Lecture 12 (Nov. 11)

- Inhomogeneous Sturm - Liouville equation ($\$ 9.7$):

$$
\mu(x) \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial}{\partial x}\left[\tau(x) \frac{\partial y}{\partial x}\right]+\nu(x) y=\mu(x) \operatorname{Re}\left[f(x) e^{-i \omega t}\right]
$$

Here the string is forced at frequency w. We write the solution as

$$
y(x, t)=\operatorname{Re}\left[y(x) e^{-i \omega t}\right]
$$

where
could redefine as $\tilde{f}(x)$ but if

$$
\left[\hat{k}-\omega^{2} \mu(x)\right] y(x)=\overbrace{\mu(x) f(x)} \text { we include } \mu(x)
$$

with

$$
\hat{K}=-\frac{d}{d x} \tau(x) \frac{d}{d x}+v(x)
$$

the Sturm-Liouville operator. Recall

$$
\begin{aligned}
& \hat{K} \psi_{n}(x)=\omega_{n}^{2} \mu(x) \psi_{n}(x) \\
& \left\langle\psi_{m} \mid \psi_{n}\right\rangle=\int_{x_{L}}^{x_{R}} d x \mu(x) \psi_{m}^{*}(x) \psi_{n}(x)=\delta_{m n} \\
& \mu(x) \sum_{n} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Taking the inverse of $\hat{k}-\omega^{2} \mu(x)$, we have that the inhomogeneous solution is

Scratch
Unforced, damped SHO:

$$
\ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=0
$$

Soln

$$
\begin{aligned}
& x=A e^{-i \omega t} \Rightarrow-\omega^{2}-2 i \gamma \omega+\omega_{0}^{2}=0 \\
& \omega^{2}+2 i \gamma \omega-\omega_{0}^{2}=0 \Rightarrow \omega_{ \pm}=-i \gamma \pm \sqrt{\omega_{0}^{2}-\gamma^{2}}
\end{aligned}
$$

$e^{-i \omega_{ \pm} t} \rightarrow 0$ as $t \rightarrow \infty$ due to $\gamma>0$
$\gamma^{2}<\omega_{0}^{2} \Rightarrow$ underdamped, $\gamma^{2}>\omega_{0}^{2} \Rightarrow$ overdamped
Harmonic forcing:

$$
\iota f(t)=\int \frac{d \Omega}{2 \pi} \hat{f}(\Omega) e^{-i \Omega t}
$$

$$
\ddot{x}+2 \gamma \dot{x}+w_{0}^{2} x=\hat{f}(\Omega) e^{-i \Omega t} \hat{x}(\Omega) e^{-i \Omega t}
$$

Soln: $x(t)=x_{\text {hom }}(t)+x_{\text {inh }}(t)$

$$
\begin{array}{r}
\hat{\sim} A_{+} e^{-i \omega_{+} t}+A_{-} e^{-i \omega_{-} t} \rightarrow 0 \\
\left(\omega_{0}^{2}-2 i \gamma \Omega-\Omega^{2}\right) \hat{x}(\Omega)=\hat{f}(\Omega)
\end{array}
$$

Single frequency: $x_{\text {inh }}(t)=A(\Omega) \cos [\Omega t+\delta(\Omega)]$
amplitude: $\left.\quad A(\Omega)=\left[1 \omega_{0}^{2}-\Omega^{2}\right)^{2}+4 \gamma^{2} \Omega^{2}\right]^{-1 / 2}$
phase shift: $\delta(\Omega)=\tan ^{-1}\left(\frac{2 \gamma \Omega}{\Omega^{2}-\omega_{0}^{2}}\right)$

$$
y_{\text {inh }}(x)=\int_{x_{L}}^{x_{R}} d x^{\prime} \mu\left(x^{\prime}\right) G_{\omega}\left(x, x^{\prime}\right) f\left(x^{\prime}\right)
$$

where $G_{w}\left(x, x^{\prime}\right)$ is the Green's function, satisfying

$$
\left[\hat{K}-\omega^{2} \mu(x)\right] G_{w}\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

I.e. $G_{\omega}\left(x, x^{\prime}\right)=\left[\hat{K}-\omega^{2} \mu\right]_{x, x^{\prime}}^{-1}$. We may write

$$
G_{w}\left(x, x^{\prime}\right)=\sum_{n} \frac{\psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)}{\omega_{n}^{2}-w^{2}}, \quad\left[G_{w}\right]=\frac{T^{2}}{M}
$$

You can read about how to obtain $G_{w}\left(x, x^{\prime}\right)$ with out having to do the infinite sum over all the eigenfunctions in 59.7.1. For now, I just quote the result for the case where $\mu(x)=\mu, \tau(x)=\tau, \nu(x)=0$, and $\left[X_{L}, X_{R}\right]=[0, L]$. Then

$$
G_{\omega}\left(x, x^{\prime}\right)=\frac{\sin \left(\omega x_{<} / c\right) \sin (\omega(L-x,) / c)}{(\omega \tau / c) \sin (\omega L / c)}
$$

where $x_{2}=\min \left(x, x^{\prime}\right)$ and $x_{>}=\max \left(x, x^{\prime}\right), c=\sqrt{\frac{\tau}{\mu}}$
Example: Let $f(x)=f_{0} \delta\left(x-x_{0}\right)$. Then

$$
y_{\text {inh }}(x)=\mu f_{0} G_{\omega}\left(x, x_{0}\right)
$$

Note that there are no constants of integration.

The full sol is then homogeneous sol (erg. Bernoulli)

$$
y(x, t)=y_{h o m}(x, t)+y_{\text {inh }}(x, t)
$$

The initial conditions enter in whom (x, t) as we have learned from the Bernoulli solution. If there is some small damping, then at long times we have

$$
\begin{aligned}
y\left(x, t \gg \gamma^{-1}\right) & =\operatorname{yinh}(x, t) \\
& =\mu f_{0} G_{\omega}\left(x, x_{0}\right) \cos (\omega t)
\end{aligned}
$$

where γ is the damping rate li.e. rate of energy loss for unforced system). If $x_{0}=\frac{1}{2} L$, then

$$
G_{\omega}\left(x, \frac{1}{2} L\right)=\frac{c}{2 \omega \tau \cos (\omega L / 2 C)} \times \begin{cases}\sin (\omega x / C) & \text { if } x<L / 2 \\ \sin (\omega / L-x) / C) & \text { if } x>L / 2\end{cases}
$$

Note that $y_{\text {inn }}(x, t)$ is continuous at $x=\frac{1}{2} L$ but its spatial derivative $y_{\text {ink }}^{\prime}(x, t)$ is discontinuous at $x=\frac{1}{2} L$.

- Continua in higher dimensions: $h(\vec{x}, t)$ displacement Generalization of wave operator: e.g. drumhead:

$$
\hat{K}=-\frac{\partial}{\partial x^{\alpha}} \tau_{\alpha \beta}(\vec{x}) \frac{\partial}{\partial x^{\beta}}+v(\vec{x})
$$

kettle drum

This arises from

$$
\mathcal{L}=\frac{1}{2} \mu(\vec{x})\left(\frac{\partial h}{\partial t}\right)^{2}-\frac{1}{2} \tau_{\alpha \beta}(\vec{x}) \frac{\partial h}{\partial x^{\alpha}} \frac{\partial h}{\partial x^{\beta}}-\frac{1}{2} v(\vec{x}) h^{2}
$$

The wave equation is

$$
\hat{K} h(\vec{x}, t)=-\mu(\stackrel{\rightharpoonup}{x}) \frac{\partial^{2}}{\partial t^{2}} h(\vec{x}, t)
$$

Since $\left[\hat{k}, \partial_{t}\right]=0$, solutions may be written as

$$
h(\vec{x}, t)=\operatorname{Re}\left[h(\vec{x}) e^{-i \omega t}\right]
$$

where

$$
\left[\hat{K}-w^{2} \mu(\vec{x})\right] h(\vec{x})=0
$$

This is again an eigenvalue equation, with solutions

$$
\psi_{n}(\vec{x}) \Rightarrow \hat{K} \psi_{n}(\vec{x})=\omega_{n}^{2} \mu(\vec{x}) \psi_{n}(\vec{x})
$$

The eigenfunctions and eigenvalues satisfy

$$
\begin{aligned}
& \left\langle\psi_{m} \mid \psi_{n}\right\rangle=\int d^{d} x \mu(\vec{x}) \psi_{m}^{*}(\vec{x}) \psi_{n}(\vec{x})=\delta_{m n} \\
& \mu(\vec{x}) \sum_{n} \psi_{n}(\vec{x}) \psi_{n}^{*}(\vec{x})=\delta\left(\vec{x}-\vec{x}^{\prime}\right)
\end{aligned}
$$

where the medium is confined to a region $\Omega \subset \mathbb{R}^{d}$. We must also apply boundary conditions of the form
(i) $\left.h(\vec{x})\right|_{\partial \Omega}=0$, where $\partial \Omega=$ boundary of Ω
(ii) $\left.\tau(\vec{x}) \hat{n} \cdot \vec{\nabla} h\right|_{\partial \Omega}=0$, where \hat{n} is normal to $\partial \Omega$
(iii) PECs, e.g. in a box of dim ${ }^{n S} L_{1} \times L_{2} \times \cdots \times L_{d}$
(iv) $[\alpha \psi(\vec{x})+\beta \hat{n} \cdot \vec{\nabla} \psi(\vec{x})]_{\partial \Omega}=0$

The Green's function is

$$
G_{w}\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{n} \frac{\psi_{n}(\vec{x}) \psi_{n}^{*}\left(\vec{x}^{\prime}\right)}{w_{n}^{2}-w^{2}}
$$

with

$$
\left[\hat{K}-w^{2} \mu(\vec{x})\right] G_{w}\left(\vec{x}, \vec{x}^{\prime}\right)=\delta\left(\vec{x}-\vec{x}^{\prime}\right)
$$

The variational approach generalizes as well, with

$$
\omega^{2}[\psi(\vec{x})] \equiv \frac{N[\psi(\vec{x})]}{D[\psi(\vec{x})]}
$$

and

$$
\begin{aligned}
& N[\psi(\vec{x})]=\int_{\Omega} d^{d} x \psi^{*}(\vec{x})\{\overbrace{-\frac{\partial}{\partial x^{\alpha}} \tau_{\alpha \beta}(\vec{x}) \frac{\partial}{\partial x^{\beta}}+v(\vec{x})}^{\hat{K}}\} \psi(\vec{x}) \\
& D[\psi(\vec{x})]=\int_{\Omega} d^{d} x \mu(\vec{x}) \psi^{2}(\vec{x})
\end{aligned}
$$

Demanding $\delta w^{2}=0$ yields the wave equation

$$
\hat{K} \psi(\vec{x})=\omega^{2} \mu(\vec{x}) \psi(\vec{x})
$$

- Membranes : $z=h(x, y)$

The equation of a surface is $F(x, y, z)=z-h(x, y)=0$.
Let the differential surface area be $d S$. The projection onto the (x, y) plane is then

$$
d A=d x d y=\hat{n} \cdot \hat{z} d S=n^{z} d S
$$

The unit normal is

$$
\hat{n}=\frac{\vec{D} F}{|\vec{\nabla} F|}=\frac{\hat{z}-\vec{\nabla} h}{\sqrt{1+(\vec{V} h)^{2}}} \quad(\text { note } \dot{z} \cdot \vec{\nabla} h=0)
$$

Thus,

$$
d S=\frac{d x d y}{\hat{n} \cdot \hat{z}}=\sqrt{1+(\vec{\nabla} h)^{2}} d x d y
$$

We consider a model where before: $d s=\sqrt{1+h^{\prime 2}} d x$

$$
U[h(x, y, t)]=\int d S \sigma=U_{0}+\frac{1}{2} \int d^{2} x \sigma(\vec{x})(\vec{\nabla} h)^{2}+\ldots
$$

with σ the surface tension. Other energy functions are possible. The kinetic energy is

$$
T[h(x, y, t)]=\frac{1}{2} \int d^{2} x \mu(\vec{x})\left(\frac{\partial h}{\partial t}\right)^{2}
$$

Thus

$$
\begin{aligned}
& S=\int d t \int d^{2} x \mathcal{L}\left(h, \partial_{t} h, \vec{\nabla} h, t, \vec{x}\right) \\
& \mathcal{L}=\frac{1}{2} \mu(\vec{x})\left(\partial_{t} h\right)^{2}-\frac{1}{2} \sigma(\vec{x})(\vec{\nabla} h)^{2}
\end{aligned}
$$

The equations of motion are then

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial h}-\underbrace{\frac{\partial}{\partial t} \frac{\partial \mathscr{L}}{\partial \partial_{t} h}}_{11}-\underbrace{\stackrel{\rightharpoonup}{\nabla} \cdot \frac{\partial \mathcal{L}}{\partial \vec{\nabla} h}}_{\|}=0 \\
& 0-\left(\mu(\vec{x}) \frac{\partial^{2} h}{\partial t^{2}}\right)-(-\vec{\nabla} \cdot[\sigma(\vec{x}) \vec{\nabla} h])=0
\end{aligned}
$$

Thus

$$
\stackrel{\rightharpoonup}{\nabla} \cdot[\sigma(\vec{x}) \stackrel{\rightharpoonup}{\nabla} h(\vec{x}, t)]=\frac{\partial^{2} h(\vec{x}, t)}{\partial t^{2}}
$$

which is a generalization of the Helmholtz equation. When μ and σ are constants, we get Helmholtz:

$$
\left(\vec{\nabla}^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h(\vec{x}, t)=0
$$

Note $[\mu]=M L^{-2}$ and $[\sigma]=E L^{-2}=M T^{-2}$, thus with $c \equiv(\sigma / \mu)^{1 / 2}$ we have $[c]=L T^{-1}$ as before. d'Alembert solution:

$$
h(\vec{x}, t)=f(\hat{k} \cdot \vec{x}-c t)
$$

where \hat{k} is a fixed direction in space. These are plane waves (really "line waves"). The locus of points of constant $h(\vec{x}, t)$ satisfies

$$
\phi(\vec{x}, t)=\hat{k} \cdot \vec{x}-c t=\text { constant }
$$

and setting $d \phi=0$ then yields $\hat{k} \cdot \frac{d \vec{x}}{d t}=c$, i.e. the velocity along \hat{k} is c. The component of \vec{x} lying perpendicular to \hat{k} is arbitrary, so constant $\phi(\vec{x}, t)$ corresponds to lines orthogonal to \hat{k}.

Due to linearity of the wave eau, we can superpose plane wave solutions to arrive at the general solution,

$$
\begin{gathered}
h(\vec{x}, t)=\int \frac{d^{2} k}{(2 \pi)^{2}}\left[A(k) e^{i(k \cdot \vec{x}-c k t)}+B(k) e^{i(k \cdot \vec{x}+c k t)}\right] \\
+\hat{k} \text { mover } k=|\vec{k}| \quad-\hat{k} \text { mover }
\end{gathered}
$$

- Rectangles: $\Omega=[0, a] \times[0, b]$

Separation of variables solves PDE:

$$
h(x, y, t)=X(x) Y(y) T(t)
$$

Helmholtz eqn $\frac{1}{h}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) h=0$ yields

$$
\begin{aligned}
& \frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}=\frac{1}{c^{2}} \cdot \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}} \\
& \begin{array}{l}
\text { depends } \\
\text { only on } x \quad \text { depends } \\
\text { only on } y
\end{array} \quad \begin{array}{l}
\text { depends } \\
\text { only on } t
\end{array}
\end{aligned}
$$

So we conclude

$$
\frac{1}{x} \frac{\partial^{2} x}{\partial x^{2}}=-k_{x}^{2}, \frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}=-k_{y}^{2}, \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}}=-\omega^{2}
$$

with

$$
k_{x}^{2}+k_{y}^{2}=\frac{w^{2}}{c^{2}}
$$

Thus, $w=c|k|$. Most general sol ${ }^{n}$:

$$
\begin{aligned}
& X(x)=A \sin \left(k_{x} x+\alpha\right) \\
& Y(y)=B \sin \left(k_{y} y+\beta\right) \quad, \quad h(x, y, t)=X(x) Y(y) T(t) \\
& T(t)=C \sin (\omega t+\gamma)
\end{aligned}
$$

but imposing boundary conditions $\left.h(\vec{x}, t)\right|_{\partial \Omega}=0$ then requires

$$
\alpha=\beta=0, \quad \sin \left(k_{x} a\right)=\sin \left(k_{y} b\right)=0 \Rightarrow\left\{\begin{array}{l}
k_{x}=m \pi / a \\
k_{y}=n \pi / b
\end{array}\right.
$$

The most general sol consistent with the $B C s$ is then

$$
h(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \sin \left(\omega_{m n} t+\gamma_{m n}\right)
$$

where

$$
w_{m n}=\sqrt{\left(\frac{m \pi c}{a}\right)^{2}+\left(\frac{n \pi c}{b}\right)^{2}}
$$

and the constants $\left\{A_{m n}, \gamma_{m n}\right\}$ are determined by the initial conditions.

- Circles: $\Omega=\left\{(x, y) \mid x^{2}+y^{2} \leqslant a^{2}\right\}$

It is convenient to work in $2 d$ polar coordinates (r, φ). The Helmholtz equation takes the form

$$
\vec{\nabla}^{2} h=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial h}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} h}{\partial \varphi^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} h}{\partial t^{2}}
$$

Separation of variables:

$$
h(r, \varphi, t)=R(r) \Phi(\varphi) T(t)
$$

Again we have

$$
\frac{1}{R} \cdot \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{\Phi} \cdot \frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=\frac{1}{c^{2}} \frac{1}{T} \frac{\partial^{2} T}{\partial t^{2}}
$$

with

$$
\begin{aligned}
& \Phi(\varphi)=\cos (m \varphi+\beta) \\
& T(t)=\cos (\omega t+\gamma)
\end{aligned}
$$

and

$$
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\left(\frac{m^{2}}{r^{2}}-\frac{w^{2}}{c^{2}}\right) R=0
$$

Since $h(r, \varphi+2 \pi, t)=h(r, \varphi, t)$, we must have $m \in \mathbb{Z}$.
This is Bessel's equation, with solutions

$$
R(r)=A J_{m}\left(\frac{w r}{c}\right)+B N_{m}\left(\frac{w r}{c}\right)
$$

with $J_{m}(z)$ and $N_{n}(z)$ the Bessel and Neumann functions
of order m, respectively. Since $N_{m}(z)$ diverges as $z \rightarrow 0$ for all m, we must have $B=0$. (For an annulus, we may have $B \neq 0$.) The boundary condition at $r=a$ yields

$$
J_{m}\left(\frac{w a}{c}\right)=0 \Rightarrow w=w_{m l}=x_{m l} \cdot \frac{c}{a}
$$

where $J_{m}\left(x_{m l}\right)=0$, i.e. $x_{m l}$ is the $l^{\text {th }}$ zero $(l=1,2, \ldots, \infty)$ of $J_{m}(x)$. Thus,

$$
h(r, \varphi, t)=\sum_{m=0}^{\infty} \sum_{l=1}^{\infty} A_{m l} J_{m}\left(x_{m l} r / a\right) \cos \left(m \varphi+\beta_{m l}\right) \cos \left(\omega_{m l} t+\gamma_{m l}\right)
$$

The constants $A_{m l}, \beta_{m l}$, and $\gamma_{m l}$ are set by the initial conditions. Note $h(r=a, \varphi, t)=0$ for all φ and for all t.

- Read §9.3.6 (sound in fluids) and $\S 9.4$ (dispersion)
- Classical Field Theory

Independent variables: $\left\{x^{1}, \ldots, x^{n}\right\} \in \Omega \subset \mathbb{R}^{n}$
Real fields: $\left\{\phi_{1}, \ldots, \phi_{k}\right\} \quad$ or $\left\{x^{0}, x^{\prime}, \ldots, x^{d}\right\}$
Lagrangian density: $\mathcal{L}=\mathcal{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}, x^{\mu}\right)$ $n=d+1$

Action: $S=\int d^{n} \times \mathcal{L}$
Let's compute the variation of S :

$$
\begin{aligned}
\delta S= & \int_{\Omega} d^{n} x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \delta \phi_{a}}{\partial x^{\mu}}\right\} \\
= & \int_{\Omega} d^{n} x\left\{\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right\} \delta \phi_{a}, \\
& \begin{array}{l}
\text { differential } \\
\\
\end{array} \quad+\oint_{\partial \Omega} d \Sigma^{2} n^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}
\end{aligned}
$$

The surface term vanishes if we demand

$$
\left.\delta \phi_{a}(\vec{x})\right|_{\partial \Omega}=0 \quad \text { or }\left.\quad n^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right|_{\partial \Omega}=0
$$

Then we have

$$
\frac{\delta S}{\delta \phi_{a}(\vec{x})}=\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right]_{\vec{x}} \text { evaluate at } \vec{x}
$$

Thus $\delta S=0$ entails the Euler - Lagrange equations,

$$
\frac{\partial \mathscr{L}}{\partial \phi_{a}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)=0
$$

When \mathcal{L} is independent of the independent variables x^{μ}, the stress-energy tensor is conserved:

$$
\partial_{\mu} T_{\nu}^{\mu}=0 \quad \text { with } T_{\nu}^{\mu}=\sum_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\nu} \phi_{a}-\delta_{\nu}^{\mu} \mathcal{L}
$$

This is analogous to $\frac{d H}{d t}=0$ in particle mechanics.

Maxwell theory
The Lagrangian density, with sources, is

$$
\mathscr{L}\left(A^{\nu}, \partial_{\mu} A^{\nu}\right)=-\frac{1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-J_{\mu} A^{\mu}
$$

where $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ with $x^{\mu}=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ and

$$
\begin{aligned}
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} ; A_{\nu}=g_{\nu \lambda} A^{\lambda}, g=\operatorname{diag}(t,-,-,-) \\
& F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=g^{\mu \alpha} g^{\nu \beta} A_{\alpha \beta} ; \quad g_{\mu \nu}=g^{\mu \nu}
\end{aligned}
$$

The $E L$ equations are

$$
\frac{\partial \mathscr{L}}{\partial A_{\nu}}-\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)=0 \Rightarrow \partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu}
$$

Conserved currents in field theory
In particle mechanics, a one-parameter family of transformations $\tilde{q}_{\sigma}(q, \zeta)$ which leaves $L(q, \dot{q}, t)$ invariant results in a conserved "charge"

$$
\Lambda=\left.\sum_{\sigma} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial S}\right|_{s=0} ; \quad \tilde{q}_{\sigma}(q, s=0)=q_{\sigma}
$$

with $d \Lambda / d t=0$. We generalize to field theory
by taking $q_{\sigma}(t) \rightarrow \phi_{a}\left(x^{\mu}\right)$. Then

$$
\begin{aligned}
\left.\frac{d}{d \xi}\right|_{\xi=0}\left(\tilde{\phi}_{a}, \partial_{\mu} \tilde{\phi}_{a}, x^{\mu}\right) & =\left.\frac{\partial \mathcal{L}}{\partial \phi_{a}} \frac{\partial \tilde{\phi}_{a}}{\partial \xi}\right|_{\xi=0}+\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial}{\partial x^{\mu}} \frac{\partial \tilde{\phi}_{a}}{\partial S}\right|_{3=0} \\
& =\left.\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial \zeta}\right)\right|_{\xi=0}
\end{aligned}
$$

where we have invoked the EL equs,

$$
\frac{\partial \mathscr{L}}{\partial \phi_{a}}=\frac{\partial}{\partial x^{\mu}}\left(\frac{\partial \mathscr{L}}{\left.\partial \partial_{\mu} \phi_{a}\right)}\right)
$$

Thus we have

$$
\partial_{\mu} J^{\mu}=0 \quad \text { with } \quad J^{\mu}=\left.\sum_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \frac{\partial \tilde{\phi}_{a}}{\partial S}\right|_{S=0}
$$

Let us write $x^{\mu}=\left\{x^{0}, x^{1}, \ldots, x^{d}\right\}$ with $n=d+1$. Then with $x^{0} \equiv c t$ and $Q_{\Omega} \equiv c^{-1} \int d^{d} x J^{0}$, we have

$$
\frac{d Q_{\Omega}}{d t}=\int_{\Omega} d^{d} x \partial_{0} J^{0}=-\int_{\Omega} d^{3} x \vec{\nabla} \cdot \vec{J}=-\oint_{\partial \Omega} d \Sigma \hat{n} \cdot \vec{J}=0
$$

provided $\left.\hat{n} \cdot \vec{J}\right|_{\partial \Omega}=0$. Thus, the rate of change of Q_{Ω} is minus the integrated flux exiting the region Ω.
Example:

$$
\mathcal{L}\left(\psi, \psi^{*}, \partial_{\mu} \psi, \partial_{\mu} \psi^{*}\right)=\frac{1}{2} k\left(\partial_{\mu} \psi^{*}\right)\left(\partial^{\mu} \psi\right)-U\left(\psi^{*} \psi\right)
$$

The Lagrangian density is invariant under

$$
\psi \rightarrow \tilde{\psi}=e^{i \zeta} \psi \quad, \quad \psi^{*} \rightarrow \tilde{\psi}^{*} e^{-i \zeta} \psi
$$

We regard ψ and ψ^{*} as independent fields. Thus,

$$
\frac{\partial \tilde{\psi}}{\partial \zeta}=i e^{i \zeta} \psi \quad, \frac{\partial \tilde{\psi}^{*}}{\partial \zeta}=-i e^{-i \zeta} \tilde{\psi}^{*}
$$

and thus

$$
\begin{aligned}
J^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \cdot(i \psi)+\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)}\left(-i \psi^{*}\right) \\
& =\frac{K}{\partial i}\left(\psi^{*} \partial^{\mu} \psi-\psi \partial^{\mu} \psi^{*}\right)=K \operatorname{Im}\left(\psi^{*} \partial^{\mu} \psi\right)
\end{aligned}
$$

Note that $U\left(\tilde{\psi}^{*} \tilde{\psi}\right)=U\left(\psi^{*} \psi\right)$ is independent of S.

- Gross - Pitaeuskii model

This is a model of nonrelativistic interacting bosons, with

$$
\mathcal{L}=i \hbar \psi^{*} \frac{\partial \psi}{\partial t}-\frac{\hbar^{2}}{2 m} \vec{\nabla} \psi^{*} \cdot \vec{\nabla} \psi-g\left(\psi^{*} \psi-n_{0}\right)^{2}
$$

Details in $\$ 9.5 .3$ of the notes. The EL equations are

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+2 g\left(|\psi|^{2}-n_{0}\right) \psi
$$

and its complex conjugate. This is called the nonlinear Schrödinger equation (NLSE). The one-parameter invariance of \mathcal{L} is again

$$
\begin{aligned}
& \psi(\stackrel{\rightharpoonup}{x}, t) \rightarrow \tilde{\psi}(\vec{x}, t) \equiv e^{-i \zeta} \psi(\stackrel{\rightharpoonup}{x}, t) \\
& \psi^{*}(\stackrel{\rightharpoonup}{x}, t) \rightarrow \tilde{\psi}^{*}(\stackrel{\rightharpoonup}{x}, t) \equiv e^{+i \zeta} \psi^{*}(\stackrel{\rightharpoonup}{x}, t)
\end{aligned}
$$

The conserved current is

$$
J^{\mu}=\left.\frac{\partial \mathcal{L}}{\partial(\partial, \psi)} \frac{\partial \tilde{\psi}}{\partial \xi}\right|_{3=0}+\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)} \frac{\partial \tilde{\psi}^{*}}{\partial \xi}\right|_{\zeta=0}
$$

with components

$$
\begin{aligned}
& J^{0}=\hbar|\psi|^{2} \equiv \hbar \rho \\
& \vec{J}=\frac{\hbar^{2}}{2 i m}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right) \equiv \hbar \vec{\jmath}
\end{aligned}
$$

Thus,

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0 \quad \text { (continuity eqn.) }
$$

In this example, $x^{\mu}=x_{\mu}$ and there is no difference between raised and lowered indices.

