Lecture 20 (Dec. 9): MAPS $\left(\vec{\varphi}_{n+1}=\hat{T} \vec{\varphi}_{n}\right)$

- Motion on resonant tori

Consider the motion on a resonant torus in terms of the AAV:

$$
\vec{\phi}(t)=\vec{\omega}(\vec{J}) t+\vec{\phi}(0)
$$

Resonance means that there exist some n-tuples $\vec{l}=\left\{l_{1}, \ldots, l_{n}\right\}$ for which $\vec{l} \cdot \vec{\omega}=0$. If the motion is periodic, so that $\omega_{j}=k_{j} \omega_{0}$ with $k_{j} \in \mathbb{Z}$ for each $j \in[1, \ldots, n\}$, then all of the frequencies are in resonance.

Let's consider the case $n=2$. Dynamics sketched below:

Since the energy E is fixed, we can regard $J_{2}=J_{2}\left(J_{1}, E\right)$ and the motion as occurring in the 3 -dim l space $\left(\phi_{1}, \phi_{2}, J_{1}\right)$. Suppose we plot the consecutive intersections of the system's motion with the two-dim' subspace defined by fixing E and also $\phi_{2}\left(\right.$ say $\left.\phi_{2} \equiv 0\right)$. Let's write $\phi \equiv \phi_{1}$ and $J \equiv J_{1}$,
and define $\left(\phi_{k}, J_{k}\right)$ to be the values of (ϕ, J) at the $k^{\text {th }}$ consecutive intersection of the system's motion with the subspace $\left(\phi_{2}=0, E\right.$ fixed $)$. The ad space $\left(\phi_{2}, \widetilde{J}_{2}\right)$ is called the surface of section. Since $\dot{\phi}_{2}=\omega_{2}$, we have

$$
\phi_{k+1}-\phi_{k}=\omega_{1} \cdot \frac{2 \pi}{\omega_{2}} \equiv 2 \pi \alpha
$$

$$
\alpha(J) \equiv \frac{w_{1}(J)}{w_{2}(J)}
$$

and therefore
(E suppressed)

$$
\begin{aligned}
& \phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right) \\
& J_{k+1}=J_{k}
\end{aligned}
$$

"twist map"

Note that we've written here $\alpha\left(J_{n+1}\right)$ in the first equation.
[Since $J_{k+1}=J_{k}$, it doesn't matter since J never changes for these dynamics. But writing the equations this way is more convenient.] Note that $\left(\phi_{n}, J_{n}\right) \rightarrow\left(\phi_{n+1}, J_{n+1}\right)$ is canonical:

$$
\begin{aligned}
\left\{\phi_{k+1}, J_{k+1}\right\}_{\left(\phi_{k}, J_{k}\right)} & =\operatorname{det} \frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)} \\
& =\frac{\partial \phi_{k+1}}{\partial \phi_{k}} \frac{\partial J_{k+1}}{\partial J_{k}}-\frac{\partial \phi_{k+1}}{\partial J_{k}} \frac{\partial J_{k+1}}{\partial \phi_{k}}=1.1-0.0=1
\end{aligned}
$$

Formally, we may write this map as

$$
\stackrel{\rightharpoonup}{\varphi}_{k+1}=\hat{T} \stackrel{\rightharpoonup}{\varphi}_{k}
$$

where $\vec{\varphi}_{k}=\left(\phi_{k}, J_{k}\right)$ and \hat{T} is the map. Note that if
$\alpha=\frac{r}{s} \in \mathbb{Q}$, then \hat{T}^{s} acts as the identity, leaving every point in the (ϕ, J) plane fixed.

For systems with n degrees of freedom, and with the surface of section fixed by $\left(\phi_{n}, J_{n}\right)$ or $\left(\phi_{n}, E\right)$, define $\stackrel{\rightharpoonup}{\varphi} \equiv\left(\phi_{1}, \ldots, \phi_{n-1}\right)$ and $\vec{J} \equiv\left(J_{1}, \ldots, J_{n-1}\right)$. Then with $\vec{\alpha} \equiv\left(\frac{w_{1}}{w_{n}}, \ldots, \frac{w_{n-1}}{w_{n}}\right)$,

$$
\begin{aligned}
& \vec{\varphi}_{k+1}=\vec{\varphi}_{k}+2 \pi \vec{\alpha}\left(\vec{J}_{k+1}\right) \\
& \vec{J}_{k+1}=\vec{J}_{k}
\end{aligned}
$$

which is canonical. Note $\vec{\varphi}_{\vec{k}}=\left(\varphi_{1}, k, \ldots, \varphi_{n-1, k}\right)$ where $\varphi_{j, k}$ is the value of φ_{j} the $k^{\text {th }}$ time the motion passes through the SOS. We call this map the twist map.
Perturb bed twist map: Now consider a Hamiltonian $H(\vec{\phi}, \vec{J})=H_{0}(\vec{J})+\epsilon H_{1}(\vec{\phi}, \vec{J})$. Again we will take $n=2$. We expect the resulting map on the sos to be given by

$$
\hat{T}_{\epsilon} \vec{\varphi}_{k}=\varphi_{k+1}:\left\{\begin{array}{l}
\phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right)+\epsilon f\left(\phi_{k}, J_{k+1}\right)+\ldots \\
J_{k+1}=J_{k}+\epsilon g\left(\phi_{k}, J_{k+1}\right)+\ldots
\end{array}\right.
$$

Is this map canonical? Let's check that deft $\frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)}=1$:

$$
\begin{aligned}
& d \phi_{k+1}=d \phi_{k}+2 \pi \alpha^{\prime}\left(J_{k+1}\right) d J_{k+1}+\epsilon \frac{\partial f}{\partial \phi_{k}} d \phi_{k}+\epsilon \frac{\partial f}{\partial J_{k+1}} d J_{k+1} \\
& d J_{k+1}=d J_{k}+\epsilon \frac{\partial g}{\partial \phi_{k}} d \phi_{k}+\epsilon \frac{\partial g}{\partial J_{k+1}} d J_{k+1}
\end{aligned}
$$

Now bring $d \phi_{k+1}$ and $d J_{k+1}$ to the LHS of each equ and bring $d \phi_{k}$ and $d J_{k}$ to the RHS. We obtain

$$
\underbrace{\left(\begin{array}{cc}
1 & -2 \pi \alpha^{\prime}\left(J_{k+1}\right)-\epsilon \frac{\partial f}{\partial J_{k+1}} \\
1-\epsilon \frac{\partial g}{\partial J_{k+1}}
\end{array}\right)}_{A_{k+1}}\binom{d \phi_{k+1}}{d J_{k+1}}=\underbrace{\left(\begin{array}{cc}
1+\epsilon \frac{\partial f}{\partial \phi_{k}} & 0 \\
\epsilon \frac{\partial g}{\partial \phi_{k}} & 1
\end{array}\right)}_{B_{k}}\binom{d \phi_{k}}{d J_{k}}
$$

Thus

$$
\operatorname{det} \frac{\partial\left(\phi_{k+1}, J_{k+1}\right)}{\partial\left(\phi_{k}, J_{k}\right)}=\frac{\operatorname{det} B_{k}}{\operatorname{det} A_{k+1}}=\frac{1+\epsilon \frac{\partial f}{\partial \phi_{k}}}{1-\epsilon \frac{\partial g}{\partial J_{k+1}}} \equiv 1
$$

and we conclude the necessary condition is $\frac{\partial f}{\partial \phi_{k}}=\frac{\partial g}{\partial J_{k+1}}$. This guarantees the map \hat{T}_{ϵ} is canonical.
If we restrict to $g=g(\phi)$, then we have $f=f(J)$. We may then write $2 \pi \alpha\left(J_{k+1}\right)+\epsilon f\left(J_{k+1}\right) \equiv 2 \pi \alpha_{\epsilon}\left(J_{k+1}\right)$. (Well drop the ϵ subscript on α.) Thus, our perturbed twist map is given by

$$
\begin{aligned}
& \phi_{k+1}=\phi_{k}+2 \pi \alpha\left(J_{k+1}\right) \\
& J_{h+1}=J_{k}+\epsilon g\left(\phi_{k}\right)
\end{aligned}
$$

For $\alpha(J)=J$ and $g(\phi)=-\sin \phi$, we obtain the standard map

$$
\phi_{k+1}=\phi_{k}+2 \pi J_{k+1}, \quad J_{k+1}=J_{k}-\epsilon \sin \phi_{k}
$$

- Maps from time-dependent Hamiltonians
- Parametric oscillator, e.g. pendulum with time-dependent length $l(t): \ddot{x}+w_{0}^{2}(t) x=0$ with $\omega_{0}(t)=\sqrt{g / l(t)}$. This describes pumping a swing by periodically extending and withdrawing one's legs. We have

$$
\underbrace{\frac{d}{d t}\binom{x}{v}}_{\dot{\vec{\varphi}}(t)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2}(t) & 0
\end{array}\right)}_{A(t)} \underbrace{\binom{x}{v}}_{\vec{\varphi}(t)} \quad(v=\dot{x})
$$

The formal sol to $\dot{\vec{\varphi}}(t)=A(t) \vec{\varphi}(t)$ is

$$
\vec{\varphi}(t)=T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\} \vec{\varphi}(0)
$$

where T is the time ordering operator which puts earlier times to the right. Thus

$$
T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\}=\lim _{N \rightarrow \infty}\left(1+A\left(t_{N-1}\right) \delta\right) \cdots(1+A(0) \delta)
$$

where $t_{j}=j \delta$ with $\delta \equiv t / N$. Note if $A(t)$ is time independent then

$$
T \exp \left\{\int_{0}^{t} d t^{\prime} A\left(t^{\prime}\right)\right\}=e^{A t}=\lim _{N \rightarrow \infty}\left(1+\frac{A t}{N}\right)^{N}
$$

There are no general methods for analytically evaluating time-ordered exponentials as we have here. But one tractable case is where the matrix $A(t)$ oscillates as a square wave:

$$
w(t)=\left\{\begin{array}{ll}
(1+\epsilon) \omega_{0} & \text { if } 2 j \tau \leqslant t<(2 j+1) \tau \\
(1-\epsilon) \omega_{0} & \text { if }(2 j+1) \tau \leqslant t<(2 j+2) \tau
\end{array} \quad \text { (for } j \in \mathbb{Z}\right)
$$

The period is 2τ. Define $\vec{\varphi}_{n}=\vec{\varphi}(t=2 n \tau)$.
Then we have

$$
\vec{\varphi}_{n+1}=e^{A-\tau} e^{A_{+} \tau} \vec{\varphi}_{n}
$$

$$
N B: e^{A_{-} \tau} e^{A_{+} \tau} \neq e^{\left(A_{+}+A_{+}\right) \tau}
$$

with

$$
\vec{A}_{ \pm}=\left(\begin{array}{cc}
0 & 1 \\
-w_{ \pm}^{2} & 0
\end{array}\right), \quad w_{ \pm} \equiv(1 \pm \epsilon) \omega_{0}
$$

Note that $A_{ \pm}^{2}=-\omega_{ \pm}^{2} 1$ and that

$$
\begin{aligned}
U_{ \pm} \equiv e^{A_{ \pm} \tau}= & \mathbb{1}+A_{ \pm} \tau+\frac{1}{2!} A_{ \pm}^{2} \tau^{2}+\frac{1}{3!} A_{ \pm}^{3} \tau^{3}+\ldots \\
= & \left(1-\frac{1}{2!} \omega_{ \pm}^{2} \tau^{2}+\frac{1}{4!} \omega_{ \pm}^{4} \tau^{4}+\ldots\right) 1 \\
& +\left(\tau-\frac{1}{3!} \omega_{ \pm}^{2} \tau^{3}+\frac{1}{5!} \omega_{ \pm}^{4} \tau^{5}-\ldots\right) A_{ \pm} \\
= & \cos \left(\omega_{ \pm} \tau\right) \mathbb{1}+\omega_{ \pm}^{-1} \sin \left(\omega_{ \pm} \tau\right) A_{ \pm} \\
= & \left(\begin{array}{lr}
\cos \left(\omega_{ \pm} \tau\right) & \omega_{ \pm}^{-1} \sin \left(\omega_{ \pm} \tau\right) \\
-\omega_{ \pm} \sin \left(\omega_{ \pm} \tau\right) & \cos \left(\omega_{ \pm} \tau\right)
\end{array}\right)
\end{aligned}
$$

Note also that $\operatorname{det} U_{ \pm}=1$, since $U_{ \pm}$is simply Hamiltonian evolution over half a period, and it must be canonical.
Now we need

$$
\begin{aligned}
& U=\tilde{T} \exp \left\{\int_{0}^{2 \tau} d t A(t)\right\}=U_{-} U_{+}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \quad(\text { real, not symmetric) } \\
& a=\cos \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right)-\omega_{-}^{-1} \omega_{+} \sin \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right) \\
& b=\omega_{+}^{-1} \cos \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)+\omega_{-}^{-1} \sin \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right) \\
& c=-\omega_{+} \cos \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)-\omega_{-} \sin \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right) \\
& d=\cos \left(\omega_{-} \tau\right) \cos \left(\omega_{+} \tau\right)-\omega_{+}^{-1} \omega_{-} \sin \left(\omega_{-} \tau\right) \sin \left(\omega_{+} \tau\right)
\end{aligned}
$$

It follows from $U=U_{-} U_{+}$that U is also canonical (i.e. $\vec{\varphi}_{n+1}=\mathcal{U} \vec{\varphi}_{n}$ is a canonical transformation).

The eigenvalues $\lambda_{ \pm}$of U thus satisfy $\lambda_{+} \lambda_{-}=1$ 。
For a 2×2 matrix $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the characteristic polynomial is

$$
P(\lambda)=\operatorname{det}(\lambda \mathbb{1}-U)=\lambda^{2}-T \lambda+\Delta
$$

where $T=\operatorname{tr} U=a+d$ and $\Delta=\operatorname{det} U=a d-b c$. The eigenvalues are then

$$
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4 \Delta}
$$

But in our case U is special, and $\operatorname{det} U=1$, so

$$
\lambda_{ \pm}=\frac{1}{2} T \pm \frac{1}{2} \sqrt{T^{2}-4}
$$

We therefore have:

$$
\begin{aligned}
& |T|<2: \lambda_{+}=\lambda_{-}^{*}=e^{i \delta} \text { with } \delta=\cos ^{-1}\left(\frac{1}{2} T\right) \\
& |T|>2: \lambda_{+}=\lambda_{-}^{-1}=e^{\mu} \operatorname{sgn}(T) \text { with } \mu=\cosh ^{-1}\left(\frac{1}{2}|T|\right)
\end{aligned}
$$

Note $\lambda_{+} \lambda_{-}=\operatorname{det} U=1$ always. Thus, for $|T|<2$, the motion is bounded, but for $|T|>2$ we have that $|\vec{\varphi}|$ increases exponentially with time, even though phase space volumes are preserved by the dynamics. Ire. we have exponential stretching along the eigenvector $\vec{\psi}_{+}$and exponential squeezing along the eigenvector $\vec{\psi}_{-}$.

Let's set $\theta=\omega_{0} \tau=2 \pi \tau / T_{0}$ where T_{0} is the natural oscillation period when $\epsilon=0$. Since the period of the pumping is $T_{\text {pump }}=2 T$, we have $\frac{\theta}{\pi}=\frac{T_{\text {pump }}}{T_{0}}$. Find

$$
\begin{aligned}
& \operatorname{Tr} \mathcal{U}=\frac{2 \cos (2 \theta)-2 \epsilon^{2} \cos (2 \epsilon \theta)}{1-\epsilon^{2}} \\
& T=+2: \theta=n \pi+\delta, \epsilon= \pm\left|\frac{\delta}{n \pi}\right|^{1 / 2} \\
& T=-2: \theta=\left(n+\frac{1}{2}\right) \pi+\delta, \epsilon= \pm \delta
\end{aligned}
$$

The phase diagram in (θ, ϵ) space is shown at the right.

Kicked dynamics: Let $H(t)=T(p)+V(q) K(t)$, where

$$
K(t)=\tau \sum_{-\infty}^{\infty} \delta(t-n \tau)
$$

As $\tau \rightarrow 0, K(t) \rightarrow 1$ (constant).

Equations of motion:
"Dirac comb"

$$
\dot{q}=T^{\prime}(p), \quad \dot{p}=-V^{\prime}(q) k(t)
$$

Define $q_{n} \equiv q\left(t=n \tau^{+}\right)$and $p_{n}=p\left(t=n \tau^{+}\right)$and integrate from $t=n \tau^{+}$to $t=(n+1) \tau^{+}$:

$$
\begin{aligned}
& q_{n+1}=q_{n}+\tau T^{\prime}\left(p_{n}\right) \\
& p_{n+1}=p_{n}-\tau V^{\prime}\left(q_{n+1}\right)
\end{aligned}
$$

This is our map $\vec{\varphi}_{n+1}=\hat{\mathcal{T}} \vec{\varphi}_{n}$. Note that it is q_{n+1} which appears as the argument of V^{\prime} in the second equation. This is crucial in order that \hat{T} be canonical:

$$
\begin{gathered}
d q_{n+1}=d q_{n}+\tau T^{\prime \prime}\left(p_{n}\right) d p_{n} \\
d p_{n+1}=d p_{n}-\tau V^{\prime \prime}\left(q_{n+1}\right) d q_{n+1} \\
\left(\begin{array}{cc}
1 & 0 \\
\tau V^{\prime \prime}\left(q_{n+1}\right) & 1
\end{array}\right)\binom{d q_{n+1}}{d p_{n+1}}=\left(\begin{array}{cc}
1 & \tau T^{\prime \prime}\left(p_{n}\right) \\
0 & 1
\end{array}\right)\binom{d q_{n}}{d p_{n}} \\
\binom{d q_{n+1}}{d p_{n+1}}=\left(\begin{array}{cc}
1 & \tau T^{\prime \prime}\left(p_{n}\right) \\
-\tau V^{\prime \prime}\left(q_{n+1}\right) & 1-\tau^{2} T^{\prime \prime}\left(p_{n}\right) V^{\prime \prime}\left(q_{n+1}\right)
\end{array}\right)\binom{d q_{n}}{d p_{n}}
\end{gathered}
$$

and thus

$$
\operatorname{det} \frac{\partial\left(q_{n}, p_{n}\right)}{\partial\left(q_{n+1}, p_{n+1}\right)}=1
$$

The standard map is obtained from

$$
H(t)=\frac{L^{2}}{2 I}-V \cos \phi K(t)
$$

resulting in

$$
\begin{aligned}
& \phi_{n+1}=\phi_{n}+\frac{\tau}{I} L_{n} \\
& L_{n+1}=L_{n}-\tau V \sin \phi_{n+1}
\end{aligned}
$$

Defining $J_{n} \equiv L_{n} / \sqrt{2 \pi I V}$ and $\epsilon \equiv \tau \sqrt{V / 2 \pi I}$ we arrive at

$$
\begin{aligned}
& \phi_{n+1}=\phi_{n}+2 \pi \epsilon J_{n} \\
& J_{n+1}=J_{n}-\epsilon \sin \phi_{n+1}
\end{aligned}
$$

The phase space (ϕ, J) is thus a cylinder. As $\in \rightarrow 0$,

$$
\left.\begin{array}{l}
\frac{\phi_{n+1}-\phi_{n}}{\epsilon} \rightarrow \frac{d \phi}{d s}=2 \pi J \\
\frac{J_{n+1}-J_{n}}{\epsilon} \rightarrow \frac{d J}{d s}=-\sin \phi
\end{array}\right\} \Rightarrow \begin{aligned}
& E=\pi J^{2}-\cos \phi \\
& \text { is preserved }
\end{aligned}
$$

This is because $\epsilon \rightarrow 0$ means $\tau \rightarrow 0$ hence $K(t) \rightarrow 1$, which is the simple pendulum. There is a separatrix at $E=1$, along which $J(\phi)= \pm \frac{2}{\pi}|\cos (\phi \mid 2)|$.

Top: $\epsilon=0.01$ (left), $\epsilon=0.2$ (center), $\epsilon=0.4$ (right)
Bottom: details from $\epsilon=0.4$ (upper right)
Another example is the kicked Harper map, when

$$
H(t)=-V_{1} \cos \left(\frac{2 \pi p}{P}\right)-V_{2} \cos \left(\frac{2 \pi q}{Q}\right) K(t)
$$

This generates the map

$$
\begin{array}{ll}
x_{n+1}=x_{n}+\alpha \epsilon \sin \left(2 \pi y_{n}\right) & x \equiv q / Q \quad \alpha=\sqrt{V_{1} / V_{2}} \\
y_{n+1}=y_{n}-\alpha^{-1} \epsilon \sin \left(2 \pi x_{n+1}\right) & y \equiv p / P \quad \epsilon=\frac{2 \pi \tau \sqrt{V_{1} V_{2}}}{P Q}
\end{array}
$$

on the torus $T^{2}=[0,1] \times[0,1]$ with $x=0,1$ identified and $y=0,1$ identified.

Kicked Harper map with $\alpha=2$ and $\epsilon=0.01$ (UL), $\epsilon=0.125$ (UR), $E=0.2(L L)$, and $E=5.0(L R)$.
Note PSF says $K(t)=\tau \sum_{-\infty}^{\infty} \delta(t-n \tau)=\sum_{-\infty}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right)$ and a kicked Hamiltonian may be written

$$
H(J, \phi, t)=\underbrace{H_{0}(J)+V(\phi)}_{\text {integrable }}+\underbrace{2 V(\phi) \sum_{m=1}^{\infty} \cos \left(\frac{2 \pi m t}{\tau}\right)}_{\text {resonances }}
$$

Poincaré-Birkhoff Theorem
Back to our perturbed twist map, \hat{T}_{ϵ} :

$$
\begin{aligned}
& \phi_{n+1}=\phi_{n}+2 \pi \alpha\left(J_{n+1}\right)+\epsilon f\left(\phi_{n}, J_{n+1}\right) \\
& J_{n+1}=J_{n}+\epsilon g\left(\phi_{n}, J_{n+1}\right)
\end{aligned}
$$

with

$$
\frac{\partial f}{\partial \phi_{n}}+\frac{\partial g}{\partial J_{n+1}}=0 \Rightarrow \hat{T}_{\epsilon} \text { canonical }
$$

For $\epsilon=0$, the map \hat{T}_{0} leaves J invariant, and thus maps circles to circles. If $\alpha(J) \notin \mathbb{Q}$, the images of the iterated map \hat{T}_{0} become dense on the circle. Suppose $\alpha(J)=\frac{r}{s} \in \mathbb{Q}$, and wolog assume $\alpha^{\prime}(J)>0$, so that on circles $J_{ \pm}=J \pm \Delta J$ we have $\alpha\left(J_{+}\right)>r / s$ and $\alpha\left(J_{-}\right)<r / s$. Under \hat{T}_{0}^{s}, all points on the circle $C=C(J)$ are fixed. The circle $C_{+}=C\left(J_{+}\right)$ rotates slightly counterclockwise while $C_{-}=C\left(J_{-}\right)$rotates slightly clockwise. Now consider the action of ${\hat{T_{\epsilon}}}^{s}$, assuming that $\epsilon \ll \Delta J / J$. Acting on C_{+}, the result is still a net counter clockwise shift plus a small radial component of $\theta(\epsilon)$. Similarly, C_{-}continues to rotate clockwise plus an $\theta(\epsilon)$ radial component. By the Intermediate Value Theorem, for each value of ϕ there is some point $J=J_{\epsilon}(\phi)$ where the angular shift vanishes. Thus, along the curve $J_{\epsilon}(\phi)$ the
action of \hat{T}_{ϵ}^{s} is purely radial. Next consider the curve $\tilde{J}_{\epsilon}(\phi)=\hat{T}_{\epsilon}^{s} J_{\epsilon}(\phi)$. Since \tilde{T}_{ϵ}^{s} is volume-preserving, these curves must intersect at an even number of points.

The situation is depicted in the above figure. The intersections of $J_{\epsilon}(\phi)$ and $\tilde{J}_{\epsilon}(\phi)$ are thus fixed points of the map $\hat{\mathcal{T}}_{\epsilon}^{s}$. We furthermore see that the intersection $J_{\epsilon}(\phi) \cap \tilde{J}_{\epsilon}(\phi)$ consists of an alternating sequence of elliptic and hyperbolic fixed points. This is the content of the PBT: a small perturbation of a resonant torus with $\alpha(J)=r / s$ results in an equal number of elliptic and hyperbolic fixed points for \hat{T}_{ϵ}^{s}. Since T_{ϵ} has period s acting on these fixed points, the number of EFFs and HFPS must be equal and a multiple of s. In the vicinity of each EFP, this structure repeats (see the figure below).

Self-similar structures in the iterated twist map.

Stable and unstable manifolds

Emanating from each HFP are stable and unstable manifolds:

$$
\begin{aligned}
& \vec{\varphi} \in \Sigma^{s}\left(\vec{\varphi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{n s} \vec{\varphi}=\vec{\varphi}^{*} \text { (flows to } \vec{\varphi}^{*} \text {) } \\
& \vec{\varphi} \in \Sigma^{u}\left(\vec{\varphi}^{*}\right) \Rightarrow \lim _{n \rightarrow \infty} \hat{T}_{\epsilon}^{-n s} \vec{\varphi}=\vec{\varphi}^{*} \text { (flows from } \vec{\varphi}^{*} \text {) }
\end{aligned}
$$

Note $\sum^{S}\left(\vec{\varphi}_{i}^{*}\right) \cap \sum^{S}\left(\vec{\varphi}_{j}^{*}\right)=\phi$ and $\sum^{U}\left(\vec{\varphi}_{i}^{*}\right) \cap \sum^{U}\left(\vec{\varphi}_{j}^{*}\right)=\phi$ for $i \neq j$ (no sis or U/U intersections). However, $\sum^{S}\left(\vec{\varphi}_{i}^{*}\right)$ and $\sum^{U}\left(\vec{\varphi}_{j}^{*}\right)$ can intersect. For $i=j$, this is called a homoclinic point. (On its way from $\vec{\varphi}_{j}^{*}$ to $\vec{\varphi}_{i}^{*}$.) For $i \neq j$, this is a heteroclinic point.

Homoclinic tangle for $x_{n+1}=y_{n}$ and $y_{n+1}=\left(a+b y_{n}^{2}\right) y_{n}-x_{n}$ with $a=2.693, b=-104.888$. Blue curve is the stable manifold. Red curve is the unstable manifold. HFP at $(0,0)$. The fact that neither red nor blue curve can self intersect requires them to become increasingly tortured.
But since \hat{T}_{ϵ}^{s} is continuous and invertible, its action on a homoclinic (heteroclinic) point will produce a new homoclinic (heteroclinic) point, ad infinitum! For homoclinic intersections, the result is Known as a homoclinic tangle.

- Maps in $d=1$: $x_{n+1}=f\left(x_{n}\right)$; fixed point $x^{*}=f\left(x^{*}\right)$ If $x=x^{*}+u$, then $u_{n+1}=f^{\prime}\left(x^{*}\right) u_{n}+\theta\left(u^{2}\right)$ $F P$ is stable if $\left|f^{\prime}\left(x^{*}\right)\right|<1$, unstable if $\left.\left|f^{\prime}\left(x^{*}\right)\right|\right\rangle 1$.

 Cobweb ${ }^{x}$ digger am for $f(x)=r x(1-x)$
 Fixed points and cycles for $f(x)=r x(1-x)$

