Lecture 4 (oct. 14)
Today's lecture is about constraints

Constraint: $r=l$

$$
\begin{aligned}
T & =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \\
& =\frac{1}{2} m l^{2} \dot{\theta}^{2}
\end{aligned}
$$

"no slip" condition: $R \theta_{1}=a\left(\theta_{2}-\theta_{1}\right)$

$$
\Rightarrow \theta_{2}=\left(1+\frac{R}{a}\right) \theta_{1}
$$

In these cases the constraint equations may easily be solved exactly and the number of generalized coordinates thereby reduced: $\{r, \theta\} \rightarrow\{\theta\},\left\{\theta_{1}, \theta_{2}\right\} \rightarrow\left\{\theta_{1}\right\}$ In other cases the constraint equations are nonlinear or differential and they cant by solved to eliminate redundant degrees of freedom.

Constrained extremization of functions: Lagrange multipliers
Task: extremize $F\left(x_{1}, \ldots, x_{n}\right)$ subject to k constraints of the form $G_{j}\left(x_{1}, \ldots, x_{n}\right)=0$ with $j \in\{1, \ldots, k\}$. We want to find solutions \vec{x}^{*} such that $\vec{\nabla} F\left(\vec{x}^{*}\right)$ is linearly dependent on the k vectors $\left\{\vec{\nabla} G_{j}\left(\vec{x}^{*}\right)\right\}$.

That is,

$$
\begin{equation*}
\vec{\nabla} F+\sum_{j=1}^{k} \lambda_{j} \vec{\nabla} G_{j}=0 \quad \text { (n equations) } \tag{1}
\end{equation*}
$$

where the $\left\{\lambda_{j}\right\}$ are all real. This means that any displacement $d \vec{x}$ relative to \vec{x}^{*} would result in a violation of one or move of the constraint equations. Eqn. (1) provides n equations for the $(n+k)$ quantities $\left\{x_{1}, \ldots, x_{n} ; \lambda_{1}, \ldots, \lambda_{k}\right\}$. The remaining k equations are the constraints $G_{j}\left(x_{1}, \ldots, x_{n}\right)=0$. Equivalently, construct the function

$$
F^{*}\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}\right) \equiv F\left(x_{1}, \ldots, x_{n}\right)+\sum_{j=1}^{k} \lambda_{j} G_{j}\left(x_{1}, \ldots, x_{n}\right)
$$ and freely extremize F^{*} over all its variables:

$$
d F^{*}=\sum_{\sigma=1}^{n}\left(\frac{\partial F}{\partial x_{\sigma}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial x_{\sigma}}\right) d x_{\sigma}+\sum_{j=1}^{k} G_{j} d \lambda_{j} \equiv 0
$$

This results in the $(n+k)$ equations

$$
\begin{aligned}
\frac{\partial F}{\partial x_{\sigma}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial x_{\sigma}} & =0 \quad(\sigma=1, \ldots, n) \\
G_{j} & =0 \quad(j=1, \ldots, k)
\end{aligned}
$$

 this vector $G(x, y)=0$
usually we set $\bar{\nabla} F=0 \Rightarrow$ n equs in n unknowns $\left\{x_{1}, \ldots, x_{n}\right\}$ but in general these sol高 will not satisfy $G_{j}(\vec{x})=0 \forall j$

Example
Extremize the volume of a cylinder of height h and radius a subject to the constraint

$$
G(a, h)=2 \pi a+\frac{h^{2}}{b}-l=0 \quad(b, l \text { fixed })
$$

Thus, we define

$$
V^{*}(a, h, \lambda)=\pi a^{2} h+\lambda\left(2 \pi a+\frac{h^{2}}{b}-l\right)
$$

(1) $\frac{\partial V^{*}}{\partial a}=2 \pi a h+2 \pi \lambda=0$
(2) $\frac{\partial V^{*}}{\partial h}=\pi a^{2}+\frac{2}{b} \lambda h=0$

(3) $\frac{\partial V^{*}}{\partial \lambda}=2 \pi a+\frac{h^{2}}{b}-l=0$

$$
V=\pi a^{2} h
$$

Thus (1) grues $\lambda=-a h$, whence (2) yields

$$
\pi a^{2}-\frac{2}{b} a h^{2}=0 \Rightarrow a=\frac{2}{\pi b} h^{2}
$$

Finally, (3) gives

$$
\frac{4}{b} h^{2}+\frac{h^{2}}{b}=l \Rightarrow h=\sqrt{\frac{b l}{5}}
$$

and therefore $a=\frac{2 l}{5 \pi}$ and $\lambda=-\frac{2}{5^{3 / 2} \pi} b^{1 / 2} l^{3 / 2}$ Thus, the extremal volume is

$$
V^{*}=\pi a^{2} h=\frac{4}{5^{5 / 2} \pi} b^{1 / 2} l^{5 / 2}
$$

Constraints and variational calculus
Consider the following class of functionals:

$$
F[\vec{y}(x)]=\int_{x_{L}}^{x_{R}} d x L\left(\vec{y}, \vec{y}^{\prime}, x\right)
$$

Here $\vec{y}(x)$ may stand for a vector of functions $\left\{y_{\sigma}(x)\right\}$. We consider two classes of constraints:
(1) Integral constraints: These are of the form

$$
\int_{x_{L}}^{x_{R}} d x N_{j}\left(\vec{y}, \vec{y}^{\prime}, x\right)=C_{j}, j \in\{1, \ldots, k\}
$$

(2) Holonomic constraints: these take the form

$$
G_{j}(\vec{y}, x)=0 \quad \text { on } \quad x \in\left[x_{L}, x_{R}\right]
$$

Integral constraints
Here we introduce a separate multiplier λ_{j} for each integral constraint. That is, we extremize the extended functional

$$
\begin{aligned}
& F^{*}[\vec{y}(x) ; \vec{\lambda}]=\int_{x_{L}}^{x_{R}} d x L\left(\vec{y}, \vec{y}^{\prime}, x\right)+\sum_{j=1}^{k} \lambda_{j} \int_{x_{L}}^{x_{R}} d x N_{j}\left(\vec{y}, \vec{y}^{\prime}, x\right) \\
& \equiv \int_{x_{L}}^{x_{R}} d x L^{*}\left(\vec{y}, \vec{y}^{\prime}, x ; \vec{\lambda}\right) \\
& L^{*}\left(\vec{y}, \vec{y}^{\prime}, x ; \vec{\lambda}\right) \equiv L\left(\vec{y}, \vec{y}^{\prime}, x\right)+\sum_{j} \lambda_{j} N_{j}\left(\vec{y}, \vec{y}^{\prime}, x\right)
\end{aligned}
$$

This results in the following set of equations:

$$
\begin{aligned}
\frac{\partial L}{\partial y_{\sigma}}-\frac{d}{d x}\left(\frac{\partial L}{\partial y_{\sigma}^{\prime}}\right)+\sum_{j=1}^{k} \lambda_{j}\left\{\frac{\partial N_{j}}{\partial y_{\sigma}}-\frac{d}{d x}\left(\frac{\partial N_{j}}{\partial y_{\sigma}^{\prime}}\right)\right\} & =0 \\
& \sigma \in\{1, \ldots, n\} \\
\int_{x_{L}}^{x_{R}} d x N_{j}\left(\vec{y}, \vec{y}^{\prime}, x\right) & =C_{j} \\
j & \in\{1, \ldots, k\}
\end{aligned}
$$

Note that n of these are second order ODEs. We have assumed that $\vec{y}\left(x_{c}\right)$ and $\vec{y}\left(x_{R}\right)$ are fixed.
Holonomic constraints
Now extremize

$$
F[\vec{y}(x)]=\int_{x_{L}}^{x_{R}} d x L\left(\vec{y}, \vec{y}^{\prime}, x\right), \vec{y}(x)=\left\{y_{1}(x), \ldots, y_{n}(x)\right\}
$$

subject to the k conditions

$$
G_{j}(\vec{y}(x), x)=0 \quad, j \in\{1, \ldots, k\}
$$

Again, construct the extended functional $L^{*}\left(\vec{y}_{,}, \vec{y}^{\prime}, x ; \vec{\lambda}\right)$

$$
F^{*}[\vec{y}(x), \vec{\lambda}(x)]=\int_{x_{L}}^{x_{R}} d x\{\overbrace{L\left(\vec{y}, \vec{y}^{\prime}, x\right)+\sum_{j=1}^{k} \lambda_{j} G_{j}(\vec{y}, x)}\}
$$

and freely extremize wot the $(n+k)$ functions

$$
\left\{y_{1}(x), \ldots, y_{n}(x) ; \lambda_{1}(x), \ldots, \lambda_{k}(x)\right\}
$$

This results in n second order ODE's plus k algebraic constraints:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\partial L}{\partial y_{\sigma}^{\prime}}\right)-\frac{\partial L}{\partial y_{\sigma}} & =\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial y_{\sigma}}, & & \sigma \in\{1, \ldots, n\} \\
G_{j} & =0 & & j \in\{1, \ldots, k\}
\end{aligned}
$$

Each of these equations holds for all $x \in\left[X_{L}, X_{R}\right]$.
Examples
(1) hanging rope of fixed length

The potential energy functional is

$$
\begin{aligned}
& =\sqrt{1+\left(y^{\prime}\right)^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { neth is } \\
& C[y(x)]=\int_{x_{L}}^{x_{R}} d s=\int_{x_{L}}^{x_{R}} d x \sqrt{1+\left(y^{\prime}\right)^{2}}
\end{aligned}
$$

Thus we form

$$
U^{*}[y(x), \lambda]=\int_{x_{L}}^{x_{2}} d x(\rho g y+\lambda) \sqrt{1+\left(y^{\prime}\right)^{2}}
$$

Since $\partial L^{*} / \partial x=0$, the "Hamiltonian" is conserved:

$$
H=y^{\prime} \frac{\partial L^{*}}{\partial y^{\prime}}-L^{*}=-\frac{\rho g y+\lambda}{\sqrt{1+\left(y^{\prime}\right)^{2}}}=\text { constant }
$$

Thus,

$$
\frac{d y}{d x}= \pm \frac{1}{H} \sqrt{(\rho g y+\lambda)^{2}-H^{2}}
$$

Integrate to get

$$
y(x)=-\frac{\lambda}{\rho g}+\frac{H}{\rho g} \cosh \left(\frac{\rho g}{H}(x-a)\right)
$$

where a is a constant of integration.
The constants $\lambda_{1} H$, and a are fixed by the conditions $y\left(x_{L}\right)=y_{2}, y\left(x_{R}\right)=y_{R}$, and by the fixed length constraint $\int_{x_{L}}^{x_{2}} d x \sqrt{1+\left(y^{\prime}\right)^{2}}=C$.

Constraints in Lagrangian Mechanics
We write our system of constraints in differential form:

$$
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) d q_{\sigma}+h_{j}(q, t) d t=0, \begin{aligned}
& \sigma \in\{1, \ldots, n\} \\
& j \in\{1, \ldots, k\}
\end{aligned}
$$

where $q=\left\{q_{1}, \ldots, q_{n}\right\}$. If the partial derivatives satisfy the conditions

$$
\frac{\partial g_{j \sigma}}{\partial q_{\sigma^{\prime}}}=\frac{\partial g_{j \sigma^{\prime}}}{\partial q_{\sigma}}, \frac{\partial g_{j \sigma}}{\partial t}=\frac{\partial h_{j}}{\partial q_{\sigma}}
$$

then the k differentials may be integrated to yield k holonomic constraints $G_{j}(q, t)=0$, with

$$
g_{j \sigma}=\frac{\partial G_{j}}{\partial q_{\sigma}} \text { and } h_{j}=\frac{\partial G_{j}^{\prime}}{\partial t}
$$

One may then be able to eliminate redundant degrees of freedom directly.
The action functional is

$$
S[q(t)]=\int_{t_{a}}^{t_{b}} d t L(q, \dot{q}, t) ; \delta q_{\sigma}\left(t_{a}\right)=\delta q_{\sigma}\left(t_{b}\right)=0
$$

Its variation is

$$
\delta S=\int_{t_{a}}^{t_{b}} d t \sum_{\sigma=1}^{n}\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)\right\} \delta q_{\sigma}(t)
$$

Since the $\left\{\delta q_{\sigma}(t)\right\}$ are no longer all independent, we cannot infer that the term in curly brackets vanishes for each σ. What are the constraints on the $\left\{\delta q_{\sigma}(t)\right\}$? Since they occur in zero time we call them "virtual displacements", and setting St $=0$ we have the conditions

$$
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) \delta q_{\sigma}(t)=0
$$

Now we may relax the constraint by introducing k Lagrange multipliers $\lambda_{j}(t)$ at each time, and write

$$
\sum_{\sigma=1}^{n}\left\{\frac{\partial L}{\partial q_{\sigma}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)+\sum_{j=1}^{k} \lambda_{j}(t) g_{j \sigma}(q, t)\right\} \delta q_{\sigma}(t)=0
$$

We may set each of the bracketed terms to zero.

Thus, we obtain a set of (n+k) equations:

$$
\underbrace{\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)}_{\dot{p}_{\sigma}}-\underbrace{\frac{\partial L}{\partial q_{\sigma}}}_{F_{\sigma}}=\underbrace{\sum_{j=1}^{k} \lambda_{j}(t) g_{j \sigma}(q, t)}_{Q_{\sigma}=\text { force of constraint }}, \sigma \in\{1, \ldots, n\}
$$

and

$$
\sum_{\sigma=1}^{n} g_{j \sigma}(q, t) \dot{q}_{\sigma}+h_{j}(q, t)=0, j \in\{1, \ldots, k\}
$$

- Please read $\{3.16 .8$ on constraints and conservation laws!

Example: Two cylinders, one fixed
Constraints:

1) Contact: $r=R+a$
2) no slip: $R \theta_{1}=a\left(\theta_{2}-\theta_{1}\right)$

$$
g_{j \sigma}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & R+a & -a \\
\hat{i} & \uparrow & j \\
r & \theta_{1} & \theta_{2}
\end{array}\right.
$$

Lagrangian:
mass of rolling cylinder

$$
L=T-U=\frac{1}{2} M\left(\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}\right)+\frac{1}{2} \frac{\dot{\theta}_{2}^{2}-M g r \cos \theta_{1}}{\text { rotational inertia }}
$$

$$
\begin{aligned}
& g_{1 r} \dot{r}+\underbrace{g_{1 \theta_{1}} \dot{\theta}_{1}+g_{1 \theta_{2}} \dot{\theta}_{2}+h_{1}}_{\text {all vanish }}=0 \quad \text { i.e. } \dot{r}=0 \rightarrow r=R+a
\end{aligned}
$$

$n=3$ equations of motion:

$$
\begin{aligned}
& r: \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=M \ddot{r}^{\prime}-M r \dot{\theta}_{1}^{2}+M g \cos \theta_{1}=\lambda_{1}=Q_{r} \\
& \theta_{1}: \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right)-\frac{\partial L}{\partial \theta_{1}}=M r^{2} \ddot{\theta}_{1}+2 M r \dot{r} \dot{\theta}_{1}-M g r \sin \theta_{1}=\lambda_{2}(R+a)=Q_{\theta_{1}} \\
& \theta_{2}: \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right)-\frac{\partial L}{\partial \theta_{2}}=I \ddot{\theta}_{2}=-\lambda_{2} a=Q_{\theta_{2}} \quad \lambda_{1} g \theta_{1}+\lambda_{2} g_{2} \theta_{1}
\end{aligned}
$$

$k=2$ equations of constraint :
contact : $\dot{r}=0$

$$
\left.\begin{array}{l}
\text { contact }: \dot{r}=0 \\
\text { no slip }: R \dot{\theta}_{1}-a\left(\dot{\theta}_{2}-\dot{\theta}_{1}\right)=0
\end{array}\right\} \underset{\text { integrate }}{ }\left\{\begin{array}{l}
r=R+a \\
\theta_{2}=\left(1+\frac{R}{a}\right) \theta_{1}
\end{array}\right.
$$

Now we have 5 equations in 5 unknowns $\left\{r, \theta_{1}, \theta_{2}, \lambda_{1}, \lambda_{2}\right\}$ We've already integrated the constraints so we may eliminate r and θ_{2}, yielding

$$
\begin{aligned}
-M(R+a) \dot{\theta}_{1}^{2}+M g \cos \theta_{1} & =\lambda_{1} \\
M(R+a)^{2} \ddot{\theta}_{1}-M g(R+a) \sin \theta_{1} & =\lambda_{2}(R+a) \\
I\left(1+\frac{R}{a}\right) \ddot{\theta}_{1} & =-\lambda_{2} a
\end{aligned}
$$

We can read now read off the result $\lambda_{2}=-\frac{I}{a^{2}}(R+a) \ddot{\theta}$, Substituting this into the second of these equations gives

$$
\left(M+\frac{I}{a^{2}}\right)(R+a)^{2} \ddot{\theta}_{1}-M g(R+a) \sin \theta_{1}=0
$$

Multiply this by $\dot{\theta}$, and then integrate to obtain...

$$
\dot{\theta}_{1} \ddot{\theta}_{1}=\frac{d}{d t}\left(\frac{1}{2} \dot{\theta}_{1}^{2}\right), \quad \dot{\theta}_{1} \sin \theta_{1}=\frac{d}{d t}\left(-\cos \theta_{1}\right)
$$

$$
\frac{1}{2} M\left(1+\frac{I}{M a^{2}}\right) \dot{\theta}_{1}^{2}+\frac{M g}{R+a} \cos \theta_{1}=\frac{M g}{R+a} \cos \theta_{1}^{0}
$$

where we assume the upper cylinder is released from rest (i.e. $\dot{\theta}_{1}^{0}=0$) at $\dot{\theta}_{1}=\theta_{1}^{0}$. Finally, we may use this to express $\bar{\theta}_{1}^{2}$ in terms of θ_{1}, and stick the result into the first equation, resulting in

$$
Q_{r}=\frac{M g}{1+\alpha}\left\{(3+\alpha) \cos \theta_{1}-2 \cos \theta_{1}^{\circ}\right\}
$$

where $\alpha=I / M a^{2}$ is dimensionless, with $\alpha \in[0,1]$ $\alpha=0$: all mass of rolling cylinder at its center $\alpha=1$: all mass of rolling cylinder at its edge When Q_{r} vanishes, the cylinders lose contact (the normal force of the bottom cylinder on the top one can only be positive). This happens for

$$
\theta_{1}^{*}=\cos ^{-1}\left(\frac{2 \cos \theta_{1}^{0}}{3+\alpha}\right)=\text { detachment angle }
$$

Note θ_{1}^{*} is an increasing function of α, i.e. larger rotational inertia I delays detachment. Physics here is that kinetic energy gain is split between translational and rotational motions.
Note also: $\dot{\theta}_{1}=\left(\frac{2 g}{R+a}\right)^{1 / 2}\left(\cos \theta_{1}^{0}-\cos \theta_{1}\right)$

$$
d t=\left(\frac{R+a}{2 g}\right)^{1 / 2} \frac{d \theta_{1}}{\sqrt{\cos \theta_{1}^{0}-\cos \theta_{1}}} \rightarrow \text { integrate for } \theta_{1}(t)
$$

