
Lecture 7 ( Oct . 261
-

we now turn to the subject of small oscillations .

We assume

that the kinetic energy is homogeneous. of degree two in the

generalized velocities : T =

'

z Too , (Gi , . . . , Gul
"

go -9 or , and

that the potential Ulf . . . . . , gal is degree zero in the Soto 's .

The equations of motion are then obtained as follows :

Po
= 2¥, = Too . Hao ,

↳ T - u ⇒ ( fo .- z÷q= 'zatoyjfhoio.io. - Fft
Thus

, p'o = Fo says

too . Eat- PIg÷.

- I %I taiga .
= - 3¥

This may be written as

mummy
To. ii. t 's PITT + 'II. - IIIamain -- - Fao

by TI: G.
If > t TYuu itpair = Ax ,

with

thin -

-

'
'zt.io/FffTt2toqIu-dIfT ) Christoffel

←

symbols

A- × = - T.io#qo



- static equilibrium : go = o toEli , . . ., n} ⇒

3¥ = O fo ; n equations in n unknowns fat , , . . ..An}

Generically this has pointlike solutions, tot , . . . . ign) .
Let's write go = got yo and expand the Lagrangian
to quadratic order in the go and go :

y
L =

'

z Too . if No , - I Voo . Yo Yo , t . . .

where

Too .
-

- Too . III = fg÷g
q

T and V are

v.. .
.

.

at f Tintin:4 .

afootoil q nxn matrices

so to quadratic ordre r, L = fifty - 12 ht Vy
• Method of small oscillations
The idea here is to express the yo in terms of
normal modes

,
3
; ,

which diagonalize the equations
of motion ,

Too , Flo , = - Voor yo
This being a linear problem , we write no = Aoi } . . and

demand T
t
ATA = I nxn real
At VA = diag ( wi , . . . , wi )

matrix



The vector form of the linearized EL egas is

Tj = - VI
so TAI = - VAI

t

Multiplying on the left by A , we then have

(AttA) I = - LAHAIE
- -

= I Idiaglwi , . . ., Wh )
Thus. we have n decoupled second order OD Es :

with solutions
Ii = -w:3;

3; It ) = C; cos (wit ) t D; sin (wit )

with 2n constants of integration {Ci , Di} with ie {is . . ., n) .
Note f- AI yields I = A-

"

if = Atty , Thus

no Itt = ? Aoi ( C ; costwith + Disinherits]
Multiplying on the left by Att , we obtain

Cicoslwitlt Disinherit) = Atiotoo . Moi Itt
and thus

C AtiIool moi lo )

Di -- wi
' Atio Too . No . lol (no sum on i )



At this point , we have the complete solution to the

problem for arbitrary initial conditions {yo lol, go lol} .
The matrix Aoi is called the modal matrix

.
If all

the generalized coordinates have dimensions Lqo) -- L ,
[Troi ) = M

, Hoo . ] = Iz = ¥2
(Aoi ) = M

- Y'
,
13; ) = 1942 L

- Why can we demand ATTA -- I and AtVA -- diag lui, . . . ,wi ) ?
•

Proof by construction :

( i ) Since Too , is symmetric , there exists O ,
E Oln )

such that Of TO ,
= Td ,

where To, is diagonal.

Additionally , the entries of Td are all positive
because the kinetic energy is in general positive
( only zero if Ito -- O f o) .

Iii ) Td being positive definite , we may construct its

square root Td
"'
simply by taking the square root

of earth. diagonal entry . Note then that

Toi" Oi T O, Toi" = Toi " Tata
""

-

- I

liiil The matrix Toi
""

OFoil' is symmetric , and
hence diagonalized by some Oz C- Oln ) . Thus,



we have two matrices 0
,
and Oz such that

ofTI 't
' of T O , Toi

" OE A

QtIi"of VO, Ta
- "'
Oz -- diaghi. . . . ,wit

Therefore the modal matrix is

A = O
,Tj

't'Oz (NB : A not orthogonal !)

we can see that it is in general not possible to
simultaneously diagonal three symmetric matrices . Two is
the limit !

- How to find the modal matrix
( i ) Assume yo Itt = Re Ilo e

- iwt
.
Then from the

EL egn T if = - Vin
.

we have (w 'T- V)oo4o ,
= O

.

In order to have nontrivial solutions, we demand

detlwt- V) = 0

This yields an nth order polynomial equation in w ?
2

Its n roots are the n normal mode frequencies, wi .

liil Next
,
find the eigenvectors do

"

by demanding
E (wi Too . - Von ) ludi

'

= o
O
'



Since wit- V is defective , these equations are
In - it inhomogeneous linear equations for Hfi! . . . , 4Th}
yielding the ratios #'14!"

.
. .

.

, 44444
'

' ) . It then
follows (see § 5.3.31 that 4£" too , 444=0 if itj .
In fact

,
this is only guaranteed if u! tug , but

for degenerate eigenvalues wi --Wj , we may still
choose the eigenvectors to be orthogonal Curt T) via
the Gram - Schmidt process . Finally , we may choose
to normalize each eigenvector , so that

< 4" 'HH > = 4 Too , 4ft ' = Sign
(iii ) the modal matrix is then given by Aoi = to

"
.

liv ) since I -- AI and ATTA -

- A
,
A
'
-

- Att and I --Atty .

• Example : the double pendulum e-
(For simplicity , choose libel,MFMEM ) m

X ,
= l sin Oi

, Y, = - l cos9 ,
m

Xz = l s in Qtl sin Oz , ya =
-Kosh -l cos Oz ' O '

l

T -- 'zmkiitiliixiiyil -- Eml
'Kitt 2 cos 10, -040 ,

at
'

O: )

V = - mg l 12 cos O, t cos Oz ) ; equilibrium @ 01=02--0

t -- Thieme:) ,
v -- lingerie)



Let wi = gll . Then

w't-v = me42%" m:L. )
dethit- v) = (me42 . {21w'-wit ' - w 't }

Setting dotlw 'T- V) -- O then yields w¥= GIVE two .

Find i = t i = -

l l l l
O= I

Attie = sine a. .

Note that it"a /. and It ' a ft t
Normal mode shapes :

I
-

I" Ii- i

¥÷
.

"it
:*
.

In the low frequency normal mode , the two masses
oscillate in phase , while in the high frequency normal
mode

, they are it out of phase .



I

• Zero modes

Recall that to each continuous one ⇐parameter

family of coordinate transformations
Go → 9-off ,3) , Iott, 3=0) = Go

leaving L invariant correspond's a conserved "charge " ,
^ -- EEE.FI/s...odIe--o

Let us label the various one - parameter invariances
with a label k .

For small oscillations
,

OL 2L

T.gg
=

Try
= Too , 7.o '

which says Cho = §, Too . 39¥ ) so that
5=0

3h = § Chono
is a zero mode , satisfying }h=O .

(As written
it is un normalized . Thus

,
in systems with continuous

symmetries , associated with each such symmetry is a
zero mode of the corresponding small oscillations problem. .

2

Example l : L -- '
zmixi t '

z mix ! -
'

zklxz - X ,
- al

=
'
zMi 't

'

z ya i
'
-

'zklx -at ⇒ X (cm) is a ZM
frictionless 9 X =

'zlx ,
t X z ) , x = Xz -X,



ExampleI
consider the system to the right,
for which

T -

- IR
' (militmilitMilos )

and

U -

-

'

z k R2 Holz - lo , - XI't lots - oh -X )
'

that to , - doz - XY )
where 0/3 - 2T s do , colza ¢, s ol , t 2T , and where
RX = a is the unstretched length of each spring .
T.ae equilibrium configuration is

49--3 , E-St Ez , ¢; -- St 'S
where 3 is an arbitrary continuous parameter ,
corresponding to the continuous translational symmetry
that is present. Find

2kR2 - h R2 - kR2

t.fi!:& :*) ,
v -- Hirani. she:3:)

My
""

water -- he 1¥.? e) . vi. ha
;

ya



The characteristic polynomial is

Phil = detlw'T- VI = (k R'P . Flail

Flu 't -- Tiwa - E. (T.it t ) w"
+ 3 ftp.ttfztfj ) w

'

This is cubic in uh
,
but since there is no 6210

term , w
' divides Ftw ' )

,
i - e . Flat) = w ' Total,

where Q1w' ) is a quadratic function of its
argument. Thus the normal mode. frequencies are

wi = 0
I

wi,
-

- uituitujtthui-uiitlui.us'Hui-nil .
To find the modal matrix

,
set (w! 'T- V) 4%1=0 :

÷÷÷i . to
which yields 4'T ' = Cj 113 - Yi) , where

Cj = ! mo (3 - hut ) - 'J
""

for normalization .



Note for the zero mode (j = I ) we have

Ao , = 4.ol ' = = (m, tmztmz )
- YZ
t oell, 2,3}

Thus
,

}
,
= A

go Too ' Mo '

= (m, tmztmz )
- Y ' R2(Mi Y , tMa 42 tms 73 )

is the normalized zero mode .

This is consistent

with Noether 's theorem
,
which says

.

A = £
,
ftp..dz#--R4miohtmiloztms&d

with M -

- O
.

Note that i = O always, and not only
inn

. the limit of small deviations from static equilibrium .

• Chain of identical masses and springs [
tension

L -- {ME if -
'

z k [Hot , -Xo - al 't TEHoti - Xo)

clearly Po
-

- 3¥ -

- m ko . If the chain is finite ,
owith n running from 1 to N

,
then

F
,
= 3¥

,

= klx, - X ,
- al - t

F
,

= 3¥ = - k (xn - xn - i - a) t E

Fo = Gtfo = k (Xo+, t Xo- i - 2 Xj ) o c- 12 , . . . , N - B



The last equation says that Fo -- O toEli, . . .,N} if

X
on
- X
o
= b

,
o E l l , . . .

,
N- I }

where b is a constant . Plugging this into the
first equations then yields b -

- at k
- ''

t .

If the chain is a periodic ring with Xan , I X, t C ,

then b -- CIN is the only solution . We'll solve the
problem in this case of periodic boundary conditions
( PBCs ) .

In the limit N→ no
,
the bulk behavior

wont differ between the two cases . Writing

Ko = ob t not 3 cell , . . . , N )
we have

←
UNH = Ui

↳
'

z m ii. - 'zh hot , -ud
'

- klb -a) C - { Nklb -at

The last two terms arise when b t a due to the fact

that the springs are all (equally ) stretched in the static

equilibrium configuration . These terms are both constants

which. we henceforth drop . The EL equations are then

miso -- ¥+1 }¥ ) -- ¥ = kluontuo- i - 2nd
o o

with um ,
=. u

, .
These N coupled ODES may easily be solved

kluot . - Uo ) - k luo -Uo- i )
ooo-7 &G



by *anstorming to Fourier space coordinates , viz .

N

u =fz f. em
olNij ⇐ un

,
. =#NE e -HijoINo U

l 0=1 0

Note that ij is complex, with

"
N-j
' ff [ e2TijoyNno = if

Let's count degrees of freedom .
The set In , , . . .

, un )
constitutes N real degrees of freedom . For N even ,

in and in12 are real
,
while it; for je fl, . . . ,

'

z N
- 1) are

complex and satisfy Re in
-j
= Re vij and Im in-j = - Im irj .

The number of real degrees of freedom is then

DOF = 2 t 2x ( 'z N - l ) = N ✓

If N is odd , then in is again, real , but there
is no mode it

;
with j = IN .

We again have in -j
-

- II ,
this time for j E ft , . . . , 'zlN - t ) ) . The number of real
degrees of freedom is

①OF = 1 t 2x '
z (N - t ) = N V

we now have

-2 , 01N 01NmfqI.ie Ti's iio -- k tf e-
""d

'

Ina , tho. ,
- 2nd

mini; = - 2hL - cosknit) ie;



Thus we may write Tej = -wjij with

Wj = 2 IKI Isin (Tt ) ) j - N is 2- in

the solution for each normal mode is
w

nzm
iejltl = Cj e-

iwit
e
is

where Cn-j
-

- Cj and 8N-j = - Sj for all jet f Nz , N),
and 8ns = Sn = O .

The {Cj , Sj ) are all real constants

The modal matrix is then A.
oj

= Tnf eh ow, where
we have now included the m- '12 factor .

.

Note

Too , = m fool

Vra = 2k Soo , - k Sol
, on

- K
. Sol

,
o- i

the Kronecker deltas are understood to be modulo N, i- e.

Soo ,
= ( t it o

'
- o mod N

O otherwise

Thus
,
the matrix forms of T and V are

(2- kn
- k O -

- - O - k

t.to : :?) .
" i÷÷÷.

O mo om



^

Using the equation IN NJ e2Tilj -j
'lolN

=
= Sjjl we can

0=1

prove that AETA =D and At VA -

- diag Iwf , . . .

, WI ) .

Continuum limit : we take

Holt ) → ulx-ob.tl
and

Uo+ ,
- Uo = Ulxtb) - ulx ) = b¥× 't 'z b }¥z- t . . .

Thus
,

T -

- ImEvil → tzmfdx (3¥12
o b

V =

'zk Gluon - not→ I left (b 2¥12 -t . . .

b

and we may write

S -

- Idt 4End ,
kid , t ! -- fdtfdx Ltu ,2×u, Au , t)

where

Llniaxn , atu , t )
-

- Ip 1371
'

- ft Iff)
'

with p = mlb = mass density and I = kb --
''

tension
"

is the Lagrangian density . Suppose the Lagrangian is of
the form EE

L -- §, Lo ( no , Ito , Monje , t )



We have
= u

'

o

-

L -- §, Lo ( no ,
it
. , motif , t )

The EL eqns are then

ftp.uol -- E. -- 3¥ t 's %÷ - I 3¥
Now

¥HuH-yHLo-iHu = I 3¥ t . . .

and writing = u
'

o X
- -

Lo (no , iv.
"

, ti I -12 ( no ,
is
o , motif , ob , t )

= tf LIU , zu , 2. u , x , t )
we have

S -
- fat fdx L la , at u , 2x u , x , t )

and the equations of motion

It IIFA tix III. I -- Fa
More about this in chapter 9 of the lecture notes .


