for which we obtain

 $\Gamma = \frac{\partial S}{\partial \Lambda} = \frac{m}{t}(\Lambda - 9)$

Inverting, we obtain the motion

 $q(t) = 1 - \frac{1}{m} = 9(0) + pt/m$

We identify $\Lambda = q(o)$ as the initial value of q ,
and $\Gamma = -p$ as minus the (conserved) momentum.

The HJE may have many solutions, all yielding
the same motion. For example, <u>as</u> = Jam Λ
 $S(q, \Lambda, t) = \text{J}$ am Λ q - Λt

This yields $T = \frac{\partial S}{\partial \Lambda} = \sqrt{\frac{m}{2\Lambda}} q - t \Rightarrow q(t) = \sqrt{\frac{2\Lambda}{m}} (t + \Gamma)$ Here $\Lambda = E$ is the energy and $q(o) = \sqrt{\frac{2\Lambda}{m}} \Gamma$.

· Time-independent Hamiltonians Lecture 15 (Wed. Nov. 25)
When 2H/2t=0, we may reduce the order of the HJE by writing

 $S(\vec{q}, \vec{\wedge}, t) = W(\vec{q}, \vec{\wedge}) + T(t, \vec{\wedge})$

The HJE then becomes

$$
H(\vec{q}, \frac{\partial W}{\partial \vec{q}}) = -\frac{\partial T}{\partial t}
$$

Since the LHS is independent of t and the RHS is
independent of q, each side must be equal to the
same constant, which we may take to be Λ ,. Therefore

 $S(\frac{1}{4}, \Lambda, t) = W(\frac{3}{4}, \Lambda) - \Lambda_1 t$

We call $W(\vec{q}, \vec{\wedge})$ Hamilton's characteristic function. The HJE now takes the form

 $H(q_1,...,q_n,\frac{\partial W}{\partial q_1},...,\frac{\partial W}{\partial q_n}) = \Lambda_1$ Note that adding an additional constant Λ_{n+1} to S
simply shifts the time variable: $t \rightarrow t - \Lambda_{n+1}/\Lambda_1$.

<u>One-dimensional motion</u>

Consider the Hamiltonian $H(q,p) = \frac{p^2}{2m} + U(q)$. The HJE is

$$
\frac{1}{2m} \left(\frac{\partial W}{\partial q}\right)^2 + U(q) = N \quad \leftarrow \text{clearly} \quad \wedge = E
$$

with $\Lambda = \Lambda_1$. This may be recast as

$$
\frac{\partial W}{\partial q} = \pm \int dm \left[\Lambda - U(q) \right]
$$

with a double-valued solution \bigoplus_{q} $W(q, \Lambda) = \pm \sqrt{2m} \int dq' \sqrt{\Lambda - U(q')}$ The action (generating function) is $S(q, \Lambda, t) = \omega(q, \Lambda) - \Lambda t$. The momentum is $P = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2m[\Lambda - U(q)]}$ and $\Gamma = \frac{\partial S}{\partial \Lambda} = \frac{\partial W}{\partial \Lambda} - t = \pm \sqrt{\frac{M}{2}} \int dq' \frac{1}{\sqrt{1 - U(q')}} - t$ Thus the motion g(t) is obtained by inverting $t + 1 = \pm \sqrt{\frac{m}{2}} \int \frac{q/t'}{f_{\Lambda - U(q)}} = \pm (q/t)$ The lower limit on the integral is arbitrary and merely
shifts t by a constant. Motion: $q(t) = \Gamma^{-1}(t + \Gamma)$ · Separation of Variables If the characteristic function can be written as the sum $W(\vec{q}, \vec{\Lambda}) = \sum_{\sigma=1}^{n} W_{\sigma}(q_{\sigma}, \vec{\Lambda})$ the HJE is said to be completely separable. (A system
may also be only partially separable.) In this case,

each $W_{\sigma}(q_{\sigma}, \vec{\Lambda})$ is the solution of an equation of $H_{\sigma}(q_{\sigma}, \frac{\partial W_{\sigma}}{\partial q_{\sigma}}) = \Lambda_{\sigma}$, $p_{\sigma} = \frac{\partial W}{\partial q_{\sigma}} = \frac{\partial W_{\sigma}}{\partial q_{\sigma}}$ the form $NB: H_{\sigma}(9\sigma, p_{\sigma})$ may depend on all the $\{A_1, ..., A_n\}$. As an example, consider Ulr, 0, 4) $H = \frac{1}{2m} \left(p_r^2 + \frac{p_{\theta}^2}{r^2} + \frac{p_{\phi}^2}{r^2 \sin^2{\theta}} \right) + A(r) + \frac{B(\theta)}{r^2} + \frac{C(\phi)}{r^2 \sin^2{\theta}}$ This is a real mess to tackle using the Lagrangian formalism. We seek a characteristic function of the form $W(r, \theta, \phi) = W_r(r) + W_{\theta}(\theta) + W_{\phi}(\phi)$ The HJE than takes the form p6 $\frac{1}{2m} \left(\frac{\partial W_r}{\partial r} \right)^2 + \frac{1}{2mr^2} \left(\frac{\partial W_\theta}{\partial \theta} \right)^2 + \frac{1}{2mr^2 sin^2\theta} \left(\frac{\partial W_\phi}{\partial \phi} \right)^2$ P_r P_{θ} + A(r) + $\frac{B(\theta)}{r^2}$ + $\frac{C(\phi)}{r^2 sin^2 \theta}$ = Λ , = E Multiply through by r²sin²O to obtain $rac{1}{2m}$ $\left(\frac{\partial W_{\phi}}{\partial \phi}\right)^{2}$ + $C(\phi)$ = $-sin^{2}\theta$ $\left\{\frac{1}{2m}\left(\frac{\partial W_{\phi}}{\partial \theta}\right)^{2}$ + $B(\theta)\right\}$ $-r^{2}sin^{2}\theta\left\{\frac{1}{2m}\left(\frac{\partial W_{r}}{\partial r}\right)^{2}+A(r)-\Lambda_{1}\right\}$ depends only on ϕ depends only on r, O

Thus we must have $\frac{1}{2m} \left(\frac{\partial W_{\phi}}{\partial \phi} \right)^{2} + C(\phi) = \Lambda_{2} = \text{Constant}$ (4) Now replace the LHS of the ponultimate equation by 12
and divide by $sin^2\theta$ to get $\frac{1}{2m} \left(\frac{\partial W_{\theta}}{\partial \theta} \right)^{2} + B(\theta) + \frac{\Lambda_{2}}{sin^{2}\theta} = -r^{2} \left\{ \frac{1}{2m} \left(\frac{\partial W_{r}}{\partial r} \right)^{2} + A(r) - \Lambda_{1} \right\}$ depends only on 0 depends only on r Same story. We set (0) $\frac{1}{2m}(\frac{\partial W_{\theta}}{\partial P})^{2} + B(\theta) + \frac{\Lambda_{2}}{sin^{2}\theta} = \Lambda_{3} = constant$ We are now left with (r) $\frac{1}{2m} \left(\frac{\partial W_r}{\partial r} \right)^2 + A(r) + \frac{\Lambda_3}{r^2} = \Lambda_1$ Thus, $S(\vec{q}, \vec{\Lambda}, t) = \sqrt{2m} \int dr' \sqrt{\Lambda_1 - A(r') - \frac{\Lambda_3}{(r')^2}}$ $+\sqrt{2m}\int d\theta' \sqrt{\Lambda_3 - B(\theta')} - \frac{\Lambda_2}{sin^2\theta'}$ $+ \sqrt{2m} \int d\phi' \sqrt{\Lambda_2 - C(\phi')} - \Lambda_1 t$

Now differentiate with respect to
$$
\Lambda_{1,2,3}
$$
 to obtain
\n
$$
11 \Gamma_{1} = \frac{\partial S}{\partial \Lambda_{1}} = \frac{m}{2} \int dr' \left[\Lambda_{1} - A(r') - \frac{\Lambda_{3}}{(r')^{2}} \right]^{-1/2} - t
$$
\n
$$
(2) \Gamma_{2} = \frac{\partial S}{\partial \Lambda_{2}} = -\int \frac{m}{2} \int \frac{d\theta'}{\sin^{2} \theta'} \left[\Lambda_{3} - B(\theta') - \frac{\Lambda_{2}}{\sin^{2} \theta'} \right]^{-1/2} + \int \frac{m}{2} \int d\phi' \left[\Lambda_{2} - C(\phi') \right]^{-1/2}
$$
\n
$$
(3) \Gamma_{3} = \frac{\partial S}{\partial \Lambda_{3}} = -\int \frac{m}{2} \int \frac{dr'}{(r')^{2}} \left[\Lambda_{1} - A(r') - \frac{\Lambda_{3}}{(r')^{2}} \right]^{-1/2} + \int \frac{m}{2} \int d\theta' \left[\Lambda_{3} - B(\theta') - \frac{\Lambda_{2}}{\sin^{2} \theta'} \right]^{-1/2}
$$

- 1. Invert (1) to obtain $r(t)$.
- 2. Insert this result for rit) into (3), then invert to obtain $\theta(t)$.
- 3. Insert $\theta(t)$ into (2) and invert to obtain $\phi(t)$.
- $NB:$ Varying the lower limits on the integrals in $(1,2,3)$ just redefines the constants $\Gamma_{1,2,3}$.

• Action-Angle Variables

In a system which is "completely integrable", the HJE may be solved by separation of variables. Each momentum po is then a function of its conjugate Coordinate q_{σ} plus constants: $p_{\sigma} = \frac{\partial W_{\sigma}}{\partial q_{\sigma}} = p_{\sigma}(q_{\sigma}, \vec{\Lambda}).$ This satisfies $H_{\sigma}(q_{\sigma}, p_{\sigma}) = \Lambda_{\sigma}$. The level sets of each $H_{\sigma}(q_{\sigma}, p_{\sigma})$ are curves $C_{\sigma}(\bar{\Lambda})$, which describe projections of the full mution onto the (q_{σ}, p_{σ}) plane. We will assume in general that the motion is bounded, which means only two types of projected motion are possible:

librations: periodic oscillations about an equilibrium rotations: in which an angular coordinate advances

Example: simple pendulum $H(\phi, p_{\phi}) = \frac{p_{\phi}}{2T} + \frac{1}{2}I\omega^2(i - \cos\phi)$

 \int $P\phi$

rotations: $E > I \omega^2$

librations: O<E<Iw²

separatrix : $E = I\omega^2$

Generically, each $C_{\sigma}(\vec{\Lambda})$ is either a libration or a rotation.

Topologically , both libations and rotations are homotopic to (= "can be continuously distorted to") a circle, S. Wote though that they cannot be continuously distorted into each other, since librations can continuously be deformed to the point of static equilibrium, while rotations cannot. For a system with n freedoms, the motion is thus confined to n-tori: τ^{n} , the motion is thus contined
 $T^{n} = S^{1} \times S^{1} \times \cdots \times S^{1}$ = "can be continuou
Note though that
o-ted into each
be deformed to this
inite rotations can
the notion is thus
 $\Rightarrow S' \times S' \times \cdots \times S'$
in n times

 $c_1(\lambda)$ n times

These are called invariant tori, because for a given set of initial conditions, the motion is contined to one such n-torus. Invariant tori never intersect! Note that phase space is of dimension 2n , while the invariant tori, which fill phase space, are of dimension n. ^IThink about the phase space for the simple pendulum , which is topologically a cylinder, covered by librations and rotations which themselves are topologically circles.)

and votations which themselves ave topologically circles.)
Actio**n-angle variables (6, J)** are a set of coordinates (ϕ) and momenta (\tilde{J}) which cover phase space with invariant n-tori. The n actions $\{J_1, \ldots, J_n\}$ specify a particular n-torus, and the n angles $\{\phi_1, ..., \phi_n\}$

coordinatize each such torus. Invariance of the tori means that $\dot{J}_{\sigma} = - \frac{\partial H}{\partial \phi_{\pi}} = 0 \Rightarrow H =$ $= H(\vec{J})$ Each coordinate ϕ_{σ} describes the projected motion around C_{σ} , and is normalized so that $\oint d\phi_{\sigma} = 2\pi$ (once around C_{σ}) The dynamics of the angle variables are given by $\dot{\phi}_{\sigma} = \frac{\partial H}{\partial J_{\sigma}} = V_{\sigma}(\vec{J})$ Thus $\phi_{\sigma}(t) = \phi_{\sigma}(0) + \nu_{\sigma}(\vec{J}) t$. The *n* frequencies $\{v_{\sigma}(\vec{\sigma})\}$ describe the rates at which the circles C_{σ} are traversed. Lecture 17 (Nov. 30) the angle variate
= $\frac{\partial H}{\partial J_{\sigma}} = V_{\sigma} (\vec{\tau})$
-(0) + $V_{\sigma} (\vec{\tau}) t$.
The rates at wh
Lecture 17 (Nov. 30)
mation to action topologically !) • Canonical transformation to action - angle variables

These AAVs sound great! Very intuitive! But how do we find them? Since the $\{J_{\sigma}\}$ determine the $\{C_{\sigma}\}$ and since each que determines a point (two points, and since each q_{σ} determines a point (two points,
in the case of librations) on C_{σ} , this suggests a type-II