
• gt not invertible : Let g : IR → lo , i ) with

glxl = frack ) , the fractional part of X . Acting
on sets of volume (length ) less than one , this

map is volume preserving , but obviously g is not
invertible

,
so the proof fails .

• T not finite : Let g
: B → H2 with glx) = xta .

Clearly this is invertible and volume- preserving ,
but not recurrent

.

- Kac ring model tecture.tt/Nov#

Can a system exhibit both equilibration and recurrence ?
Formally no, but practically yes .

We noted how for

the case of the open perfume bottle, the recurrence
time could be vastly longer than age of the universe .
A nice example due to Mark Kac shows how both

equilibration and recurrence can be present , on different
but accessible time scales

.

Consider N spins T or t on

a ring which evolve

by rotating clockwise .

There are thus N sites

and N links
. Along

F of these links are



flippers which flip each spin from T to t or from

1 to T as it passes by . The configuration of flippers
is frozen in from the start ("quenched randomness

"

) .
See the above figure . The number of possible. spin
configurations is finite and given by rollit = 2

"
.

Consider the evolution of a single spin , and let pn be
the probability. the spin is up at time n (units of t ) .
Let x -

- FIN be the fraction of flippers . If the

flippers were to move about randomly , we would write

put, = ( t - Xl put x ( t
- put

' 'Stosszahlanzatz
' '

probability up 9
X probability down at

at time n and time n and passed by
did not pass flipper a flipper

we can solve this easily :

y
un ' Pn

- k i anti 1475!Yau
,

put .
-

'

z
= ( I - 2x ) (pm - t ) ⇒ pn

-

-

'
z th - 2x)

"

(Po - t )

Thus there is exponential convergence to the equilibrium
state pn →• = 12 on a time scale I

*
= - il lull -2×1 .

Note It lol = t'tfit = 0 while if 421 = 0 . We identify t'Tx)
as the microscopic relaxation time over which local equilibrium
is established .

y . 2×1 =
.
e-
Ht 'T x )

l l - 2x In = e
- n l t

'
Tx )



x -- EET -- I

×
-
-

'

I÷o= Is

* --Eui is

In the figure , we simulate the Kac ring model dynamics
for rings of size N = 2,500 with F = 20

,
100
,
and 500 .

The initial conditions are that every spin is in the T state .

Note how there is an initial exponential relaxation of the

magnetization m = (Nr -N, YN -- 2p - t to the equilibrium
value Meg

-

- O
,
about which m fluctuates .

But at time

n -- N = 2500
,
we have m = 9 once again , and all

the spins have returned to their initial t state !
It is easy to see why : after n -- N time steps , each

spin will have gone completely around the ring and



encountered all F flippers . If F is even , each

spin will have flipped an even number of times ,
thus returning to its initial state .

Thus m
.
= mo .

If F is odd
,
each spin flips an odd number of

times after N steps , and Mn = - mo . But then man = Mo

and the recurrence time is 2N . We emphasize that
not only does the magnetization repeat , but the entire
initial configuration 10. . . . . ,%) , where Oj = I 1 , has
repeated ,

and this is true for all 2N initial conditions .
Note that the KRM satisfies the conditions for recurrence :

a

map is volume
-preserving ( one configuration E

maps to a unique image E
' I

•

map is invertible (just run counterclockwise ! )
• phase space volume is finite (rollH = 2N)

• F odd ⇒ m
n
-

-
-mo

• X >
'

z
⇒ Mn oscillates

• N -

-25
,
ooo : still recurrent !



• Canonical transformations

In Lagrangian mechanics , we are free to redefine our

generalized coordinates , viz .

Qo -

- Qo lot . .
. . .

, Gu ,
t )

This is called a
"

point transformation " . It is locally
invertible provided det laQala qp ) t O . Assuming
the transformation is everywhere invertible , so we
can write go

-

- go IQ ,
t ) , the Lagrangian is

[ IQ
,
I
,
H -

- Hala.tl
, Aglaia , t't , t.lt#tFl9lQithtt

Note that q
-

- q IQ, t) ⇒ if = ily , I , t ) .

For

example ,

lolx , y ) -- tan
- 'fylxl

if (x , y , i ,
'

y ) = ( x yn - yillx 't y
' )

We can always add to L a total derivative of any function
of coordinates and time . If 8gotta ) -- Sqoltb ) = Otto,
then 8Qo Hal = 844 Itb) = 0 to ,

and Hamilton 's principle

St!tdbtIIQ.io , t ) -- o
"

yields the EL eqns



Fa
.

. :¥K÷l=o
This may

also be derived starting with the EL eqns
for the original generalized coordinates (see Eqns 15.36-371
in the notes .

In Hamiltonian mechanics
,
we deal with a much broader

class of transformations . These are called canonical

transformations (Cts ) . The word "canonical " means
"

conforming to a general rule or accepted procedure
"

(Webster ) .

What is canonical about Cts is that they preserve a

particular structure , namely that of the Poisson bracket.
The general form of a CT is

Go
-

- folQi , . . . ,Qn , Pi , . . .

,
Pn
,
t )

Po = PolQi , . . . ,Qn , Pi, . . . , Pn ,t )

wi IX i

we
may write

this as f f
-

-

-

Si =3 it -2 , . . . .

,
Ian

,
t! ;
I -19¥ ) ,

E -

- lip )
where it ft , . . .

,
2n ) . We shall see that the transformed

Hamiltonian is

Tt IQ , Pitt = Hlf , pit ) t # Fla ,Q.tl



where Flq , Q ,H is a function of the old and new

coordinates
,
and of time .

We know that is = J
AI

j jk 23h .
Now consider a

canonical transformation to new phase space
coordinates Ia -

- Tal 5
,
t ) . We have

d=¥÷%a¥+z⇒
J -- ki:

dt k

But if the transformation is canonical
,
we must have

DII = Jab .fr#T--IabdfhzbFsnfHl5.tttfzFIEiQ,H)
= Jab }÷

,
IIT t Jab ftp.sflg.Q.tt

Now define the matrix Maj m
-

jb -

- Iq. 3¥
.

--3¥
.

-

- sa .

Maj = ⇒ Mib -

- 377 -

- htt
'

- b
bk

Equating the two expressions for d Ialdt , we have

MajJin ftp.t 3¥ = Tab In IFT t Jab ,

since I is arbitrary ,
the coefficients of 3¥ on each

side must match
,
which says

MJ = J (Mt )
- I
⇒ MJMt = J



What about the terms in blue ? we must also have

FF = Jab IE;# HEHE t.I.tl

This is true
,
but the proof requires results from

the next section on generating functions . For now,
let's focus on the result MJMt = J . (Note this

entails MtJM = I (exercise ! ) .
An NxN real - valued

matrix R which satisfies RtR = It is called orthogonal,
and Nx N orthogonal matrices form a Lie group , OCN) .

Thus RTR = A ⇒ R E O (N) .
A 2n x2n real - valued

matrix M satisfying MtJM = J with J -- (On" th" )
- thnxn On xn

is called symplectic , and we write Me span )
,
the

Lie group
of real symplectic matrices of rank 2n .

With Maj = TEal 25; , the Poisson bracket is preserved :
Mai Mbj = Mtgb
m m

ftp.sls-siiiff?Iz.=sijfA.z?ET.f?z. s÷
⇒ Mai Jij Mtb }¥a}¥÷= Jab }I÷a3?z

,

-

- IA ,Bt

We next consider how to manufacture a canonical

transformation . But before doing so , let us first show
that Hamiltonian evolution itself generates a CT .



Scratch
01N ) : RTR -

- I ⇒ def 12=11

SUN ) : RTR =D and det R - tl

OCNICGLCN, # I

÷÷i÷÷¥¥
(proper rotations ) unhappy island

of improper
rotations

MTJM = J ⇒ detm = # I

detM= - I excluded ( no unhappy island)

Pf # = ↳gsngnlo
) Arnold ' - '

Aoun -Doku )
T

2nx2n
.

detA=fPfA )
'

PHATJA )=detAPfJ

MESPKN ) ⇒ PHM-t.IM/=pff--detMdetJ/



- Proof Hamiltonian evolution generates a CT

We consider an infinitesimal evolution :

3
;
Itt → 3ilttdtt =3;Htt Ji !¥1gµdt told t 't
l l l l l l

3 i 3
'

i

D-H
We have that Mi;

=
°3

= Sijt Jin⇒g-
dtt Old-E)

25J r

Thus M the = She t- Jes Yes
,

d t and

Mijsjhmtne = ( 8ijtJir%5rdt ) Jjk (sheet Jes%tfqdt)
= Tie tfJirJje%T÷ztJ¥÷¥dt) t Oldt't
= Jie t Old t

'

) take her
,
s →j

Lecture 15 (November 23 )
-

• Generating functions for canonical transformations
For. a transformation to be canonical

,
we require

sfatdtlpo.io - Hui , p.tt) -- o -- S!Itt fp.io- Itoi,EH ]
This is satisfied for all motions provided

Pogo - Hkt , Pitt = tlpooio - II tap.tl toff II. Et t)

where X is a constant . We can always rescale coordinates


