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Chapter 6

Linearized Dynamics of Coupled
Oscillations

6.1 Basic Objective

Our basic objective in studying small coupled oscillations is to expand the equations of motion to linear
order in the n generalized coordinates about a stable equilibrium configuration. This yields a set of n
coupled second order differential equations that is both linear and homogeneous. Such a system may then
be solved by elementary linear algebraic means. The general solution may then be written as a sum over
n normal mode oscillations, each of which oscillates at a particular eigenfrequency ωj , with j ∈ {1, . . . , n}.
The set of eigenfrequencies is determined by the form of the linearized equations of motion. The n
normal mode amplitudes and n normal mode phase shifts are determined by the 2n initial conditions
on the generalized coordinates and velocities.

6.2 Euler-Lagrange Equations of Motion

We assume, for a set of n generalized coordinates {q1, . . . , qn}, that the kinetic energy is a quadratic
function of the velocities,

T = 1
2 Tσσ′(q1, . . . , qn) q̇σ q̇σ′ , (6.1)

where the sum on σ and σ′ from 1 to n is implied. For example, expressed in terms of polar coordinates

(r, θ, φ), the matrix Tσσ′ is

Tσσ′(r, θ, φ) = m



1 0 0
0 r2 0
0 0 r2 sin2θ


 =⇒ T = 1

2 m
(
ṙ2 + r2θ̇2 + r2 sin2θ φ̇2

)
. (6.2)

The potential U(q1, . . . , qn) is assumed to be a function of the generalized coordinates alone: U = U(q).
A more general formulation of the problem of small oscillations is given in the appendix, section 6.8.
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2 CHAPTER 6. LINEARIZED DYNAMICS OF COUPLED OSCILLATIONS

The generalized momenta are

pσ =
∂L

∂q̇σ
= Tσσ′ q̇σ′ , (6.3)

and the generalized forces are

Fσ =
∂L

∂qσ
=

1

2

∂Tσ′σ′′

∂qσ
q̇σ′ q̇σ′′ −

∂U

∂qσ
. (6.4)

The Euler-Lagrange equations are then ṗσ = Fσ, or

Tσσ′ q̈σ′ +

(
∂Tσσ′

∂qσ′′

− 1

2

∂Tσ′σ′′

∂qσ

)
q̇σ′ q̇σ′′ = − ∂U

∂qσ
(6.5)

which is a set of coupled nonlinear second order ODEs. Here we are using the Einstein ‘summation
convention’, where we automatically sum over any and all repeated indices.

6.3 Expansion about Static Equilibrium

Small oscillation theory begins with the identification of a static equilibrium {q̄1, . . . , q̄n}, which satisfies
the n nonlinear equations

∂U

∂qσ

∣∣∣∣
q=q̄

= 0 . (6.6)

Once an equilibrium is found (note that there may be more than one static equilibrium), we expand
about this equilibrium, writing

qσ ≡ q̄σ + ησ . (6.7)

The coordinates {η1, . . . , ηn} represent the displacements relative to equilibrium.

We next expand the Lagrangian to quadratic order in the generalized displacements, yielding

L = 1
2Tσσ′ η̇σ η̇σ′ − 1

2Vσσ′ ησησ′ , (6.8)

where

Tσσ′ =
∂2T

∂q̇σ ∂q̇σ′

∣∣∣∣∣
q=q̄

, Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

. (6.9)

Writing ηt for the row-vector (η1, . . . , ηn), we may suppress indices and write

L = 1
2 η̇

t T η̇ − 1
2 η

t Vη , (6.10)

where T and V are the constant matrices of eqn. 6.9.
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6.4 Method of Small Oscillations

The idea behind the method of small oscillations is to effect a coordinate transformation from the gener-
alized displacements η to a new set of coordinates ξ, which render the Lagrangian particularly simple.
All that is required is a linear transformation,

ησ = Aσi ξi , (6.11)

where both σ and i run from 1 to n. The n × n matrix Aσi is known as the modal matrix. With the

substitution η = A ξ (hence ηt = ξt At, where Atiσ = Aσi is the matrix transpose), we have

L = 1
2 ξ̇

t At TA ξ̇ − 1
2 ξ

t At VA ξ . (6.12)

We now choose the matrix A such that

At TA = I

At VA = diag
(
ω2
1 , . . . , ω

2
n

)
.

(6.13)

With this choice of A, the Lagrangian decouples:

L = 1
2

n∑

i=1

(
ξ̇2i − ω2

i ξ
2
i

)
, (6.14)

with the solution
ξi(t) = Ci cos(ωi t) +Di sin(ωi t) , (6.15)

where {C1, . . . , Cn} and {D1, . . . ,Dn} are 2n constants of integration, determined by the 2n initial con-
ditions on η(0) and η̇(0), and where there is no implied sum on i. Note that

ξ = A−1η = At Tη . (6.16)

In terms of the original generalized displacements, the solution is

ησ(t) =

n∑

i=1

Aσi

{
Ci cos(ωit) +Di sin(ωit)

}
, (6.17)

and the constants of integration are linearly related to the initial generalized displacements and gener-
alized velocities:

Ci = Atiσ Tσσ′ ησ′(0)

Di = ω−1
i Atiσ Tσσ′ η̇σ′(0) ,

(6.18)

again with no implied sum on i on the RHS of the second equation, and where we have used A−1 = At T,
from eqn. 6.13. (The implied sums in eqn. 6.18 are over σ and σ′.)

If all the generalized coordinates have units of length, i.e. [qσ] = L, then

[Tσσ′ ] =M , [Vσσ′ ] =MT−2 , [Aσi] =M−1/2 , [ξi] =M1/2L . (6.19)
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Can you really just choose an A so that both of eqns. 6.13 hold?

Yes.

Er...care to elaborate?

Both T and V are symmetric matrices. Aside from that, there is no special relation between them. In
particular, they need not commute, hence they do not necessarily share any eigenvectors. Nevertheless,
they may be simultaneously diagonalized as per eqns. 6.13. Here’s why:

• Since T is symmetric, it can be diagonalized by an orthogonal transformation. That is, there exists

a matrix O1 ∈ O(n) such that

Ot

1 TO1 = D , (6.20)

where D is diagonal.

• We may safely assume that T is positive definite. Otherwise the kinetic energy can become ar-
bitrarily negative, which is unphysical. Therefore, one may form the matrix D−1/2 which is the
diagonal matrix whose entries are the inverse square roots of the corresponding entries of D. Con-

sider the linear transformation O1D
−1/2. Its effect on T is

D−1/2

D︷ ︸︸ ︷
Ot

1 TO1 D−1/2 = I . (6.21)

• Since O1 and D are wholly derived from T, the only thing we know about

Ṽ ≡ D−1/2 Ot

1 VO1 D
−1/2 (6.22)

is that it is explicitly a symmetric matrix. Therefore, it may be diagonalized by some orthogonal

matrix O2 ∈ O(n). As T has already been transformed to the identity, the additional orthogonal

transformation has no effect there. Thus, we have shown that there exist orthogonal matrices O1

and O2 such that

Ot

2D
−1/2 Ot

1 TO1 D
−1/2 O2 = I

Ot

2D
−1/2 Ot

1 VO1 D
−1/2 O2 = diag(ω2

1 , . . . , ω
2
n) .

(6.23)

All that remains is to identify the modal matrix A = O1D
−1/2 O2.

Note that it is not possible to simultaneously diagonalize three symmetric matrices in general.
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6.4.1 Finding the modal matrix

While the above proof allows one to construct A by finding the two orthogonal matrices O1 and O2, such
a procedure is extremely cumbersome. It would be much more convenient if A could be determined in
one fell swoop. Fortunately, this is possible.

We start with the equations of motion, Tη̈ + Vη = 0. In component notation, we have

Tσσ′ η̈σ′ + Vσσ′ ησ′ = 0 . (6.24)

We now assume that η(t) oscillates with a single frequency ω, i.e. ησ(t) = ψσ e−iωt. This results in a set

of linear algebraic equations for the components ψσ:

(
ω2 Tσσ′ − Vσσ′

)
ψσ′ = 0 . (6.25)

These are n equations in n unknowns: one for each value of σ = 1, . . . , n. Because the equations are
homogeneous and linear, there is always a trivial solution ψ = 0. In fact one might think this is the only
solution, since

(
ω2 T− V

)
ψ = 0

?
=⇒ ψ =

(
ω2 T− V

)−1
0 = 0 . (6.26)

However, this fails when the matrix ω2 T− V is defective1, i.e. when

det
(
ω2 T− V

)
= 0 . (6.27)

Since T and V are of rank n, the above determinant yields an nth order polynomial in ω2, whose n roots
are the desired squared eigenfrequencies {ω2

1 , . . . , ω
2
n}.

Once the n eigenfrequencies are obtained, the modal matrix is constructed as follows. Solve the equa-
tions

n∑

σ′=1

(
ω2
i Tσσ′ − Vσσ′

)
ψ
(i)
σ′ = 0 (6.28)

which are a set of (n − 1) linearly independent equations among the n components of the eigenvector
ψ(i). That is, there are n equations (σ = 1, . . . , n), but one linear dependency since det (ω2

i T − V) = 0.
The eigenvectors may be chosen to satisfy a generalized orthogonality relationship,

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = δij . (6.29)

To see this, let us duplicate eqn. 6.28, replacing i with j, and multiply both equations as follows:

ψ(j)
σ ×

(
ω2
i Tσσ′ − Vσσ′

)
ψ
(i)
σ′ = 0

ψ(i)
σ ×

(
ω2
j Tσσ′ − Vσσ′

)
ψ
(j)
σ′ = 0 .

(6.30)

Using the symmetry of T and V, upon subtracting these equations we obtain

(ω2
i − ω2

j )
n∑

σ,σ′=1

ψ(i)
σ Tσσ′ ψ

(j)
σ′ = 0 , (6.31)

1The label defective has a distastefully negative connotation. In modern parlance, we should instead refer to such a matrix as
determinantally challenged.
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where the sums on i and j have been made explicit. This establishes that eigenvectors ψ(i) and ψ(j)

corresponding to distinct eigenvalues ω2
i 6= ω2

j are orthogonal: (ψ(i))t Tψ(j) = 0. For degenerate eigen-
values, the eigenvectors are not a priori orthogonal, but they may be orthogonalized via application of
the Gram-Schmidt procedure. The remaining degrees of freedom - one for each eigenvector – are fixed
by imposing the condition of normalization:

ψ(i)
σ → ψ(i)

σ

/√
ψ
(i)
µ Tµµ′ ψ

(i)
µ′ =⇒ ψ(i)

σ Tσσ′ ψ
(j)
σ′ = δij . (6.32)

The modal matrix is just the matrix of eigenvectors: Aσi = ψ
(i)
σ .

With the eigenvectors ψ
(i)
σ thusly normalized, we have

0 = ψ(i)
σ

(
ω2
j Tσσ′ − Vσσ′

)
ψ
(j)
σ′

= ω2
j δij − ψ(i)

σ Vσσ′ ψ
(j)
σ′ ,

(6.33)

with no sum on j. This establishes the result

At VA = diag
(
ω2
1 , . . . , ω

2
n

)
. (6.34)

Recall the relation ησ = Aσi ξi between the generalized displacements ησ and the normal coordinates ξi.
We can invert this relation to obtain

ξi = A−1
iσ ησ = AtiσTσσ′ ησ′ . (6.35)

Here we have used the result At TA = 1 to write

A−1 = At T . (6.36)

This is a convenient result, because it means that if we ever need to express the normal coordinates in
terms of the generalized displacements, we don’t have to invert any matrices – we just need to do one
matrix multiplication.

6.4.2 Summary of the method

(i) Obtain the T and V matrices,

Tσσ′ =
∂T

∂qσ∂q̇σ′

∣∣∣∣∣
q̄

, Vσσ′ =
∂U

∂qσ∂q̇σ′

∣∣∣∣∣
q̄

, (6.37)

where the equilibrium conditions are ∂U/∂qσ
∣∣
q̄
= 0 . The quadratic form Lagrangian for small oscilla-

tions of the generalized displacements from equilibrium ησ and their velocities is then

L = 1
2 η̇σ Tσσ′ η̇σ′ − 1

2 ησ Vσσ′ ησ′ . (6.38)
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(ii) Solve det(ω2T− V) = 0, which is an nth order polynomial in ω2.

(iii) For each root ω2
i , solve the defective linear system (ω2

i T− V)ψ(i) = 0.

(iv) Eigenvectors corresponding to different eigenfrequencies will necessarily be orthogonal, i.e.

〈ψ(i) |ψ(j) 〉 ≡ ψ(i)
σ Tσσ′ ψ

(j)
σ′ = 0 if ω2

i 6= ω2
j . (6.39)

In the case of degenerate eigenvalues, use the Gram-Schmidt method to find an orthogonal basis for the
degenerate subspace. Then normalize each eigenvector such that 〈ψ(i) |T |ψ(j) 〉 = δij for all i and j.

(v) The modal matrix Aσj = ψ
(j)
σ then satisfies

At TA = I , At VA = diag
(
ω2
1 , . . . , ω

2
n

)
. (6.40)

Note that A−1 = At T. The relation between the generalized displacements ησ and the normal modes ξj
is ησ = Aσj ξj , which entails ξj = At

jσTσσ′ησ′ = AσjTσσ′ησ′ . In terms of the normal mode coordinates
and their velocities,

L =
∑

i

1
2

(
ξ̇2i − ω2

i ξ
2
i

)
, (6.41)

and the equations of motion are those of decoupled oscillators: ξ̈i = −ω2
i ξi .

(vi) The complete solution for the generalized displacements is then

ησ(t) =

n∑

i=1

Aσi

{
Ci cos(ωit) +Di sin(ωit)

}
, (6.42)

with
Ci = Atiσ Tσσ′ ησ′(0) , Di = ω−1

i Atiσ Tσσ′ η̇σ′(0) . (6.43)

6.5 Examples

6.5.1 Masses and springs

Two blocks and three springs are configured as in fig. 6.1. All motion is horizontal. When the blocks are
at rest, all springs are unstretched.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium position,
and write the Lagrangian.

(b) Find the T and V matrices.

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k , (6.44)

Find the frequencies of small oscillations.
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Figure 6.1: A system of masses and springs.

(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position. I.e. x1(0) = b.

The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0. Find t∗, the next time at which

x2 vanishes.

Solution :

(a) The Lagrangian is

L = 1
2m1 ẋ

2
1 +

1
2m2 ẋ

2
2 − 1

2k1 x
2
1 − 1

2k2 (x2 − x1)
2 − 1

2k3 x
2
2 , (6.45)

which is already a quadratic form. Thus, the full equations of motion are already linear.

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj
=

(
k1 + k2 −k2
−k2 k2 + k3

)
. (6.46)

(c) We have m1 = 2m, m2 = m, k1 = 4k, k2 = k, and k3 = 2k. Let us write ω2 ≡ λω2
0 , where ω0 ≡

√
k/m.

Then

ω2T− V = k

(
2λ− 5 1

1 λ− 3

)
. (6.47)

The determinant is

det (ω2T− V) = (2λ2 − 11λ + 14) k2

= (2λ− 7) (λ− 2) k2 .
(6.48)

There are two roots: λ− = 2 and λ+ = 7
2 , corresponding to the eigenfrequencies

ω− =

√
2k

m
, ω+ =

√
7k

2m
. (6.49)
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(d) The normal modes are determined from (ω2
aT − V)ψ(a) = 0. Plugging in λ = 2 we have for the

normal mode ψ(−)

(
−1 1
1 −1

)(
ψ(−)

1

ψ(−)

2

)
= 0 ⇒ ψ(−) = C−

(
1
1

)
. (6.50)

Plugging in λ = 7
2 we have for the normal mode ψ(+)

(
2 1
1 1

2

)(
ψ(+)

1

ψ(+)

2

)
= 0 ⇒ ψ(+) = C+

(
1
−2

)
. (6.51)

The standard normalization ψ
(a)
i Tij ψ

(b)
j = δab gives

C− =
1√
3m

, C+ =
1√
6m

. (6.52)

(e) The general solution is

(
x1
x2

)
= A

(
1
1

)
cos(ω−t) +B

(
1
−2

)
cos(ω+t) + C

(
1
1

)
sin(ω−t) +D

(
1
−2

)
sin(ω+t) . (6.53)

The initial conditions x1(0) = b, x2(0) = ẋ1(0) = ẋ2(0) = 0 yield

A = 2
3b , B = 1

3b , C = 0 , D = 0 . (6.54)

Thus,

x1(t) =
1
3b ·

(
2 cos(ω−t) + cos(ω+t)

)

x2(t) =
2
3b ·

(
cos(ω−t)− cos(ω+t)

)
.

(6.55)

Setting x2(t
∗) = 0, we find

cos(ω−t
∗) = cos(ω+t

∗) ⇒ π − ω−t = ω+t− π ⇒ t∗ =
2π

ω− + ω+
. (6.56)

6.5.2 Double pendulum

As a second example, consider the double pendulum, with m1 = m2 = m and ℓ1 = ℓ2 = ℓ. The
Lagrangian and equations of motion for this problem were discussed in §4.4.5 for the general case of
differing masses and lengths. For our simpler version, the kinetic and potential energies are

T = mℓ2θ̇21 +mℓ2 cos(θ1 − θ1) θ̇1θ̇2 +
1
2mℓ

2θ̇22

U = −2mgℓ cos θ1 −mgℓ cos θ2 .
(6.57)
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Figure 6.2: The double pendulum (again).

Equilibrium is at θ1 = θ2 = 0, and the T and V matrices are given by

T =
∂2T

∂θ̇i ∂θ̇j

∣∣∣∣∣
θ̄

=

(
2mℓ2 mℓ2

mℓ2 mℓ2

)
, V =

∂2U

∂θi ∂θj

∣∣∣∣∣
θ̄

=

(
2mgℓ 0
0 mgℓ

)
. (6.58)

Then

ω2T− V = mℓ2
(
2ω2 − 2ω2

0 ω2

ω2 ω2 − ω2
0

)
, (6.59)

with ω0 =
√
g/ℓ. Setting the determinant to zero gives

2(ω2 − ω2
0)

2 − ω4 = 0 ⇒ ω2 = (2 ±
√
2)ω2

0 . (6.60)

We find the unnormalized eigenvectors by setting (ω2
i T− V )ψ(i) = 0. This gives

ψ+ = C+

(
1

−
√
2

)
, ψ− = C−

(
1

+
√
2

)
, (6.61)

where C± are constants. One can check Tσσ′ ψ
(i)
σ ψ

(j)
σ′ vanishes for i 6= j. We then normalize by demand-

ing Tσσ′ ψ
(i)
σ ψ

(i)
σ′ = 1 (no sum on i), which determines the coefficients C± = 1

2

√
(2±

√
2)/mℓ2. Thus, the

modal matrix is

A =



ψ+
1 ψ−

1

ψ+
2 ψ−

2


 =

1

2
√
mℓ2




√
2 +

√
2

√
2−

√
2

−
√
4 + 2

√
2 +

√
4− 2

√
2


 . (6.62)
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6.6 Zero Modes

6.6.1 Noether’s theorem and zero modes

Recall Noether’s theorem, which says that for every continuous one-parameter family of coordinate
transformations,

qσ −→ q̃σ(q, ζ) , q̃σ(q, ζ = 0) = qσ , (6.63)

which leaves the Lagrangian invariant, i.e. dL/dζ = 0, there is an associated conserved quantity,

Λ =
∑

σ

∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣∣
ζ=0

satisfies
dΛ

dt
= 0 . (6.64)

For small oscillations, we write qσ = q̄σ + ησ, hence

Λk =
∑

σ

Ckσ η̇σ , (6.65)

where k labels the one-parameter families (in the event there is more than one continuous symmetry),
and where

Ckσ =
∑

σ′

Tσσ′

∂q̃σ′

∂ζk

∣∣∣∣∣
ζ=0

. (6.66)

Therefore, we can define the (unnormalized) normal mode

ξk =
∑

σ

Ckσ ησ , (6.67)

which satisfies ξ̈k = 0. Thus, in systems with continuous symmetries, to each such continuous symmetry
there is an associated zero mode of the small oscillations problem, i.e. a mode with ω2

k = 0.

6.6.2 Examples of zero modes

The simplest example of a zero mode would be a pair of masses m1 and m2 moving frictionlessly along
a line and connected by a spring of force constant k and unstretched length a. We know from our study
of central forces that the Lagrangian may be written

L = 1
2m1 ẋ

2
1 +

1
2m2 ẋ

2
2 − 1

2k (x1 − x2 − a)2

= 1
2MẊ2 + 1

2µẋ
2 − 1

2k(x− a)2 ,
(6.68)

whereX = (m1x1+m2x2)/(m1+m2) is the center of mass position, x = x1−x2 is the relative coordinate,

M = m1 +m2 is the total mass, and µ = m1m2/(m1 +m2) is the reduced mass. The relative coordinate

obeys ẍ = −ω2
0 x, where the oscillation frequency is ω0 =

√
k/µ. The center of mass coordinate obeys

Ẍ = 0, i.e. its oscillation frequency is zero. The center of mass motion is a zero mode.
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Figure 6.3: Coupled oscillations of three masses on a frictionless hoop of radius R. All three springs
have the same force constant k, but the masses are all distinct.

Another example is furnished by the system depicted in fig. 6.3, where three distinct masses m1, m2,

and m3 move around a frictionless hoop of radius R. The masses are connected to their neighbors by

identical springs of force constant k. We choose as generalized coordinates the angles φσ (σ = 1, 2, 3),
with the convention that

φ3 − 2π < φ1 ≤ φ2 ≤ φ3 ≤ 2π + φ1 . (6.69)

The kinetic energy is
T = 1

2R
2
(
m1 φ̇

2
1 +m2 φ̇

2
2 +m3 φ̇

3
3

)
. (6.70)

Let Rχ be the equilibrium length for each of the springs. Then the potential energy is

U = 1
2kR

2
{
(φ2 − φ1 − χ)2 + (φ3 − φ2 − χ)2 + (2π + φ1 − φ3 − χ)2

}

= 1
2kR

2
{
(φ2 − φ1)

2 + (φ3 − φ2)
2 + (2π + φ1 − φ3)

2 + 3χ2 − 4πχ
}

.
(6.71)

Note that the equilibrium angle χ enters only in an additive constant to the potential energy. Thus,
for the calculation of the equations of motion, it is irrelevant. It doesn’t matter whether or not the
equilibrium configuration is unstretched (χ = 2π/3) or not (χ 6= 2π/3).

The equilibrium configuration is

φ̄1 = ζ , φ̄1 = ζ + 2π
3 , φ̄1 = ζ + 4π

3 , (6.72)

where ζ is an arbitrary real number, corresponding to continuous translational invariance of the entire
system around the ring. The T and V matrices are then

T =



m1R

2 0 0

0 m2R
2 0

0 0 m3R
2


 , V =




2kR2 −kR2 −kR2

−kR2 2kR2 −kR2

−kR2 −kR2 2kR2


 . (6.73)
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We then have

ω2 T− V = kR2




ω2

Ω2
1
− 2 1 1

1 ω2

Ω2
2
− 2 1

1 1 ω2

Ω2
3
− 2


 , (6.74)

where Ω2
j ≡ k/mj . We compute the determinant to find the characteristic polynomial:

P (ω) = det(ω2 T− V) ≡ (kR2)3P̃ (ω)

P̃ (ω) =
ω6

Ω2
1 Ω

2
2 Ω

2
3

− 2

(
1

Ω2
1 Ω

2
2

+
1

Ω2
2 Ω

2
3

+
1

Ω2
1 Ω

2
3

)
ω4 + 3

(
1

Ω2
1

+
1

Ω2
2

+
1

Ω2
3

)
ω2 .

(6.75)

The equation P̃ (ω) = 0 yields a cubic equation in ω2, but clearly ω2 is a factor, and when we divide this
out we obtain a quadratic equation. One root obviously is ω2

1 = 0. The other two roots are solutions to
the quadratic equation:

ω2
2,3 = Ω2

1 +Ω2
2 +Ω2

3 ±
√

1
2

(
Ω2

1 −Ω2
2

)2
+ 1

2

(
Ω2

2 −Ω2
3

)2
+ 1

2

(
Ω2

1 −Ω2
3

)2
. (6.76)

To find the eigenvectors and the modal matrix, we set




ω2
j

Ω2
1
− 2 1 1

1
ω2
j

Ω2
2
− 2 1

1 1
ω2
j

Ω2
3
− 2






ψ
(j)
1

ψ
(j)
2

ψ
(j)
3


 = 0 , (6.77)

Writing down the three coupled equations for the components of ψ(j), we find

(
ω2
j

Ω2
1

− 3

)
ψ
(j)
1 =

(
ω2
j

Ω2
2

− 3

)
ψ
(j)
2 =

(
ω2
j

Ω2
3

− 3

)
ψ
(j)
3 . (6.78)

We therefore conclude

ψ(j) = Cj




(
ω2
j

Ω2
1
− 3
)−1

(
ω2
j

Ω2
2
− 3
)−1

(
ω2
j

Ω2
3
− 3
)−1




. (6.79)

The normalization condition ψ
(i)
σ Tσσ′ ψ

(j)
σ′ = δij then fixes the constants Cj :

[
m1

(
ω2
j

Ω2
1

− 3

)−2

+ m2

(
ω2
j

Ω2
2

− 3

)−2

+ m3

(
ω2
j

Ω2
3

− 3

)−2
]
∣∣Cj
∣∣2 = 1 . (6.80)

The Lagrangian is invariant under the one-parameter family of transformations

φσ −→ φσ + ζ (6.81)
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for all σ = 1, 2, 3. The associated conserved quantity is

Λ =
∑

σ

∂L

∂φ̇σ

∂φ̃σ
∂ζ

= R2
(
m1 φ̇1 +m2 φ̇2 +m3 φ̇3

)
,

(6.82)

which is, of course, the total angular momentum relative to the center of the ring. We stress that Λ is a
constant in general, and not only in the limit of small deviations from static equilibrium. From

ξ1 = C
(
m1 η1 +m2 η2 +m3 η3

)
, (6.83)

where C is a constant. Recall the relation ησ = Aσi ξi between the generalized displacements ησ and the

normal coordinates ξi, which may be inverted to yield ξi = A−1
iσ ησ = Atiσ. In our case here, the T matrix

is diagonal, so the multiplication is trivial. From eqns. 6.83 and 6.35, we conclude that the matrix At T

must have a first row which is proportional to (m1,m2,m3). Since these are the very diagonal entries of
T, we conclude that At itself must have a first row which is proportional to (1, 1, 1), which means that
the first column of A is proportional to (1, 1, 1). But this is confirmed by eqn. 6.78 when we take j = 1,

since ω2
j=1 = 0: ψ

(1)
1 = ψ

(1)
2 = ψ

(1)
3 .

6.7 Chain of Mass Points

6.7.1 Lagrangian and equations of motion

Next consider an infinite chain of identical masses, connected by identical springs of spring constant k
and equilibrium length a. The Lagrangian is

L = 1
2m
∑

n

ẋ2n − 1
2k
∑

n

(xn+1 − xn − a)2

= 1
2m
∑

n

u̇2n − 1
2k
∑

n

(un+1 − un)
2 ,

(6.84)

where un ≡ xn−na+ ζ is the displacement from equilibrium of the nth mass. The constant ζ is arbitrary
and is cyclic in L, reflecting overall translational invariance with a consequent zero mode according to
Noether’s theorem. The Euler-Lagrange equations are

mün =
d

dt

(
∂L

∂u̇n

)
=

∂L

∂un

= k (un+1 − un)− k (un − un−1) = k (un+1 + un−1 − 2un) .

(6.85)

Now let us assume that the system is placed on a large ring of circumference Na, where N ≫ 1. Then

un+N = un and we may shift to Fourier coefficients,

un =
1√
N

∑

q

eiqan ûq , ûq =
1√
N

∑

n

e−iqan un , (6.86)
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where qj = 2πj/Na, and both sums are over the set j, n ∈ {1, . . . , N}. Expressed in terms of the {ûq},
the equations of motion become

¨̂uq =
1√
N

∑

n

e−iqna ün =
k

m

1√
N

∑

n

e−iqan (un+1 + un−1 − 2un)

=
k

m

1√
N

∑

n

e−iqan (e−iqa + e+iqa − 2)un = −4k

m
sin2

(
1
2qa
)
ûq

(6.87)

Thus, the {ûq} are the normal modes of the system (up to a normalization constant), and the eigenfre-
quencies are

ωq = 2

√
k

m

∣∣ sin
(
1
2qa
)∣∣ . (6.88)

This means that the modal matrix is

Anq =
1√
Nm

eiqan , (6.89)

where we’ve included the 1√
m

factor for a proper normalization. The normal modes themselves are then

ξq = A
†
qnTnn′ un′ =

√
mûq . For complex A, we have A†TA = I and A†VA = diag(ω2

1, . . . , ω
2
N ).

Note that

Tnn′ = mδn,n′

Vnn′ = 2k δn,n′ − k δn,n′+1 − k δn,n′−1

(6.90)

and that

(A†TA)qq′ =
N∑

n=1

N∑

n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑

n=1

N∑

n′=1

e−iqanmδnn′ e
iq′an′

=
1

N

N∑

n=1

ei(q
′−q)an = δqq′ ,

(6.91)

and

(A†VA)qq′ =
N∑

n=1

N∑

n′=1

A∗
nqTnn′An′q′

=
1

Nm

N∑

n=1

N∑

n′=1

e−iqan
(
2k δn,n′ − k δn,n′+1 − k δn,n′−1

)
eiq

′an′

=
k

m

1

N

N∑

n=1

ei(q
′−q)an

(
2− e−iq′a − eiq

′a
)
=

4k

m
sin2

(
1
2qa
)
δqq′ = ω2

q δqq′

(6.92)

Since x̂q+G = x̂q , where G = 2π/a , we may choose any set of q values such that no two are separated
by an integer multiple of G. The set of points {jG} with j ∈ Z is called the reciprocal lattice. For a linear
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chain, the reciprocal lattice is itself a linear chain2. One natural set to choose is q ∈
[
− π

a ,
π
a

]
. This is

known as the first Brillouin zone of the reciprocal lattice.

Finally, we can write the Lagrangian itself in terms of the {uq}. One easily finds

L = 1
2 m

∑

q

˙̂u
∗
q
˙̂uq − k

∑

q

(1− cos qa) û∗q ûq , (6.93)

where the sum is over q in the first Brillouin zone. Note that

û−q = û−q+G = û∗q . (6.94)

This means that we can restrict the sum to half the Brillouin zone:

L =
∑

q∈[0,π
a
]

{
m ˙̂u

∗
q
˙̂uq − 4k sin2

(
1
2qa
)
û∗q ûq

}
. (6.95)

Now ûq and û∗q may be regarded as linearly independent, as one regards complex variables z and z∗.
The Euler-Lagrange equation for û∗q gives

d

dt

(
∂L

∂ ˙̂u
∗
q

)
=

∂L

∂û∗q
⇒ ¨̂uq = −ω2

q ûq . (6.96)

Extremizing with respect to ûq gives the complex conjugate equation.

6.7.2 Continuum limit

Let us take N → ∞, a→ 0, with L0 = Na fixed. We’ll write un(t) → u(x = na, t), in which case

T = 1
2m
∑

n

u̇2n −→ 1
2m

∫
dx

a

(
∂u

∂t

)2

V = 1
2k
∑

n

(un+1 − un)
2 −→ 1

2k

∫
dx

a

(
u(x+ a)− u(x)

a

)2
a2

(6.97)

Recognizing the spatial derivative above, we finally obtain

L =

∫
dxL(u, ∂tu, ∂xu)

L = 1
2 µ

(
∂u

∂t

)2
− 1

2 τ

(
∂u

∂x

)2
,

(6.98)

where µ = m/a is the linear mass density and τ = ka is the tension3. The quantity L is the Lagrangian
density; it depends on the field u(x, t) as well as its partial derivatives ∂tu and ∂xu

4. The action is

S
[
u(x, t)

]
=

tb∫

ta

dt

xb∫

xa

dx L(u, ∂tu, ∂xu) , (6.99)

2For higher dimensional Bravais lattices, the reciprocal lattice is often different than the real space (“direct”) lattice. For exam-
ple, the reciprocal lattice of a face-centered cubic structure is a body-centered cubic lattice.

3For a proper limit, we demand µ and τ be neither infinite nor infinitesimal.
4
L may also depend explicitly on x and t.
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where {xa, xb} are the limits on the x coordinate. Setting δS = 0 gives the Euler-Lagrange equations

∂L
∂u

− ∂

∂t

(
∂L

∂ (∂tu)

)
− ∂

∂x

(
∂L

∂ (∂xu)

)
= 0 . (6.100)

For our system, this yields the Helmholtz equation,

1

c2
∂2u

∂t2
=
∂2u

∂x2
, (6.101)

where c =
√
τ/µ is the velocity of wave propagation. This is a linear equation, solutions of which are of

the form
u(x, t) = C eiqx e−iωt , (6.102)

where ω = ±cq . Note that in the continuum limit a → 0, the dispersion relation derived for the chain
becomes

ω2
q =

4k

m
sin2

(
1
2qa
)
−→ ka2

m
q2 = c2q2 , (6.103)

and so the results agree.

6.8 General Formulation of Small Oscillations

In the development in section 6.2, we assumed that the kinetic energy T is a homogeneous function of
degree 2, and the potential energy U a homogeneous function of degree 0, in the generalized velocities
q̇σ. However, we’ve encountered situations where this is not so: problems with time-dependent holo-
nomic constraints, such as the mass point on a rotating hoop, and problems involving charged particles
moving in magnetic fields. The general Lagrangian is of the form

L = 1
2 T

σσ′

2 (q) q̇σ q̇σ′ + T σ
1 (q) q̇σ + T0(q)− Uσ

1 (q) q̇σ − U0(q) , (6.104)

where the subscript 0, 1, or 2 labels the degree of homogeneity of each term in the generalized velocities.
The generalized momenta are then

pσ =
∂L

∂q̇σ
= T σσ′

2 q̇σ′ + T σ
1 (q)− Uσ

1 (q) (6.105)

and the generalized forces are

Fσ =
∂L

∂qσ
=
∂(T0 − U0)

∂qσ
+
∂(T σ′

1 − Uσ′

1 )

∂qσ
q̇σ′ +

1

2

∂T σσ′

2

∂qσ
q̇σ′ q̇σ′′ , (6.106)

and the equations of motion are again ṗσ = Fσ

In equilibrium, we seek a time-independent solution of the form qσ(t) = q̄σ. This entails

∂
{
U0(q)− T0(q)

}

∂qσ

∣∣∣∣∣
q=q̄

= 0 , (6.107)
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which give us n equations in the n unknowns (q̄1, . . . , q̄n). We then write qσ = q̄σ + ησ and expand in
the notionally small quantities ησ. It is important to understand that we assume η and all of its time
derivatives as well are small. Thus, we can expand L to quadratic order in (η, η̇) to obtain

L = 1
2 Tσσ′ η̇σ η̇σ′ − 1

2 Bσσ′ ησ η̇σ′ − 1
2 Vσσ′ ησ ησ′ , (6.108)

where

Tσσ′ = T σσ′

2 (q̄) , Bσσ′ = 2
∂
(
Uσ′

1 − T σ′

1

)

∂qσ

∣∣∣∣∣
q=q̄

, Vσσ′ =
∂2
(
U0 − T0

)

∂qσ ∂qσ′

∣∣∣∣∣
q=q̄

. (6.109)

Note that the T and V matrices are symmetric. The Bσσ′ term is new.

Now we can always write B = 1
2(B

s + Ba) as a sum over symmetric and antisymmetric parts, with
Bs = 1

2(B+ Bt) and Ba = 1
2(B − Bt). Since,

Bσσ′ ησ η̇σ′ =
d

dt

(
1
2 B

s

σσ′ ησ ησ′

)
, (6.110)

any symmetric part to B contributes a total time derivative to L, and thus has no effect on the equations
of motion. Therefore, we can project V onto its antisymmetric part, writing

Bσσ′ ≡ BA

σσ′ =

(
∂
(
Uσ′

1 − T σ′

1

)

∂qσ
− ∂

(
Uσ
1 − T σ

1

)

∂qσ′

)

q=q̄

. (6.111)

We now have

pσ =
∂L

∂η̇σ
= Tσσ′ η̇σ′ + 1

2 Bσσ′ ησ′ , (6.112)

and

Fσ =
∂L

∂ησ
= −1

2 Bσσ′ η̇σ′ − Vσσ′ ησ′ . (6.113)

The equations of motion, ṗσ = Fσ, then yield

Tσσ′ η̈σ′ + Bσσ′ η̇σ′ + Vσσ′ ησ′ = 0 . (6.114)

Let us write η(t) = η e−iωt. We then have

(
ω2 T+ iω B− V

)
η = 0 . (6.115)

To solve eqn. 6.115, we set P (ω) = 0, where P (ω) = det
[
Q(ω)

]
, with

Q(ω) ≡ ω2 T+ iω B− V . (6.116)

Since T, B, and V are real-valued matrices, and since det(M) = det(M t) for any matrix M , we can use
Bt = −B to obtain P (−ω) = P (ω) and P (ω∗) =

[
P (ω)

]∗
. This establishes that if P (ω) = 0, i.e. if ω is

an eigenfrequency, then P (−ω) = 0 and P (ω∗) = 0, i.e. −ω and ω∗ and −ω∗ are also eigenfrequencies.
Furthermore, P (ω) must again be a polynomial of order n in ω2.
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Example

As an example, consider the following Lagrangian, which is a function of four generalized coordinates
{x1, y1, x2, y2} and their corresponding velocities:

L = 1
2m
(
ẋ21+ ẏ

2
1 + ẋ

2
2+ ẏ

2
2

)
− 1

2κ
(
x1−x2

)2− 1
2b
(
y21 + y

2
2

)
+ 1

2mωc

(
x1 ẏ1− y1 ẋ1+x2 ẏ2− y2 ẋ2

)
. (6.117)

The last term, which is linear in the generalized velocities, arises if the masses are also equally charged

and in the presence of a magnetic field B = Bẑ. The quantity ωc = qB/mc, where q is the charge, is
called the cyclotron frequency. We then have

px,1 = mẋ1 − 1
2mωc y1 , Fx,1 = −κ

(
x1 − x2

)
+ 1

2mωc ẏ1 (6.118)

py,1 = mẏ1 +
1
2mωc x1 , Fy,1 = −by1 − 1

2mωc ẋ1

px,2 = mẋ2 − 1
2mωc y2 , Fx,2 = −κ

(
x2 − x1

)
+ 1

2mωc ẏ2

py,2 = mẏ2 +
1
2mωc x2 , Fy,2 = −by2 − 1

2mωc ẋ2 .

Defining ν2 ≡ κ/m and Ω2 ≡ b/m, we have the equations of motion

ẍ1 − ωc ẏ1 = −ν2
(
x1 − x2

)

ÿ1 + ωc ẋ1 = −Ω2 y1

ẍ2 − ωc ẏ2 = −ν2
(
x2 − x1

)

ÿ2 + ωc ẋ2 = −Ω2 y2 .

(6.119)

From these equations, we read off the matrices

T =




m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m


 , B =




0 −mωc 0 0

mωc 0 0 0

0 0 0 mωc

0 0 −mωc 0


 (6.120)

and

V =




mν2 0 −mν2 0
0 mΩ2 0 0

−mν2 0 mν2 0
0 0 0 mΩ2


 , (6.121)

where the rows and columns correspond to the coordinates {x1, y1, x2, y2}, respectively. If we define the
CM and relative coordinates

X ≡ 1
2(x1 + x2) , Y ≡ 1

2 (y1 + y2) , x ≡ x1 − x2 , y ≡ y1 − y2 , (6.122)

the equations of motion decouple into two 2× 2 systems, viz.

Ẍ − ωc Ẏ = 0 , Ÿ + ωc Ẋ = −Ω2 Y , ẍ− ωc ẏ = −2ν2x , ÿ + ωc ẋ = −Ω2 y . (6.123)
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Thus, for the (X,Y ) system we have

det

(
ω2 −iωωc

iωωc ω2 −Ω2

)
= 0 ⇒ ω2

1 = 0 , ω2
2 = Ω2 + ω2

c , (6.124)

while for the (x, y) system we have

det

(
ω2 − 2ν2 −iωωc

iωωc ω2 −Ω2

)
= 0 ⇒ ω2

3,4 =
1
2

(
2ν2 +Ω2 + ω2

c

)
± 1

2

√(
2ν2 +Ω2 + ω2

c

)2 − 8ν2Ω2 .

(6.125)
When ωc = 0, we have the zero mode X with frequency ω1 = 0, the relative coordinate x with fre-
quency ω4 =

√
2ν, and two independent y and Y oscillations with degenerate frequencies ω2 = ω3 = Ω.

Nonzero ωc couples x to y and X to Y , and shifts the eigenfrequencies ω2,3,4 according to the above
results.

Note that zero mode frequency is unaffected by a finite ωc. If we write the Lagrangian in terms of the
CM and relative coordinates, we obtain L = LCM + Lrel , with

LCM = m
(
Ẋ2 + Ẏ 2

)
+mωc

(
XẎ − Y Ẋ

)
− bY 2

Lrel =
1
4m
(
ẋ2 + ẏ2

)
+ 1

4mωc

(
xẏ − yẋ

)
− 1

2κx
2 − 1

4by
2 .

(6.126)

At first, it seems that the zero mode should be lifted by finite ωc since the coordinate X is no longer
cyclic in L. However, X may be made cyclic by a different choice of gauge for the electromagnetic vector
potential. Our choice had beenA(r) = 1

2Bẑ×r = 1
2B(xŷ− yx̂), but had we instead chosenA = −Byx̂,

we would have had q
cA · ṙ = − qB

c y ẋ and only the velocities ẋ1,2 would have entered here for each
particle, so X would have been cyclic. Equivalently, in LCM we could write

mωc

(
XẎ − Y Ẋ) =

d

dt

(
mωcXY

)
− 2mωcYẊ , (6.127)

and the total time derivative term may be dropped from LCM . The resulting CM Lagrangian is then
cyclic in X, so the zero mode survives!

6.9 Additional Examples

6.9.1 Right triatomic molecule

A molecule consists of three identical atoms located at the vertices of a 45◦ right triangle. Each pair
of atoms interacts by an effective spring potential, with all spring constants equal to k. Consider only
planar motion of this molecule.

(a) Find three ‘zero modes’ for this system (i.e. normal modes whose associated eigenfrequencies vanish).

(b) Find the remaining three normal modes.
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Solution

It is useful to choose the following coordinates:

(X1, Y1) = (x1 , y1)

(X2, Y2) = (a+ x2 , y2)

(X3, Y3) = (x3 , a+ y3) .

(6.128)

The three separations are then

d12 =

√
(a+ x2 − x1)

2 + (y2 − y1)
2

= a+ x2 − x1 + . . .
(6.129)

and

d23 =

√
(−a+ x3 − x2)

2 + (a+ y3 − y2)
2

=
√
2 a− 1√

2

(
x3 − x2

)
+ 1√

2

(
y3 − y2

)
+ . . .

(6.130)

and

d13 =

√
(x3 − x1)

2 + (a+ y3 − y1)
2

= a+ y3 − y1 + . . . .
(6.131)

The potential is then

U = 1
2k
(
d12 − a

)2
+ 1

2k
(
d23 −

√
2 a
)2

+ 1
2k
(
d13 − a

)2

= 1
2k
(
x2 − x1

)2
+ 1

4k
(
x3 − x2

)2
+ 1

4k
(
y3 − y2

)2

− 1
2k
(
x3 − x2

)(
y3 − y2

)
+ 1

2k
(
y3 − y1

)2

(6.132)

Defining the row vector

ηt ≡
(
x1 , y1 , x2 , y2 , x3 , y3

)
, (6.133)

we have that U is a quadratic form:

U = 1
2ησVσσ′ησ′ =

1
2η

t Vη, (6.134)
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Figure 6.4: Normal modes of the 45◦ right triangle. The yellow circle is the location of the CM of the
triangle. The labels for the vertices are 1 (lower left), 2 (lower right), and 3 (upper left).

with

Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
q̄

= k




1 0 −1 0 0 0

0 1 0 0 0 −1

−1 0 3
2 −1

2 −1
2

1
2

0 0 −1
2

1
2

1
2 −1

2

0 0 −1
2

1
2

1
2 −1

2

0 −1 1
2 −1

2 −1
2

3
2




(6.135)

The kinetic energy is simply

T = 1
2m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22 + ẋ23 + ẏ23

)
, (6.136)

hence

Tσσ′ = mδσσ′ . (6.137)

(b) The three zero modes correspond to x-translation, y-translation, and rotation. Their eigenvectors,
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respectively, are

ψ1 =
1√
3m




1
0
1
0
1
0




, ψ2 =
1√
3m




0
1
0
1
0
1




, ψ3 =
1

2
√
3m




1
−1
1
2
−2
−1




. (6.138)

Thus ω1 = ω2 = ω3 = 0. To find the unnormalized rotation vector, we find the CM of the triangle,

located at
(
a
3 ,

a
3

)
, and sketch orthogonal displacements ẑ × (Ra −RCM) at the position of mass point a.

(c) The remaining modes may be determined by symmetry, and are given by

ψ4 =
1

2
√
m




−1
−1
0
1
1
0




, ψ5 =
1

2
√
m




1
−1
−1
0
0
1




, ψ6 =
1

2
√
3m




−1
−1
2
−1
−1
2




, (6.139)

with

ω4 =

√
k

m
, ω5 =

√
2k

m
, ω6 =

√
3k

m
. (6.140)

Since T = m · 1 is a multiple of the unit matrix, the orthogonormality relation ψ
(i)
σ Tσσ′ ψ

(j)
σ′ = δij entails

ψ(i) ·ψ(j) = m−1 δij , i.e.the eigenvectors are mutually orthogonal in the conventional dot product sense.
One can check that the eigenvectors listed here satisfy this condition.

The simplest of the set {ψ4,ψ5,ψ6} to find is the uniform dilation ψ6 , sometimes called the breathing
mode. This must keep the triangle in the same shape, which means that the deviations at each mass
point are proportional to the distance to the CM. Next simplest to find is ψ4 , in which the long and
short sides of the triangle oscillate out of phase. Finally, the mode ψ5 must be orthogonal to all the
remaining modes. No heavy lifting (e.g. Mathematica) is required!

6.9.2 Triple pendulum

Consider a triple pendulum consisting of three identical masses m and three identical rigid massless
rods of length ℓ, as depicted in fig. 6.5.

(a) Find the T and V matrices.

(b) Find the equation for the eigenfrequencies.

(c) Numerically solve the eigenvalue equation for ratios ω2
j /ω

2
0, where ω0 =

√
g/ℓ. Find the three normal

modes.
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Solution

The Cartesian coordinates for the three masses are

x1 = ℓ sin θ1 y1 = −ℓ cos θ1 (6.141)

x2 = ℓ sin θ1 + ℓ sin θ2 y2 = −ℓ cos θ1 − ℓ cos θ2 (6.142)

x3 = ℓ sin θ1 + ℓ sin θ2 + ℓ sin θ3 y3 = −ℓ cos θ1 − ℓ cos θ2 − ℓ cos θ3 . (6.143)

By inspection, we can write down the kinetic energy:

T = 1
2m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22 + ẋ23 + ẏ23

)

= 1
2mℓ2

{
3θ̇21 + 2θ̇22 + θ̇23 + 4cos(θ1 − θ2) θ̇1 θ̇2 + 2cos(θ1 − θ3) θ̇1 θ̇3 + 2cos(θ2 − θ3) θ̇2 θ̇3

} (6.144)

The potential energy is

U = −mgℓ
{
3 cos θ1 + 2cos θ2 + cos θ3

}
, (6.145)

and the Lagrangian is L = T − U :

L = 1
2mℓ2

{
3 θ̇21 + 2 θ̇22 + θ̇23 + 4cos(θ1 − θ2) θ̇1 θ̇2 + 2cos(θ1 − θ3) θ̇1 θ̇3

+ 2cos(θ2 − θ3) θ̇2 θ̇3

}
+mgℓ

{
3 cos θ1 + 2cos θ2 + cos θ3

}
.

(6.146)

The canonical momenta are given by

π1 =
∂L

∂θ̇1
= mℓ2

{
3θ̇1 + 2cos(θ1 − θ2) θ̇2 + cos(θ1 − θ3) θ̇3

}

π2 =
∂L

∂θ̇2
= mℓ2

{
2θ̇2 + 2cos(θ1 − θ2) θ̇1 + cos(θ2 − θ3) θ̇3

}

π3 =
∂L

∂θ̇2
= mℓ2

{
θ̇3 + cos(θ1 − θ3) θ̇1 + cos(θ2 − θ3) θ̇2

}
.

(6.147)

The only conserved quantity is the total energy, E = T + U .

(a) As for the T and V matrices, we have

Tσσ′ =
∂2T

∂θσ ∂θσ′

∣∣∣∣
θ=0

= mℓ2



3 2 1
2 2 1
1 1 1


 (6.148)

and

Vσσ′ =
∂2U

∂θσ ∂θσ′

∣∣∣∣
θ=0

= mgℓ



3 0 0
0 2 0
0 0 1


 . (6.149)
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Figure 6.5: The triple pendulum.

(b) The eigenfrequencies are roots of the equation det (ω2 T− V) = 0. Defining ω0 ≡
√
g/ℓ, we have

ω2 T− V = mℓ2



3(ω2 − ω2

0) 2ω2 ω2

2ω2 2(ω2 − ω2
0) ω2

ω2 ω2 (ω2 − ω2
0)


 (6.150)

and hence

P̃ (ω) ≡ det (ω2T− V)/(mℓ2)3 = 3(ω2 − ω2
0) ·
[
2(ω2 − ω2

0)
2 − ω4

]

− 2ω2 ·
[
2ω2(ω2 − ω2

0)− ω4
]
+ ω2 ·

[
2ω4 − 2ω2(ω2 − ω2

0)
]

= 6 (ω2 − ω2
0)

3 − 9ω4 (ω2 − ω2
0) + 4ω6

= ω6 − 9ω2
0 ω

4 + 18ω4
0 ω

2 − 6ω6
0 .

(6.151)

(c) The equation for the eigenfrequencies is

λ3 − 9λ2 + 18λ− 6 = 0 , (6.152)

where ω2 = λω2
0 . This is a cubic equation in λ. Numerically solving for the roots, one finds

ω2
1 = 0.415774ω2

0 , ω2
2 = 2.29428ω2

0 , ω2
3 = 6.28995ω2

0 . (6.153)

I find the (unnormalized) eigenvectors to be

ψ1 =




1
1.2921
1.6312


 , ψ2 =




1
0.35286
−2.3981


 , ψ3 =




1
−1.6450
0.76690


 . (6.154)

6.9.3 Equilateral linear triatomic molecule

Consider the vibrations of an equilateral triangle of mass points, depicted in figure 6.6 . The system is
confined to the (x, y) plane, and in equilibrium all the strings are unstretched and of length a.
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Figure 6.6: An equilateral triangle of identical mass points and springs. We label the sites as 1 (lower
left), 2 (lower right), and 3 (upper).

(a) Choose as generalized coordinates the Cartesian displacements (xi, yi) with respect to equilibrium.
Write down the exact potential energy.

(b) Find the T and V matrices.

(c) There are three normal modes of oscillation for which the corresponding eigenfrequencies all vanish:

ωa = 0. Write down these modes explicitly, and provide a physical interpretation for why ωa = 0. Since
this triplet is degenerate, there is no unique answer – any linear combination will also serve as a valid
‘zero mode’. However, if you think physically, a natural set should emerge.

(d) The three remaining modes all have finite oscillation frequencies. They correspond to distortions of
the triangular shape. One such mode is the “breathing mode” in which the triangle uniformly expands
and contracts. Write down the eigenvector associated with this normal mode and compute its associated
oscillation frequency.

(e) The fifth and sixth modes are degenerate. They must be orthogonal (with respect to the inner
product defined by T) to all the other modes. See if you can figure out what these modes are, and
compute their oscillation frequencies. As in (a), any linear combination of these modes will also be an
eigenmode.

(f) Write down the modal matrix Aσi, and check that it is correct by using Mathematica.

Solution

Choosing as generalized coordinates the Cartesian displacements relative to equilibrium, we have the
following:

#1 :
(
x1, y1

)

#2 :
(
a+ x2, y2

)

#3 :
(
1
2a+ x3,

√
3
2 a+ y3

)
.
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Let dij be the separation of particles i and j. The potential energy of the spring connecting them is then
1
2k(dij − a)2.

d212 =
(
a+ x2 − x1

)2
+
(
y2 − y1

)2

d223 =
(
− 1

2a+ x3 − x2
)2

+
(√

3
2 a+ y3 − y2

)2

d213 =
(
1
2a+ x3 − x1

)2
+
(√

3
2 a+ y3 − y1

)2
.

(6.155)

The full potential energy is

U = 1
2 k
(
d12 − a

)2
+ 1

2 k
(
d23 − a

)2
+ 1

2 k
(
d13 − a

)2
. (6.156)

This is a cumbersome expression, involving square roots.

To find T and V, we need to write T and V as quadratic forms, neglecting higher order terms. Therefore,

we must expand dij − a to linear order in the generalized coordinates. This results in the following:

d12 = a+
(
x2 − x1

)
+ . . .

d23 = a− 1
2

(
x3 − x2

)
+

√
3
2

(
y3 − y2

)
+ . . .

d13 = a+ 1
2

(
x3 − x1

)
+

√
3
2

(
y3 − y1

)
+ . . . .

(6.157)

Thus,

U = 1
2k
(
x2 − x1

)2
+ 1

8k
(
x2 − x3 −

√
3 y2 +

√
3 y3

)2

+ 1
8k
(
x3 − x1 +

√
3 y3 −

√
3 y1

)2
+ higher order terms .

(6.158)

Figure 6.7: Zero modes of the mass-spring triangle.
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Figure 6.8: Finite oscillation frequency modes of the mass-spring triangle.

Defining

(
q1, q2, q3, q4, q5, q6

)
=
(
x1, y1, x2, y2, x3, y3

)
, (6.159)

we may now read off

Vσσ′ =
∂2U

∂qσ ∂qσ′

∣∣∣∣
q̄

= k




5/4
√
3/4 −1 0 −1/4 −√

3/4
√
3/4 3/4 0 0 −√

3/4 −3/4

−1 0 5/4 −√
3/4 −1/4

√
3/4

0 0 −√
3/4 3/4

√
3/4 −3/4

−1/4 −√
3/4 −1/4

√
3/4 1/2 0

−√
3/4 −3/4

√
3/4 −3/4 0 3/2




(6.160)

The T matrix is trivial. From

T = 1
2m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22 + ẋ23 + ẏ23

)
. (6.161)

we obtain

Tσσ′ =
∂2T

∂q̇σ ∂q̇σ′

= mδσσ′ , (6.162)

and T = m · I is a multiple of the unit matrix.
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Figure 6.9: John Henry, statue by Charles O. Cooper (1972). “Now the man that invented the steam
drill, he thought he was mighty fine. But John Henry drove fifteen feet, and the steam drill only made
nine.” - from The Ballad of John Henry.

The zero modes are depicted graphically in figure 6.7. Explicitly, we have

ξx =
1√
3m




1

0

1

0

1

0




, ξy =
1√
3m




0

1

0

1

0

1




, ξrot =
1√
3m




1/2

−√
3/2

1/2
√
3/2

−1

0




. (6.163)

That these are indeed zero modes may be verified by direct multiplication:

V ξx.y = V ξrot = 0 . (6.164)

The three modes with finite oscillation frequency are depicted graphically in figure 6.8. Explicitly, we
have

ξA =
1√
3m




−1/2

−
√
3/2

−1/2
√
3/2

1

0




, ξB =
1√
3m




−
√
3/2

1/2
√
3/2

1/2

0

−1




, ξdil =
1√
3m




−
√
3/2

−1/2
√
3/2

−1/2

0

1




. (6.165)



30 CHAPTER 6. LINEARIZED DYNAMICS OF COUPLED OSCILLATIONS

The oscillation frequencies of these modes are easily checked by multiplying the eigenvectors by the
matrix V. Since T = m · I is diagonal, we have V ξ(j) = mω2

j ξ
(j). One finds

ωA = ωB =

√
3k

2m
, ωdil =

√
3k

m
. (6.166)

Mathematica? I don’t need no stinking Mathematica.

6.10 Aside: Christoffel Symbols

The coupled equations in eqn. 6.5 may be written in the form

q̈σ + Γσ
µν q̇µ q̇ν =Wσ , (6.167)

with

Γσ
µν = 1

2 T
−1
σα

(
∂Tαµ
∂qν

+
∂Tαν
∂qµ

− ∂Tµν
∂qα

)
(6.168)

and

Wσ = −T−1
σα

∂U

∂qα
. (6.169)

The components of the rank-three tensor Γσ
αβ are known as Christoffel symbols, in the case where Tµν(q)

defines a metric on the space of generalized coordinates.
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