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Chapter 1

Introduction to Dynamics

1.1 What is Dynamics?

Loosely speaking, dynamics is the study of mathematical models of ”what happens next,” which is to
say how systems evolve in time. There are four main elements to dynamics:

(i) The initial conditions, or ”how things are now.”

(ii) The equations of motion, which encode how a given system evolves. There are two broad classes
to speak of: difference equations which describe evolution in discrete time steps, and differential
equations which describe continuous time evolution.

(iii) There may be a random component to the evolution, in which case the equations of motion are said
to be stochastic.

(iv) The solution of the equations of motion, given the initial conditions, tells us the motion of the
system, i.e. ”how things will be in the future.” For stochastic systems, we cannot compute the
motion itself, but rather only statistical properties thereof, such as the average position(s) at some
future time.

Our main concern will be in applying these mathematical models to physical mechanical systems: balls
and springs, celestial bodies, spinning tops, etc., which are the purview of classical mechanics. In classical
mechanics, the equations of motion describe continuous time dynamics of each system’s various degrees
of freedom in the form of coupled second order ordinary differential equations1, which are nothing more
than Newton’s second law F = ma. In one space dimension, for example, we have md2x/dt2 = F (x).
Such systems are special, and constitute a restricted class of the general family of continuous time dy-
namical systems. For example, if the forces are derivable from a potential energy function, then there is

1The degrees of freedom are the positional coordinates for point particles and the orientational coordinates for rigid bodies.
In the case of nonrigid continuous systems, like strings, membranes, and elastic media, the equations of motion are partial
differential equations involving both space and time. Continuum mechanics is discussed below in chapter 10.

1



2 CHAPTER 1. INTRODUCTION TO DYNAMICS

a conserved quantity, which is the total energy2. We will derive the equations of motion, i.e. Newton’s
laws, using a powerful variational principle known as the principle of extremal action, which lies at the
foundation of Lagrange’s approach to mechanics. A related and even more powerful approach, due to
Hamilton, is the subject of graduate level mechanics courses.

Lets start by considering some examples.

1.1.1 Simple difference equation

Consider the difference equation
xn+1 = xn + α , (1.1)

where xn ∈ R is the position of a point object at discrete time step n, and α ∈ R is a real number. The
initial conditions are specified by x0 , which is the position at discrete time step n = 0.

Clearly the position advances by α with each step, and thus the motion of the system is given by

xn = x0 + nα . (1.2)

1.1.2 Another difference equation: Fibonacci numbers

Next, consider the difference equation

xn+1 = xn + xn−1 . (1.3)

The initial conditions are now specified by two values, x0 and x1. Given these, we can compute x2 =
x1 + x0, x3 = x2 + x1 = 2x1 + x0 , etc. Can we obtain a general expression for xn? Yes we can! Let’s try
a solution of the form xn = Aλn where A and λ are as yet undetermined. We stick this into eqn. 1.3 and
obtain the relation

λ2 − λ− 1 = 0 , (1.4)

which has two solutions,
λ± = 1

2(1±
√
5) =

{
1 + φ , −φ} , (1.5)

where φ = 1
2(
√
5− 1) = 0.618034 . . . is the golden mean. Thus we write

xn = A+ λn
+ +A− λn

− . (1.6)

Imposing the initial conditions by setting n = 0 and n = 1 then yields the relations

(
1 1
λ+ λ−

)(
A+

A−

)

=

(
x0
x1

)

, (1.7)

and thus
(
A+

A−

)

=

(
1 1
λ+ λ−

)−1(
x0
x1

)

=
1

λ+ − λ−

(
x1 − λ−x0
λ+x0 − x1

)

. (1.8)

2More precisely, the conserved quantity is the Hamiltonian H , which may differ from the total energy E, as we shall discuss in
§4.13.2 below.
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The full motion of the system is then given by

xn =
1

1 + 2φ

{

(1 + φ)n
[
φx0 + x1

]
+ (−φ)n

[
(1 + φ)x0 + x1

]}

(1.9)

For the initial conditions x0 = 0 and x1 = 1, we obtain

xn =
1

1 + 2φ

{

(1 + φ)n − (−φ)n
}

= Fn , (1.10)

i.e. the nth Fibonacci number: Fn = {1, 1, 2, 3, 5, 8, 13, . . .} starting from n = 1. Did you know that such a
closed form expression for all the Fibonacci numbers can be derived?

1.1.3 Stochastic difference equation: diffusion

Now consider the stochastic difference equation

xn+1 = xn + σn , (1.11)

where the {σn} are independent, identically distributed (’IID’ in statistics parlance) random numbers
whose distribution is given by

Prob[σn = ε] = p δε,+1 + q δε,−1 =

{

p if ε = +1

q if ε = −1 ,
(1.12)

with p ∈ [0, 1]. Since there are only two possibilities for each σn , the sum of their probabilities must be
unity, i.e. p+ q = 1, which fixes q = 1− p. This system corresponds to a one-dimensional random walk,
where the probability of a step to the right, i.e. xn+1 = xn + 1 , is p, and the probability of a step to the
left, i.e. xn+1 = xn − 1 , is q. The initial conditions are given by the value of x0 . Clearly we have

xn = x0 + σ1 + σ2 + . . . + σn = x0 +
n∑

j=1

σj . (1.13)

We can now compute averages with respect to the random distribution:

〈xn〉 = x0 +

n∑

j=1

〈σj〉

〈x2n〉 = x20 + 2x0

n∑

j=1

〈σj〉+
n∑

j=1

n∑

k=1

〈σjσk〉 .

(1.14)

We will need

〈σj〉 =
∑

ε=±1

εProb[σj = ε]

= p− q = 2p − 1

(1.15)
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and

〈σjσk〉 =
{

1 if j = k

(2p − 1)2 if j 6= k ,
(1.16)

because σ2
j = 1 ⇒ 〈σ2

j 〉 = 1 and 〈σjσk〉 = 〈σj〉〈σk〉 = (2p− 1)2 for j 6= k (IID). Thus,

〈xn〉 = x0 + (2p − 1)n

〈xn〉2 = x20 + 2x0(2p − 1)n + (2p − 1)2n2

〈x2n〉 = x20 + 2x0(2p − 1)n + (2p − 1)2n(n− 1) + n

(1.17)

and

〈
(∆xn)

2
〉
≡
〈[
xn − 〈xn〉

]2〉

= 〈x2n〉 − 〈xn〉2 = 4p(1− p)n .
(1.18)

When p 6= q the random walk is biased, and there is an unequal probability of stepping to the right and
to the left. Thus 〈xn〉 = x0+(2p−1)n on average changes by 〈σj〉 = p−q = 2p−1 during each time step.
If we start at x0 and then execute our random walk, after n time steps we know that we will end up at
some point xn between x0 − n (all steps to the left) and x0 + n (all steps to the right). Where we end up
will likely change each time we rerun the experiment, but if we average over a great many experiments,
we will obtain 〈xn〉 = x0 + (2p − 1)n . But while the average of the difference ∆xn between xn and
its mean 〈xn〉 vanishes, the average of its square

〈
(∆xn)

2
〉

grows linearly with n. The root mean square

variation then grows as n1/2, viz.

∆xRMS
n =

√
〈
(∆xn)

2
〉
= 2

√
pqn . (1.19)

This is an example of diffusion.

1.1.4 Nonlinear discrete dynamics: the logistic map

Consider the simple case of a general one-dimensional map,

xn+1 = g(xn) , (1.20)

where g(x) : R → R is a real function of a real number. A fixed point of this map satisfies g(x) = x. Some
maps have no fixed points, such as g(x) = x + 1. For g(x) = x, every point is a fixed point. This last
example is highly nongeneric; generically the set of fixed points - if there are any fixed points at all - is
discrete.

Let’s focus in on what happens when x is close to some fixed point x∗ and write xn = x∗ + un with
|un| ≪ 1. Then

un+1 = g(x∗ + un)− x∗ = g′(x∗)un + 1
2 g

′′(x∗)u2n + . . . . (1.21)

Here we have used Taylor’s theorem to expand g(x∗+un) in powers of the small quantity un. If we drop
all the terms in the Taylor series which are beyond linear in un , we obtain the equation un+1 = κun ,
where κ = g′(x∗). The solution is un = κnu0 and we conclude
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Figure 1.1: Cobweb diagram showing iterations of the logistic map g(x) = rx(1− x) for r = 2.8 (upper
left), r = 3.4 (upper right), r = 3.5 (lower left), and r = 3.8 (lower right). Note the single stable fixed
point for r = 2.8, the stable two-cycle for r = 3.4, the stable four-cycle for r = 3.5, and the chaotic
behavior for r = 3.8.

• If |g′(x∗)| < 1 then |un+1| < |un| and the magnitude of un decreases exponentially with n:

un = (±1)ne−αn u0 , (1.22)

where α = − log |g(x∗)| > 0 and we take the + sign if g(x∗) > 0 and the − sign if g(x∗) < 0. The
approximation to neglect higher order terms in the Taylor series expansion of g(x∗+un) gets better
and better as n increases. A fixed point x∗ with |g′(x∗)| < 1 is called a stable fixed point (SFP).

• If |g(x∗)| > 1, then |un+1| > |un| and the magnitude of un increases exponentially with n. Suc-
cessive iterations of the map move us further and further away from x∗. However, at some point
the higher order terms which we’ve neglected in the Taylor expansion of g(x∗ + un) become non-
negligible, and the behavior is no longer exponential. A fixed point x∗ for which |g(x∗)| > 1 is
called an unstable fixed point (UFP).

Perhaps the most important and most studied of the one-dimensional maps is the logistic map, where
g(x) = rx(1 − x), defined on the interval x ∈ [0, 1], with r ∈ [0, 4]. There is a fixed point at x = 0 which
is stable for r < 1 and unstable for r > 1. When r > 1, a new fixed point is present, at x∗ = 1 − r−1 if
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Figure 1.2: Iterates of the logistic map g(x) = rx(1− x).

r > 1. We then have g′(x∗) = 2− r, so the fixed point is stable if r ∈ (1, 3). What happens for r > 3? We
can explore the behavior of the iterated map by drawing a cobweb diagram, shown in fig. 1.1. We sketch,
on the same graph, the curves y = x (in blue) and y = g(x) (in black). Starting with a point x on the line
y = x, we move vertically until we reach the curve y = g(x). To iterate, we then move horizontally to
the line y = x and repeat the process. We see that for r = 3.4 the fixed point x∗ is unstable, but there is a
stable two-cycle, defined by the equations

x2 = rx1(1− x1)

x1 = rx2(1− x2) .
(1.23)

The second iterate of g(x) is then

g(2)(x) = g
(
g(x)

)
= r2x(1− x)

(
1− rx+ rx2

)
. (1.24)

Setting x = g(2)(x), we obtain a cubic equation. Since x− x∗ must be a factor, we can divide out by this
monomial and obtain a quadratic equation for x1 and x2. We find

x1,2 =
1 + r ±

√

(r + 1)(r − 3)

2r
. (1.25)
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How stable is this 2-cycle? We find

d

dx
g(2)(x)

∣
∣
∣
∣
x
1,2

= r2(1− 2x1)(1 − 2x2) = −r2 + 2r + 4 . (1.26)

The condition that the 2-cycle be stable is then

− 1 < r2 − 2r − 4 < 1 =⇒ r ∈
[
3 , 1 +

√
6
]
. (1.27)

At r = 1 +
√
6 = 3.4494897 . . . there is a bifurcation to a 4-cycle, as can be seen in fig. 1.2.

In the 1970s, Mitchell Feigenbaum described how this system exhibits an increasingly dense cascade
of period doubling transitions in which a 2n-cycle becomes unstable and is replaced by a 2n+1-cycle at
r = rn. The value n = ∞ is reached for a finite value r∞ = 3.5699456 . . . . We will study this system in
more detail in chapter 17.

1.1.5 Dynamical systems

A dynamical system in n variables is a set of n coupled ordinary differential equations. It’s general form
can be written as

dϕ

dt
= V (ϕ) (1.28)

where3

ϕ =








ϕ1

ϕ2
...
ϕn








, V (ϕ) =








V1(ϕ1, . . . , ϕn)
V2(ϕ1, . . . , ϕn)

...
Vn(ϕ1, . . . , ϕn)








(1.29)

In general ϕ ∈ M lives on a manifold M, which is an n-dimensional topological space which is locally
diffeomorphic to R

n. But for our purposes we can ignore all the fancy math vernacular and just consider
ϕ ∈ R

n is some n-tuple of real numbers4. The vector V (ϕ) is called the velocity vector at the point ϕ. As
V (ϕ) specifies a vector at each point ϕ ∈ M, we call V a vector field. The solution ϕ(t) to these coupled
ODEs, subject to some set of initial conditions ϕ(0), is what we mean by the motion of the system, also
called an integral curve. Thus, an integral curve is a set of points {t,ϕ(t)} ∈ R × M. The collection of
points {ϕ(t) | t ∈ R} is a curve in M itself, known as a phase curve. The difference is that a phase curve
does not include the time coordinate. (See fig. 1.3.)

There’s a helpful theorem which says that if V (ϕ) is a smooth vector field over some open set D ⊂ M,
then for any ϕ(0) ∈ D the initial value problem (i.e. the dynamical system plus its initial conditions) has
a solution on some finite time interval t ∈ [−τ,+τ ], and furthermore that solution is unique. Moreover,
this solution may be extended forward and backward in time either indefinitely or untilϕ(t) reaches the
boundary of D. A corollary of this theorem guarantees that different trajectories never intersect. Some

3It is important that the dynamical system as defined here is autonomous, i.e. V (ϕ) is a function only of the coordinates
{ϕ1, . . . , ϕn} and not on t itself - at least not explicitly.

4The mathy language just means that we could consider ϕ to live on a torus, or on the surface of a sphere, or on some
complicated twisty higher dimensional space with lots of holes and handles.
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Figure 1.3: Integral curve vs. phase curve.

aspects of dynamical systems in low dimensions (i.e. n = 1 and n = 2) are discussed in chs. 11 through
13 of these lecture notes.

Note that any nth order ODE, of the general form

dnx

dtn
= F

(

x ,
dx

dt
, . . . ,

dn−1x

dtn−1

)

, (1.30)

may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk ≡ dk−1x/dtk−1, with

k = 1, . . . , n. Thus, for j < n we have ϕ̇j = ϕj+1, with ϕ̇n = F . In other words,

ϕ̇
︷ ︸︸ ︷

d

dt









ϕ1
...

ϕn−1

ϕn









=

V (ϕ)
︷ ︸︸ ︷








ϕ2
...

ϕn

F
(
ϕ1, . . . , ϕn

)









. (1.31)

Fixed points

A fixed point of a dynamical system is a point ϕ∗ such that V (ϕ∗) = 0. Thus, if we start at time zero with
ϕ(0) = ϕ∗, the system will remain at that point in phase space. But suppose we deviate just a teensy bit
from the fixed point. We write ϕ(t) = ϕ∗ + ǫ(t). Since

Vj(ϕ
∗ + ǫ) =

n∑

k=1

∂Vj

∂ϕk

∣
∣
∣
∣
∣
ϕ∗

ǫk +O(ǫ2) , (1.32)

we have to lowest order in ǫ the system

dǫj
dt

=

n∑

k=1

Mjk ǫk +O(ǫ2) , Mjk =
∂Vj

∂ϕk

∣
∣
∣
∣
∣
ϕ∗

. (1.33)
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The matrix M is real but not necessarily symmetric, so its eigenvalues can either be pure real or occur in
complex conjugate pairs. The fixed point ϕ∗ is then stable if all the eigenvalues of M have negative real
parts. In this case, the vector ǫ(t) collapses to zero exponentially at late times. Formally, the solution of
the linearized dynamics is given by

ǫ(t) = exp(Mt) ǫ(0) . (1.34)

In general, the right eigenvectors of M will not be the same as the left eigenvectors of M . Indeed it may
be that M has fewer than n linearly independent eigenvectors – such is the case when M has nontrivial
Jordan blocks, which is a nongeneric state of affairs. Assuming that M does have n linearly independent
right eigenvectors Rα

j and n linearly independent left eigenvectors Lα
j , where Rα

j is the jth component

of the αth right eigenvector. Thus,

n∑

j=1

Lα
j Mjk = λα L

α
k ,

n∑

k=1

MjkR
α
k = λαR

α
j , (1.35)

as well as the orthonormality and completeness relations

n∑

j=1

Lα
j R

β
j = δαβ ,

n∑

α=1

Rα
j Lα

k = δjk . (1.36)

Furthermore, we may decompose M into its eigenvectors as follows:

Mjk =
n∑

α=1

λαR
α
j Lα

k . (1.37)

Thus, if we write ǫ(t) in terms of the right eigenvectors of M , i.e.

ǫj(t) =
n∑

α=1

Cα(t)R
α
j , (1.38)

then
Cα(t) = Cα(0) exp(λαt) . (1.39)

Thus, for Re (λα) > 0 , Cα(t) grows with increasing time, indicating that the fixed point is unstable. A
stable fixed point therefore requires Re (λα) < 0 for all α ∈ {1, . . . , n}.

Attractors, strange attractors, and dynamical chaos

An attractor of a dynamical system ϕ̇ = V (ϕ) is the set of ϕ values that the system evolves to after a
sufficiently long time. For n = 1 the only possible attractors are stable fixed points. For n = 2, we have,
generically, two different classes of stable fixed points, called stable nodes and stable spirals. But there
are also stable limit cycles, which are one-dimensional curves along which the motion is trapped. For
n > 2 the situation is qualitatively different, and a fundamentally new type of set, the strange attractor,
emerges.

A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there
exists at least one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like
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a piece of chewing gum. Now fold the rectangle over, stretch it, and squash it so that it maintains its
original volume. Keep doing this. Two points which started out nearby to each other will eventually,
after a sufficiently large number of folds and stretches, grow far apart. Formally, a strange attractor
is a fractal, and may have noninteger Hausdorff dimension. (We won’t discuss fractals and Hausdorff
dimension here.)

The Lorenz Model

The canonical example of a strange attractor is found in the Lorenz model. E. N. Lorenz, in a seminal
paper from the early 1960’s, reduced the essential physics of the coupled partial differential equations
describing Rayleigh-Benard convection (a fluid slab of finite thickness, heated from below – in Lorenz’s
case a model of the atmosphere warmed by the ocean) to a set of twelve coupled nonlinear ordinary
differential equations. Lorenz’s intuition was that his weather model should exhibit recognizable pat-
terns over time. What he found instead was that in some cases, changing his initial conditions by a part
in a thousand rapidly led to totally different behavior. This sensitive dependence on initial conditions is a
hallmark of chaotic systems.

The essential physics/mathematics of Lorenz’s n = 12 system is elicited by the reduced n = 3 system,

Ẋ = −σX + σY

Ẏ = rX − Y −XZ

Ż = XY − bZ ,

(1.40)

where σ, r, and b are all real and positive. Here t is the familiar time variable (appropriately scaled), and
(X,Y,Z) represent linear combinations of physical fields, such as global wind current and poleward
temperature gradient. These equations possess a symmetry under (X,Y,Z) → (−X,−Y,Z), but what
is most important is the presence of nonlinearities in the second and third equations.

Typically the system is studied for fixed σ and b as a function of the single control parameter r. Clearly
(X,Y,Z) = (0, 0, 0) is a fixed point for all {σ, b, r}. It is quite easy to show that this fixed point is stable
provided 0 < r < 1. For r > 1, a new pair of solutions emerges, with

X∗ = Y ∗ = ±
√

b(r − 1) , Z∗ = r − 1 . (1.41)

One can then show that these fixed points are stable for r ∈
[
1, rc

]
, where

rc =
σ(σ + b+ 3)

σ − b− 1
. (1.42)

These fixed points correspond to steady convection in the fluid model.

The Lorenz system has commonly been studied with σ = 10 and b = 8
3 . For these parameters, one

has rc = 470
19 ≈ 24.74. In addition to the new pair of fixed points, a strange attractor appears for r >

rs ≃ 24.06. The capture by the strange attractor is shown in Fig. 1.4. In the narrow interval r ∈
[24.06, 24.74] there are then three stable attractors, two of which correspond to steady convection and
the third to chaos. Over this interval, there is also hysteresis. I.e. starting with a convective state for
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Figure 1.4: Left: Evolution of the Lorenz equations for σ = 10, b = 8
3 , and r = 28, with initial conditions

(X0, Y0, Z0) = (0, 1, 0), showing the ‘strange attractor’. Right: The Lorenz attractor, projected onto the
(X,Z) plane. (Source: Wikipedia)

Figure 1.5: X(t) for the Lorenz equations with σ = 10, b = 8
3 , r = 28, and initial conditions (X0, Y0, Z0) =

(−2.7,−3.9, 15.8), and initial conditions (X0, Y0, Z0) = (−2.7001,−3.9, 15.8).

r < 24.06, the system remains in the convective state until r = 24.74, when the convective fixed point
becomes unstable. The system is then driven to the strange attractor, corresponding to chaotic dynamics.
Reversing the direction of r, the system remains chaotic until r = 24.06, when the strange attractor loses
its own stability. Fig. 1.5 shows the chaotic evolution of the coordinate X(t) for the case where r = 28.
Note how, for the chosen parameters, X(t) spends time oscillating about X ≈ −8 and X ≈ +8, but
jumps randomly between these two regions, sometimes executing a single excursional spike into the
opposite region.
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Dynamical systems with n = 1

The simplest class of dynamical systems are those for which phase space is one-dimensional, i.e. n = 1.
We then have

du

dt
= f(u) , (1.43)

where there is a single coordinate u and the velocity function is f(u). The dynamics are exceedingly
simple to describe graphically. Simply sketch the function f(u) versus u. In regions where f(u) > 0,
u̇ > 0 and u moves to the right, i.e. to greater values. In regions where f(u) < 0, u̇ < 0 and u moves to
the left. At any point f(u) = 0, the motion stops and u̇ = 0. Such a point is called a fixed point of the
dynamics. Suppose f(u∗) = 0 and we write u = u∗ + ε with |ε| ≪ 1. Then

dε

dt
= f(u∗ + ε) = f ′(u∗) ε+ 1

2f
′′(u∗) ε2 +O(ε3) . (1.44)

Working to lowest nontrivial order, we see that if f ′(u∗) < 0 then ε(t) will collapse to zero exponentially
(stable fixed point), but if f ′(u∗) > 0 then ε(t) will grow (unstable fixed point) until eventually we are
no longer justifies in dropping higher order terms in the Taylor expansion. The fate of u(t) is thus to be
attracted to the first stable fixed point encountered, or to flow off to infinity.

A particularly simple example is the logistic equation,

Ṅ = rN
(

1− N

K

)

, (1.45)

with r > 0, which has the solution

N(t) =
KN0

N0 +
(
K −N0

)
exp(−rt)

, (1.46)

where the initial conditions are given by N(0) ≡ N0 . Note that N = 0 is an unstable fixed point and
N = K is a stable fixed point. Regardless of the initial value, as t → ∞, N(t) approaches the SFP,
N(+∞) = K . Conversely, if we run time backwards we approach the UFP, N(−∞) = 0.

Note that in our discussion of the one-dimensional map xn+1 = g(xn) in §1.1.4, whether or not a fixed
point x∗ was stable or unstable depended on whether |g′(x∗)| was greater or less than 1. Do you under-
stand the difference between the two?

1.1.6 One-dimensional mechanics : simple examples

Ballistic motion

We now consider the second order ordinary differential equation

d2x

dt2
= a0 , (1.47)
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which describes a particle undergoing constant acceleration a0. Some notation:

ẋ ≡ dx

dt
, ẍ ≡ d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.48)

Defining v ≡ ẋ, we then have v̇ = a0, which we can integrate to obtain v(t) = v(0) + a0t. We now have

ẋ =
dx

dt
= v(0) + a0t , (1.49)

which we integrate to obtain the motion of the system,

x(t) = x(0) + v(0) t + 1
2a0t

2 . (1.50)

Simple harmonic motion

Consider next the second order ODE
d2x

dt2
= −ω2x , (1.51)

i.e. ẍ = −ω2x. With v ≡ ẋ we may write this as two coupled first order ODEs, viz.

d

dt

ϕ
︷︸︸︷
(
x
v

)

=

(
v

−ω2x

)

=

M
︷ ︸︸ ︷
(

0 1
−ω2 0

)

ϕ
︷︸︸︷
(
x
v

)

, (1.52)

i.e. ϕ̇ = Mϕ. This is a linear set of coupled first order ODEs in the components of the vector ϕ. In terms
of the components, ẋ = v and v̇ = −ω2x. Provided the matrix M is time-independent5, we can solve
ϕ̇ = Mϕ as if ϕ were a simple scalar:

ϕ(t) = exp(Mt)ϕ(0) . (1.53)

But what do we mean by the exponential of the matrix Mt? We give meaning to the expression exp(Mt)
through its Taylor expansion:

exp(Mt) = 1+Mt+ 1
2M

2t2 + 1
6M

3t3 + . . . . (1.54)

Notice that

M2 =

(
0 1

−ω2 0

)(
0 1

−ω2 0

)

=

(
−ω2 0
0 −ω2

)

= −ω2
1 . (1.55)

Thus, M2k = (−ω2)k 1 and M2k+1 = (−ω2)kM , which entails

exp(Mt) =
∞∑

k=0

M2k t2k

(2k)!
+

∞∑

k=0

M2k+1 t2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k (ωt)2k

(2k)!
1+

1

ω

∞∑

k=0

(−1)k (ωt)2k+1

(2k + 1)!
M

= cos(ωt)1+ ω−1 sin(ωt)M =

(
cos(ωt) ω−1 sin(ωt)

−ω sin(ωt) cos(ωt)

)

.

(1.56)

5More precisely, provided that M(t) commutes with M(t′) for all t and t′.
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Thus, the motion is

ϕ(t) =

(
x(t)
v(t)

)

=

(
cos(ωt) ω−1 sin(ωt)

−ω sin(ωt) cos(ωt)

)(
x0
v0

)

, (1.57)

which is to say

x(t) = cos(ωt)x0 + ω−1 sin(ωt) v0

v(t) = −ω sin(ωt)x0 + cos(ωt) v0 .
(1.58)

One can now check explicitly that ẋ(t) = v(t) and v̇(t) = −ω2x(t).

Uniform force with linear frictional damping

We consider motion in the ẑ direction in the presence of a uniform gravitational field and frictional
damping. The equation of motion is

m
d2z

dt
= −mg − γ

dz

dt
(1.59)

which may be rewritten as a first order equation for v = ż, viz.

dv

v +mg/γ
= − γ

m
dt

d log(v +mg/γ) = −(γ/m)dt .

(1.60)

Integrating then gives

log

(
v(t) +mg/γ

v(0) +mg/γ

)

= −γt/m

v(t) = −mg

γ
+

(

v(0) +
mg

γ

)

e−γt/m .

(1.61)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant of integration, v(0).

One can further integrate to obtain the motion

z(t) = z(0) +
m

γ

(

v(0) +
mg

γ

)

(1− e−γt/m)− mg

γ
t . (1.62)

The solution to the second order ODE mz̈ = −mg− γż thus entails two constants of integration: v(0) and

z(0). Notice that as t goes to infinity the velocity tends towards the asymptotic value v = −v∞, where

v∞ = mg/γ. This is known as the terminal velocity. Indeed, solving the equation v̇ = 0 gives v = −v∞.
The initial velocity is effectively “forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a terminal velocity. In this
case the force is not F = −mg but rather F = −eE, where −e is the electron charge (e > 0) and E is the
electric field. The terminal velocity is then obtained from

v∞ = eE/γ = eτE/m . (1.63)
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The current density is a product:

current density = (number density) × (charge) × (velocity) ,

thus

j = n · (−e) · (−v∞) =
ne2τ

m
E . (1.64)

The ratio j/E is called the conductivity of the metal, σ. According to our theory, σ = ne2τ/m. This is one
of the most famous equations of solid state physics! The dissipation is caused by electrons scattering off
impurities and lattice vibrations (“phonons”). In high purity copper at low temperatures (T <∼ 4K), the
scattering time τ is about a nanosecond (τ ≈ 10−9 s).

Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity. The frictional
force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of v: sgn (v) = +1 if v > 0 and sgn (v) = −1
if v < 0. (Note one can also write sgn (v) = v/|v| where |v| is the absolute value.) Why all this trouble
with sgn (v)? Because it is important that the frictional force dissipate energy, and therefore that Ff be
oppositely directed with respect to the velocity v. We will assume that v < 0 always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g + (c/m)v2 = 0 gives v = ±v∞, where

v∞ =
√

mg/c. One can write the equation of motion as

dv

dt
=

g

v2∞
(v2 − v2∞) (1.65)

and using

1

v2 − v2∞
=

1

2v∞

{

1

v − v∞
− 1

v + v∞

}

(1.66)

we obtain

dv

v2 − v2∞
=

1

2v∞

dv

v − v∞
− 1

2v∞

dv

v + v∞

=
1

2v∞
d log

(
v∞ − v

v∞ + v

)

=
g

v2∞
dt .

(1.67)

Assuming v(0) = 0, we integrate to obtain

log

(
v∞ − v(t)

v∞ + v(t)

)

=
2gt

v∞
(1.68)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.69)
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Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (1.70)

Thus, as in the previous example, as t → ∞ one has v(t) → −v∞ , i.e. v(∞) = −v∞.

Digression: To gain an understanding of the constant c, consider a flat surface of area S moving through
a fluid at velocity v (v > 0). During a time ∆t, all the fluid molecules inside the volume ∆V = S · v∆t
will have executed an elastic collision with the moving surface. Since the surface is assumed to be much
more massive than each fluid molecule, the center of mass frame for the surface-molecule collision is
essentially the frame of the surface itself. If a molecule moves with velocity u is the laboratory frame, it
moves with velocity u− v in the center of mass (CM) frame, and since the collision is elastic, its final CM
frame velocity is reversed, to v − u. Thus, in the laboratory frame the molecule’s velocity has become
2v−u and it has suffered a change in velocity of ∆u = 2(v−u). The total momentum change is obtained
by multiplying ∆u by the total mass M = ̺∆V , where ̺ is the mass density of the fluid. But then the
total momentum imparted to the fluid is

∆P = 2(v − u) · ̺S v∆t (1.71)

and the force on the fluid is

F =
∆P

∆t
= 2S ̺ v(v − u) . (1.72)

Now it is appropriate to average this expression over the microscopic distribution of molecular velocities
u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S̺v2, where 〈· · · 〉 denotes a microscopic
average over the molecular velocities in the fluid. (There is a subtlety here concerning the effect of
fluid molecules striking the surface from either side – you should satisfy yourself that this derivation is
sensible!) Newton’s Third Law then states that the frictional force imparted to the moving surface by
the fluid is Ff = −〈F 〉 = −cv2, where c = 2S̺. In fact, our derivation is too crude to properly obtain
the numerical prefactors, and it is better to write c = µ̺S, where µ is a dimensionless constant which
depends on the shape of the moving object.

1.1.7 Stochastic differential equation: Langevin’s equation

Consider a particle of mass m subjected to both dissipation as well as external forcing with both a
constant and a random fluctuating component. We’ll examine this system in one dimension to gain an
understanding of the essential physics. We write

v̇ + γv = g + ζ(t) . (1.73)

Here, v is the particle’s velocity, γ is the damping rate due to friction, g = F/m is the acceleration due to
the constant external force, and ζ(t) is a stochastic random force (per unit mass). This equation, known as
the Langevin equation, describes a ballistic particle in a uniform force field being buffeted by random forc-
ing events. The Langevin equation is an example of a stochastic differential equation (i.e. a stochastic dynam-
ical system), i.e. a differential equation where the evolution depends on one or more random functions.
Stochastic differential equations are found in many areas of statistical physics and in the mathematical
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theory of finance as well, where they describe the time evolution of financial instruments. In the current
context, think of a particle of dust as it moves in the atmosphere, in which case |g| would then represent
the acceleration due to gravity and ζ(t) the random acceleration due to collisions with the air molecules.
For a sphere of radius a moving in a fluid of dynamical viscosity η, hydrodynamics gives γ = 6πηa/m.
It is illustrative to compute γ in some setting. Consider a micron sized droplet (a = 10−4 cm) of some
liquid of density ρ ∼ 1.0 g/cm3 moving in air at T = 20◦ C. The viscosity of air is η = 1.8× 10−4 g/cm · s
at this temperature6. If the droplet density is constant, then γ = 9η/2ρa2 = 8.1× 104 s−1, hence the time
scale for viscous relaxation of the particle is τ = γ−1 = 12µs. We should stress that the viscous damping
on the particle is of course also due to the fluid (e.g., air) molecules, in some average ‘coarse-grained’
sense. The random component ζ(t) thus represents the fluctuations with respect to this average.

We can easily integrate this equation:

d

dt

(
v eγt

)
= g eγt + ζ(t) eγt ⇒ v(t) = v(0) e−γt + γ−1g

(
1− e−γt

)
+

t∫

0

ds ζ(s) eγ(s−t) (1.74)

Note that the solution v(t) depends on the random function ζ(t)7. We can therefore only compute aver-
ages in order to characterize the motion of the system. One important feature of the above solution is
that we see the system “loses memory” of its initial condition u(0) on a time scale γ−1.

The first average we will compute is that of u itself. In so doing, we assume that ζ(t) has zero mean:
〈
ζ(t)

〉
= 0. Then

〈
v(t)

〉
= v(0) e−γt + γ−1g

(
1− e−γt

)
. (1.75)

On the time scale γ−1, the initial conditions v(0) are effectively forgotten, and asymptotically for t ≫ γ−1

we have
〈
v(t)

〉
→ γ−1g, which is the terminal velocity.

Next, consider

〈
v2(t)

〉
=
〈
v(t)

〉2
+

t∫

0

ds1

t∫

0

ds2 e
γ(s

1
−t) eγ(s2−t)

〈
ζ(s1) ζ(s2)

〉
. (1.76)

We now need to know the autocorrelator
〈
ζ(s1) ζ(s2)

〉
of the random function ζ(s). We assume that this

is a function only of the time difference ∆s = s1 − s2 , viz.

〈
ζ(s1) ζ(s2)

〉
= φ(s1 − s2) . (1.77)

The function φ(s) is the autocorrelation function of the random force. A macroscopic object moving in
a fluid is constantly buffeted by fluid particles over its entire perimeter. These different fluid particles
are almost completely uncorrelated, hence φ(s) is basically nonzero except on a very small time scale
τφ , which is the time a single fluid particle spends interacting with the object. We can take τφ → 0 and
approximate φ(s) ≈ Γ δ(s). As we shall now see, we can determine the value of the constant Γ from
equilibrium thermodynamic considerations.

6The cgs unit of viscosity is the Poise (P). 1P = 1 g/cm·s.
7Mathematically, we say that v(t) is a functional of ζ(s).
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With this form for φ(s), we can easily calculate the equal time velocity autocorrelation:

〈
v2(t)

〉
=
〈
v(t)

〉2
+ Γ

t∫

0

ds e2γ(s−t) =
〈
v(t)

〉2
+

Γ

2γ

(
1− e−2γt

)
. (1.78)

Consider the case where F = 0. We demand that the object thermalize at fluid temperature T at late
times t ≫ γ−1, when 〈v(t)〉 → 0 and the particle has effectively forgotten all about its initial conditions.
Thus, we impose the equipartition condition

〈
1
2Mv2(t)

〉
= 1

2kB
T ⇒ Γ =

2γk
B
T

M
. (1.79)

This fixes the value of Γ . We can now compute the general momentum autocorrelator:

〈
v(t) v(t′)

〉
−
〈
v(t)

〉〈
v(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ eγ(s−t) eγ(s
′−t′)

〈
ζ(s) ζ(s′)

〉
=

Γ

2γ
e−γ|t−t′| , (1.80)

which is valid for |t− t′| finite, and in the limit where t and t′ each tend to infinity.

Since we have in eqn. 1.74 the full solution for the velocity u(t), we can use it to compute the position

x(t) = x(0) +
t∫

0

ds v(s) and its statistical properties. Let’s compute the position x(t). We find

x(t) =
〈
x(t)

〉
+

t∫

0

ds

s∫

0

ds1 ζ(s1) e
γ(s1−s) , (1.81)

where
〈
x(t)

〉
= x(0) + γ−1

(
v(0)− γ−1g

) (
1− e−γt

)
+ γ−1gt . (1.82)

Note that for γt ≪ 1 we have
〈
x(t)

〉
= x(0) + v(0) t + 1

2gt
2 + O(t3), as is appropriate for ballistic

particles moving under the influence of a constant force. This long time limit of course agrees with
our earlier evaluation for the terminal velocity,

〈
v(∞)

〉
≡ v∞ = γ−1g. We next compute the position

autocorrelation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ e−γ(s+s′)

s∫

0

ds1

s′∫

0

ds′1 e
γ(s

1
+s

2
)
〈
ζ(s1) ζ(s2)

〉

=
Γ

γ2
min(t, t′) +O(1) .

In particular, at late times the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

Γt

γ2
≡ 2Dt , (1.83)

up to terms of order unity. Here, D = Γ/2γ2 = k
B
T/γm is the diffusion constant. For a liquid droplet of

radius a = 1µm moving in air at T = 293K, for which η = 1.8× 10−4 P, we have

D =
k
B
T

6πηa
=

(1.38 × 10−16 erg/K) (293K)

6π (1.8 × 10−4 P) (10−4 cm)
= 1.19 × 10−7 cm2/s . (1.84)
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This result presumes that the droplet is large enough compared to the intermolecular distance in the
fluid that one can adopt a continuum approach and use the Navier-Stokes equations, and then assuming
a laminar flow.

If we consider molecular diffusion, the situation is quite a bit different. The diffusion constant is then
D = ℓ2/2τ , where ℓ is the mean free path and τ is the collision time. Elementary kinetic theory gives
that the mean free path ℓ, collision time τ , number density n, and total scattering cross section σ are
related by8 ℓ = v̄τ = 1/

√
2nσ, where v̄ =

√

8k
B
T/πm is the average particle speed. Approximating

the particles as hard spheres, we have σ = 4πa2, where a is the hard sphere radius. At T = 293K,
and p = 1atm, we have n = p/k

B
T = 2.51 × 1019 cm−3. Since air is predominantly composed of N2

molecules, we take a = 1.90 × 10−8 cm and m = 28.0 amu = 4.65 × 10−23 g, which are appropriate
for N2. We find an average speed of v̄ = 471m/s and a mean free path of ℓ = 6.21 × 10−6 cm. Thus,
D = 1

2ℓv̄ = 0.146 cm2/s. Though much larger than the diffusion constant for large droplets, this is still
too small to explain certain common experiences. Suppose we set the characteristic distance scale at
d = 10 cm and we ask how much time a point source would take to diffuse out to this radius. The
answer is ∆t = d2/2D = 343 s, which is between five and six minutes. Yet if someone in the next seat
emits a foul odor, you detect the offending emission in on the order of a second. What this tells us is
that diffusion isn’t the only transport process involved in these and like phenomena. More important
are convection currents which distribute the scent much more rapidly.

1.1.8 Newton’s laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their natural state.
Thus, a rock falls because rocks belong on the earth, and flames rise because fire belongs in the heavens.
To paraphrase Wolfgang Pauli, such notions are so vague as to be “not even wrong.” It was only with the
publication of Newton’s Principia in 1687 that a theory of motion which had detailed predictive power
was developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant (possibly zero) velocity
if it is subjected to no forces. Now this cannot be true in general, for suppose we encounter such a “free”
particle and that indeed it is in uniform motion, so that r(t) = r(0) + v(0)t. Now r(t) is measured
in some coordinate system, and if instead we choose to measure r(t) in a different coordinate system
whose originRmoves according to the functionR(t), then in this new “frame of reference” the position
of our particle will be

r′(t) = r(t)−R(t)

= r(0) + v(0) t−R(t) . (1.85)

8The scattering time τ is related to the particle density n, total scattering cross section σ, and mean speed v̄ through the relation
nσv̄relτ = 1, which says that on average one scattering event occurs in a cylinder of cross section σ and length v̄relτ . Here
v̄rel =

√
v̄ is the mean relative speed of a pair of particles.
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If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference we have apparently
falsified Newton’s First Law – a free particle does not move in uniform rectilinear motion when viewed
from an accelerating frame of reference. Thus, together with Newton’s Laws comes an assumption
about the existence of frames of reference – called inertial frames – in which Newton’s Laws hold. A
transformation from one frame K to another frame K′ which moves at constant velocity V relative to K
is called a Galilean transformation. The equations of motion of classical mechanics are invariant (do not
change) under Galilean transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with this, we will
try to build some intuition by solving mechanics problems assuming we are in an inertial frame. The
earth’s surface, where most physics experiments are done, is not an inertial frame, due to the centripetal
accelerations associated with the earth’s rotation about its own axis and its orbit around the sun. In this
case, not only is our coordinate system’s origin – somewhere in a laboratory on the surface of the earth
– accelerating, but the coordinate axes themselves are rotating with respect to an inertial frame. The
rotation of the earth leads to fictitious “forces” such as the Coriolis force, which have large-scale con-
sequences. For example, hurricanes, when viewed from above, rotate counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Later on in the course we will devote ourselves
to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv of a particle’s mass
m (how much stuff there is) and its velocity (how fast it is moving). In order to convert the Second Law
into a meaningful equation, we must know how the force F depends on the coordinates (or possibly
velocities) themselves. This is known as a force law. Examples of force laws include:

Constant force : F = −mg

Hooke’s Law : F = −kx

Gravitation : F = −GMm r̂/r2

Lorentz force : F = qE + q
v

c
×B

Fluid friction (v small) : F = −bv .

Note that for an object whose mass does not change we can write the Second Law in the familiar form
F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most of our initial efforts will lie in using
Newton’s Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will discuss in great
detail later on. Newtonian gravity – the force which makes the planets orbit the sun – is a central force.
One consequence of the Third Law is that in free space two isolated particles will accelerate in such a
way that F1 = −F2 and hence the accelerations are parallel to each other, with

a1
a2

= −m2

m1
, (1.86)

where the minus sign is used here to emphasize that the accelerations are in opposite directions. We can
also conclude that the total momentum P = p1 + p2 is a constant, a result known as the conservation of
momentum.
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Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force law, which

says that the force Fij exerted by a particle i by another particle j is

Fij = −Gmimj

ri − rj
|ri − rj |3

, (1.87)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the value

G = (6.6726 ± 0.0008) × 10−11N ·m2/kg2 . (1.88)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and special feature of this
“inverse square law” force is that a spherically symmetric mass distribution has the same force on an
external body as it would if all its mass were concentrated at its center. Thus, for a particle of mass m

near the surface of the earth, we can take mi = m and mj = Me, with ri − rj ≃ Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.89)

where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R2
e ≃ 9.8m/s2 is the

acceleration due to gravity at the earth’s surface. Newton’s Second Law now says that a = −g, i.e.
objects accelerate as they fall to earth. However, it is not a priori clear why the inertial mass which enters
into the definition of momentum should be the same as the gravitational mass which enters into the force
law. Suppose, for instance, that the gravitational mass took a different value, m′. In this case, Newton’s
Second Law would predict

a = −m′

m
g (1.90)

and unless the ratio m′/m were the same number for all objects, then bodies would fall with different
accelerations. The experimental fact that bodies in a vacuum fall to earth at the same rate demonstrates
the equivalence of inertial and gravitational mass, i.e. m′ = m.

1.1.9 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge q moving in mutually perpendicular
E and B fields. We’ll throw in gravity for good measure. We take E = Ex̂, B = Bẑ, and g = −gẑ. The
equation of motion is Newton’s 2nd Law again:

m r̈ = mg + qE +
q

c
ṙ ×B . (1.91)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus the Lorentz
force of a moving particle in an electromagnetic field. In component notation, we have

mẍ = qE +
qB

c
ẏ

mÿ = −qB

c
ẋ

mz̈ = −mg .

(1.92)
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The equations for coordinates x and y are coupled, while that for z is independent and may be immedi-
ately solved to yield

z(t) = z(0) + ż(0) t− 1
2gt

2 . (1.93)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + uD)

v̇y = −ωc vx ,
(1.94)

where ωc = qB/mc is the cyclotron frequency and uD = cE/B is the drift speed for the particle. As we shall
see, these are the equations for a harmonic oscillator. The solution is

vx(t) = vx(0) cos(ωct) +
(
vy(0) + uD

)
sin(ωct)

vy(t) = −uD +
(
vy(0) + uD

)
cos(ωct)− vx(0) sin(ωct) .

(1.95)

Integrating again, the full motion is given by:

x(t) = x(0) +A sin δ +A sin(ωct− δ)

y(r) = y(0)− uD t−A cos δ +A cos(ωct− δ) ,
(1.96)

where

A =
1

ωc

√

ẋ2(0) +
(
ẏ(0) + uD

)2
, δ = tan−1

(
ẏ(0) + uD

ẋ(0)

)

. (1.97)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.98)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and ẏ(0).

Pause for reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a corresponding second
order ODE. The full solution of the motion of the system entails two constants of integration for each
degree of freedom.

1.2 Motion in One Space Dimension

1.2.1 Equations of motion for potential systems

For one-dimensional mechanical systems, Newton’s second law reads

mẍ = F (x) . (1.99)
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A system is conservative if the force is derivable from a potential: F = −dU/dx. The total energy,

E = T + U = 1
2mẋ2 + U(x) , (1.100)

is then conserved. This may be verified explicitly:

dE

dt
=

d

dt

[
1
2mẋ2 + U(x)

]

=
[

mẍ+ U ′(x)
]

ẋ = 0 . (1.101)

Conservation of energy allows us to reduce the equation of motion from second order to first order:

dx

dt
= ±

√
√
√
√

2

m

(

E − U(x)

)

. (1.102)

Note that the constant E is a constant of integration. The ± sign above depends on the direction of
motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (1.103)

where U−1 is the inverse function, are called turning points. When the total energy is E, the motion of
the system is bounded by the turning points, and confined to the region(s) U(x) ≤ E. We can integrate
eqn. 1.102 to obtain

t(x)− t(x0) = ±
√

m

2

x∫

x0

dx′
√

E − U(x′)
. (1.104)

This is to be inverted to obtain the function x(t). Note that there are now two constants of integration, E

and x0. Since

E = E0 =
1
2mv20 + U(x0) , (1.105)

we could also consider x0 and v0 as our constants of integration, writing E in terms of x0 and v0. Thus,
there are two independent constants of integration.

For motion confined between two turning points x±(E), the period of the motion is given by

T (E) =
√
2m

x+(E)∫

x−(E)

dx′
√

E − U(x′)
. (1.106)

1.2.2 The simple harmonic oscillator

In the case of the harmonic oscillator, we have U(x) = 1
2kx

2, hence

dt

dx
= ±

√
m

2E − kx2
. (1.107)
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The turning points are x±(E) = ±
√

2E/k, for E ≥ 0. To solve for the motion, let us substitute

x =

√

2E

k
sin θ . (1.108)

We then find

dt =

√
m

k
dθ , (1.109)

with solution
θ(t) = θ0 + ωt , (1.110)

where ω =
√

k/m is the harmonic oscillator frequency. Thus, the motion of the system is given by

x(t) =

√

2E

k
sin(ωt+ θ0) , v(t) =

√

2E

m
cos(ωt+ θ0) . (1.111)

Note the two constants of integration, E and θ0 .

1.2.3 One-dimensional mechanics as a dynamical system

Rather than writing the equation of motion as a single second order ODE, we can instead write it as two
coupled first order ODEs, viz.

dx

dt
= v

dv

dt
=

1

m
F (x) .

(1.112)

This may be written in matrix-vector form, as

d

dt

(
x
v

)

=

(
v

1
m F (x)

)

. (1.113)

This is an example of a dynamical system, described by the general form

dϕ

dt
= V (ϕ) , (1.114)

where ϕ = (ϕ1, . . . , ϕn) is an n-dimensional vector in phase space. For the model of eqn. 1.113, we
evidently have n = 2. The object V (ϕ) is called a vector field. It is itself a vector, existing at every point
in phase space, Rn. Each of the components of V (ϕ) is, in general, a function of all n components of ϕ:

Vj = Vj(ϕ1, . . . , ϕn) (j = 1, . . . , n) . (1.115)

Solutions to the equation ϕ̇ = V (ϕ) are called integral curves. Each such integral curve ϕ(t) is uniquely
determined by n constants of integration, which may be taken to be the initial value ϕ(0). The collection
of all integral curves is known as the phase portrait of the dynamical system.
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In plotting the phase portrait of a dynamical system, we need to first solve for its motion, starting from
arbitrary initial conditions. In general this is a difficult problem, which can only be treated numeri-
cally. But for conservative mechanical systems in d = 1, it is a trivial matter! The reason is that energy
conservation completely determines the phase portraits. The velocity becomes a unique double-valued

function of position, v(x) = ±
√

2
m

(
E − U(x)

)
. The phase curves are thus curves of constant energy.

1.2.4 Sketching phase curves

To plot the phase curves,

(i) Sketch the potential U(x).

(ii) Below this plot, sketch v(x;E) = ±
√

2
m

(
E − U(x)

)
.

(iii) When E lies at a local extremum of U(x), the system is at a fixed point.

(a) For E slightly above Emin, the phase curves are ellipses.

(b) For E slightly below Emax, the phase curves are (locally) hyperbolae.

(c) For E = Emax the phase curve is called a separatrix9 .

(iv) When E > U(∞) or E > U(−∞), the motion is unbounded.

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T (E) has a simple geometric interpretation. The area A in phase space enclosed
by a bounded phase curve is

A(E) =

∮

E

dx v =
√

8
m

x+(E)∫

x−(E)

dx′
√

E − U(x′) . (1.116)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (1.117)

9We might as well define separatrices to be phase curves for energies corresponding to both local minima as well as local
maxima. For E = Emin, there is a phase curve corresponding to the point (x∗, 0), where x∗ is the location of the local
minimum in U(x). For E just below Emin, there is no phase curve in the vicinity of x∗, while for E just above Emin, the
phase curves in the vicinity of x∗ are ellipses. When U(x∗) = Emax is a local maximum, the phase curves in the vicinity of
x∗ are hyperbolae. Precisely at x = x∗, the phase curves cross in a diabolical point resembling the letter X. Thus, in both
cases corresponding to E = Emin and E = Emax, the separatrix phase curves are not (one-dimensional) manifolds. At E = Emin, the
phase curve corresponds to a point, which is zero-dimensional, while at E = Emax, the phase curve contains a diabolical point,
at which the curve is also no longer locally homeomorphic to R

1. For all other energies, the phase-curves are 1-manifolds,
corresponding to the image of the map t 7→ ϕ(t) from the time manifold R to the n-dimensional phase space manifold Mn

(typically R
n).
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Figure 1.6: A potential U(x) and the corresponding phase portraits (with separatrices in red).

1.2.5 Linearized dynamics in the vicinity of a fixed point

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. Taylor’s theorem then allows us
to expand U(x) in the vicinity of x∗:

U(x) = U(x∗) + U ′(x∗) (x− x∗) + 1
2U

′′(x∗) (x− x∗)2 + 1
6U

′′′(x∗) (x− x∗)3 + . . . . (1.118)

Since U ′(x∗) = 0 the linear term in δx = x − x∗ vanishes. If δx is sufficiently small, we can ignore the
cubic, quartic, and higher order terms, leaving us with

U(δx) ≈ U0 +
1
2k (δx)

2 , (1.119)

where U0 = U(x∗) and k = U ′′(x∗). The solutions to the motion in this potential are:

U ′′(x∗) > 0 : δx(t) = δx0 cos(ωt) +
δv0
ω

sin(ωt)

δv(t) = −ω δx0 sin(ωt) + δv0 cos(ωt)

(1.120)

and

U ′′(x∗) < 0 : δx(t) = δx0 cosh(γt) +
δv0
γ

sinh(γt)

δv(t) = γ δx0 sinh(γt) + δv0 cosh(γt) ,

(1.121)
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where ω =
√

k/m for k > 0 and γ =
√

−k/m for k < 0. The energy is

E = U0 +
1
2m (δv0)

2 + 1
2k (δx0)

2 . (1.122)

For a separatrix, we have E = U0 and U ′′(x∗) < 0. From the equation for the energy, we obtain δv0 =

±γ δx0. Let’s take δv0 = −γ δx0, so that the initial velocity is directed toward the unstable fixed point

(UFP). I.e. the initial velocity is negative if we are to the right of the UFP (δx0 > 0) and positive if we are

to the left of the UFP (δx0 < 0). The motion of the system is then

δx(t) = δx0 exp(−γt) . (1.123)

The particle gets closer and closer to the unstable fixed point at δx = 0, but it takes an infinite amount of

time to actually get there. Put another way, the time it takes to get from δx0 to a closer point δx < δx0 is

t = γ−1 log

(
δx0
δx

)

. (1.124)

This diverges logarithmically as δx → 0. Generically, then, the period of motion along a separatrix is infinite.

Linearization for general dynamical systems

Linearizing in the vicinity of such a fixed point, we wrote δx = x− x∗ and δv = v − v∗, obtaining

d

dt

(
δx
δv

)

=

(
0 1

−m−1 U ′′(x∗) 0

)(
δx
δv

)

+ . . . , (1.125)

This is a linear equation, which we can solve completely. The result for a general n-component dynamical
system ϕ̇ = V (ϕ) is given in eqn. 1.33. The linearized dynamics in the vicinity of a fixed point ϕ∗,
where V (ϕ∗) = 0, is given by ϕ̇ = Mϕ, where the components of the n × n matrix M are given by

Mjk = (∂Vj/∂ϕk)
∣
∣
ϕ∗

.

Consider now the general linear equation ϕ̇ = Mϕ, where M is a fixed real matrix, i.e. one which is
independent of time t. Formally, the solution isϕ(t) = exp(Mt)ϕ(0). Now whenever we have a problem
involving matrices, we should instantly start thinking about eigenvalues and eigenvectors. Invariably,
the eigenvalues and eigenvectors will prove to be useful, if not essential, in solving the problem. The
eigenvalue equation is

M ψα = λαψα . (1.126)

Here ψα is the αth right eigenvector10 of M . The eigenvalues are roots of the characteristic equation, i.e.
solutions to the equation P (λ) = 0, where P (λ) = det(λ · I−M). Let’s expand ϕ(t) in terms of the right
eigenvectors of M :

ϕ(t) =
∑

α

Cα(t)ψα . (1.127)

10If M is symmetric, the right and left eigenvectors are the same. If M is not symmetric, the right and left eigenvectors differ,
although the set of corresponding eigenvalues is the same. We assume that the matrix M has no nontrivial Jordan blocks.
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Figure 1.7: Phase curves in the vicinity of centers and saddles.

Assuming, for the purposes of this discussion, that M is nondegenerate, i.e. its eigenvectors span R
n,

the dynamical system can be written as a set of decoupled first order ODEs for the coefficients Cα(t):

Ċα = λαCα , (1.128)

with solutions

Cα(t) = Cα(0) exp(λαt) . (1.129)

If Re (λα) > 0, Cα(t) flows off to infinity, while if Re (λα) < 0, Cα(t) flows to zero. If |λα| = 1, then Cα(t)

oscillates with frequency Im(λα).

For a two-dimensional matrix, it is easy to show – an exercise for the reader – that

P (λ) = λ2 − Tλ+D , (1.130)

where T = Tr(M) and D = det(M). The eigenvalues are then

λ± = 1
2T ± 1

2

√

T 2 − 4D . (1.131)

We’ll defer study of the general case. For now, we focus on our conservative mechanical system of eqn.
1.125. The trace and determinant of the above matrix are T = 0 and D = m−1 U ′′(x∗). Thus, there are
only two (generic) possibilities: centers, when U ′′(x∗) > 0, and saddles, when U ′′(x∗) < 0. Examples of
each are shown in fig. 1.6.
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Figure 1.8: Phase curves for the harmonic oscillator.

1.3 Examples of Conservative One-Dimensional Systems

1.3.1 Harmonic oscillator

The potential energy of the harmonic oscillator in d = 1 dimension is U(x) = 1
2kx

2. The equation of
motion is

m
d2x

dt2
= −dU

dx
= −kx , (1.132)

where m is the mass and k the force constant (of a spring). With v = ẋ, this may be written as the N = 2
system,

d

dt

(
x
v

)

=

(
0 1

−ω2 0

)(
x
v

)

=

(
v

−ω2 x

)

, (1.133)

where ω =
√

k/m has the dimensions of frequency (inverse time). The solution is well known:

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt)

v(t) = v0 cos(ωt)− ω x0 sin(ωt) .
(1.134)

The phase curves are ellipses:

ω0 x
2(t) + ω−1

0 v2(t) = C , (1.135)

where C is a constant, independent of time. A sketch of the phase curves and of the phase flow is shown
in fig. 1.8. Note that the x and v axes have different dimensions.

Energy is conserved:

E = 1
2mv2 + 1

2kx
2 . (1.136)

Therefore we may find the length of the semimajor and semiminor axes by setting v = 0 or x = 0, which
gives

x
max

=

√

2E

k
, v

max
=

√

2E

m
. (1.137)
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The area of the elliptical phase curves is thus

A(E) = π x
max

v
max

=
2πE√
mk

. (1.138)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π

√
m

k
, (1.139)

which is independent of E.

1.3.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of
length ℓ. The potential is U(θ) = −mgℓ cos θ, hence

mℓ2 θ̈ = −dU

dθ
= −mgℓ sin θ . (1.140)

This is equivalent to
d

dt

(
θ
ω

)

=

(
ω

−ω2
0 sin θ

)

, (1.141)

where ω = θ̇ is the angular velocity, and where ω0 =
√

g/ℓ is the natural frequency of small oscillations.

The conserved energy is
E = 1

2 mℓ2 θ̇2 + U(θ) . (1.142)

Assuming the pendulum is released from rest at θ = θ0,

2E

mℓ2
= θ̇2 − 2ω2

0 cos θ = −2ω2
0 cos θ0 . (1.143)

The period for motion of amplitude θ0 is then

T
(
θ0
)
=

√
8

ω0

θ0∫

0

dθ√
cos θ − cos θ0

=
4

ω0
K
(
sin2 1

2θ0
)

, (1.144)

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we have

T
(
θ0
)
=

2π

ω0

{

1 + 1
4 sin2

(
1
2θ0
)
+ 9

64 sin4
(
1
2θ0
)
+ . . .

}

. (1.145)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized equation θ̈ = −ω2
0 θ.

As θ0 → π
2 , the period diverges logarithmically.

The phase curves for the pendulum are shown in fig. 1.9. The small oscillations of the pendulum are
essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation,
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Figure 1.9: Phase curves for the simple pendulum. The separatrix divides phase space into regions of
rotation and libration.

sin θ ≈ θ, and the pendulum equations of motion are exactly those of the harmonic oscillator. These
oscillations are called librations. They involve a back-and-forth motion in real space, and the phase
space motion is contractable to a point, in the topological sense. However, if the initial angular velocity
is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In
this case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see in a later
lecture, the total energy is sufficiently large. The phase curve which separates these two topologically
distinct motions is called a separatrix.

1.3.3 Other potentials

Using a phase plotter11 it is possible to explore the phase curves for a wide variety of potentials. Three
examples are shown in the following pages. The first is the effective potential for the Kepler problem,

Ueff(r) = −k

r
+

ℓ2

2µr2
, (1.146)

about which we shall have much more to say when we study central forces. Here r is the separation

between two gravitating bodies of masses m1 and m2 , µ = m1m2/(m1 +m2) is the ‘reduced mass’, ℓ is

the angular momentum perpendicular to the fixed plane of the motion, and k = Gm1m2 where G is the

11The phase plotter used here was written by Benjamin Schmidel.
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Cavendish constant. We can then write

Ueff(r) = U0

{

− 1

x
+

1

2x2

}

, (1.147)

where x ≡ r/a is the radial coordinate measured in units of a ≡ ℓ2/µk (which has dimensions of length),

and where U0 ≡ k/a = µk2/ℓ2. Thus, if distances are measured in units of a and the potential in units of

U0 , the dimensionless potential may be written in dimensionless form as U(x) = − 1
x + 1

2x2 .

The second is the hyperbolic secant potential,

U(x) = −U0 sech
2(x/a) , (1.148)

which, in dimensionless form, is U(x) = −sech2(x), after measuring distances in units of a and potential

in units of U0.

The final example is

U(x) = U0

{

cos
(x

a

)

+
x

2a

}

. (1.149)

Again measuring x in units of a and U in units of U0, we arrive at U(x) = cos(x) + 1
2x.
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Figure 1.10: Phase curves for the Kepler effective potential U(x) = −x−1 + 1
2x

−2.
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Figure 1.11: Phase curves for the potential U(x) = −sech2(x).
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Figure 1.12: Phase curves for the potential U(x) = cos(x) + 1
2x.
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