Lecture 5 (oct. 19)
Two body central force problem:

$$
L=T-U=\frac{1}{2} m_{1} \dot{\vec{r}}_{1}^{2}+\frac{1}{2} m_{2} \stackrel{\rightharpoonup}{r}_{2}^{2}-U\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

(1) Change to $C M$ and relative coordinates:

$$
\vec{R}=\frac{m_{1} \stackrel{\rightharpoonup}{r}_{1}+m_{2} \stackrel{\rightharpoonup}{r}_{2}}{m_{1}+m_{2}}, \vec{r}=\vec{r}_{1}-\vec{r}_{2}
$$

Invert to obtain:

$$
\vec{r}_{1}=\stackrel{\rightharpoonup}{R}+\frac{m_{2}}{m_{1}+m_{2}} \vec{r}, \vec{r}_{2}=\vec{R}-\frac{m_{1}}{m_{1}+m_{2}} \vec{r}
$$

Substitute in $L\left(\vec{r}_{1}, \vec{r}_{2}, \dot{\vec{r}}_{1}, \dot{\vec{r}}_{2}\right)$:

$$
L(\vec{R}, \dot{\vec{R}}, \vec{r}, \dot{\vec{r}})=\frac{1}{2} M \dot{\vec{R}}^{2}+\frac{1}{2} \mu \dot{\vec{r}}^{2}-U(r) \quad\left\{\begin{array}{l}
\text { decoupled } \\
\text { CM and } \\
\text { relative } \\
\text { motion! }
\end{array}\right.
$$

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \text { (reduced mass) }
$$

$$
N B: m_{1} \ll m_{2} \Rightarrow \mu=m_{1}-\frac{m_{1}^{2}}{m_{2}}+\cdots
$$

$$
m_{1}=m_{2}=m \Rightarrow \mu=\frac{1}{2} m
$$

(2) Integrate CM equs of motion:

$$
\begin{gathered}
\frac{d}{d t} \frac{\partial L}{\partial \dot{\vec{R}}}=\frac{\partial L}{\partial \vec{R}} \Rightarrow M \stackrel{\rightharpoonup}{R}=0 \quad, \vec{P}=\frac{\partial L}{\partial \dot{\vec{R}}}=M \stackrel{\rightharpoonup}{R}=\text { const } \\
\vec{R}(t)=\vec{R}(0)+\dot{\vec{R}}(0) t
\end{gathered}
$$

(3) Relative coordinate problem

$$
L_{r e l}=\frac{1}{2} \mu \dot{\vec{r}}^{2}-U(r)
$$

Continuous rotational symmetry \Rightarrow

$$
\vec{l}=\vec{r} \times \vec{p}=\mu \stackrel{\rightharpoonup}{r} \times \dot{\vec{r}} \text { conserved }
$$

Since $\vec{r} \cdot \vec{l}=0$, all motion $\vec{r}(t)$ is confined to the plane perpendicular to \vec{l}. Choose 2D polar coordinates (r, ϕ) in this plane. The relative coordinate Lagrangian is then

$$
L_{r e l}=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \phi^{2}\right)-U(r)
$$

Since the coordinate ϕ is cyclic, the angular momentum $l=\mu r^{2} \dot{\phi}$ is conserved. And since $\partial L / \partial t=0, H=\dot{r} \frac{\partial L}{\partial \dot{r}}+\dot{\phi} \frac{\partial L}{\partial \dot{\phi}}-L$ is conserved.
Find

$$
\begin{aligned}
H=E & =T+U=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\phi}^{2}-U(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+U_{e f f}(r)
\end{aligned}
$$

where

$$
U_{\text {eff }}(r)=\frac{l^{2}}{2 \mu r^{2}}+U(r)
$$

We can now solve to obtain radial motion $r(t)$, and then obtain ϕ by integrating $\dot{\phi}=l / \mu r^{2}(t)$.

Specifically, from $E_{r e l}=\frac{1}{2} \mu \dot{r}^{2}+U_{\text {eff }}(v)$, we have

$$
\left.\left.\begin{array}{rl}
\dot{r}=\frac{d r}{d t} & = \pm \sqrt{\frac{2}{\mu}\left(E-U_{C f f}(r)\right)} \Rightarrow \\
& + \text { for } d r>0 \\
& \text { for } d r<0
\end{array}\right\} d t= \pm \sqrt{\frac{\mu}{2}} \frac{d r}{\sqrt{E-\frac{l^{2}}{2 \mu r^{2}}-U(r)}}\right)
$$

Integrate to get $t(r)$. In principle this is possible. This introduces a constant of integration $r_{0}=r(t=0)$ Next, with $r(t)$ in hand, integrate

$$
\dot{\phi}=\frac{d \phi}{d t}=\frac{l^{2}}{2 \mu r^{2}} \Rightarrow d \phi=\frac{l}{\mu} \frac{d t}{r^{2}(t)}
$$

to get $\phi(t)$. This introduces a second constant, $\phi_{0}=\phi(t=0)$, Now we have the complete motion of the system, $\{r(t), \phi(t)\}$ with for constants of integration: E, l, r_{0}, ϕ_{0}.
Recall that the three-dimensional motion is confined to a plane perpendicular to \vec{l}, so its direction \hat{l} accounts for two additional constants of integration. Overall, there are 12 such constants:

$$
\vec{R}(0)(x 3), \dot{\vec{R}}(0)(\times 3), E_{r e l}, \vec{l}(x 3), r_{0}, \phi_{0}
$$ which is expected given two coupled second order equations of motion for the six quantities \vec{r}_{1}, \vec{r}_{2}.

- Geometric equation of the orbit The $2^{\text {nd }}$ order ODE for $r(t)$ is

$$
\mu \ddot{r}=-\frac{\partial V_{\text {eff }}}{\partial r}=\frac{l^{2}}{\mu r^{3}}-U^{\prime}(r)
$$

Since $l=\mu r^{2} \frac{d \phi}{d t}$ is conserved,

$$
\frac{d}{d t}=\frac{l}{\mu r^{2}} \frac{d}{d \phi}
$$

Therefore

$$
\begin{aligned}
& \text { efore }\left(\frac{l}{\mu r^{2}} \frac{d}{d \phi}\right)\left(\frac{l}{\mu r^{2}} \frac{d}{d \phi}\right) r=\frac{l^{2}}{\mu r^{3}}-U^{\prime}(r) \\
& \frac{l^{2}}{\mu r^{4}} \frac{d^{2} r}{d \phi^{2}}-\frac{2 l^{2}}{\mu r^{5}}\left(\frac{d r}{d \phi}\right)^{2}=\frac{l^{2}}{\mu r^{3}}-U^{\prime}(r) \\
& \Rightarrow \frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}=r+\frac{\mu r^{4}}{l^{2}} F(r)
\end{aligned}
$$

where $\left.F(r)=-U^{\prime} / r\right)$ is the radial force. Using energy conservation, we can write

$$
\begin{aligned}
E & =\frac{1}{2} \mu \dot{r}^{2}+U_{\text {eff }}(r) \\
& =\frac{l^{2}}{2 \mu r^{2}}\left(\frac{d r}{d \phi}\right)^{2}+U_{\text {eff }}(r)
\end{aligned}
$$

to obtain

$$
d \phi= \pm \frac{l}{\sqrt{2 \mu}} \frac{d r}{r^{2} \sqrt{E-U_{e f f}(r)}}
$$

It is sometimes convenient to write the equation

$$
r^{\prime \prime}-\frac{2}{r}\left(r^{\prime}\right)^{2}=\frac{\mu r^{4}}{l^{2}} F(r)+r \quad\left(r^{\prime}=\frac{d r}{d \phi} \text { etc. }\right)
$$

in terms of the variable $s \equiv 1 / r$. Then

$$
\frac{d^{2} s}{d \phi^{2}}+s=-\frac{\mu}{l^{2} s^{2}} F\left(s^{-1}\right)
$$

Suppose for example that $r(\phi)=r_{0} e^{k \phi}$, i.e. a logarithmic spiral. Then $s(\phi)=s_{0} e^{-k \phi}$, and

$$
\begin{gathered}
\left(k^{2}+1\right) s=-\frac{\mu}{l^{2} s^{2}} F\left(s^{-1}\right) \\
F\left(s^{-1}\right)=-\frac{l^{2}}{\mu}\left(k^{2}+1\right) s^{3} \Leftrightarrow F(r)=-\frac{l^{2}}{\mu}\left(k^{2}+1\right) \frac{1}{r^{3}}
\end{gathered}
$$

This corresponds to a potential $U(r)=-\frac{C}{r^{3}}(c>0)$ with

$$
K=\left(\frac{\mu C}{l^{2}}-1\right)^{1 / 2}
$$

Thus, the general shape of the orbit for $l^{2} \geq \mu C>0$ is $a, b \in \mathbb{R}$

$$
r(\phi)=\frac{1}{a e^{k \phi}+b e^{-k \phi}} \quad \begin{aligned}
& \text { spiral orbit tor } \\
& a=0 \text { or } b=0
\end{aligned}
$$

When $\mu C>l^{2}>0$, let $\bar{k} \equiv\left(1-\frac{\mu C}{\ell^{2}}\right)^{1 / 2}$, in which case
$A \in \mathbb{C}$
1 complex

$$
r(\phi)=\frac{1}{A e^{i \bar{k} \phi}+A^{*} e^{-i \bar{k} \phi}}
$$ orbit is unbound, with $r(\phi)=\infty$ when cons.

$$
K \phi=\left(n+\frac{1}{2}\right) \pi-\arg A
$$

- Almost circular orbits

A circular orbit $r(t)=r_{0}$ requires $U_{\text {eff }}^{\prime}\left(r_{0}\right)=0$.
For a homogeneous attractive potential $U(r)=k r^{n}$ with $k>0, n>0$, we have:

$$
\begin{aligned}
& U_{\text {eff }}=\frac{l^{2}}{2 \mu r^{2}}+k r^{n} \\
& U_{\text {eff }}^{\prime}=-\frac{l^{2}}{\mu r^{3}}+n k r^{n-1} \equiv 0 \\
& r_{0}=\left(l^{2} / n \mu k\right)^{1 /(n+2)}
\end{aligned}
$$

For $U(r)=-k r^{-n}$ with $k>0, n>0$, we have

$$
\begin{gathered}
U_{\text {eff }}=\frac{l^{2}}{2 \mu r^{2}}-\frac{k}{r^{n}}, \quad U_{\text {eff }}^{\prime}=-\frac{l^{2}}{\mu r^{3}}+\frac{n k}{r^{n+1}} \\
r_{0}=\left(\frac{n \mu k}{l^{2}}\right)^{1 /(n-2)}
\end{gathered}
$$

If we write $r=r_{0}+\eta$ with $|\eta| \ll r_{0}$, then

$$
\mu \ddot{\eta}=-U_{\text {eff }}^{\prime \prime}\left(r_{0}\right) \eta \Rightarrow \ddot{\eta}=-\omega^{2} \eta \text { with } \omega^{2}=\frac{U_{\text {eff }}^{\prime \prime}\left(r_{0}\right)}{\mu}
$$

We can also use

$$
\frac{d^{2} r}{d \phi^{2}}-\frac{2}{r}\left(\frac{d r}{d \phi}\right)^{2}=\frac{\mu r^{4}}{l^{2}} F(r)+r
$$

and linearize in y with $r=r_{0}+\eta$. This yields

$$
\begin{aligned}
& \begin{aligned}
\eta^{\prime \prime} & =\left[\frac{\mu r_{0}^{4}}{l^{2}} F\left(r_{0}\right)+r_{0}\right]+(\underbrace{\frac{4 \mu r_{0}^{3}}{l^{2}} F\left(r_{0}\right)}+\frac{\mu r_{0}^{4}}{l^{2}} F^{\prime}\left(r_{0}\right)-1) \eta+\theta\left(\eta^{2}\right) \\
& =-\frac{\mu r_{0}^{4}}{l^{2}} U_{\text {eff }}^{\prime}\left(r_{0}\right)=0
\end{aligned} \\
& \text { and hence }
\end{aligned} \quad \begin{aligned}
& \text { with } \eta^{\prime \prime}(\phi)=-\beta^{2} \eta(\phi) \\
& \beta^{2}=3-\frac{\mu r_{0}^{4}}{l^{2}} F \prime\left(r_{0}\right)=3-\left.\frac{d \ln F}{d \ln r}\right|_{r_{0}}
\end{aligned}
$$

The solution is

$$
\eta(\phi)=\eta_{0} \cos \left[\beta\left(\phi-\delta_{0}\right)\right]
$$

where η_{0} and ϕ_{0} set the initial conditions. Note that $\eta(\phi)=+\eta_{0}$ for $\phi=\phi_{n} \equiv 2 \pi \beta^{-1} n+\delta_{0}$. This is called apoapsis (farthest point). The condition for periapsis (closest point) occurs for $\phi=\phi_{n}+\pi \beta^{-1}$. The difference,

$$
\Delta \phi=\phi_{n+1}-\phi_{n}-2 \pi=2 \pi\left(\beta^{-1}-1\right)
$$

is the angle by which the apsides (i.e, periapsis and apoapsis) precess during each cycle. If $\beta>1$, the apsides advance, (come sooner) while if $\beta<1$ the apsides recede (later).

If $\beta=\frac{p}{q} \in \mathbb{Q}$ is a rational number, then the or bit is closed and will retrace itse If every q revolutions.
-Example: $U(r)=-k r^{-\alpha}$ with $k>0, n>0$. Then

$$
U_{e f f}^{\prime}(r)=-\frac{l^{2}}{\mu r^{3}}+\frac{\alpha k}{r^{\alpha+1}} \Rightarrow r_{0}=\left(\frac{l^{2}}{\alpha \mu k}\right)^{1 /(2-\alpha)}
$$

We then have $\beta^{2}=3-\left.\frac{d \ln F}{d \ln r}\right|_{r_{0}}=2-\alpha$. These orbits are stable only for $\alpha<2$. For $\alpha>2$ the circular orbit is unstable and $r(t)$ either falls to the force center or escapes to infinity. In either case, for $\alpha>2$ the orbit is unbound. $\left(r \rightarrow \infty\right.$ or $r \rightarrow 0$ whence $\left.\operatorname{Pr}_{r} \rightarrow \infty\right)$. In order that small perturbations about a stable orbit be closed , we must have $\alpha=2-(p / q)^{2}$.

- Fun fact: If we consider nonlinear perturbations of a circular orbit, the only values of β which yield a closed orbit are $\beta^{2}=1$ (Kepler problem, $\alpha=1$) and $\beta^{2}=4$ (harmonic oscillator, $\alpha=-2$). See §14.7.1.
- Read $\S 4.3$: "Precession in a Soluble Model"

$$
\begin{aligned}
& F=-\frac{k}{r}+\frac{C}{r^{2}} \Rightarrow r(\phi)=\frac{r_{0}}{1-\epsilon \cos \beta \phi}, \beta=\left(1+\frac{\mu C}{l^{2}}\right)^{1 / 2} \\
& E^{2}=1+\frac{2 E\left(l^{2}+\mu C\right)}{\mu k^{2}}=\text { eccentricity, } E=\text { energy (see Fig 4.3) }
\end{aligned}
$$

- The Kepler Problem: $U(r)=-\frac{k}{r}, k=G_{m, m_{2}}=G M_{\mu}$ Effective potential and phase curves:

From $F(r)=-k r^{-2}$, we have, with $s=1 / r$,

$$
s^{\prime \prime}(\phi)+s=-\frac{\mu}{l^{2} s^{2}} F\left(s^{-1}\right)=\frac{\mu k}{l^{2}}=\text { cons. }
$$

Thus, $s(\phi)=\frac{\mu k}{l^{2}}-C \cos \left(\phi-\phi_{0}\right)$, i.e.

$$
r(\phi)=\frac{r_{0}}{1-\epsilon \cos \left(\phi-\phi_{0}\right)}
$$

with $r_{0}=\frac{l^{2}}{\mu k}$ and $\epsilon \equiv C r_{0}$. Since $r(\phi)=r(\phi+2 \pi n)$, the bound Kepler orbits (circles, ellipses) are closed.

- Laplace - Runge - Len vector

Define $\quad \vec{A} \equiv \vec{p} \times \vec{l}-\mu k \hat{r} \quad\left(\hat{r}=\frac{\vec{r}}{|\vec{r}|}=\right.$ unit vector)
Then:

$$
\begin{aligned}
\frac{d \vec{A}}{d t} & =\dot{\vec{p}} \times \vec{l}+\vec{p} \times \stackrel{\stackrel{\rightharpoonup}{\vec{p}}}{ }=\mu k \frac{\dot{\vec{r}}}{\vec{r}}+\mu k \frac{\dot{r} \vec{r}}{r^{2}} \\
& =-\frac{k \vec{r}}{r^{3}} \times(\mu \vec{r} \times \dot{\vec{r}})-\mu k \frac{\dot{\vec{r}}}{\vec{r}}+\mu k \frac{\dot{r} \vec{r}}{r^{2}}
\end{aligned}
$$

interlude: $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})+(\vec{c} \vec{a}) \vec{b}$

$$
\frac{d \vec{A}}{d t}=-\frac{\mu k}{r^{3}}[(\underbrace{\vec{r}}_{r \dot{r}}(\vec{r} \cdot \dot{\vec{r}})-\dot{\vec{r}}(\underbrace{\dot{\partial} \cdot \vec{r}}_{r^{2}})]-\mu k \frac{\dot{\vec{r}}}{r}+\mu k \frac{\dot{r} \vec{r}}{r^{2}}=0
$$

Thus, \vec{A} is a conserved vector lying in the plane of the motion. If we assume apuapsis occurs at $\phi=\phi_{0}$,

$$
\vec{A} \cdot \vec{r}=-\operatorname{Arcos}\left(\phi-\phi_{0}\right)=l^{2}-\mu k r
$$

and $\quad r(\phi)=\frac{l^{2}}{\mu k-A \cos \left(\phi-\phi_{0}\right)}=\frac{a\left(1-\epsilon^{2}\right)}{1-\epsilon \cos \left(\phi-\phi_{0}\right)}$
where

$$
\epsilon=\frac{A}{\mu k}, \quad a\left(1-\epsilon^{2}\right)=\frac{l^{2}}{\mu k}
$$

From $\vec{A}^{2}=2 \mu l^{2}\left(E+\frac{\mu k^{2}}{2 l^{2}}\right)$, we find

$$
a=-\frac{k}{2 E} \quad, \quad \epsilon^{2}=1+\frac{2 E l^{2}}{\mu k^{2}}
$$

One can now show ($\oint 4.4 .3$) that Keplerian orbits are conic sections:

$$
r(\phi)=\frac{a\left(1-\epsilon^{2}\right)}{1-\epsilon \cos \left(\phi-\phi_{0}\right)}, a=-\frac{k}{2 E}, \epsilon^{2}=1+\frac{2 E l^{2}}{\mu k^{2}}
$$

Note $\epsilon^{2}>0$ since $E_{0}=-\frac{\mu k^{2}}{2 \ell^{2}}$ is the energy of the (stable) circular orbit.

- circle: $E=-\frac{\mu k^{2}}{2 l^{2}}, \epsilon=0, a=\frac{l^{2}}{\mu k}=r_{0}$
- ellipse: $-\frac{\mu k^{2}}{2 \ell^{2}}<E<0,0<\epsilon<1$, semimajor axis length $a=-\frac{k}{2 E}$, semiminor $b=a \sqrt{1-\epsilon^{2}}$
- parabola: $E=0, \epsilon=1, a\left(1-\epsilon^{2}\right)=\frac{l^{2}}{\mu k}=r_{0}$ focus lies at force center
- hyperbola: $E>0, \epsilon>1, \phi=\phi_{0}+\cos ^{-1}(1 / \epsilon) \Rightarrow r(\phi)=\infty$

Force center is closest (attractive) or furthest

- Period of bound Kepler orbits (circles, ellipses) Since $l=\mu r^{2} \dot{\phi}=2 \mu \dot{\Sigma}$, where $d \Sigma=\frac{1}{2} r^{2} d \phi$ is the differential area enclosed, the period is

$$
\tau=\frac{2 \mu}{\ell} \Sigma=\frac{2 \mu}{l} \underbrace{\pi a^{2} \sqrt{1-\epsilon^{2}}}_{\text {area of ellipse/circle }}
$$

Now $\epsilon^{2}=1+\frac{2 E l^{2}}{\mu k^{2}}$ and $a=-\frac{k}{2 E}$, so eliminating $E \Rightarrow$

$$
E=-\frac{k}{2 a} \Rightarrow 1-\epsilon^{2}=\frac{l^{2}}{\mu k a}
$$

and we conclude $\tau=2 \pi\left(\mu a^{3} / k\right)^{1 / 2}=2 \pi\left(a^{3} / G M\right)^{1 / 2}$ since $k=G m_{1} m_{2}=G M \mu$. Equivalently,

$$
\frac{a^{3}}{\tau^{2}}=\frac{G M}{4 \pi^{2}}=\text { const. }
$$

For planets orbiting the sun, $\frac{a^{3}}{\tau^{2}}=\left(1+\frac{m_{\rho}}{M_{\theta}}\right) \frac{G M_{\theta}}{4 \pi^{2}} \approx \frac{G M_{\odot}}{4 \pi^{2}}$ Note $m_{p} / M_{\odot} \leq 10^{-3}$ even for Jupiter.

- Escape velocity : threshold for energy is $E=0$

$$
\begin{aligned}
E & =0=\frac{1}{2} \mu v_{e s c}^{2}(r)-\frac{G m_{1} m_{2}}{r} \\
& \Rightarrow v_{\text {es }}(r)=\sqrt{\frac{2 G M}{r}}
\end{aligned}
$$

On earth's surface, $g=\frac{G M_{E}}{R_{E}^{2}} \Rightarrow v_{\text {ese, } E}=\sqrt{2 g R_{E}}$

$$
=11.2 \mathrm{~km} / \mathrm{s}
$$

- Satellites and spacecraft

Recall: $\quad \tau=\frac{2 \pi}{\sqrt{G M_{E}}}\left(R_{E}+h\right)^{3 / 2} \quad\left(m_{s} \ll M_{E}\right)$

$$
L E O=\text { "Low Earth Orbit" }\left(h \ll R_{E}=6.37 \times 10^{6} \mathrm{~m}\right)
$$

So find $\tau_{L E O}=1.4 \mathrm{hr}$.
Problem: $h_{p}=200 \mathrm{~km}, \quad h_{a}=7200 \mathrm{~km}$

$$
\begin{aligned}
& a=\frac{1}{2}\left(R_{E}+h_{p}+R_{E}+h_{a}\right)=10071 \mathrm{~km} \\
& \tau_{\text {sat }}=\left(a / R_{E}\right)^{3 / 2} \cdot \tau_{L E O} \simeq 2.65 \mathrm{hr}
\end{aligned}
$$

- Read $\S \S 4.5$ and 4.6

Lecture 6 (Oct. 21)

- A rigid body is a collection of point particles whose separations $\left|\vec{r}_{i}-\vec{r}_{j}\right|$ are all fixed in magnitude. Six independent coordinates are required to specify completely the position and orientation of a rigid body. For example, the location of the first particle (i) is specified by \vec{F}_{i}, which is three coordinates. The second (j) is then specified by a direction unit vector $\hat{n}_{i j}$, which requires two additional coordinates (polar and azimuthal angle). Finally, a third particle, k, is then fixed by its angle relative to the $\hat{n}_{i j}$ axis. Thus, six generalized coordinates in all are required.

Usually, one specifies three $C M$ coordinates \vec{R}, and three orientational coordinates (egg. The Euler angles).
The equations of motion are then

$$
\begin{array}{ll}
\vec{P}=\sum_{i} m_{i} \vec{r}_{:}, & \dot{\vec{P}}=\vec{F}^{\text {ext }} \text { (external force) } \\
\vec{L}=\sum_{i} m_{i} \vec{r}_{i} \times \dot{\vec{r}}_{i}, & \dot{\vec{L}}=\vec{N}^{\text {ext }} \text { (external torque) }
\end{array}
$$

- Inertia tensor

Suppose a point within a rigid body is fixed. This eliminates the translational motion. If we measure distances relative to this fixed point, then in an inertial frame,

$$
\frac{d \vec{r}}{d t}=\vec{\omega} \times \vec{r} ; \quad \vec{\omega}=\text { angular velocity }
$$

The Kinetic energy is then

$$
\begin{aligned}
T & =\frac{1}{2} \sum_{i} m_{i}\left(\frac{d \vec{r}_{i}}{d t}\right)^{2}=\frac{1}{2} \sum_{i}\left(\vec{\omega} \times \vec{r}_{i}\right) \cdot\left(\vec{\omega} \times \vec{r}_{i}\right) \\
& =\frac{1}{2} \sum_{i} m_{i}\left[\omega^{2} \vec{r}_{i}^{2}-\left(\vec{\omega} \cdot \vec{r}_{i}\right)^{2}\right] \equiv \frac{1}{2} I_{\alpha \beta} \omega_{\alpha} \omega_{\beta}
\end{aligned}
$$

where $I_{\alpha \beta}$ is the inertia tensor,

$$
3 \times 3 \text { real } \rightarrow I_{\alpha \beta}=\sum_{i} m_{i}\left[\vec{r}_{i}^{2} \delta^{\alpha \beta}-r_{i}^{\alpha} r_{i}^{\beta}\right] \quad \text { (discrete) }
$$ symmetric metric $\Rightarrow 6$ DoE $^{\text {mat }}=\int d^{d} r \rho(\vec{r})\left[\vec{r}^{2} \delta^{\alpha \beta}-r^{\alpha} r^{\beta}\right]$ (continuous)

Diagonal elements of $I_{\alpha \beta}$ are muments of inertia, while off-diagonal elements are products of inertia.

