσ =
∂Wσ

∂qσ
= pσ(qσ,Λ) . (16.117)

The motion satisfies Hσ(qσ, pσ) = Λσ . The level sets of Hσ are curves Cσ. In general, these curves each

depend on all of the constants Λ, so we write Cσ = Cσ(Λ). The curves Cσ are the projections of the

full motion onto the (qσ, pσ) plane. In general we will assume the motion, and hence the curves Cσ, is
bounded. In this case, two types of projected motion are possible: librations and rotations. Librations are
periodic oscillations about an equilibrium position. Rotations involve the advancement of an angular
variable by 2π during a cycle. This is most conveniently illustrated in the case of the simple pendulum,
for which

H(φ, pφ) =
p2φ
2I

+ 1
2Iω

2
(
1− cosφ

)
. (16.118)

• When E < I ω2, the momentum pφ vanishes at φ = ± cos−1(2E/Iω2). The system executes libra-
tions between these extreme values of the angle φ.

• When E > I ω2, the kinetic energy is always positive, and the angle advances monotonically,
executing rotations.

In a completely integrable system, each Cσ is either a libration or a rotation6. Both librations and rotations

are closed curves. Thus, each Cσ is in general homotopic to (= “can be continuously distorted to yield”)
a circle, S1. For n freedoms, the motion is therefore confined to an n-torus, Tn:

Tn =

n times︷ ︸︸ ︷
S1 × S1 × · · · × S1 . (16.119)

These are called invariant tori (or invariant manifolds). There are many such tori, as there are many Cσ
curves in each of the n two-dimensional submanifolds.

Invariant tori never intersect! This is ruled out by the uniqueness of the solution to the dynamical system,
expressed as a set of coupled ordinary differential equations.

6Cσ may correspond to a separatrix, but this is a nongeneric state of affairs.
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Figure 16.2: Phase curves for the simple pendulum, showing librations (in blue), rotations (in green),
and the separatrix (in red). This phase flow is most correctly viewed as taking place on a cylinder,
obtained from the above sketch by identifying the lines φ = π and φ = −π.

Note also that phase space is of dimension 2n, while the invariant tori are of dimension n. Phase space
is ‘covered’ by the invariant tori, but it is in general difficult to conceive of how this happens. Perhaps
the most accessible analogy is the n = 1 case, where the ‘1-tori’ are just circles. Two-dimensional phase
space is covered noninteracting circular orbits. (The orbits are topologically equivalent to circles, although
geometrically they may be distorted.) It is challenging to think about the n = 2 case, where a four-
dimensional phase space is filled by nonintersecting 2-tori.

16.5.2 Action-Angle Variables

For a completely integrable system, one can transform canonically from (q,p) to new coordinates (φ,J)
which specify a particular n-torus Tn as well as the location on the torus, which is specified by n angle

variables. The {Jσ} are ‘momentum’ variables which specify the torus itself; they are constants of the

motion since the tori are invariant. They are called action variables. Since J̇σ = 0, we must have

J̇σ = − ∂H
∂φσ

= 0 =⇒ H = H(J) . (16.120)

The {φσ} are the angle variables.

The coordinate φσ describes the projected motion along Cσ, and is normalized by

∮

Cσ

dφσ = 2π (once around Cσ) . (16.121)

The dynamics of the angle variables are given by

φ̇σ =
∂H

∂Jσ
≡ νσ(J) . (16.122)
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Thus, the motion is given by
φσ(t) = φσ(0) + νσ(J) t . (16.123)

The
{
νσ(J)

}
are frequencies describing the rate at which the Cσ are traversed, and the period is Tσ(J) =

2π/νσ(J).

16.5.3 Canonical transformation to action-angle variables

The {Jσ} determine the {Cσ}; each qσ determines a point on Cσ. This suggests a type-II transformation,

with generator F2(q,J):

pσ =
∂F2

∂qσ
, φσ =

∂F2

∂Jσ
. (16.124)

Note that7

2π =

∮

Cσ

dφσ =

∮

Cσ

d

(
∂F2

∂Jσ

)
=

∮

Cσ

∂2F2

∂Jσ ∂qσ
dqσ =

∂

∂Jσ

∮

Cσ

pσ dqσ , (16.125)

which suggests the definition

Jσ =
1

2π

∮

Cσ

pσ dqσ . (16.126)

I.e. Jσ is (2π)−1 times the area enclosed by Cσ.

If, separating variables,

W (q,Λ) =
∑

σ

Wσ(qσ,Λ) (16.127)

is Hamilton’s characteristic function for the transformation (q,p)→ (Q,P ), then

Jσ =
1

2π

∮

Cσ

∂Wσ

∂qσ
dqσ = Jσ(Λ) (16.128)

is a function only of the {Λα} and not the {Γα}. We then invert this relation to obtain Λ(J), to finally
obtain

F2(q,J) =W
(
q,Λ(J)

)
=
∑

σ

Wσ

(
qσ,Λ(J)

)
. (16.129)

Thus, the recipe for canonically transforming to action-angle variable is as follows:

(1) Separate and solve the Hamilton-Jacobi equation for W (q,Λ) =
∑

σWσ(qσ,Λ).

(2) Find the orbits Cσ(Λ) , i.e. the level sets satisfying Hσ(qσ, pσ) = Λσ.

(3) Invert the relation Jσ(Λ) =
1
2π

∮
Cσ

∂Wσ

∂qσ
dqσ to obtain Λ(J).

7In general, we should write d
(
∂F2

∂Jσ

)
= ∂2F2

∂Jσ ∂qα
dqα with a sum over α. However, in eqn. 16.125 all coordinates and momenta

other than qσ and pσ are held fixed. Thus, α = σ is the only term in the sum which contributes.
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(4) F2(q,J) =
∑

σWσ

(
qσ,Λ(J)

)
is the desired type-II generator8.

16.5.4 Examples

Harmonic oscillator

The Hamiltonian is

H =
p2

2m
+ 1

2mω
2
0 q

2 , (16.130)

hence the Hamilton-Jacobi equation is

(
dW

dq

)2
+m2ω2

0 q
2 = 2mΛ . (16.131)

Thus,

p =
dW

dq
= ±

√
2mΛ−m2ω2

0q
2 . (16.132)

We now define

q ≡
√

2Λ

mω2
0

sin θ ⇒ p =
√
2mΛ cos θ , (16.133)

in which case

J =
1

2π

∮
p dq =

1

2π
· 2Λ
ω0
·

2π∫

0

dθ cos2θ =
Λ

ω0
. (16.134)

Solving the HJE, we write
dW

dθ
=
∂q

∂θ
· dW
dq

= 2J cos2θ . (16.135)

Integrating, we obtain
W = Jθ + 1

2J sin 2θ , (16.136)

up to an irrelevant constant. We then have

φ =
∂W

∂J

∣∣∣∣
q

= θ + 1
2 sin 2θ + J

(
1 + cos 2θ

) ∂θ
∂J

∣∣∣∣
q

. (16.137)

To find (∂θ/∂J)q , we differentiate q =
√

2J/mω0 sin θ:

dq =
sin θ√
2mω0J

dJ +

√
2J

mω0
cos θ dθ ⇒ ∂θ

∂J

∣∣∣∣
q

= − 1

2J
tan θ . (16.138)

Plugging this result into eqn. 16.137, we obtain φ = θ. Thus, the full transformation is

q =

√
2J

mω0
sinφ , p =

√
2mω0J cosφ . (16.139)

8Note that F2(q,J) is time-independent. I.e. we are not transforming to H̃ = 0, but rather to H̃ = H̃(J).
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The Hamiltonian is
H = ω0 J , (16.140)

hence φ̇ = ∂H
∂J = ω0 and J̇ = −∂H

∂φ = 0, with solution φ(t) = φ(0) + ω0 t and J(t) = J(0).

Particle in a box

Consider a particle in an open box of dimensions Lx × Ly moving under the influence of gravity. The
bottom of the box lies at z = 0. The Hamiltonian is

H =
p2x
2m

+
p2y
2m

+
p2z
2m

+mgz . (16.141)

Step one is to solve the Hamilton-Jacobi equation via separation of variables. The Hamilton-Jacobi
equation is written

1

2m

(
∂Wx

∂x

)2
+

1

2m

(
∂Wy

∂y

)2
+

1

2m

(
∂Wz

∂z

)2
+mgz = E ≡ Λz . (16.142)

We can solve for Wx,y by inspection:

Wx(x) =
√

2mΛx x , Wy(y) =
√

2mΛy y . (16.143)

We then have9

W ′
z(z) = −

√
2m
(
Λz − Λx − Λy −mgz

)

Wz(z) =
2
√
2

3
√
mg

(
Λz − Λx − Λy −mgz

)3/2
.

(16.144)

Step two is to find the Cσ. Clearly px,y =
√

2mΛx,y. For fixed px, the x motion proceeds from x = 0 to
x = Lx and back, with corresponding motion for y. For x, we have

pz(z) =W ′
z(z) =

√
2m
(
Λz − Λx − Λy −mgz

)
, (16.145)

and thus Cz is a truncated parabola, with zmax = (Λz − Λx − Λy)/mg.

Step three is to compute J(Λ) and invert to obtain Λ(J). We have

Jx =
1

2π

∮

Cx

px dx =
1

π

Lx∫

0

dx
√

2mΛx =
Lx
π

√
2mΛx

Jy =
1

2π

∮

Cy

py dy =
1

π

Ly∫

0

dy
√

2mΛy =
Ly
π

√
2mΛy

(16.146)

9Our choice of signs in taking the square roots for W ′

x, W ′

y, and W ′

z is discussed below.
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Figure 16.3: The librations Cz and Cx. Not shown is Cy, which is of the same shape as Cx.

and

Jz =
1

2π

∮

Cz

pz dz =
1

π

zmax∫

0

dz
√

2m
(
Λz − Λx − Λy −mgz

)

=
2
√
2

3π
√
mg

(
Λz − Λx − Λy

)3/2
.

(16.147)

We now invert to obtain

Λx =
π2

2mL2
x

J2
x , Λy =

π2

2mL2
y

J2
y

Λz =

(
3π
√
mg

2
√
2

)2/3
J2/3
z +

π2

2mL2
x

J2
x +

π2

2mL2
y

J2
y .

(16.148)

F2

(
x, y, z, Jx, Jy , Jz

)
=
πx

Lx
Jx +

πy

Ly
Jy + π

(
J2/3
z − 2m2/3g1/3z

(3π)2/3

)3/2
. (16.149)

We now find

φx =
∂F2

∂Jx
=
πx

Lx
, φy =

∂F2

∂Jy
=
πy

Ly
(16.150)

and

φz =
∂F2

∂Jz
= π

√
1− 2m2/3g1/3z

(3πJz)
2/3

= π

√
1− z

zmax

, (16.151)

where zmax(Jz) = (3πJz/m)2/3
/
2g1/3. The momenta are

px =
∂F2

∂x
=
πJx
Lx

, py =
∂F2

∂y
=
πJy
Ly

(16.152)
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and

pz =
∂F2

∂z
= −
√
2m

((
3π
√
mg

2
√
2

)2/3
J2/3
z −mgz

)1/2
. (16.153)

We note that the angle variables φx,y,z seem to be restricted to the range [0, π], which seems to be at odds

with eqn. 16.125. Similarly, the momenta px,y,z all seem to be positive, whereas we know the momenta
reverse sign when the particle bounces off a wall. The origin of the apparent discrepancy is that when

we solved for the functions Wx,y,z, we had to take a square root in each case, and we chose a particular

branch of the square root. So rather than Wx(x) =
√
2mΛx x, we should have taken

Wx(x) =

{√
2mΛx x if px > 0√
2mΛx (2Lx − x) if px < 0 .

(16.154)

The relation Jx = (Lx/π)
√
2mΛx is unchanged, hence

Wx(x) =

{
(πx/Lx)Jx if px > 0

2πJx − (πx/Lx)Jx if px < 0 .
(16.155)

and

φx =

{
πx/Lx if px > 0

π(2Lx − x)/Lx if px < 0 .
(16.156)

Now the angle variable φx advances by 2π during the cycle Cx. Similar considerations apply to the y
and z sectors.

16.6 Integrability and Motion on Invariant Tori

16.6.1 Librations and rotations

As discussed above, a completely integrable Hamiltonian system is solvable by separation of variables.
The angle variables evolve as

φσ(t) = νσ(J) t+ φσ(0) . (16.157)

Thus, they wind around the invariant torus, specified by {Jσ} at constant rates. In general, while each
φσ executes periodic motion around a circle, the motion of the system as a whole is not periodic, since
the frequencies νσ(J) are not, in general, commensurate. Periodic motion requires that there exists a
time T such that νσ(J)T = 2πkσ with kσ ∈ Z for each σ ∈ {1, . . . , n} where each . This means the

ratio of any two frequencies νσ/νσ′ = kσ/kσ′ ∈ Q must be a rational number. T is the smallest possible
such period provided the set {k1, . . . , kn} has no common factors. On a given torus, there are several
possible orbits, depending on initial conditions φ(0). However, since the frequencies are determined
by the action variables, which specify each such invariant torus, on a given torus either all orbits are
periodic, or none are.
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In terms of the original coordinates q, there are two possibilities:

qσ(t) =

∞∑

ℓ1=−∞

· · ·
∞∑

ℓn=−∞

A
(σ)
ℓ1ℓ2···ℓn

eiℓ1φ1(t) · · · eiℓnφn(t) ≡
∑

ℓ

Aσℓ e
iℓ·φ(t) (libration) (16.158)

or

qσ(t) =
q◦σ φσ(t)

2π
+
∑

ℓ

Bσ
ℓ e

iℓ·φ(t) (rotation) . (16.159)

For rotations, the variable qσ(t) increased by ∆qσ = q◦σ .

I want to distinguish two important concepts. Complete periodicity, as we have defined, requires that
there exists a time T (J) such that νσ(J)T (J) = 2πkσ , with kσ ∈ Z for all σ ∈ {1, . . . , n}. The period is
then defined to be the smallest nonzero such value of T (J). The second condition, resonance is weaker
and only requires that there exists some ℓ ∈ Zn such that ℓ · ν(J) = 010. Resonance is thus equivalent to
periodicity on a lower-dimensional sub-torus Tk with k < n. In other words, if the projected dynamics φ(t)
onto any 2-torus T2 = S1 × S1 spanned by coordinates (φσ, φσ̄) is periodic, where σ, σ̄ ∈ {1, . . . , n}, then
the original n-torus is said to be resonant. Complete periodicity is thus a maximal state of resonance,
where the motion projected onto any subtorus T2 is periodic.

16.6.2 Liouville-Arnol’d theorem

Another statement of complete integrability is the content of the Liouville-Arnol’d theorem, which says
the following. Suppose that a time-independent Hamiltonian H(q,p) has n first integrals Ik(q,p) with
k ∈ {1, . . . , n}. This means that (see eqn. 16.24)

0 =
d

dt
Ik(q,p) =

n∑

σ=1

(
∂Ik
∂qσ

q̇σ +
∂Ik
∂pσ

ṗσ

)
=
{
Ik , H

}
. (16.160)

If the {Ik} are independent functions, meaning that the phase space gradients {∇Ik} constitute a set of n
linearly independent vectors at almost every point (q,p) ∈ M in phase space, and the different first in-
tegrals commute with respect to the Poisson bracket, i.e. {Ik, Il} = 0, then the set of Hamilton’s equations
of motion is completely solvable11. The theorem establishes that12

(i) The space MI =
{
(q,p) ∈ M

∣∣ Ik(p, q) = Ck ∀ k ∈ {1, . . . , n}
}

is diffeomorphic to an n-torus
T n ≡ S1 × S1 × · · · S1, on which one can introduce action-angle variables (φ,J) on patches, where
φ are coordinates onMI and J are the first integrals, i.e. Jk(I1, . . . , In) = Ik.

(ii) The equations of motion are İk = 0 and φ̇k = ωk(I1, . . . , In).

Note that the Liouville-Arnol’d theorem does not require that H that H̃(I) =
∑

k H̃
(k)(Ik), which would

be a trivial state of affairs.

10Clearly if ℓ · ν(J) = 0, then replacing ℓ by pℓ for any p ∈ Z also satisfies the resonance condition.
11Two first integrals Ik and Il whose Poisson bracket {Ik, Il} = 0 vanishes are said to be in involution.
12See chapter 1 of http://www.damtp.cam.ac.uk/user/md327/ISlecture notes 2012.pdf for a proof.
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16.7 Adiabatic Invariants

16.7.1 Slow perturbations

Adiabatic perturbations are slow, smooth, time-dependent perturbations to a dynamical system. A clas-
sic example: a pendulum with a slowly varying length l(t). Suppose λ(t) is the adiabatic parameter. We
writeH = H

(
q,p ;λ(t)

)
. All explicit time-dependence toH comes through λ(t). Typically, a dimension-

less parameter ǫ may be associated with the perturbation:

ǫ =
1

ω0

∣∣∣∣
d log λ

dt

∣∣∣∣ , (16.161)

where ω0 is the natural frequency of the system when λ is constant. We require ǫ ≪ 1 for adiabaticity.
In adiabatic processes, the action variables are conserved to a high degree of accuracy. These are the
adiabatic invariants. For example, for the harmonic oscillator, the action is J = E/ν. While E and ν
may vary considerably during the adiabatic process, their ratio is very nearly fixed. As a consequence,
assuming small oscillations,

E = νJ = 1
2mgl θ

2
0 ⇒ θ0(l) ≈

2J

m
√
g l3/2

, (16.162)

where θ0(l) is the amplitude of the oscillation. Adiabatic invariance of J thus entails θ0(ℓ) ∝ l−3/2.

Consider an n = 1 system, and suppose that for fixed λ the Hamiltonian is transformed to action-angle
variables via the generator S(q, J ;λ). Now let λ = λ(t). S

(
q, J ;λ(t)

)
is still a type-II generating function

of a canonical transformation. The resulting transformed Hamiltonian is

H̃(φ, J, t) = H(J ;λ) +
∂S

∂λ

dλ

dt
, (16.163)

where

H(J ;λ) = H
(
q(φ, J ;λ), p(φ, J ;λ);λ) (16.164)

is a function only of J and the instantaneous value of λ. Hamilton’s equations are now

φ̇ = +
∂H̃

∂J
= ν(J ;λ) +

∂2S

∂λ∂J

dλ

dt

J̇ = −∂H̃
∂φ

= − ∂2S

∂λ∂φ

dλ

dt
,

(16.165)

where ν(J ;λ) ≡ ∂H(J ;λ)/∂J , and where S(φ, J ;λ) = S
(
q(φ, J ;λ), J ;λ

)
The second of eqns. 16.165 may

then be Fourier decomposed as

J̇ = −iλ̇
∞∑

m=−∞

m
∂Sm(J ;λ)

∂λ
eimφ , (16.166)
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hence

∆J = J(t = +∞)− J(t = −∞) =
∞∑

m=−∞

(−im)

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eimφ . (16.167)

Since λ̇ is small, we have φ(t) = νt+ β, to lowest order. We must therefore evaluate integrals such as

Im =

∞∫

−∞

dt

{
∂Sm(J ;λ)

∂λ

dλ

dt

}
eimνt . (16.168)

The term in curly brackets is a smooth, slowly varying function of t. Call it f(t). We presume f(t) can
be analytically continued off the real t axis, and that its closest singularities in the complex t plane lies
at Im t = ±τ , where |ντ | ≫ 1. In this case Im behaves as exp(−|m|ντ). Consider, for example, the
Lorentzian,

f(t) =
1

π

τ

t2 + τ2
⇒

∞∫

−∞

dt f(t) eimνt = e−|mντ | , (16.169)

which is exponentially small in the dimensionless product |ντ |. Because of this, only m = ±1 need be
considered. What this tells us is that the change ∆J may be made arbitrarily small by a sufficiently
slowly varying λ(t).

16.7.2 Example: mechanical mirror

Consider a two-dimensional version of a mechanical mirror, depicted in fig. 16.4. A particle bounces

between two curves, y = ±D(x), where |D′(x)| ≪ 1. The bounce time given by τb⊥ = 2D/vy . We

assume τ ≪ L/vx, where vx,y are the components of the particle’s velocity, and L is the total length of
the system. There are, therefore, many bounces, which means the particle gets to sample the curvature
in D(x). The adiabatic invariant is the action,

J =
1

2π

D∫

−D

dymvy +
1

2π

−D∫

D

dym (−vy) =
2

π
mvyD(x) . (16.170)

Thus,

E = 1
2m
(
v2x + v2y) =

1
2mv

2
x +

π2J2

8mD2(x)
, (16.171)

or

v2x =
2E

m
−
(

πJ

2mD(x)

)2
. (16.172)

The particle is reflected in the throat of the device at horizontal coordinate x∗, where

D(x∗) =
πJ√
8mE

. (16.173)
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Figure 16.4: A mechanical mirror.

16.7.3 Example: magnetic mirror

Consider a particle of charge e moving in the presence of a uniform magnetic field B = Bẑ. Recall the

basic physics: velocity in the parallel direction vz is conserved, while in the plane perpendicular to B
the particle executes circular ‘cyclotron orbits’, satisfying

mv2⊥
ρ

=
e

c
v⊥B ⇒ ρ =

mcv⊥
eB

, (16.174)

where ρ is the radial coordinate in the plane perpendicular to B. The period of the orbits is given by

T = 2πρv⊥ = 2πmc/eB, hence their frequency is the cyclotron frequency ωc = eB/mc.

Now assume that the magnetic field is spatially dependent. Note that a spatially varyingB-field cannot
be unidirectional:

∇ ·B = ∇⊥ ·B⊥ +
∂Bz
∂z

= 0 . (16.175)

The non-collinear nature of B results in the drift of the cyclotron orbits. Nevertheless, if the field B

felt by the particle varies slowly on the time scale T = 2π/ωc, then the system possesses an adiabatic
invariant:

J =
1

2π

∮

C

p · dℓ = 1

2π

∮

C

(
mv + e

cA
)
· dℓ

=
m

2π

∮

C

v · dℓ+ e

2πc

∮

int(C)

B · n̂ dΣ .
(16.176)

The last two terms are of opposite sign, and one has

J = −m
2π
· ρeBz
mc

· 2πρ+ e

2πc
· Bz · πρ2

= −eBzρ
2

2c
= − e

2πc
· ΦB(C) = −

m2v2⊥c

2eBz
,

(16.177)

where ΦB(C) is the magnetic flux enclosed by C. The energy is E = 1
2mv

2
⊥ + 1

2mv
2
z , hence we have

vz =

√
2

m

(
E −MB

)
. (16.178)

where

M ≡ − e

mc
J =

e2

2πmc2
ΦB(C) (16.179)
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Figure 16.5: B field lines in a magnetic bottle.

is the magnetic moment. Note that vz vanishes when B = Bmax = E/M . When this limit is reached,
the particle turns around. This is a magnetic mirror. A pair of magnetic mirrors may be used to confine
charged particles in a magnetic bottle, depicted in fig. 16.5.

Let v‖,0 , v⊥,0 , andB‖,0 be the longitudinal particle velocity, transverse particle velocity, and longitudinal

component of the magnetic field, respectively, at the point of injection. Our two conservation laws, for
J and E, guarantee v2‖(z) + v2⊥(z) = v2‖,0 + v2⊥,0 and

v2⊥(z)

B‖(z)
=
v2⊥,0
B‖,0

. (16.180)

This leads to reflection at a longitudinal coordinate z∗, where

B‖(z
∗) = B‖,0

(
1 +

v2‖,0

v2⊥,0

)1/2
. (16.181)

The physics is quite similar to that of the mechanical mirror.

16.7.4 Resonances

When n > 1, we have

J̇α = −iλ̇
∑

m∈Zn

mα ∂Sm(J ;λ)

∂λ
eim·φ

∆Jα = −i
∑

m∈Zn

mα

∞∫

−∞

dt
∂Sm(J ;λ)

∂λ

dλ

dt
eim·νt eim·β .

(16.182)

Therefore, whenm · ν(J) = 0 we have a resonance, and the integral grows linearly with its time limits,
which is a violation of the adiabatic invariance of Jα.
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16.8 Canonical Perturbation Theory

16.8.1 Canonical transformations and perturbation theory

Suppose we have a Hamiltonian

H(ξ, t) = H0(ξ, t) + ǫH1(ξ, t) , (16.183)

where ǫ is a small dimensionless parameter. Let’s implement a type-II transformation, generated by
S(q,P , t):13

H̃(Q,P , t) = H(q,p, t) +
∂

∂t
S(q,P , t) . (16.184)

Let’s expand everything in powers of ǫ:

qσ = Qσ + ǫ q1,σ + ǫ2 q2,σ + . . .

pσ = Pσ + ǫ p1,σ + ǫ2 p2,σ + . . .

H̃ = H̃0 + ǫH̃1 + ǫ2H̃2 + . . .

S = qσPσ︸ ︷︷ ︸
identity

transformation

+ ǫS1 + ǫ2S2 + . . . .

(16.185)

Then

Qσ =
∂S

∂Pσ
= qσ + ǫ

∂S1
∂Pσ

+ ǫ2
∂S2
∂Pσ

+ . . .

= Qσ +

(
q1,σ +

∂S1
∂Pσ

)
ǫ+

(
q2,σ +

∂S2
∂Pσ

)
ǫ2 + . . .

(16.186)

and

pσ =
∂S

∂qσ
= Pσ + ǫ

∂S1
∂qσ

+ ǫ2
∂S2
∂qσ

+ . . .

= Pσ + ǫ p1,σ + ǫ2 p2,σ + . . . .

(16.187)

We therefore conclude, order by order in ǫ,

qk,σ = −∂Sk
∂Pσ

, pk,σ = +
∂Sk
∂qσ

. (16.188)

Now let’s expand the Hamiltonian:

H̃(Q,P , t) = H0(q,p, t) + ǫH1(q, p, t) +
∂S

∂t
(16.189)

= H0(Q,P , t) +
∂H0

∂Qσ
(qσ −Qσ) +

∂H0

∂Pσ
(pσ − Pσ) + ǫH1(Q,P , t) + ǫ

∂

∂t
S1(Q,P , t) +O(ǫ2) .

13Here S(q,P , t) is not meant to signify Hamilton’s principal function.
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Collecting terms, we have

H̃(Q,P , t) = H0(Q,P , t) +

(
− ∂H0

∂Qσ

∂S1
∂Pσ

+
∂H0

∂Pσ

∂S1
∂Qσ

+
∂S1
∂t

+H1

)
ǫ+O(ǫ2)

= H0(Q,P , t) +

(
H1 +

{
S1,H0

}
+
∂S1
∂t

)
ǫ+O(ǫ2) .

(16.190)

In the above expression, we evaluate Hk(q, p, t) and Sk(q, P, t) at q = Q and p = P and expand in the
differences q −Q and p− P . Thus, we have derived the relation

H̃(Q,P , t) = H̃0(Q,P , t) + ǫH̃1(Q,P , t) + . . . (16.191)

with

H̃0(Q,P , t) = H0(Q,P , t) (16.192)

H̃1(Q,P , t) = H1 +
{
S1,H0

}
+
∂S1
∂t

. (16.193)

The problem, though, is this: we have one equation, eqn, 16.193, for the two unknowns H̃1 and S1. Thus,

the problem is underdetermined. Of course, we could choose H̃1 = 0, for example. But we might just as

well demand that H̃1 satisfy some other desideratum, such as that H̃0 + ǫH̃1 be integrable.

Incidentally, this treatment is paralleled by one in quantum mechanics, where a unitary transformation
may be implemented to eliminate a perturbation to lowest order in a small parameter. Consider the
Schrödinger equation,

i~
∂ψ

∂t
= (H0 + ǫH1)ψ , (16.194)

and define χ by ψ ≡ eiS/~ χ , with

S = ǫ S1 + ǫ2 S2 + . . . . (16.195)

As before, the transformation U ≡ exp(iS/~) collapses to the identity in the ǫ→ 0 limit. Now let’s write
the Schrödinger equation for χ. Expanding in powers of ǫ, one finds

i~
∂χ

∂t
= H0 χ+ ǫ

(
H1 +

1

i~

[
S1,H0

]
+
∂S1
∂t

)
χ+ . . . ≡ H̃χ , (16.196)

where [A,B] = AB −BA is the commutator. Note the classical-quantum correspondence,

{A,B} ←→ 1

i~
[A,B] . (16.197)

Again, what should we choose for S1? Usually the choice is made to make the O(ǫ) term in H̃ vanish.
But this is not the only possible simplifying choice.
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16.8.2 Canonical perturbation theory for n = 1 systems

Here and henceforth we shall assume H(q,p, t) = H(q,p) is time-independent, and we write the per-
turbed Hamiltonian as

H(q,p) = H0(q,p) + ǫH1(q,p) . (16.198)

Let (φ0, J0) be the action-angle variables for H0. Then

H̃0(φ0, J0) = H0

(
q(φ0, J0), p(φ0, J0)

)
= H̃0(J0) . (16.199)

We define
H̃1(φ0, J0) = H1

(
q(φ0, J0), p(φ0, J0)

)
. (16.200)

We assume that H̃ = H̃0 + ǫH̃1 is integrable14, so it, too, possesses action-angle variables, which we

denote by (φ, J)15. Thus, there must be a canonical transformation taking (φ0, J0)→ (φ, J), with

H̃
(
φ0(φ, J), J0(φ, J)

)
≡ E(J) . (16.201)

We solve via a type-II canonical transformation:

S(φ0, J) = φ0J + ǫ S1(φ0, J) + ǫ2 S2(φ0, J) + . . . , (16.202)

where φ0J is the identity transformation. Then

J0 =
∂S

∂φ0
= J + ǫ

∂S1
∂φ0

+ ǫ2
∂S2
∂φ0

+ . . .

φ =
∂S

∂J
= φ0 + ǫ

∂S1
∂J

+ ǫ2
∂S2
∂J

+ . . . ,

(16.203)

and

E(J) = E0(J) + ǫE1(J) + ǫ2E2(J) + . . .

= H̃0(φ0, J0) + ǫH̃1(φ0, J0) .

(16.204)

How is it that the second line terminates after order ǫ while the first line contains terms of order ǫk for
all k ≥ 0? The answer is that when we express (φ0, J0) in terms of (φ, J), the canonical transformation
itself involve terms to all orders in ǫ, as we see from eqn. 16.203. In general, when a nonlinear system is
perturbed, the response will include expressions to all orders in the perturbation.

We now expand H̃(φ0, J0) in powers of J0 − J , keeping in mind that H̃0(φ0, J0) = H̃0(J0):

H̃(φ0, J0) = H̃0(J0) + ǫ H̃1(φ0, J0) (16.205)

= H̃0(J) +
∂H̃0

∂J
(J0 − J) +

1

2

∂2H̃0

∂J2
(J0 − J)2 + ǫ H̃1(φ0, J) + ǫ

∂H̃1

∂J

∣∣∣∣
φ0

(J0 − J) + . . . .

14This is always true, in fact, for n = 1.
15We assume the motion is bounded, so action-angle variables may be used.
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Collecting terms,

H̃(φ0, J0) = H̃0(J) +

(
H̃1+

∂H̃0

∂J

∂S1
∂φ0

)
ǫ+

(
∂H̃0

∂J

∂S2
∂φ0

+
1

2

∂2H̃0

∂J2

(
∂S1
∂φ0

)2
+
∂H̃1

∂J

∂S1
∂φ0

)
ǫ2 + . . . (16.206)

where all terms on the RHS are expressed as functions of φ0 and J . Equating terms, then,

E0(J) = H̃0(J)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1
∂φ0

E2(J) =
∂H̃0

∂J

∂S2
∂φ0

+
1

2

∂2H̃0

∂J2

(
∂S1
∂φ0

)2
+
∂H̃1

∂J

∂S1
∂φ0

.

(16.207)

How, one might ask, can we be sure that the LHS of each equation in the above hierarchy depends only

on J when each RHS seems to depend on φ0 as well? The answer is that we use the freedom to choose

each Sk to make this so. We demand each RHS be independent of φ0, which means it must be equal to

its average, 〈RHS(φ0) 〉, where

〈
f
(
φ0
)〉

=

2π∫

0

dφ0
2π

f
(
φ0
)

. (16.208)

The average is performed at fixed J and not at fixed J0 . In this regard, we note that holding J constant

and increasing φ0 by 2π also returns us to the same starting point. Therefore, we are able to write

Sk(φ0, J) =

∞∑

ℓ=−∞

Sk,ℓ(J) e
iℓφ0 (16.209)

for each k > 0, in which case
〈
∂Sk
∂φ0

〉
=

1

2π

[
Sk(2π, J) − Sk(0, J)

]
= 0 . (16.210)

Let’s see how this averaging works to the first two orders of the hierarchy. Since H̃0(J) is independent

of φ0 and since ∂S1/∂φ0 is periodic, we have

E1(J) =
〈
H̃1(φ0, J)

〉
+
∂H̃0

∂J

this vanishes!︷ ︸︸ ︷〈
∂S1
∂φ0

〉
(16.211)

and hence S1 must satisfy

∂S1
∂φ0

=

〈
H̃1

〉
− H̃1

ν0(J)
, (16.212)

where ν0(J) = ∂H̃0/∂J . Clearly the RHS of eqn. 16.212 has zero average, and must be a periodic

function of φ0. The solution is S1 = S1(φ0, J)+ f(J), where f(J) is an arbitrary function of J . However,
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f(J) affects only the difference φ − φ0, changing it by a constant value f ′(J). So there is no harm in
taking f(J) = 0.

Next, let’s go to second order in ǫ. We have

E2(J) = ν0(J)

this vanishes!︷ ︸︸ ︷〈
∂S2
∂φ0

〉
+
1

2

∂ν0
∂J

〈(
∂S1
∂φ0

)2〉
+

〈
∂H̃1

∂J

∂S1
∂φ0

〉
. (16.213)

The equation for S2 is then

∂S2
∂φ0

=
1

ν20(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−
〈
∂H̃1

∂J
H̃1

〉
− ∂H̃1

∂J

〈
H̃1

〉
+
∂H̃1

∂J
H̃1

+
1

2

∂ log ν0
∂J

(〈
H̃2

1

〉
− 2

〈
H̃1

〉2
+ 2

〈
H̃1

〉
H̃1 − H̃2

1

)}
.

(16.214)

The expansion for the energy E(J) is then

E(J) = H̃0(J) + ǫ
〈
H̃1

〉
+

ǫ2

ν0(J)

{〈
∂H̃1

∂J

〉〈
H̃1

〉
−
〈
∂H̃1

∂J
H̃1

〉
+

1

2

∂ log ν0
∂J

(〈
H̃2

1

〉
−
〈
H̃1

〉2)
}

+O(ǫ3) .

(16.215)
Note that we don’t need S to find E(J)! The perturbed frequencies are ν(J) = ∂E/∂J . Sometimes the
frequencies are all that is desired. However, we can of course obtain the full motion of the system via
the succession of canonical transformations,

(φ, J) −→ (φ0, J0) −→ (q, p) . (16.216)

16.8.3 Example : quartic oscillator

Consider a harmonic oscillator with a quartic nonlinearity16. The Hamiltonian is

H(q, p) =

H0︷ ︸︸ ︷
p2

2m
+ 1

2mν
2
0 q

2 +1
4ǫαq

4 . (16.217)

The action-angle variables for the harmonic oscillator Hamiltonian H0 are

φ0 = tan−1
(
mν0q/p) , J0 =

p2

2mν0
+ 1

2mν0q
2 (16.218)

hence

q =

√
2J0
mν0

cosφ0 , p =
√

2J0mν0 sinφ0 , (16.219)

16In §15.11.5 below, we discuss the case of a cubic nonlinearity.
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Figure 16.6: Action-angle variables for the harmonic oscillator.

as depicted in fig. 16.6. Note H0 = ν0 J0. For the full Hamiltonian, we have

H̃(φ0, J0) = ν0J0 +
1
4ǫα

(√
2J0
mν0

sinφ0

)4

= ν0J0 +
ǫα

m2ν20
J2
0 sin4φ0 ≡ H0(φ0, J0) + ǫH̃1(φ0, J0) .

(16.220)

We may now evaluate

E1(J) =
〈
H̃1(φ0, J)

〉
=

αJ2

m2ν20

2π∫

0

dφ0
2π

sin4φ0 =
3αJ2

8m2ν20
. (16.221)

The frequency, to order ǫ, is

ν(J) = ν0 +
3ǫαJ

4m2ν20
. (16.222)

Now to lowest order in ǫ, we may replace J by J0 =
1
2mν0A

2, where A is the amplitude of the q motion:

ν(A) = ν0 +
3ǫαA2

8mν0
. (16.223)

This result agrees with that obtained via heavier lifting, using the Poincaré-Lindstedt method.

Next, let’s evaluate the canonical transformation (φ0, J0)→ (φ, J). We have

ν0
∂S1
∂φ0

=
αJ2

m2ν20

(
3
8 − sin4φ0

)
⇒

S(φ0, J) = φ0 J +
ǫαJ2

8m2ν30

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2) .

(16.224)

Thus,

φ =
∂S

∂J
= φ0 +

ǫαJ

4m2ν30

(
3 + 2 sin2φ0

)
sinφ0 cosφ0 +O(ǫ2)

J0 =
∂S

∂φ0
= J +

ǫαJ2

8m2ν30

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2) .

(16.225)



16.8. CANONICAL PERTURBATION THEORY 37

Again, to lowest order, we may replace J by J0 in the above, whence

J = J0 −
ǫαJ2

0

8m2ν30

(
4 cos 2φ0 − cos 4φ0

)
+O(ǫ2)

φ = φ0 +
ǫαJ0
8m2ν30

(
3 + 2 sin2φ0

)
sin 2φ0 +O(ǫ2) .

(16.226)

Writing q = (2J0/mν0)
1/2 sinφ0 and p = (2mν0J0)

1/2 cosφ0 , one can substitute the above relations,

replacing (φ0, J0) with (φ, J) in the O(ǫ) terms on the RHS of each equation, to obtain (q, p) in terms of
(φ, J), valid to O(ǫ).

16.8.4 n > 1 systems: degeneracies and resonances

Generalizing the procedure we derived for n = 1, we obtain

Jα0 =
∂S

∂φα0
= Jα + ǫ

∂S1
∂φα0

+ ǫ2
∂S2
∂φα0

+ . . .

φα =
∂S

∂Jα
= φα0 + ǫ

∂S1
∂Jα

+ ǫ2
∂S2
∂Jα

+ . . .

(16.227)

and

E0(J) = H̃0(J)

E1(J) = H̃1 + να0
∂S1
∂φα0

E2(J) = να0
∂S2
∂φα0

+
1

2

∂να0
∂Jβ

∂S1
∂φα0

∂S1

∂φβ0
+
∂H̃1

∂Jα
∂S1
∂φα0

,

(16.228)

where να0 (J) = ∂H̃0(J)/∂J
α. We now implement the averaging procedure, with

〈
f(φ10, . . . , φ

n
0 , J

1, . . . , Jn)
〉
=

2π∫

0

dφ10
2π
· · ·

2π∫

0

dφn0
2π

f
(
φ10, . . . , φ

n
0 , J

1, . . . , Jn
)

. (16.229)

The equation for S1 is

να0
∂S1
∂φα0

=
〈
H̃1(φ0,J)

〉
− H̃1(φ0,J) ≡ −

∑

ℓ

′
V̂ℓ(J) e

iℓ·φ0 , (16.230)

where ℓ = {ℓ1, ℓ2, . . . , ℓn}, with each ℓσ an integer, and with ℓ 6= 0. The solution is

S1(φ0,J) = i
∑

l

′ V̂
ℓ
(J)

ℓ · ν0(J)
eiℓ·φ0 . (16.231)

where ℓ · ν0 =
∑n

α=1 l
ανα0 . When two or more of the frequencies να0 (J) are commensurate, there exists

a set of integers ℓ such that the denominator of D(l) vanishes. But even when the frequencies are not
rationally related, one can approximate the ratios να0 /ν

α′

0 by rational numbers, and for large enough |ℓ|
the denominator can become arbitrarily small.



38 CHAPTER 16. HAMILTONIAN MECHANICS

16.8.5 Nonlinear oscillator with two degrees of freedom

As an example of how to implement canonical perturbation theory for n > 1, consider the nonlinear
oscillator system,

H =
p21
2m

+
p22
2m

+ 1
2mω

2
1 q

2
1 +

1
2mω

2
2 q

2
2 +

1
4ǫ b ω

2
1 ω

2
2 q

2
1 q

2
2 . (16.232)

Writing H = H0 + ǫH1, we have, in terms of the action-angle variables (φ
(1,2)
0 , J

(1,2)
0 ),

H̃0(J0) = ω1J
(1)
0 + ω2J

(2)
0 (16.233)

with qk = (2Jk0 /mωk)
1/2 sinφk0 and pk = (2mωkJ

k
0 )

1/2 cosφk0 with k ∈ {1, 2}. We then have

H̃1(φ0,J) = b ω1 ω2 J
(1)J (2) sin2φ

(1)
0 sin2φ

(2)
0 . (16.234)

We therefore have E(J) = E0(J) + ǫE1(J) with E0(J) = H0(J) = ω1J
(1) + ω2J

(2) and

E1(J) =
〈
H̃1(φ0,J)

〉
= 1

4b ω1ω2 J
(1)J (2) . (16.235)

Next, we work out the generator S1(φ0,J) from eqn. 16.230:

〈
H̃1(φ0,J)

〉
− H̃1(φ0,J) = b ω1ω2 J

(1)J (2)
{

1
4 − sin2φ

(1)
0 sin2φ

(2)
0

}
(16.236)

= b ω1ω2 J
(1)J (2)

{
− 1

2 cos
(
2φ

(1)
0 + 2φ

(2)
0

)
− 1

2 cos
(
2φ

(1)
0 − 2φ

(2)
0

)

+ cos 2φ
(1)
0 + cos 2φ

(2)
0

}
,

and therefore, from eqn. 16.231,

S1(φ0,J) =
1
4b ω1ω2 J

(1)J (2)

{
− sin(2φ

(1)
0 + 2φ

(2)
0

)

ω1 + ω2

− sin(2φ
(1)
0 − 2φ

(2)
0

)

ω1 − ω2

+
2 sin 2φ

(1)
0

ω1

+
2 sin 2φ

(2)
0

ω2

}
.

(16.237)
We see that there is a vanishing denominator if ω1 = ω2 .

16.8.6 Periodic time-dependent perturbations

Periodic time-dependent perturbations present a similar problem. Consider the system

H(φ,J , t) = H0(J) + ǫ V (φ,J , t) , (16.238)

where V (t+ T ) = V (t). This means we may write

V (φ,J , t) =
∑

k

V̂k(φ,J) e
−ikΩt

=
∑

k

∑

ℓ

V̂k,ℓ(J) e
iℓ·φ e−ikΩt .

(16.239)
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by Fourier transforming from both time and angle variables; here Ω = 2π/T . Note that V (φ,J , t) is real
if V ∗

k,ℓ = V̂−k,−l. The equations of motion are

J̇α = − ∂H
∂φα

= −iǫ
∑

k,ℓ

lα V̂k,ℓ(J) e
iℓ·φ e−ikΩt

φ̇α = +
∂H

∂Jα
= να0 (J) + ǫ

∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
eiℓ·φ e−ikΩt .

(16.240)

We now expand in ǫ:

φα = φα0 + ǫ φα1 + ǫ2 φα2 + . . .

Jα = Jα0 + ǫ Jα1 + ǫ2 Jα2 + . . . .
(16.241)

To order ǫ0, we have Jα = Jα0 and φα0 = να0 t+ βα0 . To order ǫ1,

J̇α1 = −i
∑

k,l

lα V̂k,ℓ(J0) e
i(ℓ·ν0−kΩ) t eiℓ·β0 (16.242)

and

φ̇α1 =
∂να0
∂Jβ

Jβ1 +
∑

k,ℓ

∂V̂k,ℓ(J)

∂Jα
ei(ℓ·ν0−kΩ) t eiℓ·β0 , (16.243)

where derivatives are evaluated at J = J0. The solution is:

Jα1 =
∑

k,ℓ

lα V̂k,ℓ(J0)

kΩ − ℓ · ν0
ei(ℓ·ν0−kΩ) t eiℓ·β0

φα1 =

{
∂να0

∂Jβ0

lβ V̂k,ℓ(J0)

(kΩ − ℓ·ν0)2
+
∂V̂k,ℓ(J0)

∂Jα0

1

kΩ − ℓ·ν0

}
ei(ℓ·ν0−kΩ) t eiℓ·β0 .

(16.244)

When the resonance condition kΩ = ℓ·ν0(J0) is satisfied, the denominators vanish, and the perturbation
theory breaks down.

16.8.7 Particle-wave Interaction

Consider a particle of charge e moving in the presence of a constant magnetic fieldB = Bẑ and a space-
and time-varying electric field E(x, t), described by the Hamiltonian

H =
1

2m

(
p− e

cA
)2

+ ǫ eV̂0 cos(k⊥x+ kzz − ωt) , (16.245)

where ǫ is a dimensionless expansion parameter. This is an n = 3 system with canonical pairs (x, px),
(y, py), and (z, pz).
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Working in the gauge A = Bxŷ, we transform the first two pairs (x, y, px, py) to convenient variables
(Q,P, φ, J), explicitly discussed in §16.11.2 below), such that

H = ωcJ +
p2z
2m

+ ǫ eV̂0 cos

(
kzz +

k⊥P

mωc
+ k⊥

√
2J

mωc
sinφ− ωt

)
. (16.246)

Here,

x =
P

mωc
+

√
2J

mωc
sinφ , y = Q+

√
2J

mωc
cosφ , (16.247)

with ωc = eB/mc, the cyclotron frequency. Here, (Q,P ) describe the guiding center degrees of freedom,
and (φ, J) the cyclotron degrees of freedom.

We now make a mixed canonical transformation, generated by

F = φJ̃ +
(
kzz +

k⊥P

mωc
− ωt

)
K̃ − PQ̃ , (16.248)

where the new sets of conjugate variables are
{
(φ̃, J̃) , (Q̃, P̃ ) , (ψ̃, K̃)

}
. We then have

φ̃ =
∂F

∂J̃
= φ J =

∂F

∂φ
= J̃ (16.249)

Q = −∂F
∂P

= −k⊥K̃
mωc

+ Q̃ P̃ = −∂F
∂Q̃

= P (16.250)

ψ̃ =
∂F

∂K̃
= kzz +

k⊥P

mωc
− ωt pz =

∂F

∂z
= kzK̃ . (16.251)

The transformed Hamiltonian is

H ′ = H +
∂F

∂t

= ωcJ̃ +
k2z
2m

K̃2 − ωK̃ + ǫ eV̂0 cos

(
ψ̃ + k⊥

√
2J̃

mωc
sin φ̃

)
.

(16.252)

Note the guiding center pair (Q̃, P̃ ) doesn’t appear in the transformed Hamiltonian H ′.

We now drop the tildes and the prime on H and write H = H0 + ǫH1, with

H0 = ωcJ +
k2z
2m

K2 − ωK

H1 = eV̂0 cos

(
ψ + k⊥

√
2J

mωc
sinφ

)
.

(16.253)

When ǫ = 0, the frequencies associated with the φ and ψ motion are

ω0
φ =

∂H0

∂J
= ωc , ω0

ψ =
∂H0

∂K
=
k2zK

m
− ω = kzvz − ω , (16.254)

where vz = pz/m is the z-component of the particle’s velocity.
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We are now in position to implement the time-independent canonical perturbation theory approach. We
invoke a generator

S(φ,J , ψ,K) = φJ + ψK + ǫ S1(φ,J , ψ,K) + ǫ2S2(φ,J , ψ,K) + . . . (16.255)

to transform from (φ, J, ψ,K) to (Φ,J , Ψ,K). We must now solve eqn. 16.230:

ω0
φ

∂S1
∂φ

+ ω0
ψ

∂S1
∂ψ

= 〈H1 〉 −H1 . (16.256)

That is,

ωc

∂S1
∂φ

+

(
k2z K
m
− ω

)
∂S1
∂ψ

= −eA0 cos

(
ψ + k⊥

√
2J
mωc

sinφ

)

= −eA0

∞∑

n=−∞

Jn

(
k⊥

√
2J
mωc

)
cos(ψ + nφ) ,

where we have used the result

eiz sin θ =

∞∑

n=−∞

Jn(z) e
inθ . (16.257)

The solution for S1 is then

S1(φ,J , ψ,K) =
∑

n

eV̂0
ω − nωc − k2z K/m

Jn

(
k⊥

√
2J
mωc

)
sin(ψ + nφ) . (16.258)

We then have new action variables J and K, where

J = J + ǫ
∂S1
∂φ

+O(ǫ2)

K = K + ǫ
∂S1
∂ψ

+O(ǫ2) .

(16.259)

Defining the dimensionless variable

λ ≡ k⊥
√

2J

mωc
, (16.260)

we obtain the result17

(
mω2

c

2eV̂0k
2
⊥

)
Λ2 =

(
mω2

c

2eV̂0k
2
⊥

)
λ2 − ǫ

∑

n

nJn(Λ) cos(ψ + nφ)

ω/ωc − n− k2z K/mωc
+O(ǫ2) , (16.261)

where Λ ≡ k⊥(2J /mωc)
1/2.

We see that resonances occur whenever

ω

ωc
− k2z K
mωc

= n , (16.262)

17Note that the argument of Jn in eqn. 16.261 is λ and not Λ. This arises because we are computing the new action J in terms
of the old variables (φ, J) and (ψ,K).
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Figure 16.7: Plot of Λ versus ψ for φ = 0 (Poincaré section) for ω = 30.11ωc Top panels are nonresonant
invariant curves calculated to first order. Bottom panels are exact numerical dynamics, with x symbols
marking the initial conditions. Left panels: weak amplitude (no trapping). Right panels: stronger am-
plitude (shows trapping). From Lichtenberg and Lieberman (1983).

for any integer n. Let us consider the case kz = 0, in which the resonance condition is ω = nωc. We then
have

Λ2

2α
=
λ2

2α
− ǫ
∑

n

nJn(Λ) cos(ψ + nφ)

ω/ωc − n
, (16.263)

where

α =
E0

B
· ck⊥
ωc

(16.264)

is a dimensionless measure of the strength of the perturbation, with E0 ≡ k⊥V̂0. In fig. 16.7 we plot the
level sets for the RHS of the above equation λ(ψ) for φ = 0, for two different values of the dimensionless
amplitude α, for ω/ωc = 30.11 (i.e. off resonance). Thus, when the amplitude is small, the level sets
are far from a primary resonance, and the analytical and numerical results are very similar (left panels).
When the amplitude is larger, resonances may occur which are not found in the lowest order pertur-
bation treatment. However, as is apparent from the plots, the gross features of the phase diagram are
reproduced by perturbation theory. What is missing is the existence of ‘chaotic islands’ which initially
emerge in the vicinity of the trapping regions.
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16.9 Removal of Resonances in Perturbation Theory

We follow the treatment in chapter 3 of Lichtenberg and Lieberman.

16.9.1 The case of n =
3
2

degrees of freedom

Consider the time-dependent Hamiltonian,

H(φ, J, t) = H0(J) + ǫ V (φ, J, t) , (16.265)

where V (φ, J, t) = V (φ + 2π, J, t) = V (φ, J, t + T ) is periodic in time as well as in the angle variable φ.
We may express the perturbation as a double Fourier sum,

V (φ, J, t) =
∑

k,ℓ

V̂k,ℓ(J) e
ikφ e−iℓΩt , (16.266)

where Ω = 2π/T . Hamilton’s equations of motion are

J̇ = −∂H
∂φ

= −iǫ
∑

k,ℓ

k V̂k,l(J) e
ikφ e−iℓΩt

φ̇ = +
∂H

∂J
= ω0(J) + ǫ

∑

k,ℓ

∂V̂k,l(J)

∂J
eikφ e−iℓΩt ,

(16.267)

where ω0(J) ≡ ∂H0/∂J .18 The resonance condition is obtained by inserting the zeroth order solution
φ(t) = ω0(J) t+ β into the perturbation terms. When k ω0(J) = lΩ, the perturbation results in a secular
forcing, leading to a linear time increase and a failure of the solution at sufficiently large values of t.

To resolve this crisis, we focus on a particular resonance, where (k, ℓ) = ±(k0, ℓ0). The resonance con-
dition k0 ω(J) = ℓ0Ω fixes the value of J . There may be several solutions, and we focus on a particular
one, which we write as J = J0. There is still an infinite set of possible (k, l) values, because if (k0, ℓ0)
yields a solution for J = J0, so does (k, ℓ) = (pk0, pℓ0) for p ∈ Z. However, the amplitude of the Fourier
components V̂pk0,pℓ0

is, in general, a rapidly decreasing function of |p|, provided V (J, φ, t) is smooth in

φ and t. Furthermore, p = 0 always yields a solution. Therefore, we will assume k0 and ℓ0 are relatively
prime and take p = 0 and p = ±1. This simplifies the system in eqn. 16.267 to

J̇ = 2ǫ k0V̂1(J) sin(k0φ− ℓ0Ωt+ δ)

φ̇ = ω0(J) + ǫ
∂V̂0(J)

∂J
+ 2ǫ

∂V̂1(J)

∂J
cos(k0φ− ℓ0Ωt+ δ) ,

(16.268)

where V̂0,0(J) ≡ V̂0(J) and V̂k0,ℓ0
(J) = V ∗

−k0,−ℓ0
(J) ≡ V̂1(J) eiδ , where V̂0(J) and V̂1(J) are both real. We

then expand, writing
J = J0 +∆J , ψ = k0φ− ℓ0Ωt+ δ + π , (16.269)

18In this section we write ∂H0/∂J = ω0(J) rather than ν0(J) in order to obviate any confusion between the frequency ν0 and

the potential V̂1 and its various Fourier components.
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resulting in the system

d∆J

dt
= −2ǫ k0V̂1(J0) sinψ

dψ

dt
= k0 ω

′
0(J0)∆J + ǫ k0V̂

′
0(J0)− 2ǫ k0V̂

′
1(J0) cosψ ,

(16.270)

which follow from the Hamiltonian

K(∆J, ψ) = 1
2k0 ω

′
0(J0) (∆J)

2 + ǫk0V̂
′
0(J0)∆J − 2ǫk0V̂1(J0 +∆J) cosψ , (16.271)

with dψ/dt = ∂K/∂(∆J) and d(∆J)/dt = −∂K/∂ψ. Concerning the last term, we can drop the ∆J
term in the argument of V̂1, leaving V̂1(J0), because it will yield a term of second order in smallness in
the equation of motion for ψ. The remaining term in K linear in ∆J can then be removed by a shift of
∆J → ∆J − ǫ V̂ ′

0(J0)/ω
′
0(J0). This is tantamount to shifting the value of J0, which we could have done

at the outset by absorbing the term ǫV̂0(J) into H0(J), and defining ω(J) ≡ ω0(J) + ǫ ∂V̂0/∂J . We are
left with a simple pendulum, with

ψ̈ + γ2 sinψ = 0 (16.272)

with γ =
√

2ǫ k20 ω
′(J0) V̂1(J0) . In Fig. 16.8, we plot the level sets of the function

Ǩ(∆J, ψ) ≡ 1
2k0 ω

′
0(J0) (∆J)

2 + ǫk0V̂
′
0(J0)∆J − 2ǫk0V̂1(J0) cosψ (16.273)

in the rotating (q, p) plane, i.e. in the (q̌, p̌) plane, where

q̌ ∝ (J0 +∆J)1/2 cos(k0 φ̌) , p̌ ∝ (J0 +∆J)1/2 sin(k0 φ̌) , (16.274)

where φ̌ = φ− l0Ωt/k0 .

What do we conclude? The original 1-torus (i.e. circle) with J = J0 and φ(t) = ω0(J0) t+ β is destroyed.
It and its neighboring tori are replaced, in the c ase k0 = 1, by the separatrix in the left panel of fig.
16.8 and the neighboring librational and rotational phase curves. The structure for k0 = 6 is shown

in the right panel. The amplitude of the separatrix is (∆J)max =
√

8ǫV̂1(J0)/ω
′
0(J0) . In order for the

approximations leading to this structure to be justified, we need (∆J)max ≪ J0 and ∆ω ≪ ω0, where
∆ω = γ. These conditions may be written as

ǫ≪ α≪ 1

ǫ
, (16.275)

where α = d log ω0/d log J
∣∣
J0

= J0 |ω′
0|/ω0.

16.9.2 n = 2 systems

Consider now the time-independent Hamiltonian H = H0(J) + ǫH1(φ,J) with n = 2 degrees of free-
dom, i.e. J = (J1, J2) and φ = (φ1, φ2). We Fourier expand

H1(φ,J) =
∑

ℓ

V̂ℓ(J) e
iℓ·φ , (16.276)



16.9. REMOVAL OF RESONANCES IN PERTURBATION THEORY 45

Figure 16.8: Librations, separatrices, and rotations for k0 = 1 (left) and k0 = 6 (right), plotted in the
(q, p) phase plane. Elliptical fixed points are shown in magenta. Hyperbolic fixed points are located at
the self-intersection of the separatrices (black curves).

with ℓ = (ℓ1, ℓ2) and V̂−ℓ
(J) = V ∗

ℓ
(J) since V̂

ℓ
(J) are the Fourier components of a real function. A

resonance exists between the frequencies ω1,2 = ∂H0/∂J1,2 if there exist nonzero integers r and s such
that rω1 = sω2. We eliminate the resonance in two steps. First, we employ a canonical transformation
(φ,J)→ (ϕ,J ), generated by

F2(φ,J ) = (rφ1 − sφ2)J1 + φ2J2 . (16.277)

We then have

J1 =
∂F2

∂φ1
= rJ1 ϕ1 =

∂F2

∂J1
= rφ1 − sφ2 (16.278)

J2 =
∂F2

∂φ2
= J2 − sJ1 ϕ2 =

∂F2

∂J2
= φ2 . (16.279)

This transforms us to a rotating frame in which ϕ̇1 = rφ̇1 − sφ̇2 is slowly varying, while ϕ̇2 = φ̇2 ≈ ω2.
Note that we could have chosen F2 = φ1J1 + (rφ1 − sφ2)J2 , in which case we’d have obtained ϕ1 = φ1
with an unperturbed natural frequency of ω1 and ϕ2 = rφ1−sφ2 slowly varying, i.e. with an unperturbed
natural frequency of zero. Which transformation are we to choose? The answer is that we want to end
up averaging over the slower of ω1,2, so the generator in eqn. 16.277 is appropriate if ω1 > ω2 . The reason
has to do with what happens when there are higher order resonances to be removed – a state of affairs
we shall discuss in the following section.

At this stage, our transformed Hamiltonian is

H̃(ϕ,J ) = H0

(
J(J )

)
+ ǫH1

(
φ(ϕ),J(J )

)

≡ H̃0(J ) + ǫ
∑

ℓ

ˆ̃
Vℓ(J ) exp

[
iℓ1
r
ϕ1 + i

(
s ℓ1
r

+ ℓ2

)
ϕ2

]
,

(16.280)



46 CHAPTER 16. HAMILTONIAN MECHANICS

where H̃(J ) ≡ H0

(
J(J )

)
and

ˆ̃
Vℓ(J ) ≡ ˆ̃

Vℓ
(
J(J )

)
. Note that φ1 = ϕ1/r+ s ϕ2/r . We now average over

the angle ϕ2 , which requires sℓ1 + rℓ2 = 0 . Thus, ℓ1 = pr and ℓ2 = −ps for some p ∈ Z, and

〈H1〉 =
∑

p

ˆ̃
Vpr,−ps(J ) e−ipϕ1 . (16.281)

The averaging is valid close to the resonance, where |ϕ̇2| ≫ |ϕ̇1| . We are now left with the Hamiltonian

H(ϕ1,J ) = H̃0(J ) + ǫ
∑

p

ˆ̃
Vpr,−ps(J ) e−ipϕ1 . (16.282)

Here, J2 is to be regarded as a parameter which itself has no dynamics: J̇2 = 0. Note J2 = (s/r)J1 + J2
is the new invariant.

At this point, ϕ2 has been averaged out, J2 is a constant, and only the (ϕ1,J1) variables are dynamical.
A stationary point for these dynamics, satisfying ∂H/∂J1 = ∂H/∂ϕ1 = 0 corresponds to a periodic
solution to the original perturbed Hamiltonian, since we are now in a rotating frame. Since the Fourier

amplitudes
ˆ̃
V−pr,ps(J ) generally decrease rapidly with increasing |p|, we make the approximation of

restricting to p = 0 and p = ±1. Thus,

H(ϕ1,J ) ≈ H̃0(J ) + ǫ
ˆ̃
V0,0(J ) + 2ǫ

ˆ̃
Vr,−s(J ) cosϕ1 , (16.283)

where we have absorbed any phase in the Fourier amplitude
ˆ̃
Vr,−s(J ) into a shift of ϕ1 , and subse-

quently take
ˆ̃
Vr,−s(J ) to be real. The fixed points

(
ϕ
(0)
1 ,J (0)

1

)
of the (ϕ1,J1) dynamics satisfy

0 =
∂H̃0

∂J1
+ ǫ

∂
ˆ̃
V0,0
∂J1

+ 2ǫ
∂
ˆ̃
Vr,−s
∂J1

cosϕ1

0 = 2ǫ
ˆ̃
Vr,−s sinϕ1 .

(16.284)

Thus, ϕ1 = 0 or π at the fixed points. Note that

∂H̃0

∂J1
=
∂H0

∂J1

∂J1
∂J1

+
∂H0

∂J2

∂J2
∂J1

= rω1 − sω2 = 0 , (16.285)

and therefore fixed points occur for solutions J (0)
1 to

∂
ˆ̃
V0,0
∂J1

± 2
∂
ˆ̃
Vr,−s
∂J1

= 0 , (16.286)

where the upper sign corresponds to ϕ
(0)
1 = 0 and the lower sign to ϕ

(0)
1 = π . We now consider two

cases.
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Figure 16.9: Motion in the vicinity of a resonance, showing elliptical fixed point in green, hyperbolic
fixed point in red, and separatrix in black.

(i) accidental degeneracy

In the case of accidental degeneracy, the resonance condition rω1 = sω2 is satisfied only for particular
values of (J1, J2), i.e. on a set J2 = J2(J1). This corresponds to the case where H0(J1, J2) is a generic

function of its two arguments. According to eqn. 16.283, excursions of J1 relative to its value J (0)
1 at the

fixed points are on the order of ǫ
ˆ̃
Vr,−s , while excursions of ϕ1 are O(1). We may then expand

H̃0(J1,J2) = H̃0

(
J (0)
1 ,J2

)
+
∂H̃0

∂J1
∆J1 +

1

2

∂2H̃0

∂J 2
1

(∆J1)2 + . . . , (16.287)

where the derivatives are evaluated at J1 = J (0)
1 . Thus, we arrive at what is often called the standard

Hamiltonian,

H(ϕ1,∆J1) = 1
2G (∆J1)2 − F cosϕ1 , (16.288)

with

G(J2) =
∂2H̃0

∂J 2
1

∣∣∣∣∣
J

(0)
1

, F (J2) = −2ǫ
ˆ̃
Vr,−s

(
J (0)
1 ,J2

)
. (16.289)

Thus, the motion in the vicinity of every resonance is like that of a pendulum, meaning libration, separatrix,
and rotation in the phase plane. F is the amplitude of the first Fourier mode of the perturbation (i.e.
|p| = 1), and G the ‘nonlinearity parameter’. For FG > 0 the elliptic fixed point (EFP) is at ϕ1 = 0 and
the hyperbolic fixed point (HFP) at ϕ1 = π. For FG < 0, the locations are switched. The frequency of

libration about the EFP is given by ν1 =
√
FG = O

(√
ǫ
ˆ̃
Vr,−s

)
. The frequency decreases to zero as the

separatrix is approached. The maximum excursion along the separatrix is (∆J1)max = 2
√
F/G which

is also O
(√

ǫ
ˆ̃
Vr,−s

)
. The ratio of semiminor to semimajor axis lengths for motion in the vicinity of the

EFP is

(∆J1)max

(∆ϕ1)max

=

√
F

G
= O

(
ǫ1/2

)
. (16.290)
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(ii) intrinsic degeneracy

In this case, H0(J1, J2) is a function of only the combination sJ1 + rJ2 = rJ2 , so

H(ϕ1,J ) = H̃0(J2) + ǫ
ˆ̃
V0,0(J ) + 2ǫ

ˆ̃
Vr,−s(J ) cosϕ1 . (16.291)

In this case excursions of J1 and ϕ1 are both O
(
ǫ
ˆ̃
V•,•

)
, and we are not licensed to expand in ∆J1.

However, in the vicinity of an EFP, we may expand, both in ∆J1 and ∆ϕ1, resulting in

H = 1
2G (∆J1)2 + 1

2F (∆ϕ1)
2 , (16.292)

where

G(J2) =
[
∂2H̃0

∂J 2
1

+ ǫ
∂2

ˆ̃
V0,0

∂J 2
1

+ 2ǫ
∂2

ˆ̃
Vr,−s
∂J 2

1

]

(
J

(0)
1 ,J2

) , F (J2) = −2ǫ
ˆ̃
Vr,−s

(
J (0)
1 ,J2

)
. (16.293)

For the case of intrinsic degeneracy, the first term in brackets on the RHS of the equation for G(J2)
vanishes, since H̃0 is a function only of J2. Hence F and G are both O

(
ǫ
ˆ̃
V•,•

)
, hence ν1 =

√
FG = O(ǫ)

and the ratio of semiminor to semimajor axis lengths of the motion is

(∆J1)max

(∆ϕ1)max

=

√
F

G
= O(1) . (16.294)

16.9.3 Secondary resonances

By averaging over the ϕ2 motion and expanding about the EFP, we obtained the Hamiltonian in Eqns.
16.292 and 16.293. In so doing, we dropped all terms on the RHS of eqn. 16.280 with sℓ1 + rℓ2 6= 0. We
now restore those terms, and continue to expand about the EFP. The first step is to transform the har-
monic oscillator Hamiltonian in eqn. 16.292 to action-angle variables; this was already done in §16.8.3.
The canonical transformation from (∆ϕ1,∆J1) to (χ1, I1) is given by

∆J1 = (2RI1)
1/2 cosχ1 , ∆ϕ1 = (2R−1I1)

1/2 sinχ1 , (16.295)

with R = (F/G)1/2. We will also define I2 ≡ J2 and χ2 ≡ ϕ2. Then we may write

H(ϕ1,J ) −→ H̃0(I) = H̃0

(
J (0)
1 , I2

)
+ ν1(I2) I1 − 1

16 G(I2) I
2
1 + . . . , (16.296)

where the last term on the RHS before the ellipses is from nonlinear terms in ∆ϕ1. The missing terms
we seek are

H̃ ′
1 =

∑

ℓ

ˆ̃
Vℓ
(
J (0)
1 , I2

)
exp
[
ir−1ℓ1(2R

−1I1)
1/2 sinχ1

]
exp
[
i(r−1s ℓ1 + ℓ2)χ2

]
. (16.297)

Note that we set J1 = J (0)
1 in the argument of

ˆ̃
Vℓ(J ), because ∆J1 is of order ǫ1/2. Next we invoke the

Bessel function identity,

eiu sinχ =
∞∑

−∞

Jn(u) e
inχ , (16.298)
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so we write

H̃ ′
1 −→ H1(χ, I) =

∑

ℓ

∑

n

Wℓ,n(I) e
inχ1 ei(r

−1s ℓ1+ℓ2)χ2 , (16.299)

where

Wℓ,n(I) =
ˆ̃
Vℓ
(
J (0)
1 , I2

)
Jn

(
ℓ1
r

√
2I1
R

)
. (16.300)

We now write

H(χ, I) = H0(I) + ǫ̃H1(χ, I) . (16.301)

Here, while ǫ̃ = ǫ it is convenient to use a new symbol since ǫ itself appears within H0.

We now see that a secondary resonance will occur if r′ν1 = s′ν2 , with νj(I) = ∂H0/∂Ij and r′, s′ ∈ Z.

But note that ν1 = O(ǫ1/2) while ν2 = O(1) in the case of an accidental primary resonance. As before, we
may eliminate this new resonance by transforming to a moving frame in which the resonance shifts to
zero frequency to zeroth order and then averaging over the remaining motion. That is, we canonically
transform (χ, I)→ (ψ,I) via a type-II generator F ′

2 = (r′χ1 − s′χ2)I1 + χ2 I2 , yielding

I1 =
∂F ′

2

∂χ1

= r′I1 ψ1 =
∂F ′

2

∂I1
= r′χ1 − s′χ2 (16.302)

I2 =
∂F ′

2

∂χ2

= I2 − s′I1 ψ2 =
∂F ′

2

∂I2
= χ2 . (16.303)

The phase angle in eqn. 16.299 is then

nχ1 +

(
s

r
ℓ1 + ℓ2

)
χ2 =

n

r′
ψ1 +

(
ns′

r′
+
s

r
ℓ1 + ℓ2

)
ψ2 . (16.304)

Averaging over ψ2(t) then requires nrs′ + sr′ℓ1 + rr′ℓ2 = 0, which is satisfied when

n = jr′ , ℓ1 = kr , ℓ2 = −js′ − ks (16.305)

for some j, k ∈ Z. The result of the averaging is

〈
H
〉
ψ2

= H0

(
I(I)

)
+ ǫ̃
∑

j

Γjr′,−js′(I) e
−ijψ1 (16.306)

where

Γjr′,−js′(I) =Wkr,−js′−ks,jr′
(
I(I)

)
=

ˆ̃
Vkr,−js′−ks

(
J (0)
1 , I2

)
Jjr′

(
k

√
2I1(I)

R

)
. (16.307)

Since
〈
H
〉
ψ2

is independent of ψ2, the corresponding action I2 = (s′/r′) I1 + I2 is the adiabatic invariant

for the new oscillation.
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Figure 16.10: Motion in the vicinity of a secondary resonance with r′ = 6 and s′ = 1. Elliptical fixed
points are in green, hyperbolic fixed points in red, and separatrices in black and blue.

Strength of island resonances

To assess the strength of the secondary resonances, we consider r = s = j = k = s′ = 1, in which case
r′ = ν2/ν1 = O(ǫ−1/2) is parametrically large. The resulting structure in the phase plane is depicted in
fig. 16.10 for r′ = 6. The amplitude of theM1 oscillations is proportional to

Jr
(
(2I1(I)/2R)

1/2
)
∼
(
2I1(I)/2R

)r′/2

r′!
= O

(
1

(ǫ−1/2)!

)
. (16.308)

The frequency of the island oscillations is of the same order of magnitude. Successive higher order
resonances result in an increasingly tiny island chain amplitude.

16.10 Whither Integrability?

We are left with the following question: what happens when we perturb an integrable Hamiltonian,
H(φ,J) = H0(J) + ǫH1(φ,J)? Two extreme conjectures, and their refutations:

(i) H(φ,J) is always integrable, even though we may not always be able to obtain the corresponding
action-angle variables. Tori are deformed but not destroyed. If this were the case, there would be n
conserved quantities, i.e. the first integrals of motion Ij . This would violate the fundamental tenets
of equilibrium statistical physics, as the canonical Gibbs distribution ̺ = exp(−βH)/Z would be
replaced with the pseudo-Gibbs distribution, ̺ = exp(−λjIj)/Z , where {λj} are a set of Lagrange

multipliers19.

(ii) Integrability is destroyed for any ǫ > 0, in which case E = H(φ,J) is the only conserved quan-
tity20. If this were the case, the solar system would be unstable, and we wouldn’t be here to study
Hamiltonian mechanics.

19The corresponding microcanonical distribution would be
∏n

j=1 δ(Ij − 〈Ij〉) , as opposed to δ(H − E).
20Without loss of generality, we may assume ǫ ≥ 0.
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So the truth lies somewhere in between, and is the focus of the celebrated KAM theorem21. We have
already encountered the problem of resonances, which arise for tori which satisfy ℓ ·ω0(J) = 0 for some
integers ℓ = {ℓ1, . . . , ℓn}. Such tori, which are dense in the phase spaceM yet still of Lebesgue measure
zero, are destroyed by arbitrarily small perturbations, as we have seen. This observation dates back to
Poincaré. For a given torus with an (n− 1)-dimensional family of periodic orbits, Jn = Jn(J1, . . . , Jn−1),
it is generally the case that only a finite number of periodic orbits survive the perturbation. Since, in a
nondegenerate system, the set of resonant tori is dense, it seems like the situation is hopeless and that
arbitrarily small ǫ will induce ergodicity on each energy surface. Until the early 1950s, it was generally
believed that this was the case, and the stability of the solar system was regarded as a deep mystery.

Enter Andrey Nikolaevich Kolmogorov, who in 1954 turned conventional wisdom on its head, showing
that, in fact, the majority of tori survive. Specifically, Kolmogorov proved that strongly nonresonant tori
survive small perturbations. A strongly nonresonant torus is one for which there exist constants α > 0
and τ > 0 such that

∣∣ℓ · ω0(J)
∣∣ ≥ α |ℓ|−τ , where |ℓ| ≡ |ℓ1|+ . . .+ |ℓn|. From a measure theoretic point of

view, almost all tori are strongly nonresonant for any τ > n−1, but in order to survive the perturbation,
it is necessary that ǫ≪ α2. For these tori, perturbation theory converges, although not quite in the naı̈ve
form we have derived, i.e. from the generator S(φ,J ) = S0 + ǫS1 + ǫ2S2 + . . . , but rather using the
‘superconvergent’ method pioneered by Kolmogorov.

Since the arithmetic of the strongly nonresonant tori is a bit unusual, let’s first convince ourselves that
such tori actually exist22. Let ∆τ

α denote the set of all ω ∈ Rn satisfying, for fixed α and τ , the infinitely
many conditions ℓ · ω ≥ α|ℓ|−τ , for all nonzero ℓ ∈ Zn. Clearly ∆τ

α is the complement of the open and

dense set Rτα =
⋃

06=ℓ∈Zn Rτα,ℓ , where

Rτα,ℓ =
{
ω ∈ Rn : |ℓ · ω| < α |ℓ|−τ

}
. (16.309)

For any bounded region Ω ∈ Rn, we can estimate the Lebesgue measure of the set Rτα ∩ Ω from the
calculation

µ
(
Rτα ∩ Ω

)
≤
∑

ℓ6=0

µ
(
Rτα,ℓ ∩ Ω

)
= O(α) , (16.310)

The sum converges provided τ > n − 1 since µ
(
Rτα,ℓ ∩ Ω

)
= O

(
α/|ℓ|τ+1

)
. Taking the intersection

over all α > 0, we conclude Rτ =
⋂
α>0R

τ
α is a set of measure zero, and therefore its complement,

∆τ =
⋃
α>0∆

τ
α , is a set of full measure in Rn. This means that almost every ω ∈ Rn belongs to the set

∆τ , which is the set of all ω satisfying the Diophantine condition |ℓ ·ω| ≥ α |ℓ|−τ for some value of α, again
provided τ > n− 1.

We say that a torus survives the perturbation if for ǫ > 0 there exists a deformed torus in phase space
homotopic to that for ǫ = 0, and for which the frequencies satisfy ωǫ = f(ǫ)ω0 , with limǫ→0 f(ǫ) = 1.
Note this says ωj/ωk = ω0,j/ω0,k. Only tori with frequencies in ∆τ

α with α ≫ √ǫ survive. The KAM
theorem says that the measure of the space of surviving tori approaches unity as ǫ→ 0.

21KAM = Kolmogorov-Arnol’d-Moser, who developed the theory in a series of papers during the 1950s and 1960s. For a
“friendly introduction to the content, history, and significance” of KAM, I highly recommend H. Scott Dumas, The KAM
Story (World Scientific, 2014).

22See J. Pöschel, A Lesson on the Classical KAM Theorem, Proc. Symp. Pure Math. 69, 707 (2001), in §1.d.
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16.11 Appendix: Examples

16.11.1 Hamilton-Jacobi theory for point charge plus electric field

Consider a potential of the form

U(r) =
k

r
− Fz , (16.311)

which corresponds to a charge in the presence of an external point charge plus an external electric field.
This problem is amenable to separation in parabolic coordinates, (ξ, η, ϕ):

x =
√
ξη cosϕ , y =

√
ξη sinϕ , z = 1

2(ξ − η) . (16.312)

Note that

ρ ≡
√
x2 + y2 =

√
ξη

r =
√
ρ2 + z2 = 1

2(ξ + η) .
(16.313)

The kinetic energy is

T = 1
2m
(
ρ̇2 + ρ2 ϕ̇2 + ż2

)

= 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 ,
(16.314)

and hence the Lagrangian is

L = 1
8m (ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+ 1

2mξη ϕ̇2 − 2k

ξ + η
+ 1

2F (ξ − η) . (16.315)

Thus, the conjugate momenta are

pξ =
∂L

∂ξ̇
= 1

4m (ξ + η)
ξ̇

ξ

pη =
∂L

∂η̇
= 1

4m (ξ + η)
η̇

η

pϕ =
∂L

∂ϕ̇
= mξη ϕ̇ ,

(16.316)

and the Hamiltonian is

H = pξ ξ̇ + pη η̇ + pϕ ϕ̇

=
2

m

(
ξ p2ξ + η p2η

ξ + η

)
+

p2ϕ
2mξη

+
2k

ξ + η
− 1

2F (ξ − η) .

(16.317)

Notice that ∂H/∂t = 0, which means dH/dt = 0, i.e. H = E ≡ Λ1 is a constant of the motion. Also, ϕ is

cyclic in H , so its conjugate momentum pϕ is a constant of the motion.
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We write

S(q, Λ) =W (q, Λ)− Et
=Wξ(ξ, Λ) +Wη(η, Λ) +Wϕ(ϕ,Λ) − Et .

(16.318)

with E = Λ1. Clearly we may take
Wϕ(ϕ,Λ) = Pϕ ϕ , (16.319)

where Pϕ = Λ2. Multiplying the Hamilton-Jacobi equation by 1
2m (ξ + η) then gives

ξ

(
dWξ

dξ

)2
+
P 2
ϕ

4ξ
+mk − 1

4Fξ
2 − 1

2mEξ = −η
(
dWη

dη

)2
−
P 2
ϕ

4η
− 1

4Fη
2 + 1

2mEη ≡ Υ , (16.320)

where Υ = Λ3 is the third constant: Λ = (E,Pϕ, Υ ). Thus,

S
(

q︷ ︸︸ ︷
ξ, η, ϕ;E,Pϕ, Υ︸ ︷︷ ︸

Λ

)
=

∫ ξ

dξ′

√
1
2mE +

Υ −mk
ξ′

+ 1
4mFξ

′ −
P 2
ϕ

4ξ′2

+

∫ η

dη′

√
1
2mE −

Υ

η′
− 1

4mFη
′ −

P 2
ϕ

4η′2
+ Pϕ ϕ− Et .

(16.321)

16.11.2 Hamilton-Jacobi theory for charged particle in a magnetic field

The Hamiltonian is

H =
1

2m

(
p− e

c
A
)2

. (16.322)

We choose the gaugeA = Bxŷ, and we write

S(x, y, P1, P2) =Wx(x, P1, P2) +Wy(y, P1, P2)− P1 t . (16.323)

Note that here we will consider S to be a function of {qσ} and {Pσ}.

The Hamilton-Jacobi equation is then

(
∂Wx

∂x

)2
+

(
∂Wy

∂y
− eBx

c

)2
= 2mP1 . (16.324)

We solve by writing

Wy = P2 y ⇒
(
dWx

dx

)2
+

(
P2 −

eBx

c

)2
= 2mP1 . (16.325)

This equation suggests the substitution

x =
cP2

eB
+

c

eB

√
2mP1 sin θ . (16.326)
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in which case
∂x

∂θ
=

c

eB

√
2mP1 cos θ (16.327)

and
∂Wx

∂x
=
∂Wx

∂θ
· ∂θ
∂x

=
eB

c

√
2mP1

1

cos θ

∂Wx

∂θ
. (16.328)

Substitution into eqn. 16.325, we have ∂Wx/∂θ = (2mcP1/eB) cos2θ which integrates to

Wx =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) . (16.329)

We then have

px =
∂Wx

∂x
=
∂Wx

∂θ

/
∂x

∂θ
=

√
2mP1 cos θ (16.330)

and py = ∂Wy/∂y = P2 . The type-II generator we seek is then

S(q, P, t) =
mcP1

eB
θ +

mcP1

2eB
sin(2θ) + P2 y − P1 t , (16.331)

where

θ =
eB

c

√
2mP1

sin−1

(
x− cP2

eB

)
. (16.332)

Note that, from eqn. 16.326, we may write

dx =
c

eB
dP2 +

mc

eB

1√
2mP1

sin θ dP1 +
c

eB

√
2mP1 cos θ dθ , (16.333)

from which we derive

∂θ

∂P1

= −tan θ

2P1

,
∂θ

∂P2

= − 1√
2mP1 cos θ

. (16.334)

These results are useful in the calculation of Q1 and Q2 :

Q1 =
∂S

∂P1

=
mc

eB
θ +

mcP1

eB

∂θ

∂P1

+
mc

2eB
sin(2θ) +

mcP1

eB
cos(2θ)

∂θ

∂P1

− t

=
θ

ωc

− t
(16.335)

where ωc = eB/mc is the ‘cyclotron frequency’, and

Q2 =
∂S

∂P2

= y +
mcP1

eB

[
1 + cos(2θ)

] ∂θ
∂P2

= y − c

eB

√
2mP1 cos θ .

(16.336)
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Now since H̃(P,Q) = 0, we have that Q̇σ = 0, which means that each Qσ is a constant. We therefore
have the following solution:

x(t) = x0 +A sin(ωct+ δ)

y(t) = y0 +A cos(ωct+ δ) ,
(16.337)

and

x0 =
cP2

eB
, y0 = Q2 , δ ≡ ωcQ1 , A =

c

eB

√
2mP1 . (16.338)

16.11.3 Action-angle variables for the Kepler problem

This is discussed in detail in standard texts, such as Goldstein. The potential is V (r) = −k/r, and the
problem is separable. We write23

W (r, θ, ϕ) =Wr(r) +Wθ(θ) +Wϕ(ϕ) , (16.339)

hence
1

2m

(
∂Wr

∂r

)2
+

1

2mr2

(
∂Wθ

∂θ

)2
+

1

2mr2 sin2θ

(
∂Wϕ

∂ϕ

)2
+ V (r) = E ≡ Λr . (16.340)

Separating, we have

1

2m

(
dWϕ

dϕ

)2
= Λϕ ⇒ Jϕ =

∮

Cϕ

dϕ
dWϕ

dϕ
= 2π

√
2mΛϕ . (16.341)

Next we deal with the θ coordinate. We have

1

2m

(
dWθ

dθ

)2
= Λθ −

Λϕ

sin2θ
, (16.342)

and therefore

Jθ = 4
√

2mΛθ

π/2∫

θ0

dθ
√

1−
(
Λϕ/Λθ

)
csc2θ

= 2π
√
2m
(√

Λθ −
√
Λϕ

)
,

(16.343)

where θ0 = sin−1(Λϕ/Λθ). Finally, we have for the radial coordinate

1

2m

(
dWr

dr

)2
= E +

k

r
− Λθ
r2

, (16.344)

23We denote the azimuthal angle by ϕ to distinguish it from the AA variable φ.
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and so24

Jr =

∮

Cr

dr

√
2m

(
E +

k

r
− Λθ
r2

)

= −(Jθ + Jϕ) + πk

√
2m

|E| ,

(16.345)

where we’ve assumed E < 0, i.e. bound motion.

Thus, we find

H = E = − 2π2mk2
(
Jr + Jθ + Jϕ

)2 . (16.346)

Note that the frequencies are completely degenerate:

ν ≡ νr,θ,ϕ =
∂H

∂Jr,θ,ϕ
=

4π2mk2
(
Jr + Jθ + Jϕ

)3 =

(
π2mk2

2 |E|3

)1/2
. (16.347)

This threefold degeneracy may be removed by a transformation to new AA variables,

{
(φr, Jr), (φθ, Jθ), (φϕ, Jϕ)

}
−→

{
(χ1,J1), (χ2,J2), (χ3,J3)

}
, (16.348)

using the type-II generator

F2(φr, φθ, φϕ;J1,J2,J3) = (φϕ − φθ)J1 + (φθ − φr)J2 + φr J3 , (16.349)

which results in

χ1 =
∂F2

∂J1
= φϕ − φθ Jr =

∂F2

∂φr
= J3 − J2 (16.350)

χ2 =
∂F2

∂J2
= φθ − φr Jθ =

∂F2

∂φθ
= J2 − J1 (16.351)

χ3 =
∂F2

∂J3
= φr Jϕ =

∂F2

∂φϕ
= J1 . (16.352)

The new Hamiltonian is

H(J1,J2,J3) = −
2π2mk2

J 2
3

, (16.353)

whence ν1 = ν2 = 0 and ν3 = ν.

24The details of performing the integral around Cr are discussed in e.g. Goldstein.
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16.11.4 Action-angle variables for charged particle in a magnetic field

For the case of the charged particle in a magnetic field, studied above in section 16.11.2, we found

x =
cP2

eB
+

c

eB

√
2mP1 sin θ (16.354)

with px =

√
2mP1 cos θ and py = P2 . The action variable J is then

J =

∮
px dx =

2mcP1

eB

2π∫

0

dθ cos2θ =
mcP1

eB
. (16.355)

We then have
W = Jθ + 1

2J sin(2θ) + Py , (16.356)

where P ≡ P2 . Thus,

φ =
∂W

∂J
= θ + 1

2 sin(2θ) + J
[
1 + cos(2θ)

] ∂θ
∂J

= θ + 1
2 sin(2θ) + 2J cos2θ ·

(
− tan θ

2J

)
= θ .

(16.357)

The other canonical pair is (Q,P ), where

Q =
∂W

∂P
= y −

√
2cJ

eB
cosφ . (16.358)

Therefore, we have

x =
cP

eB
+

√
2cJ

eB
sinφ , y = Q+

√
2cJ

eB
cosφ (16.359)

and

px =

√
2eBJ

c
cosφ , py = P . (16.360)

The Hamiltonian is

H =
P 2
x

2m
+

1

2m

(
py −

eBx

c

)2

=
eBJ

mc
cos2φ+

eBJ

mc
sin2φ = ωc J ,

(16.361)

where ωc = eB/mc. The equations of motion are

φ̇ =
∂H

∂J
= ωc , J̇ = −∂H

∂φ
= 0 (16.362)

and

Q̇ =
∂H

∂P
= 0 , Ṗ = −∂H

∂Q
= 0 . (16.363)

Thus, Q, P , and J are constants, and φ(t) = φ0 + ωc t.
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16.11.5 Canonical perturbation theory for the cubic oscillator

Consider the Hamiltonian

H =
p2

2m
+ 1

2mω2
0 q

2 + 1
3ǫmω2

0

q3

a
, (16.364)

where ǫ is a small dimensionless parameter.

(a) Show that the oscillation frequency satisfies ν(J) = ω0 +O(ǫ2). That is, show that the first order (in
ǫ) frequency shift vanishes.

Solution: It is good to recall the basic formulae

q =

√
2J0
mω0

sinφ0 , p =
√

2mω0 J0 cosφ0 (16.365)

as well as the results

J0 =
∂S

∂φ0
= J + ǫ

∂S1
∂φ0

+ ǫ2
∂S2
∂φ0

+ . . .

φ =
∂S

∂J
= φ0 + ǫ

∂S1
∂J

+ ǫ2
∂S2
∂J

+ . . . ,

(16.366)

and

E0(J) = H̃0(J)

E1(J) = H̃1(φ0, J) +
∂H̃0

∂J

∂S1
∂φ0

E2(J) =
∂H̃0

∂J

∂S2
∂φ0

+
1

2

∂2H̃0

∂J2

(
∂S1
∂φ0

)2
+
∂H̃1

∂J

∂S1
∂φ0

.

(16.367)

Expressed in action-angle variables,

H̃0(φ0, J) = ω0 J

H̃1(φ0, J) =
2

3

√
2ω0

ma2
J3/2 sin3φ0 .

(16.368)

Thus, ν0 =
∂H̃0
∂J = ω0 .

Averaging the equation for E1(J) yields

E1(J) =
〈
H̃1(φ0, J)

〉
=

2

3

√
2ω0

ma2
J3/2

〈
sin3φ0

〉
= 0 . (16.369)

(b) Compute the frequency shift ν(J) to second order in ǫ.



16.11. APPENDIX: EXAMPLES 59

Solution : From the equation for E1, we also obtain

∂S1
∂φ0

=
1

ν0

(〈
H̃1

〉
− H̃1

)
. (16.370)

Inserting this into the equation for E2(J) and averaging then yields

E2(J) =
1

ν0

〈
∂H̃1

∂J

(〈
H̃1

〉
− H̃1

)〉
= − 1

ν0

〈
H̃1

∂H̃1

∂J

〉
= −4ν0J

2

3ma2
〈
sin6φ0

〉
(16.371)

In computing the average of sin6φ0, it is good to recall the binomial theorem, or the Fibonacci tree. The
sixth order coefficents are easily found to be {1, 6, 15, 20, 15, 6, 1}, whence

sin6φ0 =
1

(2i)6
(
eiφ0 − e−iφ0

)6

= 1
64

(
− 2 sin 6φ0 + 12 sin 4φ0 − 30 sin 2φ0 + 20

)
.

(16.372)

Thus
〈
sin6φ0

〉
= 5

16 , whence

E(J) = ω0 J − 5
12ǫ

2 J2

ma2
(16.373)

and

ν(J) =
∂E

∂J
= ω0 − 5

6ǫ
2 J

ma2
. (16.374)

(c) Find q(t) to order ǫ. Your result should be finite for all times.

Solution : From the equation for E1(J), we have

∂S1
∂φ0

= −2

3

√
2J3

mω0a2
sin3φ0 . (16.375)

Integrating, we obtain

S1(φ0, J) =
2

3

√
2J3

mω0a2
(
cosφ0 − 1

3 cos
3φ0
)

=
J3/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0
)

.

(16.376)

Thus, with
S(φ0, J) = φ0 J + ǫ S1(φ0, J) + . . . , (16.377)

we have

φ =
∂S

∂J
= φ0 +

3

2

ǫ J1/2

√
2mω0a2

(
cosφ0 − 1

9 cos 3φ0
)

J0 =
∂S

∂φ0
= J − ǫ J3/2

√
2mω0a2

(
sinφ0 − 1

3 sin 3φ0
)

.

(16.378)
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Inverting, we may write φ0 and J0 in terms of φ and J :

φ0 = φ+
3

2

ǫ J1/2

√
2mω0a2

(
1
9 cos 3φ− cosφ

)

J0 = J +
ǫ J3/2

√
2mω0a2

(
1
3 sin 3φ− sinφ

)
.

(16.379)

Thus,

q(t) =

√
2J0
mω0

sinφ0

=

√
2J

mω0
sinφ ·

(
1 +

δJ

2J
+ . . .

)(
sinφ+ δφ cosφ+ . . .

)

=

√
2J

mω0
sinφ− ǫ J

mω0a

(
1 + 1

3 cos 2φ
)
+O

(
ǫ2
)

,

(16.380)

with
φ(t) = φ(0) + ν(J) t . (16.381)


	Contents
	List of Figures
	List of Tables
	Hamiltonian Mechanics
	References
	The Hamiltonian
	Modified Hamilton's principle
	Phase flow is incompressible
	Poincaré recurrence theorem
	Poisson brackets

	Canonical Transformations
	Point transformations in Lagrangian mechanics
	Canonical transformations in Hamiltonian mechanics
	Hamiltonian evolution
	Symplectic structure
	Generating functions for canonical transformations

	Hamilton-Jacobi Theory
	The action as a function of coordinates and time
	The Hamilton-Jacobi equation
	Time-independent Hamiltonians
	Example: one-dimensional motion
	Separation of variables

	Action-angle vriables
	Circular phase orbits: librations and rotations
	Action-Angle Variables
	Canonical transformation to action-angle variables
	Examples

	Integrability and Motion on Invariant Tori
	Librations and rotations
	Liouville-Arnol'd theorem

	Adiabatic Invariants
	Slow perturbations
	Example: mechanical mirror
	Example: magnetic mirror
	Resonances

	Canonical Perturbation Theory
	Canonical transformations and perturbation theory
	Canonical perturbation theory for n=1 systems
	Example : quartic oscillator
	n>1 systems: degeneracies and resonances
	Nonlinear oscillator with two degrees of freedom
	Periodic time-dependent perturbations
	Particle-wave Interaction

	Removal of Resonances in Perturbation Theory
	The case of n=3 2 degrees of freedom
	n=2 systems
	Secondary resonances

	Whither Integrability?
	Appendix: Examples
	Hamilton-Jacobi theory for point charge plus electric field
	Hamilton-Jacobi theory for charged particle in a magnetic field
	Action-angle variables for the Kepler problem
	Action-angle variables for charged particle in a magnetic field
	Canonical perturbation theory for the cubic oscillator 



