- Proof Hamiltonian evolution generates a CT We consider an infinitesimal evolution :

$$
\xi_{i}(t) \rightarrow \xi_{i}(t+d t)=\xi_{i}(t)+\left.J_{i k} \frac{\partial H}{\partial \xi_{k}}\right|_{\vec{\xi}(t)} d t+\theta\left(d t^{2}\right)
$$

$\xi_{i} \quad \xi_{i}^{\prime}$
We have that $M_{i j}=\frac{\partial \xi_{i}^{\prime}}{\partial \xi_{j}}=\delta_{i j}+\operatorname{Jir}_{i r} \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{r}} d t+\theta\left(d t^{2}\right)$
Thus $M_{k l}^{t}=\delta_{k l}+J_{l s} \frac{\partial^{2} H}{\partial \xi_{k} \partial \xi_{s}} d t$ and

$$
\begin{aligned}
M_{i j} J_{j k} M_{k l}^{t} & =\left(\delta_{i j}+J_{i r} \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{r}} d t\right) J_{j k}\left(\delta_{k l}+J_{l s} \frac{\partial^{2} H}{\partial \xi_{k} \partial \xi_{s}} d t\right) \\
& =J_{i l}+(J_{i r} J_{j l} \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{r}}+\underbrace{J_{i k} J_{l s} \frac{\partial^{2} H}{\partial \xi_{k} \partial \xi_{s}} d t}_{\text {take } k \rightarrow r, s \rightarrow j})+\theta\left(d t^{2}\right) \\
& =J_{i l}+O\left(d t^{2}\right) \quad
\end{aligned}
$$

Lecture 15 (November 23)

- Generating functions for canonical transformations For a transformation to be canonical, we require

$$
\delta \int_{t_{a}}^{t_{b}} d t\left[P_{\sigma} \dot{q}_{\sigma}-H(\vec{q}, \vec{p}, t)\right]=0=\delta \int_{t_{a}}^{t_{b}} d t\left[P_{\sigma} \dot{Q}_{\sigma}-\tilde{H}(\vec{Q}, \vec{P}, t)\right]
$$

This is satisfied for all motions provided

$$
P_{\sigma} \dot{q}_{\sigma}-H(\vec{q}, \vec{P}, t)=\lambda\left[P_{\sigma} \dot{Q}_{\sigma}-\tilde{H}(\vec{Q}, \vec{P}, t)+\frac{d}{d t} F(\vec{q}, \vec{Q}, t)\right]
$$

where λ is a constant. We can always rescale coordinates
and momenta to achieve $\lambda=1$, which we henceforth assume.
Therefore,

$$
d F / d t
$$

$$
\tilde{H}(\vec{Q}, \vec{P}, t)=H(\vec{q}, \vec{p}, t)+P_{\sigma} \dot{Q}_{\sigma}-p_{\sigma} \dot{q}_{\sigma}+\frac{\partial F}{\partial Q_{\sigma}} \dot{Q}_{\sigma}+\frac{\partial F}{\partial q_{\sigma}} \dot{q}_{\sigma}+\frac{\partial F}{\partial t}
$$

To eliminate the terms proportional to \dot{Q}_{σ} and \dot{q}_{σ}, demand

$$
\frac{\partial F}{\partial Q_{\sigma}}=-P_{\sigma} \quad, \quad \frac{\partial F}{\partial q_{\sigma}}=+P_{\sigma}
$$

We then have

$$
\tilde{H}(\vec{Q}, \stackrel{\rightharpoonup}{p}, t)=H(\stackrel{\rightharpoonup}{q}, \vec{p}, t)+\frac{\partial F(\stackrel{\rightharpoonup}{q}, \stackrel{\rightharpoonup}{Q}, t)}{\partial t}
$$

This is called a "type I canonical transformation". By making Legendre transformations, we can extend this to a family of four types of CTS:

$$
F(\vec{q}, \vec{Q}, t)= \begin{cases}F_{1}(\vec{q}, \vec{Q}, t) & \text { with } \\ F_{\sigma}(\vec{q}, \vec{P}, t)-P_{\sigma} P_{\sigma} & \text { with } \\ \partial \mathcal{q}_{\sigma} & P_{\sigma}=\frac{\partial F_{2}}{\partial q_{\sigma}}, Q_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}} \\ F_{3}(\vec{P}, \vec{Q}, t)+P_{\sigma} q_{\sigma} \\ F_{4}(\vec{p}, \vec{P}, t)+P_{\sigma} q_{\sigma}-P_{\sigma} Q_{\sigma} \text { with } & q_{\sigma}=-\frac{\partial F_{3}}{\partial P_{\sigma}}, P_{\sigma}=-\frac{\partial F_{3}}{\partial q_{\sigma}} \\ q_{\sigma}=-\frac{\partial F_{4}}{\partial P_{\sigma}}, Q_{\sigma}=\frac{\partial F_{4}}{\partial P_{\sigma}}\end{cases}
$$

In each case, we have

$$
\tilde{H}(\stackrel{\rightharpoonup}{Q}, \stackrel{\rightharpoonup}{p}, t)=H(\vec{q}, \vec{p}, t)+\frac{\partial F_{\gamma}}{\partial t} \quad, \gamma \in\{1,2,3,4\}
$$

Examples of $C T s$ from generating functions

- Consider the type - II transformation generated by

$$
F_{2}(\vec{q}, \vec{p})=A_{\sigma}(\stackrel{\rightharpoonup}{q}) P_{\sigma}
$$

where $A_{\sigma}(\vec{q})$ is an arbitrary function of $\left\{q_{1}, \ldots, q_{n}\right\}$.
Then

$$
Q_{\sigma}=\frac{\partial F_{2}}{\partial P_{\sigma}}=A_{\sigma}(\vec{q}), \quad P_{\sigma}=\frac{\partial F_{2}}{\partial q_{\sigma}}=\frac{\partial A_{\alpha}}{\partial q_{\sigma}} P_{\alpha}=\frac{\partial Q_{\alpha}}{\partial q_{\sigma}} P_{\alpha}
$$

which is equivalent to: $Q_{\sigma}=A_{\sigma}(\vec{q}), P_{\sigma}=\frac{\partial q_{\alpha}}{\partial Q_{\sigma}} P_{\alpha}$
This is in fact the general point transformation oliscussed previously. For linear point transformations,

$$
\begin{aligned}
& Q_{\alpha}=M_{\alpha \sigma} q_{\sigma}, P_{\beta}=P_{\sigma^{\prime}} M_{\sigma^{\prime} \beta}^{-1} \\
& \left\{Q_{\alpha}, P_{\beta}\right\}=M_{\alpha \sigma} M_{\sigma^{\prime} \beta}^{-1}\{\underbrace{q_{\sigma}, P P^{\prime}}_{\delta \sigma \sigma^{\prime}}\}=\delta_{\alpha \beta}
\end{aligned}
$$

Note that $F_{2}(\vec{q}, \vec{p})=q_{1} P_{3}+q_{3} P_{1}$ exchanges
the labels 1 and $3: Q_{1}=\partial F_{2} / \partial P_{1}=q_{3}, P_{1}=\partial F_{2} / \partial q_{1}=P_{3}$
$Q_{3}=\partial F_{2} \mid \partial P_{3}=q_{1}, P_{3}=\partial F_{2} / \partial q_{3}=P_{1}$

- Next, consider the type-I transformation generated by $F_{1}(\vec{q}, \stackrel{\rightharpoonup}{Q})=A_{\sigma}(\stackrel{\rightharpoonup}{q}) Q_{\sigma}$. We then have

$$
P_{\sigma}=\frac{\partial F_{1}}{\partial q_{\sigma}}=\frac{\partial A_{\alpha}}{\partial q_{\sigma}} Q_{\alpha}, \quad P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}}=-A_{\sigma}(\vec{q})
$$

Thus, $F_{1}(\stackrel{\rightharpoonup}{q}, \vec{Q})=q_{v} Q_{v}$, for which $A_{v}(\stackrel{\rightharpoonup}{q})=q_{v}$, generates

$$
\begin{aligned}
& P_{\sigma}=Q_{\sigma}, P_{\sigma}=-q_{\sigma} \\
& \vec{\xi}=\binom{\vec{q}}{\vec{p}} \rightarrow\binom{-\vec{p}}{+\vec{Q}}=\vec{\Xi}
\end{aligned}
$$

- A mixed generator:

$$
F(\vec{q}, \vec{Q})=q_{1} Q_{1}+\left(q_{3}-Q_{2}\right) P_{2}+\left(q_{2}-Q_{3}\right) P_{3}
$$

which is type - I wry index $\sigma=1$ and type II wot $\sigma=2,3$. This generates

$$
Q_{1}=p_{1}, Q_{2}=q_{3}, Q_{3}=q_{2}, P_{1}=-q_{1}, P_{2}=p_{3}, P_{3}=P_{2}
$$

(swaps p, g for label 1 , swaps labels 2,3)

- $d=1$ simple harmonic oscillator: $H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}$ If we could find a CT for which

$$
p=\sqrt{2 m f(P)} \cos Q, q=\sqrt{\frac{2 f(P)}{k}} \sin Q
$$

then wed have $\tilde{H}(Q, P)=f(P)$, which is cyclic in Q.
The equations of motion are then $\dot{P}=-\partial \tilde{H} / \partial Q=0$ and $\dot{Q}=\partial \tilde{H} / \partial P=f^{\prime}(P)$. Taking the ratio gives

$$
P=\sqrt{m k} q \operatorname{ctn} Q=\frac{\partial F}{\partial q}
$$

This suggests a type - I transformation

$$
F_{1}(q, Q)=\frac{1}{2} \sqrt{m k} q^{2} \operatorname{ctn} Q
$$

for which

$$
\begin{aligned}
& P=\frac{\partial F_{1}}{\partial q}=\sqrt{m k} q \operatorname{ctn} Q \\
& P=-\frac{\partial F_{1}}{\partial Q}=\frac{\sqrt{m k} q^{2}}{2 \sin ^{2} Q}
\end{aligned}
$$

Thus,

$$
q=\frac{(2 P)^{1 / 2}}{(m k)^{1 / 4}} \sin Q \Rightarrow f(P)=\sqrt{\frac{k}{m}} P \equiv \omega P
$$

where $w=(\mathrm{k} / \mathrm{m})^{1 / 2}$ is the oscillation frequency. We also have $\tilde{H}(Q, P)=\omega P=E$, the conserved energy, ie. $P=\frac{E}{\omega}$.
The equations of motion are $\dot{P}=0$ and $\dot{Q}=f^{\prime}(P)=w$, so the motion is $Q(t)=\omega t+\phi_{0}, P(t)=P=E / \omega \Rightarrow$

$$
q(t)=\sqrt{\frac{2 f(P)}{k}} \sin \varphi=\sqrt{\frac{2 E}{m \omega^{2}}} \sin \left(\omega t+\phi_{0}\right)
$$

- Hamilton - Jacobi theory

General form of CT:

$$
\tilde{H}(\stackrel{\rightharpoonup}{Q}, \stackrel{\rightharpoonup}{P}, t)=H(\stackrel{\rightharpoonup}{q}, \vec{p}, t)+\frac{\partial F(\stackrel{\rightharpoonup}{q}, \vec{Q}, t)}{\partial t}
$$

with

$$
\frac{\partial F}{\partial q_{v}}=p_{\sigma}, \frac{\partial F}{\partial Q_{\sigma}}=-p_{\sigma}, \frac{\partial F}{\partial p_{\sigma}}=\frac{\partial F}{\partial P_{\sigma}}=0
$$

Let's be audacious and demand $\tilde{H}(\vec{Q}, \vec{P}, t)=0$!
This entails

$$
\frac{\partial F}{\partial t}=-H \quad, \quad \frac{\partial F}{\partial q_{\sigma}}=p_{\sigma} \quad \frac{\partial s}{\partial q_{\sigma}}=p_{\sigma}, \quad \frac{\partial s}{\partial t}=-H
$$

The remaining functional dependence of F may either be on \vec{Q} (type I) or on \vec{P} (type II). It turns out that the function we seek is none other than the action, S, expressed as a function of its endpoint values.

- Action as a function of coordinates and time Consider a path $\vec{\eta}(s)$ interpolating between $\left(\vec{q}_{i}, t_{i}\right)$ and (\vec{q}, t) which satisfies

$$
\frac{\partial L}{\partial \eta_{\sigma}}-\frac{d}{d s}\left(\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right)=0
$$

Now consider a new path $\overrightarrow{\tilde{\eta}}(s)$ starting at $\left(\vec{q}_{i}, t_{i}\right)$ but ending at ($\vec{q}+d \stackrel{\rightharpoonup}{q}, t+d t)$, which also satisfies the equations of motion. We wish to compute the differential

$$
\begin{aligned}
d S & =S[\overrightarrow{\tilde{\eta}}(s)]-S[\vec{\eta}(s)] \\
& =\int_{t_{i}}^{t+d t} d s L(\overrightarrow{\tilde{\eta}}, \dot{\tilde{\eta}}, s)-\int_{t_{i}}^{t} d s L(\vec{\eta}, \dot{\vec{\eta}}, s) \\
& =L(\dot{\tilde{\eta}}(t), \dot{\tilde{\eta}}(t), t) d t+\int_{t_{i}}^{t} d s\left\{\frac{\partial L}{\partial \eta_{\sigma}}\left[\tilde{\eta}_{\sigma}-\eta_{\sigma}\right]+\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\left[\dot{\tilde{\eta}}_{\sigma}-\dot{\eta}_{\sigma}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =L(\overrightarrow{\tilde{\eta}}(t), \dot{\tilde{\eta}}(t), t) d t+\left.\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right|_{t}\left[\tilde{\eta}_{\sigma}(t)-\eta_{\sigma}(t)\right] \\
& \quad+\int_{t_{i}}^{t} d s\{\underbrace{\frac{\partial L}{\partial \eta_{\sigma}}-\frac{d}{d s}\left(\frac{\partial L}{\partial \dot{\eta}_{\sigma}}\right)}_{=0}\}\left[\tilde{\eta}_{\sigma}(s)-\eta_{\sigma}(s)\right] \\
& =L(\vec{\eta}(t), \dot{\eta}(t), t) d t+\pi_{\sigma}(t) \delta \eta_{\sigma}(t)+\theta(\delta \vec{q} d t)
\end{aligned}
$$

where $\pi_{\sigma} \equiv \partial L / \partial \dot{\eta}_{\sigma}$ and $\delta \eta_{\sigma}(s) \equiv \tilde{\eta}_{\sigma}(s)-\eta_{\sigma}(s)$.
Note that

$$
\begin{aligned}
d q_{\sigma} & =\tilde{\eta}_{\sigma}(t+d t)-\eta_{\sigma}(t) \quad \overbrace{\eta_{\sigma}(t)-\eta_{\sigma}(t)}^{\delta \eta_{\sigma}(t)} \\
& =\tilde{\eta}_{\sigma}(t+d t)-\tilde{\eta}_{\sigma}(t)+\tilde{\eta}_{\sigma}(t) \delta \dot{\eta}_{\sigma}(t) \\
& =\dot{\tilde{\eta}}_{\sigma}(t) d t+\delta \eta_{\sigma}(t) \\
& \left.=\dot{\eta}_{\sigma}(t) d t+\delta \dot{\tilde{\eta}}_{\sigma}(t)-\dot{\eta}_{\sigma}(t)\right] d t
\end{aligned}
$$

and therefore

$$
\delta \eta_{\sigma}(t)=d q_{\sigma}-\dot{\eta}_{\sigma}(t) d t-\delta \dot{\eta}_{\sigma}(t) d t
$$

Thus, we have

$$
\begin{aligned}
d S & =\pi_{\sigma}(t) d q_{\sigma}+\left[L(\vec{\eta}(t), \dot{\vec{\eta}}(t), t)-\pi_{\sigma}(t) \dot{\eta}_{\sigma}(t)\right] d t \\
& =p_{\sigma} d q_{\sigma}-H d t
\end{aligned}
$$

We then conclude

$$
\frac{\partial S}{\partial q_{\sigma}}=P_{\sigma}, \frac{\partial S}{\partial t}=-H, \frac{d S}{d t}=L
$$

What about the lower limit at t_{i} ? Clearly there are $(n+1)$ constants associated with this limit, viz.

$$
\left\{q_{1}\left(t_{i}\right), \ldots, q_{n}\left(t_{i}\right) ; t_{i}\right\}
$$

Weill call these constants $\left\{\Lambda_{1}, \ldots, \Lambda_{n+1}\right\}$ and write

$$
S=S\left(q_{1}, \ldots, q_{n} ; \Lambda_{1}, \ldots, \Lambda_{n} ; t\right)+\Lambda_{n+1}
$$

We may regard each Λ_{σ} as either Q_{σ} or P_{σ}, i.e. that S is in general a mixed type I - type II generator. That is to say, for $\sigma \in\{1, \ldots, n\}$,

$$
\Gamma_{\sigma} \equiv \frac{\partial S}{\partial \Lambda_{\sigma}}= \begin{cases}-P_{\sigma} & \text { if } \Lambda_{\sigma}=Q_{\sigma} \\ +Q_{\sigma} & \text { if } \Lambda_{\sigma}=P_{\sigma}\end{cases}
$$

The last constant Λ_{n+1} will be associated with time translation.

- Hamilton -Jacobi equation

Since $S(\vec{q}, \stackrel{\wedge}{\Lambda}, t)$ generates a $C T$ for which $\tilde{H}(\vec{\varphi}, \vec{P}, t)=0$, we must have $\partial F / \partial t=-H \Rightarrow$

$$
H\left(q_{1}, \ldots, q_{n}, \frac{\partial S}{\partial q_{1}}, \ldots, \frac{\partial S}{\partial q_{n}}, t\right)+\frac{\partial S}{\partial t}=0
$$

which is known as the Hamilton - Jacobi equation (HJE). The HJE is a PDE in $(n+1)$ variables $\left\{q_{1}, \ldots, q_{n}, t\right\}$.

Since $\tilde{H}(\vec{Q}, \vec{P}, t)=0$, the equations of motion are utterly trivial:

$$
Q_{\sigma}(t)=\text { cons. }, P_{\sigma}(t)=\text { cons. } \forall \sigma!
$$

How can this yield any nontrivial dynamics? Well what we really want is the motion $\left\{q_{\sigma}(t)\right\}$, and to obtain this we must invert the relation

$$
\Gamma_{\sigma}=\frac{\partial S(\stackrel{\rightharpoonup}{q}, \stackrel{\rightharpoonup}{\Lambda}, t)}{\partial \Lambda_{\sigma}}
$$

in order to arrive at $q_{\sigma}(\vec{Q}, \vec{P}, t)$. This is possible only if

$$
\operatorname{det}\left(\frac{\partial^{2} s}{\partial q_{\alpha} \partial \Lambda_{\beta}}\right) \neq 0
$$

known as the Hessian condition.
Example
Consider $H=\frac{p^{2}}{2 m}$, i.e. a free particle in $d=1$ dimension. The HJE is

$$
\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}+\frac{\partial S}{\partial t}=0
$$

One solution is

$$
\begin{aligned}
& \text { on is } \\
& S(q, \Lambda, t)=\frac{m(q-\Lambda)^{2}}{2 t}>\frac{\partial S}{\partial q}=\frac{m(q-\Lambda)}{t} \\
& >\frac{\partial S}{\partial t}=-\frac{m(q-\Lambda)^{2}}{2 t^{2}}
\end{aligned}
$$

