
200 A Lecture 1
-

U = U, V = Uz o (Xz , Yz )Snell 's law : qµy•

(x, , Y , )
X --o

Tty ) = at
,

Ixftly-yTt-tzlxitlya-yT.AT
y z -y

dye
= tf

,

Y-# - Lu
,

-_- = O

✓x.'t ly -y ,5 Jx Et Iya-y)
2

= single - SMI = OU2

Thus with Vj = clnj we have n
,
Sino, = hasin Oz

Now consider a sequence of slabs with differing Vj .
We must have

sing = sina.it sin9 =P -
- constant

we 'll see that P corresponds to conserved momentum in
mechanics

.
Note that

sin 01×1 = -9¥ = Pulx )

which yields ditty'HD2

y
'
= ⇒ ylxt-ylx.it/dsPIVl-P2u4s)



Ex = .tn#.-Iiisiis* -
= ( y " - tf titty 's ') y ' ) = 0

Thus
,

Hyy2) 312

y
"
- Hn ul

' II t ly 't
') y
'
= 0

Of course this may be integrated once to yield
y
'txt
-_ = Pvlx )
fitly'txD

'

Functional calculus
-

• Functions : eat numbers
,
excrete numbers

C. g ,
f : 1B → 1B ,

- fix) = - 12×2 t 14×4
extremization : demand df = 0 to lowest order in dx

f-txt d x ) = flxty t f
'txt ) DX t- 'z f

"

lxtyldxl
'
t . . .

-
df

Thus , df -- O in dx -so limit says f
'

4*1=0 , i. e . if fYx*)=O

then Xt is an extreme um .
To second order

,

f
"

I# I > o ⇒ minimum ,
f-
"

txt) co ⇒ maximum ,

f-
' '1×4=0 ⇒ inflection



T

Multi variable touchons : fy×I÷×n , t :B
"
→ IR

fix*tax ) -- fifty +¥, ftp./,d*xjt'zf!E!F#o*n4d*xidxkt . . .

Extremism ⇒ ftp./E*otj--¥ . - i

,
n

Hessian matrix : Hjn = ¥⇒ , * real
, symmetric

eigenvalues of H : X
, 7×27 - - - 7 Xu

AH X ; so ⇒ It local minimum

All Xj co ⇒ It local maximum

Some positive , some negative eigenvalues ⇒ x'* inflection pt

. Functionals : functionals eat functions , excrete numbers

Typically , functionals are integrals , e.g .
R

Flynn) = dxltzkfddt ) ' t '

zay 't I, by
" )

L

consider a class of functionals of the form
'R

Fly HD = Id x Ll y , y ' , x )
XL

where Lly ,y ' , x ) is a specified function of three variables, e.g .

L = 's k ly 't
'
t 's

. ay 't 's, by "
Note this class may be extended to

R

Glylxl ) =!×dx Lly,y ',y ", x)
-

Etc
.



We now compute the functional variation by computing
SF = Fly lxltsylxl) - FlyIxD

R
l

=!
"

d x(L ly 't Syl, ytsy, x ) - ugly, x))
L

R

=!"dx 10¥, Sy 't fly 8g t . . . ) Sy '
-

- off, Sy
XR

=! dx ⇐ 1%91+13 - ¥13.1191
Xp

= Egilxsylxri -
'

Els.sk#dxlE-adzlff.Hb
R

X
L L

Suppose ylxl is fixed at the endpoints , in which case
Sylxd -

- Syl = 0

Then since Sylxl elsewhere on lxc , xx ) is arbitrary ,
we conclude that

III. -

-¥ - add Dio t xelxnxrl
Since L -

- L (y
'

, y, x ) , the above equation is a
second order ODE

,
known as the Euler-Lagrange

equation . NB : If ylxa, r ) are not fixed , then we
also require

Eyal ×
.

0 as well as Iz - da, I it -- o

in order that SF = O .



Graphical representation : Ffylxs ) = F

F-fylxltsylxl) -- FtSF

⇒"x , ×%xsrs=o
XL : I XR
' i ! !
'

,

'

,

i i

i . i :
i i ! :

The variation 8g txt resembles the following
1 ,

'
l

l
,

l
l

' Sy ,

'
.

I ,
l l

l
, I '¥#- x

I

Sffylxl ) = Ffylxttfylxl) - Flytxt )

Sy
'
= da, Sy = S dat , i. e . 18 , d ) -- O

Easy '
-

- F. Itsy -

- III# sgt - ¥13.15
Ix Ey , : Ex -- ¥ ty "# ty '}



We now consider two important special cases :

① Ey -

- O
,
i - e .

L ly ,y ', x) independent ofg
Then EL eqn says ¥1 - ¥×(ftp./-- 0 ,
which may be integrated once to yield ¥,

=P
,

where P -

- constant. This is then a first order

ODE in ylxt . Example : L -
- ÷, titty .

Then

1 momentum
p = 3¥ = If = - conservation

utility 'T Vo ( in mechanics )
⇒ ¥

,
=
-_= with Vo = YPIvf - 04×1

② 3¥ = O , i - e . Uy ,y ', x) independent of ×

Define HE y
' II, - L . Then energy conservation

9¥ = (y '¥, -4
( i. mechanics I

-71¥
-

y 'a¥l¥t¥-Fi - 3¥
{ Fx (¥) - §) = 0 it EL satisfied

Thus
, ¥, = o ⇒ dat, = o ⇒ H is constant

y
'FYI, - L = H again a first order ODE



③ If Lly ,y
'

, x ) = holy ,y ', x ) t off, Bly , x ) , then
Fight ) -

-

×
!"d"x holy ,y ', x ) t Dlylxrhxr) - blylxchxc )

If Sylx . . . ) = 0 (fixed endpoints ) , then the D
term makes no contribution to the EL egns , which

are then

0¥ - ¥13 I -- o
• Functional Taylor series :

Flytsy ) = Fly ) t!d% K , lxilsylx. )
+ IT

.
!!drx ,#

'

xikzlxnxzlsylxilsylxz )

+ Rx! :{of Kix . , xuxs.by/xil8ylxzl8ylxd-tOlsy4)
Thus

,

8nF
- = nth functionalknlx . , . - c

,
Xn) = gy¥.SyTxn ) derivative

• Examples : §3.3 in the lecture notes

) READ !
• More on functionals : § 3.4



Mechanics Lecture 2 loot 71
-
-

Hamilton 's principle : 85=0 where

sloth ) =!!'d't Llq , of .tl = action functional

with q
-

- { oh , . .
.,qn ) = set of generalized coordinates

The functors LIE , I , t) is the Lagrangian , and is

given by L -

- T - U
,
where T -

- kinetic energy and

U ⇐ potential energy . Typically T -

- Tig ,oil is a

quadratic form in the generalized velocities of ,
i. e . TIG , 911 = Too ,Cal g.oaqo .

.
For example

T -

- Imi ' = 'zmliity 't 't
' ) Cartesian lay,H

• 2

=
'
z m (i 't r

'O'' tryino ¢ ) poles
(r
, 0,4 )

The potential energy U is most often a function of q ,
but U -

- UH, oil applies, e.g. , for charged particles in
a magnetic field , where ←

scalar potential

VII. it = qotlxl - of Ice , .

DI
dt

← charge T vector potential
Free particle ⇒ L -- Imf ' ( § 3.6.31

• NB : In general L = Too . lot .tl, tooo .
- Ulf , I , t )



Equations of motion : Iof f¥ -

- generalizedfaceoff(3¥ ) = I , oeh , . . . , n } y → 9- o
2 Go y

'
→ go

w

Po = ¥go= generalized momentum
Thus

, Bo = Fo , ice . Newton 's second law .

• Conservation laws :

Most general setting : to be discussed (Noether 's theorem )
For now ,

recall results from COV :

① 3¥ -

- O ⇒ po = Eq, = constant (par -- o)
Momentum pot is conserved because the force Eo = 0

Example : T = Im l t 'y ' t 't
')

,
U -

- mg t

⇒ Fx = 3¥ = O
, Fy = g = O

p x -- mi ⇒ x Itt = x lol t Ff t
Py

-

- my
.

⇒ y Itt = ylol t t

angular pz = MI
, Fz = - 3¥ = - mg

momentum
barrier ME = - mg ⇒

2- It ) = 2- lol t Ilo ) t - Igt
'

" "H
Example ' : L -- tzm lip 't p

' Ii ) - Ulp ) KD polar)

°¥¥l2mp' Pol
-

- 3¥ = my
- I = angular momentum = e

O p equi nip = my ill - U'Ipl =mpIz - U'4) = - Vettel
Uefflp) =2f÷zt Ulp)



Scratch

L -

- Im lip 't p ' Il) - Ulp )

Pol = 3¥ = mpig = e

IMPORTANT : can substitute if =÷ in

Egas of motion but not in Lagrangian itself !
WRONG : L =

'

z mp
'

t
'

zmp
- 42 - Ulp )

=

'

z mi 't
'

z nip4¥12 - Ulp )

=

'
z mi
'
t zn÷ - Ulp )

¥13.1 -- mii -- ⇒ = - meet. - u 'let[
wrong sign !

RIGHT : L -

- tamp ' t Imp
' Ii -- Ulp )

Pol = 0¥ = nip it = A constant (pj = o )

ft Ep) -- nip -- ¥ = me I
'
- U 'm

= my
'

- U
'

le)

= t.mg - U
'

Ipl = - ¥41
right sign !



② 3¥ = O ⇒ H = ago
. 3¥ - L = Ito Po - L conserved

← implied summation on

See it again : repeated indices

Gtf -

- Epo tools -¥÷Io - EEE - II
thus

, :# = - 3¥ , and so. ¥=¥o9÷:÷¥÷d'
L -

-I, '

z
m
;
i} - Uli . . . . . . In )

we have that H =!f
,
Imjij' t VII. , . . ., In )

is a constant of the motion .

• In general , H -

- go Po - L (of , I , t) is a Legendre
transform of L :

DH -

- proto t god Po - f¥dGo - go - f¥dt
and hence H -- HIq ,p, t) with

3¥ = - II. = - Fr . 3¥ -

- air , IFT -- 3¥ -- -Et
We then have Hamilton's equations of motion :

go -

- III. , pro = - III ⇒ I -- Ip IFT
J -- Ka 's ) ,

3=195 )



-

Procedure
-

lit choose a set of generalized coordinates
liil Find. KE TIgig , t ) and PE Ulot .tl or Ulf, I , t )
and thus the Lagrangian LIFE ,

t ) -- T - U .

( iii ) Find the canonical momenta por = gtfo and the generalized
forces Fo -- 3¥ . ↳ po

-

- polat , E , t )

(i v ) Identify any conserved quantities (later : Noether 's thin)

( v1 Evaluate pro (carefully ! ) and write po -- Fo
Ivi l Integrate the equations of motion to get {Gott) ) ,

the motion of the system .
2n constants of integration
{ 9- o lol ,

'

9-old )

§ 3.8 : Cartesian
, cylindrical , and polar coordinates

553.10 : Examples
¥3 -

10.4 : Pendulum attached to mass on a spring
center
of- block coordinates of mass m : (x . ,Yi )

k
(at X , O)

y
-

-µmziDy x , = at X tlsino , y, = - loos O

T -

- tank 't 'zmliityil
←
a+×→!m = IlMtm ) i 't 's me

"

O ' tmlcosoxo

(kill U =
'zkx't mgy ,

a -- unstretched lengthof spring =
'zkx
'
- Mgl cos O



Lagrangian "

L = T - U

=
'
z (Mtm ) i

'
t t me

'b'+mecos 050 -Ik x 't Mgl cos 0

Generalized momenta :
• p ×

-

- 3¥ = (Mtm ) i t me cos 08

•

Po = Itf = ml cos O i t me 20

Generalized forces :
• F-

×
= 2¥ = - k x

• Fo -

- Zo = -mesince x. O -mgl sin 0

Equations of motion :

• p' × = Fx ⇒ (Mtm ) i t mlcos O b - me sin 0092 = - k ×

• Do = Fo ⇒ me cosOi +me
'it -m.es#b
= - M¥50 - Mgl sin 0

Conserved quantities :

Only H = I pxt Opp - L
-

- flMtm ) I ' +me cos058) t fml cos 050 +me282)
-

'

z lMtm ) I -
'
z me

'

O ' - me cos O IO t tzkx
'
-mgkosO

-

- tfMtm ) in 't £ me 'd? t ml cosO KO t
'zhx

'
-mgl cosO

= Tt U = E



Small oscillations : linear ite the equations of motion

• (Mtm ) i t mlas O b - me sin 082 = - k x

• mlcosoi +me
'it = - mgl sin O

• (Mtm )
"

x + ml = - k x expand about x -- 0=0
⇒

. It e E = - go
( assume x. oixio small )

The fire parameters (M , m , l , k , g ) may be reduced to
three :

u =
. Ie ,

a = F ,
wi = Ya ,

wi = I
Then we have

• ( Ita ) ii tab two u = 0
. iit it wi 0=0

This linear system may be solved by writing

to:D
.

-

- Ho: ) e - int ÷. → - w
.

\ I

⇒ two: ' ' w
'

I :i=o
A nontrivial sole requires thatthe determinant vanish :

W
"
- two t lit a) wi ) w' two wi = O
-

WI = 'zfwitlltalwi ) ± '

z Ilwi - litalw,') 't 4awfwi



There are two eigenvalues for w
'
, given by
-

WE =
'zfwo' tht al wi ) ± '

z flwi - fit-alwit 't 4aw;wi
The general so I = is then

( III; ) -- re e
- int

+ ( no:) e- int)
where
[ solution must be real

normal modes
-

two: ' ' w:
i
.

= o voi e - in± I
2 U

,

This fixes the ratios UI = ft - 1) e IR µ;)
""? '

OE wt un In ,

thus
, we are

free to choose OE
,
which are two

Complexe constants ⇒ four real parameters .

We fix them via the initial conditions ,

1644 ) and I foot ) ⇒ four real pieces of initial data

Here we have used the fact that it (f: ) e- iwt is a so I ',
then so is ( Ufo ) eti wt . In this sense , we might speak of
tour eigenfrequencies ( w+ ,

w
-

,
- w

+ ,
- w) of which

two are positive and two are negative .



Scratch
U ( x ) =

'

zhx
'

t b x 4

1- lil = fm

L = '
z
mid - thx ' - f b x

"

mi = - hx -BY

Eqbm @ x -- o , I = O

'

xp ¥
.

I;

expand about x -

- x; (Sol
"

to 04×4=0 )

⇒ x = t Sx

⇒ msii = - U 't I Sx
-

Wj = Iu "(x't Ilm

U U
U
"

small U
"

big
W;
small w big



Virial Theorem
-

- formula describing time -averaged motion of a
mechanical system

Define the virial GIG ,p ) = { go Po , for which
2Ldate = Elio pot Poo 9-ol -- Elio Egr + Go⇒

Suppose T = I Too , (f) go-go , is homogeneous ot
degree k -- 2 in the generalized velocities , and

'

that

20/2
'

go -- O . Then

{ Eof¥ -

- E Ir III = 2T
Now consider the timeaverage of G. over lo , e ) :

( DI > =

'

z f'd t doff = GHICdt t

If G is bounded , then we have l Cif -so as c-→ a .

This is the case for any bounded motors , such as

planetary orbits . In such cases, dim " of space
n f

21T ) = - c E fo Fo ) n -- d -N
0=1

N
= c f.Yi .#juhi , . . . , Int > = k su >

if Vfx . . . . . ,
Int homogeneous of degree k in lxj } .



Scratch

Euler 's thin for homogeneous functions :

f- (Xi
, .

. . , xn ) homogeneous of degree k if

f-(xx , , . . .,
xxn ) = Xk f-(x , ,

.
. .

,
xn )

examples G

flx.ly/--x5tax'4y t b ÷ he -- 5

TIE . .
. - gain ) =

'

z Too , (f) ifogo . k=2

- ⇒ af!,xx , ,
.
. - ,
X Xa ) = x. 3¥

,

t ' -
- tXn¥x

,

= IT
,

)
,

this . .

> xul

= teth - 'Hx . , .
. .,xu ) )

.

'

. ;÷XiI¥=kf
" '

y
6

Check : (xtyf-yllx5tax4ytb-l-x-5x.4tx-4axsy-x.BY#ty.0ty.ax4ty.6bYI
=5x5t5ax4yt5bY¥ =5/x5tax4ytb )



Since TTU = E is conserved
,
we have

<T ) = YET ,
so > =
2
Let 2

Application : Keplerian orbits , k = - I
< T ) = - E

,
C U > = 2 E j

E C O

Note then that a satellite losing energy due to frictional
losses as it enters the atmosphere must increase 'ts.
-

kinetic energy , i.e .
it moves faster ! (think also

about angular momentum conservation . )

Noether 's Theorem Lecture 3 (Oct .
12 )

-
-

"

To each independent, continuous one -parameter family
of coordinate transformations which leave L invariant

there corresponds an associated conserved charge
"

--
.

IIn fact
,
we only need require S is in variant . See

¥312.4 of the notes . )

Proofs. Let go → Eto Iq , 3) be our one-parameter

family of transformations with continuous parameter 3,
and with Iola , 3--01 = Go to .

Invariance of L ⇒

Ish! Eiti -- FIFTH.FI?IIst.s=oncconserred- charge)

= :*:÷t¥÷¥¥t¥h÷¥E¥¥:O
← evaluate along motion of system



Thus
,
A -

- I
,
ftp.39-T/s==ooEpoIEFls..ios conserved !

Examples
• L = tzmx ' ttzmy ' - U ly) . Then let

Ilx
, y , 3) = Xt 's

Ttx , y, 3) = y } ⇒
5=5

I -- y
'

clearly off Ltxiy , i. it = O , and the
associated conserved charge is

^=I÷Est⇐oE÷3sIh⇒=E -
- Px

i. e . px -- mi is a
"constant of the motion

"

.

• L -- Emil 't tzmy ' - U(Vx2tyT ) Y

= tmlpztp.de ) - up ,
cast.

Define g- Ip , 4,31 =p
ftp./o,3)=o/t3

Again 014013=0 and we have

a- F. Est , Faith.
= pg = Mpi (angular momentum conserved)



In Cartesian coordinates
,
this invariance is expressed as

I 13 ) =
. x cos3 - ysin 3

513 ) ⇐ xsins +yes 3 ) 3¥
= -E , = tx

n .- E. Est
, Esko

= mil- y )tmyftxl-mlxy-yxl-I.pxfmipl-mp2.to=p¢

The Hamiltonian
-

Recall Hftp.t/--Epogo - L .
We showed earlier that

DH = § (goodPo - Bodger) - ft dt

and therefore

9- o = ftp.T , Do = - 3¥
,

Hamilton's ears )

as well as

III. = If = - Ft
• For L -- Imi '- U txt , p=mI and H = LIM t Ulx )
. Read 0883.12.4

,
3.13 . 2

If infinitesimal transformation 8T = A lot it 183
, Goto -- Boff ,t) 83

leaves action # Id 't LIE , E.tt invariant , then

A = - Hla ,pitt Ala.tl t por Bolg , t) is conserved.



Example : Bead on a rotating hoop

¥÷÷÷÷÷÷÷÷:÷:÷:
"

'÷÷÷.
= I ma 2/02thisin 20)

U = mga ( t - cos O )

Thus
, po = 2¥ = ma 20 and

H = Epo - L

= Ima282- tzmaw'sin'Ot mga (t - cos O)
NB : H t Tt U because T not homogeneous of

degree 2 in b
.

Now we express HCO ,Po ) :

H =
POI '

z
mawsin 20 tmgall - cos O )

Lma
2
-

= Po
'

II t Vest lol
where I = ma ' = moment of inertia ,

and

Vest 101 = - I ma'w's in 'Otmga ( t- cos O )



Hamilton 's equations of motion are

ie -- 3¥. -- II , pro -- - Itf = - Foot
Thus

to = -
Nett

⇒ ⑥ = - ¥ 04ft = - n'10120 20

Define Wo I (g la )
"'
so

Uettlol
4101 =
In

= ( t - cos O ) Wf - '
z
sin 20 WZ

Equilibrium is achieved when U
'101=0 :

U
' IO ) = wf sin O -- w's inO cos 0

With solutions

£-0
,
Ot -- IT

,
Ot -
- + cos

- ' (Wwi ) , o*= - cos
-' (Yoda)

= ± Ow (if w ' > Wf )
To assess stability , write 0=0*+80 ,

and
⑧

88 = - u
" 10*1.80 IT

stable ⇒ u
" 10*170

no , futon
-- -

-

Ot unstable ⇒ u
" 10*1 s O o

U
" lol = Wot cos O - W ' cos 120 )

= fwwi.FI,
at o

*
= o stable for wk we

at Ot
'

- always unstableable for w '>wfwz - wig at o*=±Ow ( w 's Wo? )



Charged particle in EM fields
#charge ,
Potential energy : UH

,
it = goth.H - I ACI.tl . it

kinetic energy : Ttx ) = ME 2 as usual

EM potentials : scalar of TE, t) and vector ATEit 1
EM fields :

E = - Jol - E ,
E -- Ext

Thus the Lagrangian is

Ltxixitt = '

z mi
?
- goth.tl t I III.H - i

canonical momentum : § = f¥ = mist FIVE , t )
NB : the dynamical momentum is mi =p - f- I
let 's find the Hamiltonian HII, 5, t ) :

HII
, fit ) =p .

i
- L

=

'

Im t EA . it - Itami
'
-gift II. it

= I mi ' t of ¢

Thus
, Htxp ,

t ) -= Im (p - Eth ,t II t goth , t )
If 3¥ = O and If = 0 then ddttt = - 8¥ = O
and HII HI , BHI ) is a constant of the motion .



Equations of motion : recall L =L mi '- get t ft E. E
EL eqns : Itff.IT/--ffyfttfmiMtfA4--miiatEfIxBi- EFF
¥. = - g- II. + III. is
→Thus

,
-

µ
mint III. niet EFF = - g. ftp.i-EIAI.ee
mii . = - sf¥. - ETE - EEE. - III. lie

Now Bt = fury 2µA
'

,
so

C-
ypg

B
'
= taps Emus 3nA

"

= ( Sqn Spr - Sau 8pm ) 9nA
"

p a

and we have

= 8¥ - Ift

m
'

x' a = - q3¥e - IFI t ftp.xBB
or in vector form

,

mi = - q Flo - E 3¥ + Fix Is

= q Et Ici x B (Lorentz force law)



-

Hamilton 's equations of motion :

HII
, F, t ) = Im 15 - E IT t got

• in = 3¥. =
'

a Ipa - EA' )
• pa gtfo = -HpB- EA'll- E III ) - 9- 3¥
Thus

,

mid =p
a
- Ea Afm

in

-

p a =# (p B - IAP ) FIT - g- Iff.
Take the time derivative of the first equation :

mix = pain - ¥DIdt
= # x' off. - a. 3¥ ) . # Fine - ETH
-

- al-3¥. - E 3¥It at ie ( 3¥. - TEH
⇒ m = QE t Eci x B
Again , we obtain the Lorentz force law .



Fast Perturbations : Rapidly Oscillating fields
a-

Consider an oscillating force Flt) = Fosmut . Newton 's 2nd
law then says moi = f-sina.it , the solution of which is

g-HI = ahtbt - w2Esinwt #
9-htt t of ; Ctl 9-ht Gi

(homogeneous ) ( inhomogeneous )

Note that gift I a w
- Z is very small as w → a .

Now consider the time - dependent Hamiltonian
~

H lot , p , t ) = Holy,p, t) t Vlqlcoslwtl
~

The external force is then Flq , t) = - V
'

loft cos lwt ) .
We now separate the motion {qttl , pH} into slow

components {Q Itt , PHIL and fast components {Htt , Tilt)) :
HI = Q Itt t 3ft ) n

¥HI = PHI + aft, H -

- HYQH
,
Pt- Ti ) thots) cos lwt)

We further assume that 3 and Tl are small
,
and

we expand in these quantities :

oi * i -- 3¥ -

- FI + l3¥znt3H
+HIFIn'tiffins't f¥¥5It . . .

HotQt 5
,
Piti ) -- Hot data 3 t Tt 's s 't

. . .



is tri -- - Foi -

- - II -E¥st3I÷ntHI5
N ~

+ 2f÷HIp3nt3÷I¥H) - IoTcoshtt - 3¥ 3coshtt t . . .

We can pick out from these equations the fast dynamics :

j = Hopp 3 t Hip T t . .
.

it = - Hoo
, o,
3 - Hopp Ti - The cos lwt ) t . .

.

where H ooo
,

= % , Hoop = Ifip ,
etc .

We have ignored
" terms oscillating with frequencies

near 0
,
2W ,

3W
,
etc .

The slow dynamics are
obtained by averaging over the fast dynamics, viz .

I = Hop t LH. Yeapl 32> t Hoappl 3T 7 tLHYopp# s t . .. .

I = - Hoa - '

z Hoo, @as 32 > - Hoo, ape 3h > -¥ Hooppath >
~

- Vo
, o,
23 coslwtt ) t . . .

We solve the fast dynamics by writing To, cos lwt ) -- Reto, e- int
Htt = Re Soe

- int
,
tilt I = Re to e

-iwt and inverting

tea:i÷: . :÷::in:it:*



We obtain

3ft ) = w
- '

Hopp tacoswt t Olu - 41
- -

Tilt. ) = - w - 2 Hoop Vo
,
coswt - w

- '

Voisin wt t 01W
- 3)

Now we average , using Ceos
'wt ) = csinzwt > =

'

z

and c cos wt sin wt ) = O . We obtain

~ 2 o -2

( 34A > =
'

z w
-4 (Hopp Val t . . . ISHII Itt > = I w-"ftp.I?!aVq
~ 2 ~

in4th =
'

z w
- '

Vo
,
t

'
zu
-4 Itt p Va )

'

t
. . .

<Htt cos wt I = I w -
'

Hip VI t . . .

Plugging into the slow equations for Oi and Is
,
we have

Q = Hop t '

q w
"

Hopp,, VOY t
~

I - 2
~ n

is = - Hoo
,

-

'

g w
- ' Hoapp Voi -

"

w H:p the Vaa t . . .
which may be written as

Q -

- Ep ,
is = - Ea

where the effective Hamiltonian is
n

KI Q
,
Pl = Hola

,
Plt pie }t (Iff ) 't Otw"'t



Example : pendulum with oscillating support
coordinates of mass m :

X = l sin O q Tatti
-
- a sinwt

y = a Itt - l cos O !
- l

• ix.y ,The Lagrangian is t

L -- I me ' O'Ztmlgtiill cos O t ¥ GIO ,
t ) 9
we may

From this
, we obtain the Hamiltonian

← ignore this

H =
Pb
Imp

- rage cosO -ml
'

a' cos 0

With a Itt -- aosinwt , the perturbing potential is

T' lol = mlao whoso
we write O = ①+3

, po = Ltt
and compute kto , L ) :

Kl④
,
Ll = ÷p -mgl cos t 'q mat w'sinto

Thus
,
the effective potential is

Veffl I = Mgl Vtol , Uto) = - cos t E sin
'

i c tveff '
④c

' .

iii. ::-O :'t::i:S::*..
r > l : ④ = O

,
IT stable

,
I constable



Lecture 4 loot. 14 )
-

Today 's lecture is about constraints . Examples :
I

÷.. a

constraint : r=L IE

T -- Im timid ) " '
no slip

" condition : RO
,

-

-

- ahh-O
, )

=
'

z me
' O '

⇒ Oz = ( It Ea ) O ,

In these cases the constraint equations may easily be
solved exactly and the number of generalized
coordinates thereby reduced : Ir

,
o) lot , lo . ,

Oz 's → (O, }
In other cases the constraint equations are nonlinear
or differential and they can't by solved to eliminate
redundant degrees of freedom .

Constrained extremization of functions : Lagrange multipliers-
Task : extremite FIX , ,

. .
.

,
Xnl subject to k constraints

of the form Gj ( Xi , . . . , xn ) = 0 with je th . . .

.
h ) . We want

to find solutions It such that JFC I is linearly
dependent on the k vectors 15Gjlxty } .



That is
'

je +§, Gj① = 0 (n equations)

where the ltj ) are all real. This means that

any displacement di relative to It would result
in a violation of one or more of the constraint

equations . Eqn. . ① provides n equations for the

lntkl quantities l X , , . . . ,
Xu ; X . .

. . . , Xu) . The remaining
k equations are the constraints Gjlxr, . . ,xn ) = O .

Equivalently , construct the function

F- * (x . . . . .,
Xu; X. , . - - , Xu ) = FIX , , . . ., xn ) t j¥Xj Gjlx .

,
. . ; xn )

and freely extreme ite Ft over all its variables :

de
't
= III. t x; 3¥ ) dxotj.EC; del; = 0

This results in the (nth ) equations

II. to.¥Xj3 = O lo -

- i
. . . ..nl

←
G -- O

Gi = O (j - t
, . . . ,

k )

""
'
"e'a'ni: sent:c:::&

.
.

.
.

If along but in general these soft will
this vector Glx,yI=O not satisfy Gjlx ) -- O t j



Example-
Extremist the volume of a cylinder of height h
and radius a subject to the constraint

Gla , h ) = 2ha th - l -- O (b , l fixed)

Thus
, we

define

✓Ha
,hit ) = tah t x (2Tat HI - l )

out
① Ja

= 2T, ahn t 21T X = O

② 3¥ -

- ma
'
+ z×h=o

h

Lee

③ = 2ha th - l = O V=Ta2h

Thus ① gives X = - ah
,
whence ② yields

Ma
'
- Fah

'
= o ⇒ a =¥yh2

Finally , ③ gives

4g h 't ht = l ⇒ h = III
and therefore a = 2¥ and a = - b'"l"

Thus
, the extremal volume is

✓
*
= Toth = SITE

,

b'121512



Constraints and variational calculus
-

Consider the following class of functionals :

FfytxD=!"dx 45,5 ', x )
Here ujlxl may stand for a vector of functions {yo Cx) } .

We consider two classes of constraints :

① Integral constraints : these are of the form

×!"£x Njly , I
'
,
x ) = Cj , je Il , . . . , k }

② Holonomic constraints : these take the form

Gjly, x ) = O on x E (Xi
, Xr )

Integral constraints-
Here we introduce a separate multiplier Xj
for each integral constraint . That is , we
extremist the extended functional

¥1541 ; II x 45.5 ',xlt-fpjf.dk/Vjc5.y;xl---f!rdxEly-i5ix;Il
¥15,5 ! x ; It =L 15.5 's x ) t-§Xj Nj 15,5

'

,
x)



This results in the following set of equations :

÷ . :#⇒ + E. xit÷. . no
OE { Is . . .

,
n }

XR

Jdx Njlyy ', x ) = Cj
Xu

j E { I , . . ., h )

Note that n of these are second order ODES .

We have assumed that cjcxc ) and cjlxr ) are fixed .

Holonomicc.ms/raintsNowextremizeFfjlxD--f!dRxLly.y '
,
x )

, GH -

- ly , HI , . . . , ynlx ))

subject to the k conditions
Gjlylx) , x ) = O , je l l, . . . , k )

Again , construct the extended functional it 5
'

,
x; It
-

F-
*

Light , IfxD = !!"dx ( Ltyiy ' , x) tf, tj Gjly , x ) )
and freely extremist Wrt the Intel functions

{yilxl , . . . ,yu (x ) ; 4,1×1 , . . .

, XuHtt



This results in n second order ODES plus K

algebraic constraints :

¥12,11 - Fo -

- E. x;39j ,
area . . . ..nl

Gj = O , je ft , . . . , k )

Each of these equations holds for all x Elk ,
Xr ) .

Examples
① hanging rope of fixed length

Y
'

The potential energy functional is
¥!

.

UlylxD -- pg#Rds y ; ds=Idx2tdyT
= IltIy#DXThe length is xr

"R
-2

Clylxl ) -- Jds = fdx / It ly 's
XL XL

Thus we form Ely , y ' , x ; H
-

Utfylxl , x) =×{fix Iggy txt ditty's
since 22*121=0 , the

"

Hamiltonian" is conserved :

H -- y
' Tty. - E = -Ej = constant



Thus
, -

dd¥ = I tf, Iggytxt- H
2

Integrate to get

ylxl = - ptg tfg cosh 19¥ (x -al )
where a is a constant of integration .

The constants X
,
H
,
and a are fixed by the

conditions ylxi ) = yr , ylxrl -- yr , and by
the fixed length constraint£ titty = C .

constraintsinlagrangianmecha.nl#
We write our system of constraints in differential form :

of El , . . . , n}o⇐
,

gjolq.tl d got hjhtitldt = O l

je Li . . . . ,k3
where q

-

- ( oh , . . . , Gn ) . If the partial derivatives

satisfy the conditions

%÷ .. 's÷. .az#- 3¥
then the k differentials may be integrated to yield
k holonomic constraints Gjlq , t ) = O , with

gjo = doggie
.

and h; = 3¥



One my then be able to eliminate redundant

degrees of freedom directly .
The action functional is

ScottD -

-fatdbt Hot , is it ) i Gotta ) -- Sqottb ) --O

Its variation is

ss-fatiie.EE#.-ItEzDsaoHI
Since the 187oft I } are no longer all independent,
we cannot infer that the term in curly brackets
vanishes for each o

.
What are the constraints

on the 18go Itt } ? Since they occur in zero time
we call them

"virtual displacements
"

,
and setting

St -- O we have the conditions

E.
,
girlotitisgrits . o t.ua#ifsotH

Now we may relax the constraint by introducing
k Lagrange multipliers Xjtt ) at each time, and write
"

I:( Ego - dat Eg.lt?EixjHlgjolotitf8otoHI=o
We may set each of the bracketed terms to zero .



Thus
,
we obtain a set of latte ) equations :

off (Igt ) - 3¥ = IE, xjltlgjolq.tt , oefh . . ..nl

- w-

Po Fo Qo = force of constraint

and

¥
,
gjola.tl Eto t.h.jlf.tl = O ,

jell, . . .,k}

• Please read § 3. 16.8 on constraints and conservation laws !

e×and*"

c:¥Ea,
constraints :

1) contact : r -- Rta

2) n slip : RO , = a 102-0, )-

g;o
-

- ( 'o Eta It staff '
,
h;
-

-
o

'I 'no
,

"
or

Lagrangian :

←
mass of rolling cylinder

L --T- U =L Mtr 't riot ) + t.IO} - Mgr cos O,
E- rotational inertia

91nF tgio , -0, tg, go, * h ,
= o

Ot rolling cylinder

-

Y all vanish i. e .
I = O → r = Rta



n =3 equations of motion :

r : off 1¥ ) - Er = Air-Mri, 'tMgcoso, = X ,
= Qr

O
,
: ddf (ft ) - ft, = Mri:O, t2Mrr0, -Mgr sin O , = Hata) -- Qo ,

y
Oz : off ( ftp.t.EE I

'

O'
z
= - Ha = QQ x.jo/g.tXa9zq ,

k -- 2 equations of constraint : Rta
✓ = Rta

contact : E = o

no slip : Rie
,
- a lo:-b, I = o ) integrate (02=4+710 ,

Now we have 5 equations in 5 unknowns {r, O . , Oz , it , ,til
we've already integrated the constraints so we may
eliminate r and Oz , yielding

-MIR ta) bi t Mgcoso, = X ,
M (Rta)' O, -Mg fatal Sino, = Xz (Rta )

I ( t t Eat it, = - Xza
we can read now read off the result Xz = - II (Ata ) it,
substituting this into the second of these equations gives

(Mt ¥11Rtat it - .MG/RtalsinO , = 0

Multiply this by O
,
and then integrate to obtain . . .

iii. =ddzltzo ? ) ,

'

o ,
since , = If I- cos oil



IM litM¥1 bit Iifa coso, = Ifat coso:
where we assume the upper cylinder is released
from rest (i - e . Oi -- O ) at O , = 0,0 . Finally , we
may use this to express OT in terms of Oi , and
stick the result into the first equation, resulting in

Qr = M¥ 43 txt cos 0 ,
- 2 cos0

, }
where a = I IM a2 is dimensionless

,
with a E fo

,
I ]

a = O : all mass of rolling cylinder at its center
x -

-
l : all mass of rolling cylinder at its edge

When Qr vanishes , the cylinders lose contact
(the normal force of the bottom cylinder on the
top one can only be positive ) . This happens for

of = cos
- ' (257¥) = detachment angle

Note OF is an increasing function of a, i. e . larger
rotational inertia I delays detachment . Physics here
is that kinetic energy gain is split between translational
and rotational motions .

Note also : O
, =/:#

"

(cosOi - cos at

dt = (RIGI)
'"die

.

→ integrate for O ,HI
✓Cos 0,0- cos O,



Lecture 5 (Oct . 191
-

Two body central force problem :

L -- T- U =

'

z
M
, -92 # tzmzrz ' - U ( tr ,

- Tal )

① Change to CM and relative coordinates :

I =

Mir
. tmzrz
-

M
, tmz

l
F = I

,
- Fz

Invert to obtain :

i. =Etm7÷mr ,
i
.

-

-
E - MILE →

substitute in Ltr
. Fair, "

decoupled
viii. i. Eh 'ziirttziur" - UH (Emma:&:&,where M -

- m
, tmz (total mass )

µ
= mmim.my ( reduced mass )

NB : m
,
um

,
⇒ µ = m

,
- Amit - - -

M
,
= My = M ⇒ gu = I m

② Integrate cm ears of motion :

oat Fi -- Epi ⇒ min -
- o

, F=f¥ --Mi -- const
R'Itt -- pilot t Ecole



<

⑤ Relative coordinate problem

↳et =
'

z pi
EZ - U ( r )

continuous rotational symmetry ⇒
I = T xp = µ × conserved

Since F. I = O
,
all motion Flt ) is confined

to the plane perpendicular to t . Choose
LD polar coordinates (r , do ) in this plane .

The relative coordinate Lagrangian is then

L rel. = {pili 't r2 ol
'

) - U (r )

since the coordinate do is cyclic , the angular
momentum l -- gurl if is conserved .

And since

242T = O , H = i.¥ + It 0¥ - L is conserved .

Find

H = E = Tt U = tapir 't {prig ' - Ucr )
= tzpir ' t Uefflr )

where

Uefflrl = I
2µm
t U (r )

we can now solve to obtain radial motion rft ) ,
and then obtain to by integrating To = e/µr4t ) .



Specifically , from Eru '
'

zgrift Ueffirl , we have
-

i -- II = ± If (E - Uetfkl ) ⇒

dt -- ± IF der
II:&:: -

- E-E-uff.am
Integrate to get th .

In principle this is possible .

This introduces a constant of integration ro = rIt -- o )
Next

,
with r Itt in hand , integrate

io=d¥=÷. ⇒ dot -- IIIa,
to get Htt .

This introduces a second constant, ¢o=¢lt=o) .
Now we have the complete motion of the system ,

{ rtt ) , loftt ) with four constants of integration : E
,
l
, ro , too .

Recall that the three - dimensional motion is confined to

a plane perpendicular to I , so its direction t
accounts for two additional constants of integration .

Overall
,
there are 12 such constants :

Ilo ) 1×3 )
,
Ilo ) 1×31

, Ere , , T (x 3) , ro ,
do

which is expected given too coupled second order

equations of motion for the six quantities 5 ,
Tz .



• Geometric equation of the orbit ④,_okThe 2nd order ODE for rtt ) is

µ =
- Offset = µl÷, - U 't ' t.io

Since l -- µr2dd¥ is conserved ,

¥=¥ :*
impossible !

Therefore

in # dad⇐Ehr -

- ta - uh
÷. :* . . I:#ii.÷. - in

⇒ 9¥. - Elif -- r + 'Item
where Fir) = - U 't ) is the radial force . Using
energy conservation , we can write

E = Izmir 't Uefflrl
= ftp.loffl?tUetfk1

to obtain
dr

dot -- ±¥i¥#u



It is sometimes convenient to write the equation
r
"
- Elr 't

' =M FH tr (r ' -7¥ etc .)

in terms of the variable s = Yr
.
Then

d 's
*
t s = -Iz Els - ' I

suppose for example that 441 = ro e
" ¢
,
i.e .

a

logarithmic spiral . Then Scott -- Soe
- Kol

,
and

(K 't t ) s = -F FIS
- ' )

S2

Fls - ' I = - fallen) S3 ⇐ Hr ) = -FI(K'ti ) ¥3
This corresponds to a potential U (r ) = - ÷ kid
with

* = fine - Y
"

Thus
,
the general shape of the orbit for l

"

# C > O is

a
,
b C- ID l spiral orbit for

2 real const.
rt 4) = aek÷-koT a -- o or b = 0

When pic > l
'

> O ,
let I = fl- Metz)

""

,
in which case

A- C- Cl t orbit is unbound, with
rich =-

t complex Aei Idf #*e-III 4101 = when

const . Kol = (nth)TI - arg A



• Almost circular orbits

A circular orbit rltl = ro requires U'efflro ) = O .

For a homogeneous attractive potential UH = k r "

with k > o
,
no
,
we have :

"" it:÷÷÷÷÷÷÷÷o
ro = (lyryuk )

For Uk ) = - k r- n with k > o
, n

> o
,
we have

u ""

STABLE UNSTABLE

Vet = fly - tf ,
U'est = -µ tnrkni

no = (nettle )
'kn - 21

If we write r -- rot y with 1h14 ro , then

µ "n= - Vetter.ly ⇒
'

n' = - way with w2=IfI



We can also use

1¥. - El:¥T=te÷FH tr
and linear ite in y

with re ro t y . This yields

n
" =4First ro)t4Me First " F'Kot - 1) y +044

= -MVet't tot-OTT
r- r
.

.

- yand hence

y
" loll = -pig lol )

with p
'
=3 - Me F'hot =3 - 44¥!

The solution is n
apo

7141 = no cos to - soil
- no #

peri
where yo and too set the initial conditions . Note that

4141 = + yo for of = Ion = 2nF '
n + So .

This is called

apoapsis (farthest point) . The condition forperiapsisidosestpoint) occurs for ¢ = dnt Tip
' '

. The difference,

Alo = low .
- Ion - 2T = 2h45 ' - t )

is the angle by which the apsides line . peri apsis and apoapsis )
pieces during each cycle . If Bol , the apsides- advance,
(come sooner ) while if Bd the apsides recede (later) .



If fo = Iq C- IQ is a rational number, then the

orbit is closed and will retrace itself every of
revolutions .

- Example : U Irl = - k r
- × with k so

,
n > o . Then

Veith = -¥, t ⇒ r
.
.

. ftp.j""
" '

at l X

we then have p
'
= 3 - odyhn.FI/ro=2 - d .

These

orbits are stable only for a<2 .

For a> 2 the

circular orbit is unstable and Htt either falls

to the force center or escapes to infinity . In
either case , for a> 2 the orbit is unbourid .

( r → a o- r→ o whence Pr-sa) . In order that

small perturbations about a stable orbit be
closed ,

we must have a = 2- (plot 12.
- Fun fact : If we consider nonlinear perturbations
of a circular orbit

, the only values of B which

yield a closed orbit are p' = 1 ( Kepler problem , 4=1)
and p

'
= 4 ( harmonic oscillator

,
a = - 2) . See § 14.7 .

I
.

- Rea 'd § 4.3 :
"

Precession in a Soluble Model
"

yz
F = - her + Era ⇒ r lol ) = ftp.o , p - ft t%)
⇐ it 2E%et¥ = eccentricity ,

E = energy (see Eg 4.31



• The Kepler Problem : Uk ) = - Kr
,
k -
- Gmm, = GMM

Effective potential and phase curves :

Uetf#
E --

'

zpir't Uefft )t¥.

÷
>

,iii. :*.. .

n.

From Ffr ) = - k r-2
,
we have

,
with 5- yr ,

s
"lol ) t s = - etfyz Ffs - 'I = Metz = const .

Thus , slot ) = taek - Coos lol - lool , i. e .

r lol ) = Feisal
with ro = ÷ and C- = Cro .

Since r (41=44+2tin) ,
the bound Kepler orbits (circles , ellipses) are closed .



- Laplace - Runge - Lenz vector

Define It = Tox I -guk F ( rn = II, = unit vector)
Then :

III. Exit EEE- sun. time
R

= - YI, xlpirxir ) - guk # t guk
interlude : oixlbxc ) -- Tota . it

,
te IIb

II. = - MI. Eth - i D-µhtmk -

- o

- I
ri

Thus
,
It is a conserved vector lying in the plane

of the motion
. If we assume apoapsis occurs at ¢ -- do ,

It . I = - Arcos ( ol - do ) = l '-gukr
all - E ')and rllol =µha÷¢IoI = ¥14451

where
c- =¥ ,

all - E 't =L
Hk

From I ' = 2µL
' (Et M2k÷ ) , we find

A = -2¥ ,
E 2=1 + LEI

guk 2



One can now show ( & 4.4.31 that Keplerian orbits
are conic sections .

--

a

rich = ,
a -- -EE ,

e'= it

Note E
'
> 0 since Eo = - 13¥ is the energy of

the (stable) circular orbit .

• circle : E = - M2÷z ,
E -- O , a = ,÷ = ro

• ellipse : - taek s E so ,
octal , semimajor

axis length a = -tf , semiminor b -- aIII
• parabola : E = O

,
E = I , all - E

') =
,

= ro

focus lies at force center

• hyperbola : E > 0
,
E > 1 , of = loot cos- '(yet ⇒ 441=0

Force center is closest (attractive ) or furthest

✓ -
(repulsive ) focus .

1-( A = l 12in (Et M¥2) = pike

peria

CA -- o for circles,

\ hyper parabola



• Period of bound Kepler orbits (circles, ellipses )
Since l --pride =2µ& ,

where DE = tzrldlo
is the differential area enclosed , the period is

I = Atf E = IMTIAZVitt
l=

Now E.
2
= 1+2El

'
area of ellipse/circle

guy
and a = - Eze ,

so eliminating E ⇒

E = - tea ⇒ I - E
'
-

-

K
pika

and we conclude I = 2T(µ a 31k )
'"
= 2h (a 31GM )

"Z

since. k -- Gm,Mz = GMM . Equivalently ,

off = ¥72 = const
.

For planets orbiting the sun , a¥ = (It 7÷4?÷=Gg?
Note mp/Mo. E 10-3 even for Jupiter.

• Escape velocity : threshold for energy is E
-
- O

E -

- O =

'ziuuesdrl - aim
-

⇒ Uesclr) = /2GMr
On earth 's surface , g = 9z?÷ ⇒ Vesa

, e-
= 12912T
= 11 . 2 km/s



• Satellites and spacecraft
Recall : I = (RE th P

"
(msee ME )

LEO =

"

Low Earth Orbit
"

( h LL RE = 6.37×10 'm )

so find I o
= 1.4 hr .

Problem : hay ! 2,00 km , ha = 7200 km ④^
-2 (Re thp t Re tha )

= 10071 km

Isat = (alRE ) "' . I
o
= 2.65 hr

• Read §§ 4.5 and 4 . 6

Lecture 6 (Oct . 21 )
-

• A rigid body is a collection of point particles whose
separations tri - Tj I are all fixed in magnitude . Six
independent coordinates are required to specify completely
the position and orientation of a rigid body .

For example ,
the location of the first particle (it is specified by Ti ,
which is three coordinates .

The second ljl is then specified

by a direction unit vector in :; , which requires two
additional coordinates (polar and azimuthal angle! . Finally,
a third particle , k , is then fixed by its angle relative
to the in ij axis .

Thus , six generalized coordinates in
all are required .



Usually , one specifics three CM coordinates E , and
three orientational coordinates (e.g . the Euler angles ) .
The equations of motion are then

I =?. mir: ,
I = E 't l external force )

[ = ?mirin; ,
I = Text (external torque )

• Inertia tensor

suppose a point within a rigid body is fixed .
This eliminates

the translational motion . If we measure distances
relative to this fixed point, then in an inertial frame ,

IF = hixr ; J -- angular velocity
The kinetic energy is then

T -- I ?mild )
'
-
-

'

z ? lhixrleluxril
=

'

z ? Milkier.? - II. Fit) =
'
z Iapwawp

where Iap is the inertia tensor
,

3×3 real →
Iap = Emil -48 - ri ri B ) Idiscrete )

symmetric = fddrcgirl ( f 's -Mr B) (continuous)matric ⇒ 6 Dof

Diagonal elements of Iap are moments of inertia , while
off -diagonal elements are products of inertia .



• Satellites and spacecraft
Recall : I = (RE th P

"
(msee ME )

LEO =

"

Low Earth Orbit
"

( h LL RE = 6.37×10 'm )

so find I o
= 1.4 hr .

Problem : hay ! 2,00 km , ha = 7200 km ④^
-2 (Re thp t Re tha )

= 10071 km

Isat = (alRE ) "' . I
o
= 2.65 hr

• Read §§ 4.5 and 4 . 6

Lecture 6 (Oct . 21 )
-

• A rigid body is a collection of point particles whose
separations tri - Tj I are all fixed in magnitude . Six
independent coordinates are required to specify completely
the position and orientation of a rigid body .

For example ,
the location of the first particle (it is specified by Ti ,
which is three coordinates .

The second ljl is then specified

by a direction unit vector in :; , which requires two
additional coordinates (polar and azimuthal angle! . Finally,
a third particle , k , is then fixed by its angle relative
to the in ij axis .

Thus , six generalized coordinates in
all are required .



Usually , one specifics three CM coordinates E , and
three orientational coordinates (e.g . the Euler angles ) .
The equations of motion are then

I =?. mir: ,
I = E 't l external force )

[ = ?mirin; ,
I = Text (external torque )

• Inertia tensor

suppose a point within a rigid body is fixed .
This eliminates

the translational motion . If we measure distances
relative to this fixed point, then in an inertial frame ,

IF = hixr ; J -- angular velocity
The kinetic energy is then

T -- I ?mild )
'
-
-

'

z ? lhixrleluxril
=

'

z ? Milkier.? - II. Fit) =
'
z Iapwawp

where Iap is the inertia tensor
,

3×3 real →
Iap = Emil -48 - ri ri B ) Idiscrete )

symmetric = fddrcgirl ( f 's -Mr B) (continuous)matric ⇒ 6 Dof

Diagonal elements of Iap are moments of inertia , while
off -diagonal elements are products of inertia .



• coordinate transformations

{ d. , Ez , I 31 = orthonormal basis ; Ea . Ep = Sap
Orthogonal basis transformation :

'

e'
a
= Rapier ; end . Ep = Ra, Rpv In . do = KTRK; Sap

µ
Let
'

A = A E
,
be a vector with A. the components .

Then

A- = A" e'
µ
= A" Rap 'da ⇒ A

'd
= Ra
,
AM
-

coordinate transformation

How does the inertia tensor transform ?

Itap -- fair 'p'(r 'll f '
'
g - ri ar 'B ]

= folk p liter
'8N - Ray rt Rpur

")
= Rape Ipv Rip , since p't 't =pHI

i. e . I
'
= RI is the transformation rule for rectors ,

and I ' = RIRT the rule for tensors . For scalars
,

s
'
= s

.
Note to is a rector

,
as is I

,
but

T =L wa Iap Wp is a scalar

Note : T
'
-

-

'

z Rijn W'p Iap Rtpv W'u =L win (Raa Iap Rtu)w!
=

'

z
w
'

,
I

'

,ur
W'u



- The case of no fixed point
If there is no fixed point , choose CM as instantaneous
origin for the body - fixed frame :

I =L ? Miri = fu fd3rpkIf
M = ?M ; = folkpH = total mass

Then

T -

- LM
2

tf Iap W"WP

La = Egpy 'MRBI t IapWP

• Parallel axis theorem

suppose we have Iap in a body - fixed frame .

Now shift the origin from 0 to I . A mass at

position Fi is located at
'

r
:
- It as a result. Thus ,

I toil = & Milli? - 2 I. Ii toil 8dB- tri - da ) Ir?-doll.
If I; in the original frame is Wrt the CM

,

then ? Miri = O , and we have

Iapld't = Iip t Mtd's - dad. B !

Since we are only translating the origin, the coordinate
axes remain parallel . Hence this result is known as the
parallel axis theorem .



Example : uniform cylinder of radius a , height L
x n

-€
.

With origin at CM , T2- z
'

i r

tf:* Ii:
: ': a:÷:::*. .

I : i
-

t =

'

zMal since M -- taLp

Iff
'I''It Displace origin to surface : d-= af

Distances ranges from o to so
,
with

a
'
= (so cosapt (so Sino - a)2
-

= Sf t al - 2asos in a ⇒ So -- Za Sind

Thus
,
I

'

zz =p L! a Ida's
" "

53
= Fay .

4a4 . of a sink
-

I
'
= Z MAZ 3h18

2- t

Using parallel axis theorem : OI = af

I '
zz

= Iff t m IoT
'
Stt - dtdt)

=
'

z Ma
'
t Ma
'
= Z Ma 2 V

No need for trigonometry or integration !
• Read & 8. 3.1 ( inertia. tensor for right triangle !



• Planar mass distributions :

If pH ,y , z ) = ok, y l 8ft ) , then I×z=Iyz=O
Furthermore

,

I
*

= fdxfdy ok ,y )yl
Iyy = fdxfdyolx ,yl x ' I = '

Ixy = - fdxfdyolxiytxy
and Izz = Ixx t Iyy . Only 3 parameters .

• Principal axes of inertia
In general , if you have a symmetric matrix and

you diagonalize it , good things will happen .
'

Recall that basis transformation e' '
a
= Rapier entails

the transformation rules for vectors and tensors,
I ' = RI

,
I

'

= RI RT

i. e . A
'd

= Rap AM ,
I :p = Rape Iµv RIP

Since I = IT is symmetric , we can find a new orthonormal
basis tent with respect to which I

'
is diagonal . Dropping

the primes , we have that in a diagonal basis ,
I = diag II , , I z , Iz ) , I = (I,wi i Iz Wiz , Is Ws )
T = I wa Iap up =

'
z
(I , wi t Iz wi t Is Wj)



How to diagonalize Iap (or any real symmetric matrix) :

1) Find the diagonal elements of I ', which are the
eigenvalues of I , by solving PIX ) - det IX.I - I 1=-0 .

If Iap is of rank n
,
PA ) is a polynomial in X

of order n .

2) For each eigenvalue Xa (a -- I , . . .

,
n ) ,

solve the n

equations
E. Int: = x. 4:

where 4% is the pith component of the ath eigenvector Ia.
Since Ha -I - It is degenerate , the above equations
are linearly dependent, and we may solve for thej

in - it ratios 149149 . . . .

,
49149 ) .

3) Since Iap is real and symmetric , its eigenfunctions
corresponding to distinct eigenvalues are necessarily
orthogonal . Eigenvectors corresponding to degenerate
eigenvalues may be chosen to be orthogonal via the Gram -
Schmidt procedure . Finally , the eigenvectors are normalized,
thus status , =Eilat; = Sab

4) The matrix elements of R are then given by Rap. -- Yu ,
i. e. the ath row of R is the eigenvector 4,9 , which
is the ath column of RT.



5) The eigenvectors are complete and orthonormal .

completeness : { 4441 = Ray Rau = (RTR )
,au
= 8µV

orthogonality : q 4%44 = Rap Rbµ = (RRT lab = Sab

see 8.4 Eqns .
8.32 - 8.38 for an example

• Euler 's equations
we choose our coordinate axes such that Iap is

diagonal . Such a choice { Ea } are called principal
axes of inertia . We further choose the origin
to be located at the cm .

Thus

in -

- Yy ';) ,
I -- f E ,

i -- Io -

-

\ O 0

The equations of motion are then ← in body - fixed frame

in 't -- III.erm -

- III.I.⇒ taxi
→in inertial frame

= Iii t in x (II )

Here we have used the important relation

that inertia , - fifth.⇒ taxi .

valid for any vector A
.

Let's derive this important result .



- Interlude : accelerated coordinate systems ( § 7. it
consider an inertial frame with fixed coordinate

axes Eµ , and a rotating frame with axes Ej ,
where µ E {I , . . . , d} . The two frames share a
common origin which is fixed within the body .

Any vector It may be written as

I -- EAmen -
- EA'm din

Thus in the inertial frame

III. liner.. -- E. dottie:
= E. ¥÷¥+Eaid:÷
-

* is is ldtldtl body
what is denialdt ? Since the basis I Eis is complete ,
we may expand

dentin -- E drµie'u ⇐ draw = dinner
But d te'm . Eu ) = de 'pie

'

ut
'e'pi dei

'

v
-

- oldpeut drupe = O
-

Spu

Thus
, draw is a real , antisymmetric, infinitesimal dxdmatrix.



A d xd real antisymmetric matrix has IdId -i)
independent entries . For d =3 , we may write

dRµv = ftp.uodro
and we define Wo = droldt . This yields

dneiu
It

= at xd'm
and we have

Htt
....

-

- faith
.;
exit

is valid for any vector
I
. We may then write

¥4
inertia ,

- III.
od;
I ×

so long as we apply this to vectors only . Applied to
the vector in itself

,
this yields Toinertial = body .

Applied twice ,

Ittner
,

DIET
. .
II. xittawxdtit.iqxiwxai

This formula contains the description of centrifugal
and Coriolis forces

,
which you can read

about in chapter 7
of the notes

.
But for now, back to rigid body dynamics: . .



Euler 's equations along body - fixed principal axes :

ldatttinertialddttlbotiywxi -- Iii tixIII ) -- n' ext
component by component,
I

,
in

,
= (Iz - Iz ) wz wz t N,

"t

Iz wz = (Iz -I , ) w, w, t Nzext
Is in, = (I , -Iz ) w , wz t Ngext

These three equations are coupled and nonlinear. The
components Nyt must be evaluated along the body -
fixed principal axes . The simplest case is when there
is no net external torque , which is the case when
a body moves in free space , but also in a uniform
gravitational field :

Tve't = §, in; x Imig ) = &. Miri) ×5
In a body fixed frame with the origin at the CM

,

the term in parentheses vanishes, hence text -- O , and

iii.EIwaws , in -- I Hw. . is win



- Torque - free symmetric tops :

Suppose I , = Iz 't Is .
Then in, = O ,

hence w, = const.

The remaining two equations are

in
,
= (FIFI ) wswz , is = wow ,

hence in , = - R wz ,
iz -- tr w , , with D= Iws .

Thus ,

W, Itt -- we cosfrtts ) , Walt) -- sin (Rtt8) , W, Itt -- W,
where w

,
and 8 are constants of integration .

Therefore , in the body - fixed frame, Tut Itt precesses
about I , f- Eb;D'T ) with frequency r at an angle
X -- tan

- ' (wetWs ) . For the earth , this is called the
Chandler wobble

,
and X - 6×10

- 7rad
, meaning

that the north pole moves by about four meters

during the wobble . Again for earth , IIs - IiHI, = IoT ,

hence the precession period is predicted to be
about 305 days . IN fact, the period of the Chandler
wobble is about 14 ninths

,
which is a substantial

discrepancy , attributed to the mechanical properties
of the earth (elasticity. and fluidity ) : the earth isn't solid !



- Asymmetric tops
In principal , we may invoke energy and angular
Momentum conservation ,

E =
'

z I ,wit
'

z Izwit
'

z Iz Wf
[ ' = Itwit Iiwit I5w5

and obtain W
, and wz in terms of us . Then

is -- (IIIT ) wins
becomes a nonlinear first order ODE . Using
Lagranges method and extremity the energy at
fixed 4

,
we obtain the following :

| conditions / energy E lextremumdassih.ca/m.IisIj.cIn-
-
-

123 213 132 312 231 321

MAX SP MAX SP MIN MINt:÷:÷÷i÷÷÷÷:÷÷÷¥TF¥
.

MIN MIN SP MAX SP MAX
--

we can then analyze the nonlinear ODE is -

- flag ) .
This is somewhat unpleasant.



We can however easily linearite the equations of
motion about a known solution

. For example ,
W
,
= w2=0 and wz = Wo is a solution of Euler 's

equations . Let us then write To =woenztsw . Then

8in
,
= two Swat 018wzsws )

Sig -- ) wosw, t 01848Wh
863 = 0 t 018W, 8Wh

Thus
,
we have 8-ii

,
= -Nsw

,
and sit = -£8wz with

r2 =
(Iz -Ii ) (Iz - Iz)

IWE

The solution is 8W
,
Itt = C- cos (rt th ) , in which casehe

swam -

- wi
' Sai -- f¥!F¥÷)"

'

esinlrttsl.

It r E IB
,
Sw

,
Itt and 8Walt ) are harmonic functions

with period 2h12 .
This is the case when Is > Ii

,
z

or I
,
LI

, ,z .

But it Iz is in the middle
,
i. e

.

I
,
s Iz L Iz or Iz e Iz LI , , then NCO ,

DE IIB
,

and the behavior is exponential, ire .
WTH --woe

,
is unstable .



- Rea'd §. 8.5 . I (example problem for Euler 's equations )
• Euler 's angles

The dimension of the orthogonalgroup O (n ) is

dim Out = 'znln - it

Thus in dimension n -- 2 , a rotation is specified by
a single parameter, i - e . the planar angle . In

a =3 dimensions , we require three parameters in.
order to specify a general rotation , i. e . a
general orientation of an object with respect to
some fiducial orientation .

These three parameters
are often taken to be Euler's angles lol , 0,4) .

- General rotation matrix 1214,0 , 41 C- 5013) :

start with an orthonormal triad (8,51 . We first
rotate by ¢ about the Ego axis :

ein - Rullo, ester ; riot . = f's:O:& single 8
, )

The next step is to rotate by 0 about E; :

'

e'in -- Rado ,Eiler ; No, e: I -- too 5%9%0%1



Constructing a

general rotation
in 5013) using
Euler 's angles
lol , o , 4)

Finally , rotate by 4 about
'e'j :

Erie,
"

: = Raul 4. Este : i RH,
E's t -- ¥144 9:14 §)

Multiply the three matrices to get Eµ=Rµu 14,0 , 4) Eg with

r.. . :::::c::i::::: :
"

::*::c::::c::: :::::)sinO sing - sin 0 cos¢ cos0

I

see the figure at the top of this page .



Next we relate the components of hi to the derivatives
{ it , O , ill .. This is accomplished by writing

in = toe tie, tiled
where (consult previous figure )

Elo -- sin O sin 48 , t sin0cos4Eat cos083 = to
3

Eo = cos 48 ,
- sin 4 Ez (" line of nodes ")

'

e y
= I

3

We may now read off

w
,
= I - E

,
= ⑥ sinO sin 4 t ⑥ cost

wz = hi - Ez = & sin O cost - O sin 4
W
z
= Tv . Ez = & cos O t I'

Note that :

I← precession ,
i * nutation

,
I← axial rotation

In spinning tops , axial rotation is sufficiently fast that
it appears to us as a blur. We can , however, discern

precession and nutation .

The rotational kinetic energy
is then

Trot =
'

z I , lies in Osi nut to cost )
'

t
'IIz lotsin 0 cost - O

'

sin 41't I Iz (IOcoso till



The canonical momenta are then

p¢=fqI , Po
-

- ÷ , py
-

- II
and the angular momentum vector is
I -- pyreftp.eotpyey

Note that we don't need to specify the reference
frame when writing I - only for time -derivatives
of vectors must we specify inertial or body - fixed frame .
- Torque - free symmetric top : Text = 0
Let I

,
= Iz .

Then

T =
'
z
I

, 107 sin2042 ) t
'

z Iz koso I tip

The potential is 0=0 so the Lagrangian is L -- T .

Since 4 and 4 are cyclic in L , their momenta are conserved :

pot --¥f = I , sin ' O Io t Iz cos O (cos O
'

lot ill

put = f¥ = Iz (coso It
'

4)

Since p y = I
, wz , we have wz = const. , as we

have

already derived from Euler 's equations .



Let's solve for the motion
.
Note that I is

conserved in the inertial frame , i. e , (E)inertial = O .

We choose Ej = I¢ = I . From Eg . hey = cosO , we
have p y = I . hey = Leos 0 and conservation ofpy
thus entails 0=0 . From

Po = I , 8 = IF = (I , cosoil -Pt ) since if

and 0=0
, we

conclude if = put II, cos O . Now , from

the equation for py , we have

it = III
,

- cosoil -- (E
,

- E.) Px = (IIIT)w,
as we had derived from Euler 's equations .

• Symmetric top with one point fixed :

Now gravity exerts a torque . The Lagrangian is

[ = 'z
I

, (
'oh sin2042 ) t IIs @so I tip- Mgl cos 0

where l is the distance from the fixed point
to the CM . Let us now analyze the motion of
this system. .



The dreidl ( Yid . 8473
,

Heb . 112
' TO = spinner )

is a symmetric top .
Fourfold rotational symmetry
is good enough to guarantee
I
,
= Iz and I ,2=-0 .

We have that 4 and 4 are still cyclic , so

Pol --¥f = I , sin ' O & t Iz cos O (cos O
'

lot ill

put = 0¥ = Iz (coso I t 't )

are again conserved . Thus ,

Io = Pot - pit cosO

ITE ,

I = PIT - lplo-pycosolcosOI.sin 20

Energy E = Ttu is conserved :

E --
'

II , it t t.PL?Yinc:sooIttIIItMglcoso
-

effective potential Ueftlol



Ueff 101

Again : #
E --

'

II , it t t.IE?Yinc:sooIttIIItMglcoso
Straightforward analysis (see lecture notes , ch - 8

, p .

18)

singlere

::: tattoo'int::.int :
.

.

Vet lol diverges as O → o and O → IT .

Thus
,
the equation of motion , .

I
,
°O° = - Ue# 101

Oa O Ob

yields two turning points, which we label Oa and Ob ,

satisfying E = Ueff (Oa
,
b ) . Now we have already

derived the result

To = Pol -Px cosO
-

I
,
sin 20

Thus we conclude that if pyas Obe pop spy cosOa then

it will change sign when 0 reaches Ot -- cos
- ' (pollpull .

This leads to two types of motion , as shown below
Note that E

,
= si no sin die, - sin 0 cosof Eozt Cos 0 IS .

do : precession
O : notation

4 : axial angle



Lecture 7 ( Oct . 261
-

we now turn to the subject of small oscillations .

We assume

that the kinetic energy is homogeneous. of degree two in the

generalized velocities : T =

'

z Too , (Gi , . . . , Gul
"

go -9 or , and

that the potential Ulf . . . . . , gal is degree zero in the Soto 's .

The equations of motion are then obtained as follows :

Po
= 2¥, = Too . Hao ,

↳ T - u ⇒ ( fo .- z÷q= 'zatoyjfhoio.io. - Fft
Thus

, p'o = Fo says

too . Eat- PIg÷.

- I %I taiga .
= - 3¥

This may be written as

mummy
To. ii. t 's PITT + 'II. - IIIamain -- - Fao

by TI: G.
If > t TYuu itpair = Ax ,

with

thin -

-

'
'zt.io/FffTt2toqIu-dIfT ) Christoffel

←

symbols

A- × = - T.io#qo



- static equilibrium : go = o toEli , . . ., n} ⇒

3¥ = O fo ; n equations in n unknowns fat , , . . ..An}

Generically this has pointlike solutions, tot , . . . . ign) .
Let's write go = got yo and expand the Lagrangian
to quadratic order in the go and go :

y
L =

'

z Too . if No , - I Voo . Yo Yo , t . . .

where

Too .
-

- Too . III = fg÷g
q

T and V are

v.. .
.

.

at f Tintin:4 .

afootoil q nxn matrices

so to quadratic ordre r, L = fifty - 12 ht Vy
• Method of small oscillations
The idea here is to express the yo in terms of
normal modes

,
3
; ,

which diagonalize the equations
of motion ,

Too , Flo , = - Voor yo
This being a linear problem , we write no = Aoi } . . and

demand T
t
ATA = I nxn real
At VA = diag ( wi , . . . , wi )

matrix



The vector form of the linearized EL egas is

Tj = - VI
so TAI = - VAI

t

Multiplying on the left by A , we then have

(AttA) I = - LAHAIE
- -

= I Idiaglwi , . . ., Wh )
Thus. we have n decoupled second order OD Es :

with solutions
Ii = -w:3;

3; It ) = C; cos (wit ) t D; sin (wit )

with 2n constants of integration {Ci , Di} with ie {is . . ., n) .
Note f- AI yields I = A-

"

if = Atty , Thus

no Itt = ? Aoi ( C ; costwith + Disinherits]
Multiplying on the left by Att , we obtain

Cicoslwitlt Disinherit) = Atiotoo . Moi Itt
and thus

C AtiIool moi lo )

Di -- wi
' Atio Too . No . lol (no sum on i )



At this point , we have the complete solution to the

problem for arbitrary initial conditions {yo lol, go lol} .
The matrix Aoi is called the modal matrix

.
If all

the generalized coordinates have dimensions Lqo) -- L ,
[Troi ) = M

, Hoo . ] = Iz = ¥2
(Aoi ) = M

- Y'
,
13; ) = 1942 L

- Why can we demand ATTA -- I and AtVA -- diag lui, . . . ,wi ) ?
•

Proof by construction :

( i ) Since Too , is symmetric , there exists O ,
E Oln )

such that Of TO ,
= Td ,

where To, is diagonal.

Additionally , the entries of Td are all positive
because the kinetic energy is in general positive
( only zero if Ito -- O f o) .

Iii ) Td being positive definite , we may construct its

square root Td
"'
simply by taking the square root

of earth. diagonal entry . Note then that

Toi" Oi T O, Toi" = Toi " Tata
""

-

- I

liiil The matrix Toi
""

OFoil' is symmetric , and
hence diagonalized by some Oz C- Oln ) . Thus,



we have two matrices 0
,
and Oz such that

ofTI 't
' of T O , Toi

" OE A

QtIi"of VO, Ta
- "'
Oz -- diaghi. . . . ,wit

Therefore the modal matrix is

A = O
,Tj

't'Oz (NB : A not orthogonal !)

we can see that it is in general not possible to
simultaneously diagonal three symmetric matrices . Two is
the limit !

- How to find the modal matrix
( i ) Assume yo Itt = Re Ilo e

- iwt
.
Then from the

EL egn T if = - Vin
.

we have (w 'T- V)oo4o ,
= O

.

In order to have nontrivial solutions, we demand

detlwt- V) = 0

This yields an nth order polynomial equation in w ?
2

Its n roots are the n normal mode frequencies, wi .

liil Next
,
find the eigenvectors do

"

by demanding
E (wi Too . - Von ) ludi

'

= o
O
'



Since wit- V is defective , these equations are
In - it inhomogeneous linear equations for Hfi! . . . , 4Th}
yielding the ratios #'14!"

.
. .

.

, 44444
'

' ) . It then
follows (see § 5.3.31 that 4£" too , 444=0 if itj .
In fact

,
this is only guaranteed if u! tug , but

for degenerate eigenvalues wi --Wj , we may still
choose the eigenvectors to be orthogonal Curt T) via
the Gram - Schmidt process . Finally , we may choose
to normalize each eigenvector , so that

< 4" 'HH > = 4 Too , 4ft ' = Sign
(iii ) the modal matrix is then given by Aoi = to

"
.

liv ) since I -- AI and ATTA -

- A
,
A
'
-

- Att and I --Atty .

• Example : the double pendulum e-
(For simplicity , choose libel,MFMEM ) m

X ,
= l sin Oi

, Y, = - l cos9 ,
m

Xz = l s in Qtl sin Oz , ya =
-Kosh -l cos Oz ' O '

l

T -- 'zmkiitiliixiiyil -- Eml
'Kitt 2 cos 10, -040 ,

at
'

O: )

V = - mg l 12 cos O, t cos Oz ) ; equilibrium @ 01=02--0

t -- Thieme:) ,
v -- lingerie)



Let wi = gll . Then

w't-v = me42%" m:L. )
dethit- v) = (me42 . {21w'-wit ' - w 't }

Setting dotlw 'T- V) -- O then yields w¥= GIVE two .

Find i = t i = -

l l l l
O= I

Attie = sine a. .

Note that it"a /. and It ' a ft t
Normal mode shapes :

I
-

I" Ii- i

¥÷
.

"it
:*
.

In the low frequency normal mode , the two masses
oscillate in phase , while in the high frequency normal
mode

, they are it out of phase .



I

• Zero modes

Recall that to each continuous one ⇐parameter

family of coordinate transformations
Go → 9-off ,3) , Iott, 3=0) = Go

leaving L invariant correspond's a conserved "charge " ,
^ -- EEE.FI/s...odIe--o

Let us label the various one - parameter invariances
with a label k .

For small oscillations
,

OL 2L

T.gg
=

Try
= Too , 7.o '

which says Cho = §, Too . 39¥ ) so that
5=0

3h = § Chono
is a zero mode , satisfying }h=O .

(As written
it is un normalized . Thus

,
in systems with continuous

symmetries , associated with each such symmetry is a
zero mode of the corresponding small oscillations problem. .

2

Example l : L -- '
zmixi t '

z mix ! -
'

zklxz - X ,
- al

=
'
zMi 't

'

z ya i
'
-

'zklx -at ⇒ X (cm) is a ZM
frictionless 9 X =

'zlx ,
t X z ) , x = Xz -X,



ExampleI
consider the system to the right,
for which

T -

- IR
' (militmilitMilos )

and

U -

-

'

z k R2 Holz - lo , - XI't lots - oh -X )
'

that to , - doz - XY )
where 0/3 - 2T s do , colza ¢, s ol , t 2T , and where
RX = a is the unstretched length of each spring .
T.ae equilibrium configuration is

49--3 , E-St Ez , ¢; -- St 'S
where 3 is an arbitrary continuous parameter ,
corresponding to the continuous translational symmetry
that is present. Find

2kR2 - h R2 - kR2

t.fi!:& :*) ,
v -- Hirani. she:3:)

My
""

water -- he 1¥.? e) . vi. ha
;

ya



The characteristic polynomial is

Phil = detlw'T- VI = (k R'P . Flail

Flu 't -- Tiwa - E. (T.it t ) w"
+ 3 ftp.ttfztfj ) w

'

This is cubic in uh
,
but since there is no 6210

term , w
' divides Ftw ' )

,
i - e . Flat) = w ' Total,

where Q1w' ) is a quadratic function of its
argument. Thus the normal mode. frequencies are

wi = 0
I

wi,
-

- uituitujtthui-uiitlui.us'Hui-nil .
To find the modal matrix

,
set (w! 'T- V) 4%1=0 :

÷÷÷i . to
which yields 4'T ' = Cj 113 - Yi) , where

Cj = ! mo (3 - hut ) - 'J
""

for normalization .



Note for the zero mode (j = I ) we have

Ao , = 4.ol ' = = (m, tmztmz )
- YZ
t oell, 2,3}

Thus
,

}
,
= A

go Too ' Mo '

= (m, tmztmz )
- Y ' R2(Mi Y , tMa 42 tms 73 )

is the normalized zero mode .

This is consistent

with Noether 's theorem
,
which says

.

A = £
,
ftp..dz#--R4miohtmiloztms&d

with M -

- O
.

Note that i = O always, and not only
inn

. the limit of small deviations from static equilibrium .

• Chain of identical masses and springs [
tension

L -- {ME if -
'

z k [Hot , -Xo - al 't TEHoti - Xo)

clearly Po
-

- 3¥ -

- m ko . If the chain is finite ,
owith n running from 1 to N

,
then

F
,
= 3¥

,

= klx, - X ,
- al - t

F
,

= 3¥ = - k (xn - xn - i - a) t E

Fo = Gtfo = k (Xo+, t Xo- i - 2 Xj ) o c- 12 , . . . , N - B



The last equation says that Fo -- O toEli, . . .,N} if

X
on
- X
o
= b

,
o E l l , . . .

,
N- I }

where b is a constant . Plugging this into the
first equations then yields b -

- at k
- ''

t .

If the chain is a periodic ring with Xan , I X, t C ,

then b -- CIN is the only solution . We'll solve the
problem in this case of periodic boundary conditions
( PBCs ) .

In the limit N→ no
,
the bulk behavior

wont differ between the two cases . Writing

Ko = ob t not 3 cell , . . . , N )
we have

←
UNH = Ui

↳
'

z m ii. - 'zh hot , -ud
'

- klb -a) C - { Nklb -at

The last two terms arise when b t a due to the fact

that the springs are all (equally ) stretched in the static

equilibrium configuration . These terms are both constants

which. we henceforth drop . The EL equations are then

miso -- ¥+1 }¥ ) -- ¥ = kluontuo- i - 2nd
o o

with um ,
=. u

, .
These N coupled ODES may easily be solved

kluot . - Uo ) - k luo -Uo- i )
ooo-7 &G



by *anstorming to Fourier space coordinates , viz .

N

u =fz f. em
olNij ⇐ un

,
. =#NE e -HijoINo U

l 0=1 0

Note that ij is complex, with

"
N-j
' ff [ e2TijoyNno = if

Let's count degrees of freedom .
The set In , , . . .

, un )
constitutes N real degrees of freedom . For N even ,

in and in12 are real
,
while it; for je fl, . . . ,

'

z N
- 1) are

complex and satisfy Re in
-j
= Re vij and Im in-j = - Im irj .

The number of real degrees of freedom is then

DOF = 2 t 2x ( 'z N - l ) = N ✓

If N is odd , then in is again, real , but there
is no mode it

;
with j = IN .

We again have in -j
-

- II ,
this time for j E ft , . . . , 'zlN - t ) ) . The number of real
degrees of freedom is

①OF = 1 t 2x '
z (N - t ) = N V

we now have

-2 , 01N 01NmfqI.ie Ti's iio -- k tf e-
""d

'

Ina , tho. ,
- 2nd

mini; = - 2hL - cosknit) ie;



Thus we may write Tej = -wjij with

Wj = 2 IKI Isin (Tt ) ) j - N is 2- in

the solution for each normal mode is
w

nzm
iejltl = Cj e-

iwit
e
is

where Cn-j
-

- Cj and 8N-j = - Sj for all jet f Nz , N),
and 8ns = Sn = O .

The {Cj , Sj ) are all real constants

The modal matrix is then A.
oj

= Tnf eh ow, where
we have now included the m- '12 factor .

.

Note

Too , = m fool

Vra = 2k Soo , - k Sol
, on

- K
. Sol

,
o- i

the Kronecker deltas are understood to be modulo N, i- e.

Soo ,
= ( t it o

'
- o mod N

O otherwise

Thus
,
the matrix forms of T and V are

(2- kn
- k O -

- - O - k

t.to : :?) .
" i÷÷÷.

O mo om



^

Using the equation IN NJ e2Tilj -j
'lolN

=
= Sjjl we can

0=1

prove that AETA =D and At VA -

- diag Iwf , . . .

, WI ) .

Continuum limit : we take

Holt ) → ulx-ob.tl
and

Uo+ ,
- Uo = Ulxtb) - ulx ) = b¥× 't 'z b }¥z- t . . .

Thus
,

T -

- ImEvil → tzmfdx (3¥12
o b

V =

'zk Gluon - not→ I left (b 2¥12 -t . . .

b

and we may write

S -

- Idt 4End ,
kid , t ! -- fdtfdx Ltu ,2×u, Au , t)

where

Llniaxn , atu , t )
-

- Ip 1371
'

- ft Iff)
'

with p = mlb = mass density and I = kb --
''

tension
"

is the Lagrangian density . Suppose the Lagrangian is of
the form EE

L -- §, Lo ( no , Ito , Monje , t )



We have
= u

'

o

-

L -- §, Lo ( no ,
it
. , motif , t )

The EL eqns are then

ftp.uol -- E. -- 3¥ t 's %÷ - I 3¥
Now

¥HuH-yHLo-iHu = I 3¥ t . . .

and writing = u
'

o X
- -

Lo (no , iv.
"

, ti I -12 ( no ,
is
o , motif , ob , t )

= tf LIU , zu , 2. u , x , t )
we have

S -
- fat fdx L la , at u , 2x u , x , t )

and the equations of motion

It IIFA tix III. I -- Fa
More about this in chapter 9 of the lecture notes .



Lecture 8 (Oct . 281
-

• Small oscillations summary : ←may be multiple
solutions

co ) linear ite about equilibrium 3¥ O
; 9-o -

- Ioi- yo

( i ) obtain T and V matrices :

OH 's - - - in }

both
real

,Too .

-

- IIIa.jo/qiVooi--II!Tgalq symmetric

Lagrangian is then

L -- I
'

notooino .
- tznrvoo.no .

(2) Solve Phil : det (w'T- VI -- O for normal mode

frequencies wi. . Plw ) = an W
"

tan - , w
"" - ' '
t. . . tao .

131 For each wi , solve (wit - V ) -4 "
'
= O

.
The

overall length of It"' is as yet undetermined .

141 Necessarily , if wit y? ,
then

it ' " 5451 > = No" Toot'd! = 0 (witty? )
t

Degenerate eigenvalues : use Gram - Schmidt . ⑨ d

Now normalize : sit" 't -451 > = Sig.
151 Modal matrix is Aoj = 4th A-

'
=Att • • m

M 4×3 = 12

Normal modes : no = A-
oj
}; ; Sj = A'jomo 6=-3+3 7M

It 2+3Also :

ATTA = I
,
At VA -

- diag (wi. . . . ,wi ) remaining



(6) L in terms of normal modes : y
-

- AS

L -

-

'ziytty -

'zytvy
-

-

'

z
It#Tali - Est# vats

= if
,

'

z ( 5! - w:3! ) ⇒ %
,
= - wig.

So the normal modes are decoupled !

IH Solution :

4. HI = f. lol coswjttwj
'3.lolsinwjt

Yolo ) -

- Aoj3j lol , polo) -- Aojigco)
⇒ Sj lol = Ajo Yolo ) , Ej lol -- Ajo Idol

yoltl = Aoj 3; It ) ←A-
'
= Att

'
-

j,§, Arjcoswjt A'
'

jo , Yolo)

+ Aojwjtsinwjt A o
, Iloilo )
-

eigenvectors
Woo .

'

it Too .
= Voo . Yo t

y , = 4
,
e
- int

⇒ ( w 't w - w 'T + VII = O
-

det IO ⇒ wi



Planar triatomic molecule
- m

• Iaztxz , 57% )
# DOF : 6 Ix

, , y, , Xi , ya , Xs ,Yz ) µEquilibrium : 10,010,0190 )
m•-h•m

KE is easy : (Xi , y , ) (atxz ,Yz )
T -

-

'zmlxiiyiixityitixiiyi ) -

- Em £
,
if

Too ,
= m Sool

PE is more challenging : U -- 'zklldiz - al 't fly -at
dis
.

= (atx, - x , )
'

+ lyz - y, P
t (diz -al

' )
dis -- ( - Gtx, - Xz ) ' t ( atyz - Yz)

'

d,{ = faztxz - Xi )
'
t ( Aza t Ys - y , 12

Note : when Xi
.
.
. ,
-
- y. . " , =D , dig =a2 firtj

Expand to linear order in god 's :

diz = at Xz - X , t . . .

dz , = a -
'zlxs -Xslt (yz-y.lt - - .

di , = a ttzlxz - Xi ) t lys - Y , ) t . . .

U = 'zk ( Xr - X , ) 't 'z k ( x, - Xz tab y, - VJ Yz )
'

+ tgklx, - x, tvsys - VI y, 5+043)



U -- '-2kHz - n , ) 't tgklnz-ns.tt546 - 59412
+ tgklns. - g , try , -5925+043)

voor . -- k¥1
,

-

- kf
""

.

.

. I
16×6

See § 5. 9.3 for complete solution .



y

Lecture 9 (Nov .
2 ) #- i-I

dx

System : string of mass density yulx ) and
tension thx ) . Instantaneous shape is ycx.tl .
Differential KE :

DT -- I MxiµYPdx
Differential PE (relative to ylx.tl = const. ) :

CTU = thx ) all = t Ix ) f Vdx2tdyT - dx )
-

Lagrangian density : de

L -

- final'¥Y - tix , WHET - 1)
Assuming 13×141 , L -

-

'
z pry't -

'ztyx t . . .

Recall that for

sfylx.tt ) -- fatal 't! L ly , yt , y × ix. t )
that

a.I:*!:: 1¥ . # I:* . # III.Ds,
±!:b" III. as t.f.t.it#sy3::

First let 's consider what is necessary in order that



The boundary terms both vanish . The first boundary
term vanishes when Sylx, ta ) = Sylx, tbl = O . The

second term vanishes when fff, Sy vanishes at x -- xa , b
for all times t . For the case L -

-

'

zµyI - tztyx ,
we have 8218g, = - t y * , thus, assuming TIXa ,b) to,
the condition y× Sy = o at the end points means
either lily × -- O or Li il Sy -- O at each endpoint Xa, b .

We then have the EL eqn ,

¥ . #Eat :
a. ⇒which for our case yields

¥ ItIn It ! = µ,×, 0¥,
for our L

This equation , plus the spatial boundary conditions,
governs the dynamics of the string .

The simplest
case is when µ lxl

-

-gu and thx ) = t are both

constants
, whence we obtain the Helmholtz equation ,

I. yet -

- y xx ⇒ 4¥. - to ¥4ylx.tl -- o
with c -

- Khal 42 , which has units of velocity .
This equation may be solved

'

completely , and for

arbitrary boundary conditions .



D 'Alembert 's solution
-

Define
.
the variables u = x - ct and U = xtct . Then

¥ -

- ¥ # t E -

- ETE

¥ -

- Et Fu + If # = - c # tofu
Therefore

s÷ - III. =# +¥1
'
- toutH

'

wave operator T
= 4
I = 4 IT %audi

Thus

3*0=0 ⇒ glum) -- flat tglu)

with flat and glut arbitrary functions as of yet. So :

ylx.tt = flx-ctltglxtc.tl
right - mover left - mover

Now let's apply some initial conditions :

ylx , o ) = flxltglx )
C- ' ytlx , o ) = - f

'

(x ) t g
'

(x )

Taking the spatial derivative of the first equation



yields
y x ( x , o ) = f '(x) tg

'Cx)

and thus we have

f-
'
B ) =

'

z y× B. o ) -£ytl's , ol

g 451
-

- I 9×13,01 tzytts , O )
Now all we need to do is integrate 01%3 '

:

f- I 5) = Iz y 15 , o ) - IT 1%5 '

ytlsio ) t C

g 131 =

'

z y 15, o) t IcJokes ' yds:o) - C
where C -

- f lo ) -
'

z y lo , o ) =
'
z y lo, o ) - g lo ) . Thus,

ylx.tt = fly Ix - et , ol tylxtct ,ol ) t 's!!! yds, o )
Thus we have a solution for all initial conditions .

Hamiltoniandcnsitgwedet.methe momentum density as g -

- 2L layt .
The Hamiltonian density is then It = gyt --L .

Typically L -

-

'
z guy 't - U ly ,y× ) ,

hence g =Nyt and

H = II t Ulyiyx )
Expressed in terms of y +

rather than g , we have



Scratch

ylx.tl = tzfylx - Ct , ol t ylxtct, ol )
+⇒i Eyes, o )

suppose ylx , ol = IT×¥i , ytlxio ) .

Then : (t -- o )

ylxitt-ffztf.rs #° x

Evolution :

O X



the energy density ,
ECx .tt =

'

zµ y 't t Ulyiyx ; x )

the equations of motion are

- 2¥ -mytt t 3×13%1=0
Now note that

It = Nyt Yt t t 2¥ y t t 0¥ yxt
= µ ytytt - luytyttt # 10¥) ytt IF yxt
= If}yI×yt) = - 3¥ i Je = - Fyi Yt

where ye is the energy current along the string .

For the case U =
'ztyx , we have Je = - Iyxyt .

Note that

(E) = E t
'

Off t 0¥ = O i [ye ) -- ET
"

which is the continuity equation for energy . Thus,

¥1,14 Efx it I = -×! "dx = ydxi.tl - jelxz ,t)
rate in rate out

jclx,,t¥T e Cxz , t )



F-or U =
'ztyx with µ Ix) --µ and tix) -- t constant,

writing ylx.tl = fix - ctltgcxtct ) we find

Elx , t ) = Iff 'Ix -et ))
'

t tfgyxtctl]
'

jecx.tl = Ct (f 'Ix - et))
'
- Ct (gyxtct) )

'

which are each sums over right - moving and left -

moving contributions .

Example : Klein - Gordon system U ly , y× ) =
'
zig! thzpy

Then E -

- t pry't t
'

z Ey ! t t py
'
. Equis of motion :

L -- I pry't - Uly , y x ) ⇒

- 0¥ - µyttt # (Iff )
-

- O

- Py - guy t t t tyxx = 0

Thus we have

(E. - E. y
-

- my i
*Fa

This is not the Helmholtz Cgh (it is the KG egh ) .
D

'Alembert 's solution does not pertain . Still ,

ye -

-
- FYI Yt = - t y x Yt



Momentum flux density and stress - energy tensor :

E -- taught tztyx ⇒ ¥ = # Guytyxl
Thus , with

←
momentum current

←
momentum flux density

JIT = E
,

IT = -myty x =
I
c
2

T"uwe may write -

⇐ It . Ex )
CE - ca

-

- ly. ⇒ ) -- o
012 x"

or 2µT
"
u
= O

,
where T"

u
is the stress - energy

tensor . Note that while IT and g =

guy+ have

the same dimensions , IT is the momentum density along
the string while g is the momentum density transverse
to the string . General result :

T" u =
2£
Ngugi Ky

- 892

This satisfies put
"
u
= O for all u .

Electromagnetism : E = ¥, IE't ' 4 ⇒

off -- at. It . 3¥
.

tB - IIE)
= IF E. ( c J x J - 4nF) t ÷,

B. f- COXE I



= - E - E - J-5

where 5 = ¥, Ex
-

B = Poynting vector . The
stress - energy tensor is

[ - E's
×
- C

- '

Sy - c- 'Sz

in÷÷÷÷: "¥
.

with

Oij = ÷
,
f - Ei Ej - Bi Bj t 'z CE 't B ') Si; )

which is the Maxwell stress tensor . Now

2µT
"
v
-

- O
; Yu -- ( Edt , J )

• Reflection at an interface

consider a semi -infinite string with XE lo , a] and

with yloitl -- Ott .
We write

← ×
-
- o

ylx.tl = ffx-ctltgcxt.CH 04N
and impose the boundary condition at x -- o :

ft- et) tglctl = o ⇒ f- (3) = -gt3) t 5

Therefore
,
we have

t 's = - et

ylx.tl -- glcttx) - gkt - x )
F- f- Ix - ett



This is the general solution .
Now suppose gls)

resembles a pulse localized around 5=0 .

In the distant past , t -s - a ⇒ et - x -s - a

Hence no contribution from right mover .
g

# It
How about the left -mover ? Set cttx - O ⇒

X = - Ct C- ( O , a ] .
I. e . incoming left - mover

at x = - Ct . For t → to , cttx → to
⇒

left - mover is gone .

Ct - x = o ⇒ x = Ct C- fo , a]

I. e , outgoing right mover at x act . Sketch :

•
£-41 x.int

• I

x
-

-o x= -et x
-

-01¥t → - oo t → to
incident wave reflected wave

suppose instead yxlo ,t) -- O ft .

From SS -

-
- - -

-⇒ Syl qµM0

must vanish] " free

0212gx = - Ey x ⇒ yxlo , t ) = O htt



Shape of string :

ylx.tl = f-(x - et ) tglxtct)

yxlx ,ol = f-
'

l- et ) tg
'Ict )

Thus f 't3) = -g
'l - S) . Integrate to get

f-15) -- g l-5)

So the shape is

ylx.tl = glatt x) +get - x )

gxlx.tl = g
'lett x) - g

' let - x )

= 0 when X = O

. Mass point on a string :

X = O

→←

xco : ylx.tl = Hot - x ) +get t x )

x > o : ylx.tl = h Ict
- x )

Interpretation : f = incident wave

g = reflected wave

h = transmitted wave



Newton 's law for mass at x=o :

mijlo , t ) = I y
'
lot, t ) - ty

'

to
-

,
t )

Discontinuous y
'
(o,t ) =y× lo, t)

⇒ acceleration ofm .

Furthermore :

y
' lo-it ) = - f

'

Ict ) tgyctl
y
'lot,tl = h 'Ict)

continuity ⇒ yloitl-ylot.tl ⇒
htt ) = fktltglct)

Let 5 -

- et ⇒

hts ) = H3) tgl 's)

f-
' '

(3) t g
"131 = - LET g'15 )

From these
, get gls) and HIS) in terms of ft ) .

Fourier transforms :

Hs ) :{diff Ilhleih } ,

Itu) =L'dxflxleik
}

Derivatives wrt 3 replaced by ik x Ilk I etc .

Then we have

f- hit iqklglk ) = k'Ith )



"

hlkl = Ith ) t ng th )

with Q = 251inch = 2p/m ; foil =L
'
'

.

Solution :

514 = Ilk I Ith )
,
tick) = Elk) Ilk)

with
a

Fln = - T.io ,
that = - niff

Note t = Itr since h = ftg .

Shape of transmitted wave :

h 151=1%277 Elm Elk )
=

.

!I5
'
t 15 - s ') Hs 's

tls - s ' ) =
.

the , eihls
- s

')

and for

Elk ) = -
iQ
h - ioi

find
t 13 - 51 -- Q e

- Q G - ' "
① Is- gi )

t 13 - 3 't

¥t¥
.°



Lecture 10 (Nov - 4)
-

Recall we were discussing the dynamics of a

string (mass density gu , tension t) with an
attached point mass m at x -- o . We wrote

incident reflected

ylx.tl = Hot - x ) tgkttx) (xso )

= hkt - x ) (x > o )
transmitted

At x = o , we have F -- ma for the mass point, i.e .

mijlo.tl -- Ty
' lot.tl - ty

'lo ; t )

as well as continuity y lo
-

it ) --ylot, t ) . Expressed
in terms of the functions f.g , and h , we have

f-
"

151 +g
" (5) = - 2mi. g

'

15 )

H5- Itget = h 151

which we solved by going to Fourier space :

f- test III. Ilk ) eik 's ,

IIn :{Is Hs) e- ins

etc . Note It- KI -- ICH
*

since FB) E IR
. We found

51kt -- irlhlflkl ,

"

hlkl -- Elks tht



where
,
with Q = LET = ¥

,
IQ) -- E '

il let = - k÷g ,
Ethel = - IE

k- iQ

are
, respectively , the reflection and transmission

amplitudes . Note that Elk ) = It ith ) , which follows
directly from the continuity relation h -- ftg .

Another

result is that
m
-

-
a

tr 1h11
'
t l 'tth ) P = l Im -

- O

we call Rlkl = ITIhl 12 and TIKI = l 't 1h14 the
reflection and transmission coefficients . These

are the modulus squared , respectively , of the
reflection and transmission amplitudes . By the

way , note
that El- ht = Flat and El-ht = EIKE.

Lriergy
The energy in the string is

E
string.lt/=.f!dxltzpiy2t'ziy12)

Ct.

-

- if:3 #
'Isb? + 'IIdes ( Ig '15117443112 )

The total energy of
the system is E = Earing t Emass ,

with
- Emassltl =

'
z
mi (h ' let IT



Scratch

Estaing Itt =
.

§°dx Ifµ let
'

Ict - x) tog
'lcttxIf

+ { tf- f
'

let - x) +g
'htt xD

'

}
+! Ix

'ztudttllh '

let IT
But gud -- T ! Thus

Estmgltl -- tf!dx Iff
'

lot - xD 't ( g
' lett xD

-

f
+ E §°dx 1h 'let - x )

'

]

= if#HisD
'

+ t.fitasfg.nl 'tHKD 't
x co : S -- et - X E Ict

,
a ]

{ = Ct xx e f- o ,
et )

x >o : 5 act - x e f-a , Ct)

f.IsHISD
'

-1.IS/d*.IdYzIIneihYfd*f.dIfttnyeiisg--IdYzIII. likltititflknitynyfgiieilk
-hits

-

2781k -te
'

)



Let's evaluate the total energy in the limits t → ± a .

For Itt → a
, Emas, → 0 because we assume the

mass starts from rest , and by late times it has
shaken off all the energy

it acquired into vibrations
of the string . So we have

2

Esr
. ng
l-al -- I If 'IsD= FIT

,
k
'#tell

'

Estring
too ) = t.LI/lgY3l5tlhY5DY--tIdI.kHglhlftthlhlI)

= I
-

=

.

17¥, Which l 't Html ') tf hell
'

= Essington )

In fact , we can show with a bit more work
that

Elt I = Estaing l- o ) for all
times te IR

,
including the

contribution from Emas, It 1 . I.e .
total energy is conserved

.

• Back to real space !
We have

htt :{II. Ith HH ein II:B
'11.1¥, 'these ills- s 'll tis,

=foods
'

tis- z
'If 13

')

where tf's - z 's =%d÷
'

the , eik 15-3 't



is the transmission kernel in real space . For our case,

Elk ) -- Iif ⇒ -45 - s 't -- Qe
- QB- S

' '
Is- s 't

Note that for a 8 - function pulse AS I = C 815) we

have that t

HH = C 8151 ⇒ HIS ) = CEB )
¥
° 5 - S

'

gist -- C 18131 - t 151 )
So for our example ,

Hot - x ) = CQ e
- Q (Ct - × ) ① let - ×,

so the late time shape of ylx.tl looks like this

T Hao )
a y ft > O )

µ f- - et
t "

→

- . . .-¥f¥¥← x

• S - matrix

consider a more general state of affairs :
in flat - x ) •m h (et - x ) out

I. →

- e-#
← I ←

ou 'T glcttx ) x -- o l (ett x ) in



Continuity at x -- o says ft5) tg 131=4151+115) .
Newton 's law F-ma for the mass point is now

mijlo.tl = Ily ' lot
,
t) -y

'

lo
-

it] - Ky lo, t )

which says

malt " (5) tg
"

(3D = Ill 't ) - h' 131 -g 't5) tf
'

151)

Now take the FT :

- K Ifl31 t g BD

Ilkltglk ) =
"

hlkltllk )

-mikfflkltglkl ) -- itkftlkl - Ilk ) -51kt TIKI )
- kftlkltglkl)

Divide now by Imd , with
units :

Q = f÷ ,

P' = M¥2 Cay -- Ep] =L
' '

to obtain (suppressing k in Ilk ) etc . )

- k't Itg Ih th ) -

- iQkli - I -g -tf ) - P'
'

IItgttite)

The S -matrix relates outgoing states (
"

hand g)
to the incoming ones (I and 'll. . We have

lil E - I =
'

h -g.



and Nhl Mlk )
- -

Iii ) (k
'
tiQk - P

' ) (It It = - (k '- ich - P4th tg )

In matrix form
,

in I :L -

- t:* It :L
where Nh) = k 't i Qk - P? Thus

list. . I :# ill :
-

ill 'd
It:L

Stk ) =

"

scattering matrix
"

Hence

514 = ( Elk )
in 've ,

TIM E'hell
with

TIKI = i' IN = -
¥2 →I
ti- iQk -PI P-so k - iQ

'

tht -- E'IN -

-
- Iii I

Here in -
- I ' and I = 't

'
due to time -reversal symmetry .



Note : lil Ilk ) = I tr Ik )

Iii ) tr th ) l 't It IMP =L

The first of these again comes from continuity of

ylx.tl at x -- o, which says

f- Ist t gls ) = h 131 tels ) ⇒ Itkltglhl -- I Ihl tech 1
But

since
I -
- titre and g -- if + If we have

t tr - E) I = It - f ' .- I ' II

since the inputs I and I are arbitrary , we

must have

Ilk ) -- l 't Ilk )
,
E'IN -

- I tr 'Ik )

for all values of k . The reflection and transmission
7

coefficients are

Rlkl = tryHl
'
=

1k€42 ¥2
(hi-PY

' toilet
→

'"" ' him
. www..in#ni

Note that setting P-so recovers our previous results .



Also note that maximizing Tik ) with respect
to k yields k2 =P '

,
and that Tfk -- IP) = 1 .

• Finite strings : Bernoulli 's method
Let X

,
= O and Xr

-

- L
,
with y lo , t

I =y
lLitt -- O

(fixed ends ) . Again we write

ylx.tl = f- (x- ctltglxtctl

Invoking the BC at x
-

- O yields f-(5) = - gl- 5) ,
hence we have

ylx.tl -- glcttx ) - g Ict - x )

We next demand' y lLitt
= 0
,
which yields

glatt L) -- gut -L) ⇒ g (5+24=915)
which says that gls ) is periodic with period 2L .

Any such periodic function may be expressed as
a Fourier series , viz .

gls) = n¥{ In cos TTT ) -t In sin (FIL)?
The full

,
time - dependent solution is

then given by



←
In HHT

Bn

ylx.tl = glcttx ) -g (et - x ) 3n=. -put An
t

= (FL )
"
sin HEIMAN cost " It Bns .tn/ntIt-/)
-

we define I Cn cos ton )

kn - NIL , wn=n ,
4. Ix ) (F)

"

sin(n/

for NE 11,2 , . . . , a } . Thus , 41×1=121µL)
"'
sin thnx )

has (htt ) nodes, located at Xj,n=j4n , for je lo, . . .,n} .

We further define the inner product,

< lol x > =µ!:e×¢c×, × ,×,
5¥:

" '

where ¢ and X are real functions of xElo, L] that

satisfy 4101=414 -

- Not = X 14=0 .
Our basis functions

4N (x) are orthonormal with respect to this IP :

ahhh > = I §dxsmlm ) sin In Hsm .
Furthermore

,
this basis is complete , i - e .

µ 41×14
.
Ix 't = SIX - x 's



We may express the constants {An , Bn ) in terms

of our initial conditions , viz .

ylx , o ) --§. An 41×1 , ytx, o) --I
,

wnB.tn/x)

Multiplying by µ4'mlx ) and integrating over fo.LI ,
L

Am --µ!dxylx, oltmlx ) , Bm=µw; xujlx,014mW

Example : ylx, o, = (
2b Hh if xe Lo , 'zL )

2b (L- XYL if x E [ IL , L)

and iglx, o ) = O (release string from rest) . End
'k 4$ THE

'

An -

- (2µL ) ⇒ sinltznt ) if

i. e
. Aah -- O and Aarti = (2µL )

'"
. 4¥ . fju÷ .

Also Bn -- O f n . Note that 42hLx ) = - Kuk -X)
is odd under reflection about the midpoint x -- E ,
whereas our initial conditionylx, o) =y1L -x. o) was

even . Here's a set of

images of the evolution :
This is the d 'Alembert

solution
, extending glx )

to the entire real line
,

with glxt-glxtl.LI = -g f- X) .



Lecture Il (Nov . 91
-

Start with the Lagrangian density

L =
'

zyulx )ya
2
-

'

z
Elx) y

'
2
- tzvlx)y2

The last term corresponds to a harmonic potential
attracting the string at each x value to (x,y -- o ) .

In fact
,
if

µ txt
-

-pot m81×1 ,
ulx) = KSCx)

then we recover the problem of a string with an
attached point mass that is connected to the point

Mlo
,
o ) by a spring . The EL

TEXequations are found to be ✓
-

-¥Hxl3I×)tulxly=-µlxl%f#
This equation is time - translation invariant because
the coefficients are autonomous lice . Elxl

,
ulx)

,
andgutx)

do not depend on time t
'

) . This means that the

partial differential operator (PDO )

Q = lulxl - IT, TIM IT, t ulx )



for which Q ylx.tl = O ,
commutes with the

PDO Hot : HI
,
Not] -- O .

This means that

the solutions to ToyHitt = 0 may be written as

ylx.tl -- 41×1 e-
iwt

Furthermore
,
since
y 'Tx. t )

is a solution
,
then

we
may write

ylx , t ) = 41×1 cos lwtt ¢ )

we are left with the equation

is 41×1 =
µ Ix) w

' 41×1

where

is = - ftp.tlxsodyxtulxl
is an ordinary differential operator to Do ) .

The equation.

I 41×1 = - ddzftlxld.ae#tulxI4lxl--yulxlw24lx)
is known as the Sturm - Liouville equation .

The simplest example is when Tx ) -- t and gulxl --µ
are constants

,
and 01×1=0 . Then K -

-
- I IIe ,



and the solutions to the SL eqn are of the form

41×1 = A eikx

where k
'
= µw4t=w4c2 with c=ft/µ )

"'
= wave speed .

I. e . 414 = Aetiwxk
,
so ylxl = flat - x ) tglcttx ) .

• Boundary conditions - we consider four classes :

① Fixed endpoints : 41×1=0 for X = Xc
,
R

T

② Natural : tix ) thx ) = O for X -- Xu
,
R 9th

.←
e.o

③ Periodic : 41×+4=41×1 where L =

xp - XL
(Also require t Ix) = Ilxtl ) . )

④ Mixed homogeneous : atHttp 44×1=0 for X -- Xi,r
[ same xp at both endpoints . ]

• Eigenfunction properties :
The SL equation is an eigenvalue equation :

- dat ftkit: txt ) t ulxhklxt-w.lu/xl4nlx ) CA )

for a given choice of Bcs . Suppose we have a second so12,

-off, ltlxllimlxlltulxlumlxkwmpilxltmlxl 1B )

Multiply 1B ) by tntlx ) and IAH by 4mLx) and subtract :



tf fit'm ) - 4M¥ th
'

) -- hunt- wit ,u4m4n*
= like'm - itmtity

Now integrate from x, to xp :

k¥2-wit!"dxµlxHn4xHml*i= ilxiltnlxltilxi - tmH4*nIxI.
= 0

because the term in square brackets vanishes for any
of the four boundary conditions . Thus ,

I wi
'
- win ) Hullum ) = O

where the inner product is

< 414 > = RxNxt 44×10/1×1

Since ctnlun > I 0
,
we have that wi e LR

.
INote

this does not preclude w! so in which case Wnt i IR . )
when win t win

,
we have stunt 4ms -- O

.
For degenerate

eigenvalues , we may invoke the Gram - Schmidt method, which
orthogonalites the eigenfunctions within a degenerate subspace .
Since the SLE is linear, we may then demand orthonormality :

( Hullum ) = 8mm



Furthermore when the functions µHI , tix ) , u Ix ) are

all real
,
and when

,
in the case of mixed homogeneous

Bcs
, Hp E IR , we may choose 4h Ix ) E IB t n .

Another aspect of the eigenspectrum , which is more
difficult to prove (so we won't ) is completeness :

A

pitx ) [ 4*1×141x' I = SIX - x' l
n = 0

Note that we have labeled the eigenvalues and eigenfunctions
with a discrete integer index n E fo, I , . . .

,
a ) , and

we may demand wi E wi e wi s . . . . Any square
integrable , or d

'

,
function flxl

, for which af If > so,
can be expanded in the eigenfunctions, viz .

Axl = of.tn/xl.fn--s4nHs;fITxMxl4Ilxtflxl
NB : what is true is that Hf - E.of. 4h11 = o ,

where

11h11 = L ht h > is the norm of h . Note that this

does not guarantee that Ifn 4. IN converges to Axl

pointwise for all xefxl , Xr ] .

Rather
,
the convergence

holds "almost everywhere
"

,
which is to say for all xC-Kc , Xr )

except on a set of measure zero .



• Variational method

Define the functional w
'

HI xD = NgY4k# with

NHKD-itzfidxftlxlttxttulxltlxPIDHlxlj-tzf.dk/ulxl4lx5
Then the variation of w44] is

g.w2= 8¥ - NSDDZ
Thus

,
if we demand 8W2=-0

,
we have

8N = Nj 8D = w' 8D
and since

8N

gq,
= - o¥ ItIN 44×1 ) t Nxt 41×1

8D

gTy×,
= Nxt 14×1

we see that Sw! O yields the SLE ,
8N

- off
,
ft 1×144×1 ) t HH 41×1 = w'pi Ix) tix ) -- w

'

Fix,
=

814×1

Note. also that the variation of 8N contains



Scratch
XR

NHKD-itzf.dk few 44×12 told 41×12 ) = fdx ↳Hit!x)
*L

DHlxlj-tzf.dk/ulxl4lx5=f!dRx ↳ 14,4', x )
Ln 14,4

'

,
x ) = { tix , y'

'

t t ulxlt
-

↳ 14,4
'

,
xl = I prlxl 4

-

9¥, -

- ITI - ¥347 -

- unit - Extent
']

¥7, -- 3¥ -dax3 =Mit

Fourier analysis : 4. txt → 4h 1×1 = e

ik ×

f- txt -

- fgI¥, Ilk, eikx
Ilk ) =food* fix) e

-
ih×

= shelf )

( Hh
'

y =

-

foix e
"" ! " "

= an 8th - k
') replaces 8kW

completeness : 81x -xy¥%¥,

eiklx -x't



a boundary term Elxllilxl 841×1
.

.
which vanishes

for any of our first three
classes of boundary conditions ,

i. e . fixed endpoints 1814×4,21=0 ) , natural (III. rt 4
'

lxc
. .
1=01

,

or periodic ( HH -- fl x * L) for f-1×1=41 x ) and Axl = TIX ) ) .
In order to accommodate the fourth class of BC

,
i. e.

mixed homogeneous , with a 41×1 tp44xl=O for X = Xc ,R ,
if we redefine w' = TV ID

,
where

IHH) -- NHK) tfpftlxrlllxrl - that 41×42 )
In fact, for all for classes of BC we can take

#

w44lxD=Y¥Y ¥ tlxltdaxiixidaituixi ) tix,
=--

¥ Nxt 44×1

Thus
, expanding 41×1 = ⇐ Cn 41×1 , we have

"HKD -

- w
-

Ko
,
.
. .

,
c. , =
II. wi Ci
TT
z [ Cm
M = 0

Then AI = 1%-11=0 for all j E fo, I , . . .

,
a }

OC's -2 Eci
any 41×1 → WH ) two

solutions :

µ
,
= µ

it 5- k
with w

'
= WE

0 if I # k ( hth so 1h)



Example : string with mass point in center

µ Ix )
-

- µ + m 8 (x
- E L ) ; I txt

-

- E i 01×1=0

Here XE O and Xp = L . Then

It! 'dx 417×1
w
' 14 ] =--

Er! Ix 44×1 t Im 4434

Now consider a trial function

× ' AI
"" hi:* :: ::i:÷i¥÷. .

Here we have a single variational parameter , a .

• [dx 414×1=2AZ ! tix a 2×20-2 = A ' . ( q )
""

2x- I

• I 'd x 44×1=2 A'of x
'd

= .AZ . 2¥, ftp.t
'

• 44 EL ) = A
' (El
"

¥114
"" fateful

'"

with⇒i⇒i.IE#iiiiiiii.nyM-yuL/



Best variational estimate ⇒ set
duds

= o :

da

ddaI=O ⇒ 4a
'
- 2x - I t la - 1112atIT Fy = 0

This is a cubic equation . For m IM → 0
,
we have

422 - 22 - I = O ⇒ a = 14 (It VE) = 0.809 . Find
then wk 11.09 Eu ⇒ w =3 . 330£ .

The exact result we

know is 401×1=12/4 "' sin HTXIL ) with Wo
-

- IT4L
,

and our variational frequency is about 6.00% higher.
For MIM → o

,
the string 's inertia is negligible .

Then 41×1 describes an isosceles triangle , and

mj = -si . I I ⇒ we 2 III -- Z ftp.TI-EIMI
Tare variational soft yields 2=1 and w

'
= w} exactly .

Note a -- I corresponds to a triangular shape
Our example involved just one. variational parameter .
We could have more

,
e. g .

41×1 = Ax ' t BxB ( ofXII )
41L - x 1=41×1

Variation parameters : 3 (x , B , BIA )

Or : A = C cost
,
B =

.
C sin 8 ⇒ (x , p , 8)



Another basis : 4.1×1 =/ E)
"'

an!n1.
of 'd x 4mW Yhlxl = 8mm

n !
-

dxtilxluilxl -- - f 'dx 4mm tiny = Ism
.

So take 41×1=1.cn/unlx , K
"
-

-
-TIK

[ variational parameters 1C , .
. .

.

,
Ca )

w
' 14 ] =

Cx ,

'

za! Ix 44×1 t
'zm44

Et ETE Ici
=-

Er .ES?tImlgcjsinFI
-

I- IT 8J ,2k - I
-

C
, .

. . . , Ce finite subset (§
,

I-11kg )
"

m

Enki
w
'

ki . .. ,C. ) =-
-

. I It
E. Cit Ff ""Cup



Lecture 12 (Nov - Il )
-

• Inhomogeneous Sturm - Liouville equation 159.7 ) :

µlxlf¥i -#ftlxl ? It ulxly =µlx, Refflxle
- '

'

wt]

Here the string is forced at frequency w .

We write the solution as

ylx.tl -- Re fylx, e-
'
'

wtf
could redefine as If* I but itwhere
- is convenient if

( K - w'µ Ix ) ) ylxl = yulxlffx ) we include mix)

with
↳ ylx.tl -- yhomlxitltyinhix.tl

I = - off
,

this¥
,
t Vlxl

"

the Sturm - Liouville operator . Recall d

'

k 4. txt = wipilxluulxl
ahhh > = fix gulxltmlxhklxl -- Smn

*

Nxt { 41×14. Cx't = 81x - x
' )

Taking the inverse of K - w2µlx ) , we have
that the inhomogeneous solution is



Scratch
Imw
④

Unforced
, damped SHO : # Rew

'

x' +281 two × = o
- T- -•- -

•

- ooo
- - raw

.

Soth : x = A e
-
int

⇒ - w
?
-
zirw two -0

w't 2i8w -wi -- o ⇒ w= - i8±/wf_T
±

e- iwtt → o as t → a due to 8 > O

Vi w! ⇒ underdamped ,
r 's word ⇒ overdamped

Harmonic forcing :

←
Htt --

fdz.FI/elEirtiit2ritwox--Itrlq-irtxcrye-irtSoln-:xltt--
Xhomltltxinhltl
[
Ate

- iwtt
+ A
-

e
-
i w
-

t
→ O

(wi - zirr - d) Ilm = f- IN

single frequency : xinhltl = Alr ) cos [Rtt Slr
))

amplitude : Air ) -- (Iwo ' - sitter'd)
- Y'

phase shift : Slr ) = tan
- ' (k¥4)



XR

yinhlx ) = fdx ' yuh 't Gwlx, x'I flx 't
XL

where Gwlx , x'l is the Green 's function , satisfying

(K - w'gum) Gwlx , x'I = SIX -x 't

I. e . G.wlx , x' l -- IK - w 'm
,
×
. . We may write

ulnlxitnlx 't Law ) -

-

I
Gwlx , x' I = § -FEIT "

M

You can read about how to obtain Gwlx,x 't without

having to do the infinite sum over all the eigenfunctions
in 59.7 .

I
. For now

,
I just quote the result for

the case where yulxl --µ , tlxl
-

- t
,
VIX ) = 0 ,

and

[XL , Xia ) = to , L ) . Then

s.in/wXs/clsinlwlL-xi/c)Gwlx,x'l---lwtklsin/wL/c)

where Xa
-

- min Ix ,x'l and X , = max(* , X
'

)
,
c -- III

Example : Let flxl = fo Slx - Xo ) . Then

yinhlxl = µ to Gw (x , Xo )

Note that there are no constants of integration .



The full Soth isthen
homogeneous Sol

" (e.g .

Bernoulli)

← inhomogeneous so I 7

ylxit ) = yhomlx , t) tyinhlx.tl

The initial conditions enter in ywmlx.tl as we have

learned from the Bernoulli solution . If there is some

small damping , then at long times we have
,

cusp

¥7.

ylx , th V
- "

I = yinhlx.tl o 42 L

= µ to Gwlx . Xo ) cos (wt ,
* fixed )

where V is the damping rate (i.e . rate of energy
loss for unforced system) . If Xo = tzh ,

then

sin(WHC ) if X L 42

Gwlxitzh ) =⇒scute) " ↳ inHL -Hk) if x > 42
Note that yi.nlx.tt is continuous at x --

'

z L but its

spatial derivative y
'inhlx , t ) is discontinuous at x -- { L .

• Continua in higher dimensions : HII ,t ) displacement
Generalization of wave operator : e.g . drum. head :

←
•qK = -¥ to.pk/#ptVlxl

kettledrum



This arises from

2h 2h

L -

- tzlulxl T - I tap Kl GIB
- tzulxlh

'

The wave equation is
*K HII

,
t ) = -pilxghlx .tl

Since ( is
, 2+1=0 , solutions may be written as

hk.tl = Re [hey , e
- int )

where

(K - wyu.la/htxl-- 0
This is again an eigenvalue equation ,

with solutions

4. txt ⇒ K 4151 -- wiµ1514.151

The eigenfunctions and eigenvalues satisfy
<Wks fddxpilxltmfxhhlxl -- Smn

pihl { 41514*154=815 - I
'

)

where the medium is confined to a region RCLRD .

We must also apply boundary conditions of
the form



Ii ) h ( Ill
or
= 0

,
where 2h = boundary of R

Iii ) t III in .Jhlgr= O
,
where is is normal to ar

( iii ) PBC s
, e.g .

in a box of dim# L
,
x Lzx - - - x Ld

link that pin .tt/xDgr-- 0
The Green 's function is

Gwtx , I
' ! = E 4nlxT4n*IWf - W

2

with

(K - while1) Gwtxix ' ) = SIE -I ' )
the variational approach generalizes as well, with

WWIID= Nl4
Dl4151 ] n

and K

-

N14151) -

-nfddx that#at.ph#.otulxY4lxTDl4lxD--fddxgulxl44xl
Demanding. Sw

'
= O yields the wave equation

K 4km = W'µhit 4151



• Membranes : Z -

- hlx , y l

The equation of a surface is Flx ,y , z ) = Z - hlx,y ) =D .

Let the differential surface area be DS .
The

projection onto the lxiy ) plane is then

DA -- dx dy -- in - Ids = ntds

The unit normal is

in = ?g÷, = I-th (note I. 8h -- O )

✓ I +18412

Thus
'

as = dxnn.de?e=/ltIFhTdxdy
We consider a model where before : ds =IlthTdx

U lhlx.y.tl/--fdlSo=UottzJd2xolxll8h5-t . . .

with o the surface tension .
Other

energy functions

are possible . The kinetic energy is

Tfhlx, y, tD= tzfdxplxllfht.pe
Thus

S = fdtfdlx L (h , Ah , Oh , 't , I )

L -

- I pilxlldthl
'
- ¥0151 ht



The equations of motion are then

Fh - ft Ift - Jiffy = o
÷
o - tuna 3¥.I - taohH=o

Thus

F. (ok I THIA) = d2hlDt2

which is a generalization of the Helmholtz equation .

When µ and o are constants , we get Helmholtz
:

F - to ¥4 HIM = 0

Note Gu ] = ML
- Z
and [o) -- E L

'

= MT
- 2

,
thus

with. c = lolµ )
"
we have Ic ] = LT

"

as before .

d 'Alembert solution :

h txt ) -- fTk - I - et )

where
"

k is a fixed direction in space . These are

plane waves (really
"line waves

" )
. The locus of

points of constant h II. t ) satisfies

fix.tl = I . I - et = constant



and setting dot = 0 then yields
"

k . doit = C
,
i.e .

the velocity along
'

k is C
. The component of I lying

perpendicular to
"

k is arbitrary , so constant 0/15 it )

corresponds to lines orthogonal to t .

NIH
'

← of -- const

Due to linearity of the wave egn , we can superpose
plane wave solutions to arrive at thegeneral solution,

HI
,
t ) = 1,91%1AIKI ei Hix - ctftt+ Biz , eilt.xtckt.lt

+ ti mover k -- Hel
- I move

i.
Rectangles : R -

- lo , a] × lo , b) bigSeparation of variables solves PDE :

hlx
, y , t )

-

- Xlxl Yly ) Ttt )

Helmholtz can th ( aka *Ey. - tuff ) h -- O yields

III. + ¥354 -- ti 's 3¥
T T t

depends depends depends
only on x only °" Y only on t



So we conclude

43¥ =
- hi

, ÷
, 3¥ -

-

- hi , I, 3¥ -

-
-or

with

text KE = YI
thus

,
w
-

- CHI
.

Most general so I
'

:

XIX ) -

- Asin ( kxx t al

Ylyl = Bsinlkyyt- B ) ,
hlxiy.tl -- XKIYIYITIH

THI = C sein (wt tr )

but imposing boundary conditions htx.tl/gr-- 0
then requires

b.
×

-

-
MITla

a =p -- O ,
sin lkxa ) = sin thy

'

b) -- O ⇒ ( ky = nub
The most general soth consistent with the Bcs is then

hlx
,y , t )

-

- I; Amnsinlmtttlsinfntbflsinlwmnttrmnl
where -

wmn -- LIMIT't FIT
and the constants ( Amn

,
8mi) are determined by the

initial conditions .



* Circles : r = ( (x , y l l x'tyl s a21
It is convenient to work in 2d polar coordinates (r, 4) .
The Helmholtz equation takes the form

7h = frfr fr Filth 3¥ -- fifth.
Separation of variables :

hlr
,
4
,
t ) -- R Irl 't let THI

Again we have

*treat # It # t.EE -- It3¥
with

Ethel -- costme * pl
THI = cos Iwt t V!

and

d 'R tr DI + ( E. - WI) B -- Oda
t d r

.

Since Hr , 4 t 2T , t ) = hlril, t ) , we must have ME 27 .

This is Bessel 's equation , with solutions

RH -

- A Jm (WI ) t B Nm (F)
with Jml H and NmlH the Bessel and Neumann functions



of order m
, respectively .

Since Nm ht diverges
as 2- → 0 for all m , we must have 13=0 . (For an
annulus

,
we may have B- to

. ) The boundary condition
at r -- a yields

Jm (WI ) = O ⇒ w -

- Wm e = Xme
- Ea

where Jmlx me 1=0 , i. e . Xme is the lth zero
11=1,2 , . . . , o ) of Jml x) .

Thus
, Jm¥+n*×

hlr.cl, t ) -- Ii Ia , Ame Jmlxmerlalcoslmlftfsme) costumeTt Vme)
The constants A-me , pone ,

and Vme are set by the
initial conditions . Note h Ir -

-ail
,
t ) = O for all 4

and for all t .

.

• Read § 9. 3.6 (sound in fluids ) and 059.4 (dispersion )

• Classical Field Theory
Independent variables : Ix ' , . . . , xn ) E r c 112

"

Real fields : I do , , . . .

, for )
or 1×0

,
x 's . . . , xd}

Lagrangian density : L =L Idea , quota , xn )
n -- dtt

Action : S -

- fd " x L

Let's compute the variation of S :



ss --foix III. Hat ftp.i, 39¥ )

µ
glitteratial

-

-f.an 13¥ - ÷nlf÷% ) ) sofa mace area

;§dEn":*, sola
The surface term vanishes if we demand

solatxllzro or n
" f÷¢aj¥o

Then we have

%÷×, -- 4¥. - E.B÷i÷;D
,
←
evaluate atx

Thus 85=0 entails the Euler-Lagrange equations,

3¥
.

-¥.lk#oat=o
When L is independent of the independent variables *9
the stress - energy tensor is conserved :

Tut
"

v
-

- O with Tar =§%÷¢a; Ha - 89L
This is analogous to dd¥ -- O in particle mechanics .



Maxwellthe.org

The Lagrangian density , with sources, is

LIE , 2µA
'

) = -⇒ Far FM- I AM

where 2
,
= ¥, with xt = Ict

,
x
, y, z I = (x ; x

'
,
x
'

,
x3)

and

Fav -- QuAr - an Ap ; Au -- guy
At

, g
-

- diag It , - , -, -- )

FM = YAU - 5AM = gluing
"P Aap ; gµ=gMu

The EL equations are

tf - ¥µµJffp¥= O ⇒ 2µF"
u

= 4h Ju

conservedcurrentsinfieldthe.org#

In particle mechanics , a one -parameter family of transformations
g-olg ,

3) which leaves Llg , I , t ) invariant results in a
conserved "

charge
"

A -- { ftp.dftf/s=.oiEol9-iS=ot--9-o
with dhldt = O . We generalize to field

"

theory



by taking Gotti → do
.
HMI

.
Then

÷ !! mania . x.I -- 3*354*+3*4, 3¥!
=¥tI÷*3¥H .

3=0

where we have invoked the EL egas,

:*
.

.

. I:*.it
Thus we have

2µJ
"
= 0 with J" -- { %÷qj 3¥ I

3=0

Let us write XM -

- 1×0
,
X

'

, . . .

,
Xd } with n = d ti

.

Then

with Xo -= Ct and Qr I c-
' fold x Jo , we have

diff =!ddx JoJo = -1*3×5 . I = -donde n' I = 0

provided in - Ilya = O . Thus
,
the rate of change

of Qr is minus the integrated flux exiting the region r .

Example :

214,442×4,44*1=2142×4*112144 - UH * 41



The Lagrangian density is invariant under

4 → I = ei 34
,
y
*
→ I *e- is 4

We regard 4 and 4th as independent fields . Thus,
H

351 = ie
" t

, off = - ie
-is It

and thus

J" = 3¥14 . till tf¥µ*, fifty
= 14*0144 - 42" 4*1 = k Im 14*2441

Note that utility) -- U 14*41 is independent of S .

• Gross - Pitaevskii model

This is a model of nonrelativistic interacting bosons, with

L -- it 4*347 - II Ttt. Ft - g (Ht -no 12
Details in § 9.53 of the notes. The EL equations are

its 3¥ = - TIM 024 t 2g 1141 '- no 14
and its complex conjugate .

This is called' the nonlinear

Schrodinger equation (NLSE l . The one -parameter
invariance of L is again



415
,
H → III.HI e- is 415 ,t)

4*15 .tt → Ith
,
tt-eti34tyx.tl

The conserved current is

Jiu -- fifer III, E÷*TI¥h⇒
with. components

Jo -

- ti 141
'
= tip

I = film 14*54-484*1=5
Thus

,

¥ to -J = O (continuity egn - I

In this example , xn=Xµ and there is no difference

between raised and lowered indices
.



'

Lecture 13 (Nov
.
16-

• Hamiltonian mechanics

Recall that Hla ,p.tl --£
,
Pogo - Llg , it .tl is a

Legendre transform :

DH -

-

ftp./dot'qodpo-fIgodqo-f#dqoI-fIEdt=Ef-FzdqotEodpi) - 3¥ dt
We conclude

II. = - ¥. = - pi , Fitz -- Eo
as well as

dat -- 3¥ . - Et
Note :

lid It 04at -

- O
,
then dttldt = O

,
i. e .

H

is a constant of the motion .

liil To express H -

- HIq , p, t ) , we must invert
the relation Po = Ego -- Polat , it to obtain
'

go ( q , p ) . This requires that the Hessian ,

O'Po

Togo
=
OI

i 0.9-00501



be nonsingular . (of
.
inverse function theorem )

Iii il Define the rank 2n vector Is by

i. ⇒ si -ftp.nitiiiisii.sn
Then we may write Hamilton 's equations of motion as

÷÷¥:¥
. .

) ⇒ Ii -- ai Es; i s -- to.
Note that J is an antisymmetric rank 2n matrix .
The coordinates I 5.

,
. . .

,
5am ) = lot , , . . ., G.n , p, , .

-

, Pn }
define a 2h - dimensional phase space .

If 2H/2t=O
,

then the equations of motion specify a rank 2n

dynamical system , 5
;
= Vil 51 , where

Vil 3) = Jig. dtflg = velocity vector
in phase space

If 2H/dt to
,
define to = t and we have a rank[ 12h til DS with Bo =

'l
. and %.

= Vi ( so
,
5

, ,
. . .

,
32N ) .

]



- Incompressible flow in phase space
consider the (autonomous ) dynamical system

→

des

att
- tis,

where THE IRN
.
Consider now the evolution of a

compact region RHI , each point in which evolves according
to our DS

.

We have →

RHI -- tails lose Riot
µ,

Now define htt ) = vol RIH = fdyu ,
where

RHI

dµ=d3, - - - d 3N Jacobian

Then rtttdtizf.ii.MY#diulFIstiIttTX
where

µ3jftjf#D=. albinism = def Bitton
215, . . . . , En ) 23

j Itt

i. e . the determinant of the Jacobian . How

3; lttdt ) =3; It) t Vi 15ftHolt toldt 't

and therefore

BiYj¥ = si; t ii.
told t't



We now invoke the identity In def A = Tr 1nA

for
any matrix

A
,
which is easily demonstrated

when A is put in diagonal form .
Thus

,
with A = I TEH

det
. Htt EM ) -- expTr In (ITEM )

= exp Tr ftM -
'

z E'M 't . . . )
= l t E Tr M t

'

z E
' ( (TrMT - TirM

'

) t . . .

and with E -

- dt and M ;jl5 ) = }Y÷↳ ,
we have

rlttdtt = RHI t Idµ J .
J dt t Oldt ')

RHI

i. e . the rate of change of RHI -- Vol. RHI is given by

III.diner
where T.TV = .¥

,
3¥ -

- divergence of phase space velocity .

Alternate derivation : LetgEst ) be the density of
some collection of points in phase space . This must

satisfy the continuity equation,

Ft t J . Ipt! = 0

Integrate over a region R :

¥ fad,up = -{die 5. Htt = -fads in .pt



where BR is the boundary of R . It is perhaps
useful to think of p as a number or charge density
and j =p J as the corresponding current density . Then
if QR=£dµg , then

date -

- ⇒as
I- flux )

Note that the Leibniz rule says

3¥ t t - Tp t p -5 . i = O

and if F. V -- O
,
then

Dff = ( ft t t - J)p -

- o

We call 7ft the convective derivative , as it tells
us the rate of change ofp in a frame comoving
with the local velocity J . Thus, ← I

-

- T

off pl 5TH , t ) = Ft t I - Jp = 7ft
If we define

915, t = 01 = { 1
if EE Ro

o if I ¢ Ro

i. e . the "characteristic function
"

of Ro , then the



Scratch
.

-

Immiscible fluids (e.g .

oil and water ) :

•

← 915 ,then
.

⇒
'

¥" Hea Esi
/

. .

/ To

Platt --Po Pw

-

time

Two possible values ofgtx, t) : pw andfo
Volume of red region is preserved by dynamics .



ManiShing of the convective derivative says that

ylEH , t ) is a constant , hence the image RHI of
the set R lol =- Ro always has the same volume . In
other ward's

,
the phase space flow is incompressible .

Hamiltonian evolution is always incompressible :

J . J -- fi =# His. 3¥ ) -- I;fsg.

-

- o

- Poisson brackets

consider the time evolution of any
. function F (5HI , t ) .

We have

II -- II t III. Eat II. it
= Et t tf , HI

s = F)
where

27
,

A. BI -- fi
.

III. 337 - 35.371 -- E. Ji; 3¥. 3¥.
Ija

is the Poisson bracket of A and B . Properties
of the

.
PB :

• Antisymmetry : LA , B) = - {B,A)
• Bi linearity : for constant X ,

{Att B , C ) = IA ,
C) t X ( B , C }



• Associativity :

{ AB , C ) = Al B
,
C } t B {A , C }

A Ii
• Jacobi identity : C

←
B

{ A
,
1B

,
c) It (B ,

{C ,Al) t ( C , f.A , B ) ) = 0

We also have

° If LA ,HI = O and 2Alot =O
,
then DA Idt = O ,

i. e . A lot , p ) is a constant of the motion .

° If (A ,H ) = O and {13,1-1}=0 , then by the Jacobi

identity we have { IAB } , H ) -- O , and if 2.Alot -- o
and d.Blat = O for, more weakly, if 21A, 13312T = O),
then {A

,
B) Iq , p ) is a constant of the motion .

° It is easily established that

{ 9- o , 9-oil = { Po , poi ) = O ,
{ Go , poi ) -- Soo ,

- Any density function plot , p.tt must satisfy continuity, hence

⇒ = # t Ip , HI = o ⇒ If = - Ip, HI = t IH ,p )
Liouville Cfn .

Consider a distribution plot , p,t) =p (h . . . . . ,
hut where



each ha is conserved , i - e . ha -- half , p ) with

dot -

- { ¥g÷Iot ftp.po/--Ha.HI---o ..

Then p (hi , . . . , Ant is a stationary soI
' to Liouville 's

equation , i. e .

If = IH ,pf -- O

Examples :

• microcanonical distribution :

plot , p ) = 8 ( E -Hlf ,p)) /DIE )

where the density of states DIE) fixes the normalization

↳ndM 'll9- IP ) = I ⇒ DIE ) =¥dµ SIE - Hlq ,pl )
• ordinary canonical distribution :

plot , p ) = type, e
- B HIE , p )

with

ZIP) = Jdµ e- pH lot , pl
temperature1,122 n

for normalization . You
may

know D= Yk.BY.



- Aside : It is conventional to define the Liouvillean

operator in by [ . = i { H ,
. -1 , where • = anything .

Thus
,

If = Hip) = - i Ig
which bears a resemblance to the Schrodinger equation .

• Poincare' recurrence theorem g-IHI =3Htt

let go bae the "

t - advance mapping
"
which evolves

time by I , i. e . integrate the dynamical system
is
;
-

- Vi 151 forward by a time At = I . we assume

three conditions :

Cil g, is
invertible ( integrate DS backward by - E)

Iii ) go is volume - preserving (evolution is Hamiltonian)
liii ) accessible phase space volume is finite , e.g .

*
Jdm ⑦ (Et SE - Htt .pl ) ④(that .pl - E) = IF CE

'

) s
= DIE) SE

we will henceforth refer to the Hn - it - dimensional

hypersurface F defined by H I q.pl -- E as the
"

phase

space
" for Hamiltonian evolution .

Theorem : In any finite neighborhood
'

Roc T there

exists a point -5, which returns to Ro after finitely
many applications of gt .



Before proving the theorem , let's consider first its
remarkable consequences . Suppose we had a bottle of

perfume which we open at time t
-

- O in an evacuated

room . Initially all the perfume molecules are inside
the bottle

,
with CM positions I do ) and orientations

(for diatomic or polyatomic molecules ) Iola lol , Oa lol , ta lol) .
The initial conditions also specify the corresponding
velocities Txdot , Ya lol , Idol , I. lol , idol , idol ) . with
N polyatomic molecules , there are 6N coordinates and
GN velocities ⇒ 12N -dim t phase space . We choose Ro to

be a ball in this space of arbitrarily small but finite size .

The theorem says that there is an initial condition within

the ball Ro which will repeat after a finite time mt ,
where MEI

.
Thus

,
all the molecules return to the

bottle
,
and to within Ro of their initial configuration !

(However
,
this recurrence time may be much , much



greater than the age of the universe ! )
Proof : Assume the theorem fails and there is no

recurrence . We will prove this results in acontradiction
. Consider the union D= get Ro of all the

images of gf Ro ,
where he 10,1 , . . .

,
o ) . Suppose

all these images are disjoint. Then

roll# = E.ovollg! Ro ) --Erol !R. ) -- o

where we have used that gt is volume -preserving .

Since Vol (t ) c o, we contradict finite volume .
Therefore

the sets Ig! Rothe 27, o ) cannot be disjoint , i.e .
there

must exist two finite integers k and l with ht l such

that get Rong! Rot 0 .
Due to invert'bility , the inverse

map GI
'
exists

.
Assume no log that k > l and apply



the
map (g 't'll to this relation , obtaining

Ron gF Rot of
where m -- k - l > O . Now choose any point I, E RongF Ro .
Then I Igf. Im 5, E Ro lies within Ro and we have

proven the theorem !

Each of the three conditions - volume preservation , inverts
'

bilily ,
and finite phase space volume - are essential here , and

if
any one

doesn't hold the proof fails, rit .

•

go not volume
-preserving : E.g . damped oscillator with

it 2fix two X -- O . Then with -5 = (x
,
i ) we have

I
J -

- (i
,
-2pi -wi x ) and

J - T = 3 +
at-2mi-wix ) # x

Tx
= - 2ps

Thus phase space volume5 collapse : SHH = e-
2Btr lol .

The set D can be of finite volume even if all the

gt Ro are distinct , because

E.or hit -- Ee
-"Mr

.

-

- ,?÷p so
The phase space orbits all spiral into the origin
and will not be recurrent. Note go is invertible

and phase space is of finite total volume .



• gt not invertible : Let g : IR → lo , i ) with

glxl = frack ) , the fractional part of X . Acting
on sets of volume (length ) less than one , this

map is volume preserving , but obviously g is not
invertible

,
so the proof fails .

• T not finite : Let g
: B → H2 with glx) = xta .

Clearly this is invertible and volume- preserving ,
but not recurrent

.

- Kac ring model tecture.tt/Nov#

Can a system exhibit both equilibration and recurrence ?
Formally no, but practically yes .

We noted how for

the case of the open perfume bottle, the recurrence
time could be vastly longer than age of the universe .
A nice example due to Mark Kac shows how both

equilibration and recurrence can be present , on different
but accessible time scales

.

Consider N spins T or t on

a ring which evolve

by rotating clockwise .

There are thus N sites

and N links
. Along

F of these links are



• gt not invertible : Let g : IR → lo , i ) with

glxl = frack ) , the fractional part of X . Acting
on sets of volume (length ) less than one , this

map is volume preserving , but obviously g is not
invertible

,
so the proof fails .

• T not finite : Let g
: B → H2 with glx) = xta .

Clearly this is invertible and volume- preserving ,
but not recurrent

.

- Kac ring model tecture.tt/Nov#

Can a system exhibit both equilibration and recurrence ?
Formally no, but practically yes .

We noted how for

the case of the open perfume bottle, the recurrence
time could be vastly longer than age of the universe .
A nice example due to Mark Kac shows how both

equilibration and recurrence can be present , on different
but accessible time scales

.

Consider N spins T or t on

a ring which evolve

by rotating clockwise .

There are thus N sites

and N links
. Along

F of these links are



flippers which flip each spin from T to t or from

1 to T as it passes by . The configuration of flippers
is frozen in from the start ("quenched randomness

"

) .
See the above figure . The number of possible. spin
configurations is finite and given by rollit = 2

"
.

Consider the evolution of a single spin , and let pn be
the probability. the spin is up at time n (units of t ) .
Let x -

- FIN be the fraction of flippers . If the

flippers were to move about randomly , we would write

put, = ( t - Xl put x ( t
- put

' 'Stosszahlanzatz
' '

probability up 9
X probability down at

at time n and time n and passed by
did not pass flipper a flipper

we can solve this easily :

y
un ' Pn

- k i anti 1475!Yau
,

put .
-

'

z
= ( I - 2x ) (pm - t ) ⇒ pn

-

-

'
z th - 2x)

"

(Po - t )

Thus there is exponential convergence to the equilibrium
state pn →• = 12 on a time scale I

*
= - il lull -2×1 .

Note It lol = t'tfit = 0 while if 421 = 0 . We identify t'Tx)
as the microscopic relaxation time over which local equilibrium
is established .

y . 2×1 =
.
e-
Ht 'T x )

l l - 2x In = e
- n l t

'
Tx )



x -- EET -- I

×
-
-

'

I÷o= Is

* --Eui is

In the figure , we simulate the Kac ring model dynamics
for rings of size N = 2,500 with F = 20

,
100
,
and 500 .

The initial conditions are that every spin is in the T state .

Note how there is an initial exponential relaxation of the

magnetization m = (Nr -N, YN -- 2p - t to the equilibrium
value Meg

-

- O
,
about which m fluctuates .

But at time

n -- N = 2500
,
we have m = 9 once again , and all

the spins have returned to their initial t state !
It is easy to see why : after n -- N time steps , each

spin will have gone completely around the ring and



encountered all F flippers . If F is even , each

spin will have flipped an even number of times ,
thus returning to its initial state .

Thus m
.
= mo .

If F is odd
,
each spin flips an odd number of

times after N steps , and Mn = - mo . But then man = Mo

and the recurrence time is 2N . We emphasize that
not only does the magnetization repeat , but the entire
initial configuration 10. . . . . ,%) , where Oj = I 1 , has
repeated ,

and this is true for all 2N initial conditions .
Note that the KRM satisfies the conditions for recurrence :

a

map is volume
-preserving ( one configuration E

maps to a unique image E
' I

•

map is invertible (just run counterclockwise ! )
• phase space volume is finite (rollH = 2N)

• F odd ⇒ m
n
-

-
-mo

• X >
'

z
⇒ Mn oscillates

• N -

-25
,
ooo : still recurrent !



• Canonical transformations

In Lagrangian mechanics , we are free to redefine our

generalized coordinates , viz .

Qo -

- Qo lot . .
. . .

, Gu ,
t )

This is called a
"

point transformation " . It is locally
invertible provided det laQala qp ) t O . Assuming
the transformation is everywhere invertible , so we
can write go

-

- go IQ ,
t ) , the Lagrangian is

[ IQ
,
I
,
H -

- Hala.tl
, Aglaia , t't , t.lt#tFl9lQithtt

Note that q
-

- q IQ, t) ⇒ if = ily , I , t ) .

For

example ,

lolx , y ) -- tan
- 'fylxl

if (x , y , i ,
'

y ) = ( x yn - yillx 't y
' )

We can always add to L a total derivative of any function
of coordinates and time . If 8gotta ) -- Sqoltb ) = Otto,
then 8Qo Hal = 844 Itb) = 0 to ,

and Hamilton 's principle

St!tdbtIIQ.io , t ) -- o
"

yields the EL eqns



Fa
.

. :¥K÷l=o
This may

also be derived starting with the EL eqns
for the original generalized coordinates (see Eqns 15.36-371
in the notes .

In Hamiltonian mechanics
,
we deal with a much broader

class of transformations . These are called canonical

transformations (Cts ) . The word "canonical " means
"

conforming to a general rule or accepted procedure
"

(Webster ) .

What is canonical about Cts is that they preserve a

particular structure , namely that of the Poisson bracket.
The general form of a CT is

Go
-

- folQi , . . . ,Qn , Pi , . . .

,
Pn
,
t )

Po = PolQi , . . . ,Qn , Pi, . . . , Pn ,t )

wi IX i

we
may write

this as f f
-

-

-

Si =3 it -2 , . . . .

,
Ian

,
t! ;
I -19¥ ) ,

E -

- lip )
where it ft , . . .

,
2n ) . We shall see that the transformed

Hamiltonian is

Tt IQ , Pitt = Hlf , pit ) t # Fla ,Q.tl



where Flq , Q ,H is a function of the old and new

coordinates
,
and of time .

We know that is = J
AI

j jk 23h .
Now consider a

canonical transformation to new phase space
coordinates Ia -

- Tal 5
,
t ) . We have

d=¥÷%a¥+z⇒
J -- ki:

dt k

But if the transformation is canonical
,
we must have

DII = Jab .fr#T--IabdfhzbFsnfHl5.tttfzFIEiQ,H)
= Jab }÷

,
IIT t Jab ftp.sflg.Q.tt

Now define the matrix Maj m
-

jb -

- Iq. 3¥
.

--3¥
.

-

- sa .

Maj = ⇒ Mib -

- 377 -

- htt
'

- b
bk

Equating the two expressions for d Ialdt , we have

MajJin ftp.t 3¥ = Tab In IFT t Jab ,

since I is arbitrary ,
the coefficients of 3¥ on each

side must match
,
which says

MJ = J (Mt )
- I
⇒ MJMt = J



What about the terms in blue ? we must also have

FF = Jab IE;# HEHE t.I.tl

This is true
,
but the proof requires results from

the next section on generating functions . For now,
let's focus on the result MJMt = J . (Note this

entails MtJM = I (exercise ! ) .
An NxN real - valued

matrix R which satisfies RtR = It is called orthogonal,
and Nx N orthogonal matrices form a Lie group , OCN) .

Thus RTR = A ⇒ R E O (N) .
A 2n x2n real - valued

matrix M satisfying MtJM = J with J -- (On" th" )
- thnxn On xn

is called symplectic , and we write Me span )
,
the

Lie group
of real symplectic matrices of rank 2n .

With Maj = TEal 25; , the Poisson bracket is preserved :
Mai Mbj = Mtgb
m m

ftp.sls-siiiff?Iz.=sijfA.z?ET.f?z. s÷
⇒ Mai Jij Mtb }¥a}¥÷= Jab }I÷a3?z

,

-

- IA ,Bt

We next consider how to manufacture a canonical

transformation . But before doing so , let us first show
that Hamiltonian evolution itself generates a CT .



Scratch
01N ) : RTR -

- I ⇒ def 12=11

SUN ) : RTR =D and det R - tl

OCNICGLCN, # I

÷÷i÷÷¥¥
(proper rotations ) unhappy island

of improper
rotations

MTJM = J ⇒ detm = # I

detM= - I excluded ( no unhappy island)

Pf # = ↳gsngnlo
) Arnold ' - '

Aoun -Doku )
T

2nx2n
.

detA=fPfA )
'

PHATJA )=detAPfJ

MESPKN ) ⇒ PHM-t.IM/=pff--detMdetJ/



- Proof Hamiltonian evolution generates a CT

We consider an infinitesimal evolution :

3
;
Itt → 3ilttdtt =3;Htt Ji !¥1gµdt told t 't
l l l l l l

3 i 3
'

i

D-H
We have that Mi;

=
°3

= Sijt Jin⇒g-
dtt Old-E)

25J r

Thus M the = She t- Jes Yes
,

d t and

Mijsjhmtne = ( 8ijtJir%5rdt ) Jjk (sheet Jes%tfqdt)
= Tie tfJirJje%T÷ztJ¥÷¥dt) t Oldt't
= Jie t Old t

'

) take her
,
s →j

Lecture 15 (November 23 )
-

• Generating functions for canonical transformations
For. a transformation to be canonical

,
we require

sfatdtlpo.io - Hui , p.tt) -- o -- S!Itt fp.io- Itoi,EH ]
This is satisfied for all motions provided

Pogo - Hkt , Pitt = tlpooio - II tap.tl toff II. Et t)

where X is a constant . We can always rescale coordinates



and momenta to achieve 1=-1
,
which we henceforth assume.

Therefore , dt
tho

, Pitt -- HII , E.Ht Prior - pigot fFzQot ftp.oio.tt#
To eliminate the terms proportional to bio and go , demand

FF

Ja,
= - Po , IET = tpo

We then have

THE
,
I
,
t I = HCE , p ,t , +

OFII.I.tl
at

This is called a
"

type I canonical transformation
"
.

By making Legendre transformations , we can extend this
to a family of four types of CTS :

Ffg iQ , t ) with po
-

- 3¥
.
, Po -

-
-3¥

ftp.t ) - Pollo with Po
-

- Iffy , Qo
-

- 3¥"
'

9- 'O''H

zlpiqtltpoqo with go = - Ept , Po = - IFI
ftp.P.tttpoqo-PQr with go = - 377 ,

QE FIT
In each case

,
we have

Elio
,
5
,
t
. ) = HII , 5.tl t YET , tell , 2,343



Example 5 of Cts from generating functions-
. Consider the type -I transformation generated by

Fz ( E ,
F) = Aol El Po

where AolEl is an arbitrary function of {on , . . .

, of } .

Then

Qo = ftp. = AolEl , Po
-

- EE -

- Mjf. Pa = 2Qg÷ Pa
which is equivalent to : Qo -- Ao III ,

Po -

- 397oz Pa
This is in fact the general point transformation discussed

previously . For linear point transformations ,

Qa = Mao go , Pp
-

-

poi
M
-

top
{Qa , Pp } = Mao tip {o' ) = Sap

Soo '

Note that Fatty , 51 = q , Pz + of , P , exchanges
the labels 1 and 3 : Q

,

-

- 251213=9-3 , p, = 21429-1=132

Qs = 213/213 = of , I 13=25-2/29-3 = Pi
. Next

,
consider the type - I transformation generated by

F
, lot , It = Aol Et ) Qo .

We then have

Po
-

- 3¥
.

-

- offer a , Po -- - II. = - Arlott



Thus
,
F
, II. Oil = go Qo , for which Art I = Go ,

generates
Po = Qo ,

Po = - go

-

E- til → II I -- =

• A mixed generator :

FIE. It = of , Q , t lots- Q2) Pat (oh- Qs ) Ps

which is type - I wrt index o -

- I and type II Wrt 0=2,3 .
This generates
Q
, =p , , Q2 = 9-3 , 013=9-2 , P, = - 9- , i B

-

- Pz , Pz = Pa

(swaps p , g for label 1 , swaps labels 2,3)
• d

'

-

- I simple harmonic oscillator : Hlq , p ) = II t
'

zkq
'

If we could find a CT for which.

p=f2mffpT cos Q
, q=f2flPIsinQk

then we'd have IT to , p ) = f (P ) , which is cyclic in Q .

The eauctions of motion are then D= - TH 1010=0
and

"

Oi -- O IHOP = f-
'

( P ) . Taking the ratio gives

p
-
- Vink q ctn Q

=
I
24



This suggests a type - I transformation

F. lot, Q1 = tzvmkq ' Ctn Q

for which

2h
p
-

-

Ig
= link qctn Q

P = - 3¥ =
Vmk
2 sin 2Q

Thi us
,

g-
= sin Q ⇒ HA -

- IFT P = wp

where w -

- (Hml
"
is the oscillation. frequency . We also

have THQ ,
P ) = WP = E

,
the conserved energy , i. e .

P - E
W

-

The equations of motion are 15=0 and I = f " Ip) = w,
so the motion is Q Itt = wt too ,

Pitt =P = Etw ⇒

g.HI =
sin Q = III sin lwtt do ) E

• Hamilton - Jacobi theory
General form of CT :

Eloi
, 5.tl = HIE , p, t ) t

OHI.i.tl
at

with

Eg =p. . f÷= - Po , III -- 3¥ -

- o



Let's be audacious and demand HYE
,
I
,
H -

- O !
This entails

OS

IFI = - H , fgIo =p,
Tai Po

' Et -- - H

The remaining functional dependence of F may either be
on OT (type It or on B (type I) . It turns out that

the function we seek is none other than the action , S,

expressed as a function of its endpoint values .

• Action as a function of coordinates and time

consider a path iylsl interpolating between Tgi , t ; )
and II , t ) which satisfies

¥. . :÷l¥i=o
Now consider a new path Fylsl starting at lati , ti ) but
e

:::*::c:::*::c:'m::::::::i÷÷÷÷÷to compute the differential

ds = stinkD - Shiki ) s

=!
'

thin in .si#tdsLq.ig,s,
ttdt

= LIEN . tht Idt t!tds (Folio
- not +ftp.lno-nid )



= LETH , FIH ,
Holt + ftp.fnoltt-yolttl

+fits (E - ¥1711- lyrist - noisy
-

= O

= Ltyttliinltlitldt tho.HISyo IH t 018 'qdtl

where to = 242 igo and 8yds) = To 1st - yds ) .
Note that

doto -- rjolttdt ) - you 8¥
= To Ittdtl - 9.oltl t TolH - yr Itt

sight I
= ino Itt dttsyo.lt I-
= riottldttsyoltt t light l - IottDdt

and therefore

Syoltl =-D go - nioltldt - sy¥dt

Thus
,
we have

DS -
- Totti dqo t LL ITH ,

'

THI , t) - Ttoltligoltt)dt

= podgo - Holt

we then conclude

7¥ -

- Po , # = - H
, 0¥ =L



What about the lower limit at ti ? Clearly there are
(htt ) constants associated with this limit

,
v.it

.

{9. , Hit , . . .

, Antti l ; ti )

we'll call these constants {hi , . . .

,
Anti ) and write

S = S (G , , . . . , Gn ; hi , . . . , A n ; t ) t Anti

we may regard each do as either Qo or Po , i - e .

that S is in general a mixed type I - type# generator.
That is to say , for OE El , . . . , n } ,

to Into = f- Po
it to = Qo

+ Qo if no = Po

The last constant Ant , will be associated with time translation .

• Hamilton - Jacobi equation
since Stg , t.tl generates a CT for which HIE,Pitt -- O ,
we must have aFlat = - H ⇒
-5

Hloti , . . . , 9-n ,¥ , . . . . Ign , 't l t ¥ = O

which is known as the Hamilton - Jacobi equation IHJE) .

The HJE is a PDE in Intl ) variables lot . . .
. .

, oh , t ) .



Since It (Oi
,

5
,
t ! = O ,

the equations of motion are

utterly trivial. :

Qo Itt -- const. , Po Itt -- const.
'fo !

How can this yield any nontrivial dynamics ? Well what

we really want is the motion lqoltt } , and to obtain
this we must invert the relation

To =

ME ,T.tl
-

Mo

in order to arrive at folio , I , t ) .

This is possible

only it
deff e) ± 0

known as the Hessian condition .

Example

consider H = LIM ,
i - e. a free particle in d-- T dimension .

The HJE is

fat It 3ft = 0

One solution is

stat , htt = Mazzie
e ¥

-

- m9

→ It =

Not -ni
-

It



for which we obtain

1- -- 3¥ -

- F H - get

Inverting , we obtain the motion

qftt = A - Tt = qloltptlm
m

we identify A = qlol as the initial value of q ,

and T = - p as minus the (conserved
' ) momentum .

The HIE may have many solutions, all yielding
the same motion . For example , goofy = 12mF

Slot,htt -- 12T at - At → ¥ = - n

This yields

1- = It = IFT q - t ⇒ qltt = FIM ft th
2h

Here h -- E is the energy and qlol = Fm T .

" Time - independent Hamiltonians lecturel51wed.NL
When att lat -- O

,
we may reduce the order of

the

HJE by writing.
- o

SIE ,Titi = WIE .Mt Tltil



The HJE then becomes

HIE
, 3¥ ) = - It

since the LHS is independent of t and the RHS is

independent of q ,
each side must be equal to the

same constant , which we may take
to be A

,
. Therefore

Stg ,htt = WII , Al - ht

We call WII , Tt Hamilton 's characteristic function .

The HJE now takes the form

HIGH . . . , Gu , 2¥, , . . .

, Fff ) = hi
Note that adding an additional constant Ant, to S

simply shifts the time variable : t → -t - Ant , 1h , .

One - dimensional motion
-

consider the Hamiltonian H lot , pl = II t Uhtt . The HJE is

Im Iff)
'

t Utah = A ← clearly A -- E

with A -- A
, .
This may be recast as

¥q=±I2mh-uI



with a double - valued solution #z
Why , N -- I Isimfdg ' Inuit

The action (generating function ) is Sly ,ht ) -- why,Al - At .
The momentum is

p = ¥4
,

= Fg = 12mh-uki.IT

and

i
-
-

- ft -- Fa - t -

-HIIII - t
in - Hail

Thus the motion qltt is obtained by inverting

Et t = ± IMIf
't"d9 = Ifqttt )
Into

The lower limit on the integral is arbitrary and merely
shifts t by a constant . Motion : g.HI

= I
- ' ft tt)

•

separationofvariable.SIf the characteristic function can be written as the sum

w lot in -

- Iwo lato in
the HJE is said to be completely separable .

(A system

may also
be only partially separable . ) In this case ,



each Wo (go , t ) is the solution of an equation of
the form

Hol 9-o , dY⇒ = No , po
-

- Eff -- FFI
NB : Ho lato , pot may depend on all the H . . . . .

,
Ail .

Uh
,
O
, lol

As an example , consider -

H -- Fmlpit II. +71¥ + Ah t Brot *

This is a real mess to tackle using the Lagrangian formalism .

We seek a characteristic function of the form

Wlr , O , lol = Wr Irl two 101 two loll

The HJE then takes the form ←
Pol

Howitt .int#oI+.a...ot3YoI
i t
Pr Po t Alr ) tB t rff.IT = A

,

= E

Multiply through by r'sin
'
O to obtain

Im (Fft. )
"

t CHI = - sinof.tn/EoHtBloBdep#onyon0
- rising PITY t AH - A

,)
-

depends only on r, O



Thus we must have

loll Im PITY t C lol ) = Nz = constant
Now replace. the LHS of the penultimate equation. by Az
and divide by since to get

Im Pff. ) 't Blot t.gg = - r2 137T) 't AH - A , }
--

depends only on O depends only on r

same story . We set

lol Im (FF ) 't BIO ) t !!÷o = Az = constant

we are now left with

Cri Imf ?Y÷ ) 't AH t ¥ = A ,

Thus
,

r 1-

Stg , t.tl = him)dr 't n ,
- Alr 't - f÷,i
-

+ IsntJodo'll , -1310 'l - s?n÷
+ 12M¥10 ' 112-4417 - A

,
t



Now differentiate with respect to hi
, 2,3
to obtain.

Hi
,

-

- ¥
,

= IFIII. In .
- aim - ftp.T

"
- t

Oltl

121 TE ft
,

= - IF In, - B. lo '

l -
s?÷I
"

*,

+ IFFY In . - oomf
"

1315 -

- fat
,

= - IMIIII. In .
- Air 't - ftp.T

'"

order of so,#on ,

+ III%! Ks - Bilal - s!⇒
""

I . Invert Il ) to obtain Htt .

2
. Insert this result for rHt into 131

,
then invert

to obtain Oltl
.

3
.. Insert Oltl into 12 ) and invert to obtain loft) .

NB : Varying the lower limits on the integrals in 11,2 , 31

just redefines the constants Tin , 3 .



• Action - Angle Variables-

In a system which is "completely integrable
"

,
the

HJE may be solved by separation of variables .

Each momentum po is then a function of its conjugate
coordinate fo plus constants : po

-

- offer = potato , it .

This satisfies Ho (go , pot = No .
The level sets of each

Ho lato , pot are curves Cold ) , which describe projections
of the full motion onto the lato , Pol plane . We will assume
in general that the motion isbounded , which means
only two types of projected motion are possible :

libration s : periodic oscillations about an equilibrium,
rotations : in which an angular coordinate advances

by 2T in each cycle

Example : simple pendulum H lol , ppl 's III. tf Iw'll- cost )
rotations : E s I WZ p Pol

librations : Oc Ec Ivr

separatrix : E -- Iwz t.si#OTFToGenerically , each Col 'M 1¥-

i

: :*::*::
ration or txt

i



Scratch

Plot a

¥¥.

F
m
folk = - 4T

112/27 I s '

m
g
-
-z

s
'

x.IR = cylinder

six S ' -- IT
'

S ' '

+
folk = 0

In'" "÷::÷:
'

no

XI 2 - 2g

gfdsfz = !.dk -

- 4 'T aba
-

'

b
- '

t 1



Topologically , both libations and rotations are
homotopic to ( =

"

can be continuously distorted to
" )

a circle
,
S

'

.
Note though that they cannot be

continuously distorted into each other , since lib. rations
can continuously be deformed to the point of static
equilibrium, while rotations cannot . For a system
with n freedoms

,
the motion is thus confined to n - Tori :

Th -- S
'

x S
'
× . . . ×ST Cn " t

e-
C
,
lil n times

these are called invariant to ri
,
because for a given

set of initial conditions
,
the motion is confined to one

such n - torus
.
Invariant for i never intersect !

Note that phase space is of dimension 2n , while the
invariant tori

,
which fill phase space , are of dimension n .

IThink about the phase space for the simple pendulum ,
which is topologically a cylinder, covered by Iib rations
and rotations which themselves are topologically circles . )

Action - angle variables ( To , I I are a set of coordinates
( Tol and momenta III which cover phase space with
invariant n -tori . The n actions { Ji , . . .

,
Jn } specify

a particular n - torus, and the n angles { oh , . . .

,
du )



coordinate each such torus
. Invariance of the

tori means that

Io = - gtfo = O ⇒ H --HII)

Each coordinate too describes the projected motion
around Co

,
and" is normalized so that

fooddo = 2T (once around co )

the dynamics of the angle variables are given by

Too -- gtfo -

- volt I

thus Gott ) = do lol t Vol J t t .
The n frequencies

{ volt II describe the rates at which the circles co
T

are traversed .

Lecture 17
. (Nov . 301 (topologically ! )
-

• Canonical transformation to action - angle variables

These AA Vs sound great ! Very intuitive ! But how do
we find them ? Since the Ito ) determine the l Col
and since each fo determines a point (two points ,
in the case of libration s ) on Co

,
this suggests a type -I



CT with generator Efg ,
Fl :

Po =
OI
Ho

i
do =

2Jo

Now

2T --food do =§dlF I --fooda-oI¥Tq= footedotopo
we are led to define

Jo = ¥§ doto Pr

Procedure :

( il Separate and solve the HIE for WII , It = { Wolfoil .
121 Find the orbits Colt ) , ice . the level sets satisfying
the conditions Holger , point -- Ao -

131 Invert the relation Jo IN = food go Po to obtain ENT
(invertf

(4) The type -I generator to AA Vs is the,

EKITI = Io Wo lato , TED

Let 's now work through some examples .



Harmonicosclla-to.ro
ur Hamiltonian is H = II t tzmwog ' , so the HJE
equation is

ImfIII 't '

z
mwig ' = n

we have
-

p = 3¥ = I 12mA - m2wig

simplify by defining

of = 1k¥ sin O ⇒ p = 12mF cos O

and so

J = ¥ §dqp = 2¥ . 1%0 cos20 = two
we still must solve the HJE :

Itf = dawg . fat = 12mF cosO - III cos O = 2Jco50

Integrate to get

W 10
,
J) = TO t ITS in 20 t const .

to = cos
-

' ( 9- / smut) → W lot , J )



Then

of = 8¥ I
g.

= Ot { sin 20 t J(It cos2018¥ Ig
Now of = 1251mF Sino so

dot -- f;"÷pdT + III cos Odo ⇒ III ;
-# tano

Plugging into our expression for ¢ ,
we obtain 4=0 . (Not

much of a surprise . ) Thus , the full CT is

q=/m2÷ ) sink , p=I2mwoT cos ¢

and the Hamiltonian is H ( of ,J) -- WoJ.
The

equations of motion are
I call it H = IF

it -- ITI -- no ,
I = - 2¥ -- o

with solution

loft I = lolol t wot
J Itt -- J lol

and of course VIJ ) = Wo ( independent of J ) .

• Please read § 15.5 .

5 (AAV for particle in a box )



• Integrability and motion on invariant fori

Recall that a completely integrable system may be solved

by separation of variables , and that

Hot ,pl → III. It = HIEI
T

Jo = - 31g
.

= O ⇒ Jo Itt -- Jo lol

too = 't = VolEl ⇒ dolt -- look) tookIt

Thus
, the angle variables wind around the invariant torus

at constant rates V. IFI . While each tooth winds around
its own circle

,
the motion of the system as a whole will

not be periodic unless the frequencies HEI are commensurate,
which means that there exists a time T (ice . the period)
such that not = 2h ko with ko C- 27 to Eli , . . .

,
n ) .

Thus

Vfp = HIP E '

Q t a ,p Ell , .
. .

,
n }

T is the smallest suck period if l h . . . . .,
kn ) have no

common factors . On a given torus , either all orbits

are periodic or none is periodic .

In terms of the original (oh , . . .

,
Gul coordinates ,



Scratch

n - torus : Th = S
'

x S
'
x . - - x S

'

→times

T -

- Ox ④ 0×0 x - - .

= ④ x x ① x :O x Q. x .
- -

4TH = lol, Itt
,
oldH

,
¢
,
HI

,
belts

, olsttl , - . - I



there are two possibilities :

lil libration :qoltl-yqjn.to?...e.eilil9ltl...eiilnl0nlttliil
rotation : go Itt = qyofoftit-fqnB.fi?eneilihH!..eilndnltt

where a complete rotation results in Doto = It qoo .

• Liouville - Arno l 'd Theorem
This is another statement of what it means for a Hamiltonian

system to be integrable . Suppose a Hamiltonian HIE,p)
has a first integrals In Ifip ) , where he 11 , . .

.

,
n } .

This means
←

Poisson bracket

DEI -- I.PE?dIi.f.t3phrdfeI--lIn.ttl--o
If the l Id are independent functions , meaning that
III.ht form a set of n linearly independent vectors at
almost every point in phase space M ,

and if all the first

integrals commute with respect to the Poisson bracket, i. e.

{ In ,
I e) = O for all k , l (⇒ In and Ie in involution) , then :

←
dim (Mel = n p dim IMI = 2h

till The space MI = I II. It EM II http ) = Ck tf k C- lb . . ..nl)
is diffeomorphic to an n - torus Th -- S

'

x S
'
x . . . xS

'

,
on

which one can introduce action - angle variables on a set



of overlapping patches whose union contains MI , where
the angle variables are coordinates on Me and the action
variables are the first integrals .

liil The transformed Hamiltonian is Ft -- Tt III
,
hence

In = -
OTI

= O

Hou

ith -

- t often = until ⇒ dutt ) -- fulol tWIIt

Note this does not require It = NE IihfIn ) .

• Adiabatic invariants

Adiabatic processes in thermodynamics are ones in which
no heat is exchanged between a system and its environment.
In mechanics , adiabatic perturbations are slow , smooth

changes to a Hamiltonian system 's parameters . A typical
example : slowly changing the length Htt of a pendulum .

General setting : H -
- Htqp ; Htt) .

All explicit time dependence
in H is through Htt . If Wo is a characteristic frequency
of the motion when I is constant , then -

c- = will
. m.bg, Tillet
dit

provides a dimensionless measure of the rate of change



of Htt . We require Ecc l for adiabatic ity .

Under such conditions , the action variables are preserved
to exponential accuracy .

(we will see just what this means . )
For the SHO , the energy , action , and oscillation frequency
are related according to J = Elv . During an adiabatic

process , E Itt and htt may vary appreciably, but Jlt)
remains very nearly constant . Thus, if Oo is the oscillation

amplitude , then assuming. small oscillations ,
E -

- tzmgl Of = VJ = IIIJ
⇒ Oo le ) =

21

Mjg 1512

Adiabatic invariance then says Doll ) al
-312

.

Consider now an n -- l system , and suppose that for

fixed t the type -I generator to action - angle variables
is slot ,J ; ill . Now let X -- Htt , in which case

tho it
,
t ) = HIT ; Ht ¥t

where ↳ to - dependence through Slqld ,J;H ,
J
;
X )

HIT; H = HIAt&t; H , plot ,Jill ; H

Note that HIT ; x ) is independent of lo , because for
fixed it the function Slq ,

J; X ) generates the AAV.



Hamilton 's equations are now

it -- II -- noint :* dat
i - fi -- - Iif dat

where VIJ ; ill = OH IT; H1 2J and where

slot , J ; X ) = slotHit; H ,
J
;
ill = ME.

.

.snHi Heim
&

Fourier analyzing the equation for J , we have
N

J =
- il Em 3¥ ein ol

m -

-
- N

N""

so = JIN - JI- o ) =
.

!It I

= - im.E.m.la?dtdSmgbIitLddIeim0/lm=o termis cancelled )

Now lolt ) -- ut t lolol to good accuracy , since I is small.
So we must evaluate expressions such as

m -to : Im -
-Idt dat) eimute.im diol
-

f- It:)

The b. racketed term is a smooth function of time ¥ which

by assumption varies slowly on the scale V
- t
. Call it Htt

.



We assume ftt I may be analytically continued off the
real t axis

,
and that its closest singularities in the

complex t plane lie at Imt. = ± t
,
where htt s> 1

.

Then I, e
- lMutt

= e-HYE
,
which is exponentially small in htt ⇐ ¥

( hence only m = II need be considered ) . Thus, AJ may
be kept arbitrarily small if Htt is varied sufficiently slowly .

• Examples
Htt = In t¥ ⇒!It title

'

'

Muti e - ImuIta e-
'II

Mechanical : A point particle bounces between two
X
't

curves y
-

- ± Dlxl
,
with IDK"" " Y '

-
t

× ,

The bounce time is I+120y , and we - - - - - - - - -

assume I cc LIV× where L -- length .-
--

So there are many bounces , during which the particle samples DCx ) .

The adiabatic invariant is the action ,

J -

-

- La § dy py = I, mug Dlxl

The energy is

E -

- tzmluxtujl = tzmvxt 'I!µj
Thus

,

↳ = 2E - III
which means the particle turns around when ④txt = FIT .

A pair of such mirror55 (when Dlxl = Dl-x )) confines the particle .



Similar physics is present in the magnetic mirror , or
"

magnetic bottle
"

,
discussed in Ej 15.7 .

3
.
There the adiabatic

y
.

invariant is the magnetic moment, '

z#

A = - = ÷cz It -#
magnetic field lines
(azimuthally symmetricwhere J -

- action and I -- magnetic flux . about the middle line)

• Resonances

what happens when n > 1 ? We then have

Ja = - ii. [, ma
0Saki H

MT 22h
# e

im . §

and -

DJ
'
= - ing,m!It %jI date

im .
iteim.rs

When in . JIJI = O
,
we have a resonance

,

and the

integral grows linearly in the time limits , which is a violation
of adiabatic invariance .

Resonances
may
result in the

breakdown of invariant tori
,
and provide a route to chaos .

Resonances can thus only occur when two or more frequencies
Vat I have a ratio which is a rational number . But

even if the frequency ratios are all irrational , any
such irrational number may be approximated to arbitrary
accuracy by some choice of rational number . To understand
how to deal with resonances

, we need
' canonical perturbation theory .



Lecture 18 (Dec .
2 )
-

• Canonical perturbation theory

Suppose y
dimensionless

Htotip , H -

- Hattie , t 't t EH, II , F, t )

where tells 1 .
Let's implement a type -RI CT generated

by Stg , I , t ) thot intended to signify Hamilton 's principal
function ) :

THE , I.tt -- HIE, is,Ht # Stahl , t )

Expand everything in sight in powers of E :

Go = Q
o
t t of , ,o t E

'

oh , o t - -
-

Po
-

- Po t E pi
, o
t Epa , o t - - -

it = Elo t C- It
,
t t

'

th t . . .
S = Gop, t ES , t E 'Sz t . . .
-

Then

I identity Ct

Qr = 7¥ = got C- 3¥ t E Ipt t . . .

= Qot (Gi
, otdspf.IE t ( quot 3¥ ) E ' t . . .



We also have

p . = FIT = Pot C- IGI
,

t E
' 3¥ t .

. .

= Po t E pi,o t E
'

Pz , o t - -
.

Thus we conclude
,
order by order in E ,

9.no
= - FIT , pyo

-

- 0¥
Next

, expand the Hamiltonian :

It to
,
t.tl = Hota ,htt t E H , hi , pit ) t ¥
= Holte , 5 , H t 3¥

.

I g. o - Qd -t ftp.lpo - Pol t . . .

+ EH ii. Fitt t e # s, to , Fitt t Ole 't

= Hole
. E.Htt Ittf 3¥ t3¥f¥t IT. t-Hite total

85,Notice we are writing go -

- Qot IGo - Qol -

- Qu - E jp
t ' - -

so
, e.g .

Sita ,
5
,
t t -- S , lot , htt t (go - Qr ) Ift t . . .

= s
,
Cio
,
5
,
H -
HHI 0549542

e + oxy
2 Po 2Qo

Thus
, we have



It to
, Ritt = Hold , 5 , ttt (Hit Isi , Holt 3¥) E t Ole 't

= told
, htt t c- HT

,
to

,
I
,
t It Ole't

we therefore conclude

to lie . Pitt -- Ho Ioi , Pitt
it
,
Ioi

, Pitt
-

- tht Isn Holt 'Itta
, .si

We are left with a single equation in two unknowns,
i. e .

It
,
and S

, .
The problem is underdetermined .

We could at this point demand it , = O , but this is just
one of many possible choices .

Similar story in QM :

its# 147 = I Aot c- It
, I 14 >

Now define 147 = e
i 5th
IX 7 with 5 = E5

,
t C- 252 t . . .

.

Then find

it 1×7 = to IX > t e ( it ,
t ¥15 , .to It FIT ! IX > * . . .

= IT IX )
t commutator

Typically we choose 5 , such that the Ole t term vanish .

But this isn't the only possible choice . (Note here

the correspondence { A , B ) ⇐ hi
,
B ) . )



• CPT for n -- t systems
Here we demonstrate the implementation of CPT in
a general n -- I system .

We will need to deal with

resonances when n > I
,
which we discuss later on .

We assume that , p ) = Hoff , p ) t E H , Cq , p ) is time
- independent.

Let lolo , Jo ) be AAV for Ho , so that

IldJo ) = Ho (gtfo , Jo ) , Plato , Jol)
we define

It
,
too

,Jil = H . ( 9- too ,Jo ) , plato , Jol )

We assume that It = Hot E TT, is integrable , which for n = I
is indeed always the ease . IReminder : Hlf , p ) = E means
all motion takes place on the one-dimensional level sets of Hlq ,p) . )
Thus there must be a CT taking (do , Jol → ( to, I) , where

It lolol4,51 , Jo lol,Jl ) = EIJI

We solve by a type -I CT :

S Iolo , J ) = doJ t ES, Ho ,
J) t C-

'

Soldo
,
J) t . . .

-

identity CT

Then
go = 2¥

.

= J te 3¥ t e' 3¥ t . . .

¢ = ¥j = Got C- 3¥ t E ' 2¥ t . . .



We also write

EIJI = EIJI t E E, Htt C-
'

EIJI t .
- .

= HI Jo ) t E II, Colo , Jo ) (no higher order terms)

Now we expand IFIdo , Jo ) = IT too ,
Jt HIEI ) in powers

of (Jo - J ) : 8J

Illdo
,Jol = to III + Ittf Iso - II t '

z
'III Is. 5

+ c- it
,
Hoo , Jt t E THI tooo -JT 't . . .

Substitute

j
.
. , = e off

.

+ e
' 3¥ t - - -

and collect terms to obtain

It too ,
Jol -- tohtt ft, t THI 3¥ ) e

+ foot's :*
.

+ t.it#to*ott3tIsI*let . . .

where all terms on the RHS are expressed in terms
of do and J .

We may now
read off

lol E
o
lJ ) = to ITI

l " E
, Itt = IT , too , JI t THI %f¥o

" I eat -- I¥osgl¥ + If'¥psf%It atIgHf;÷



But the RHS should be independent of too ! How can this
be ? We use the freedom in the functions Shhh ,J)
to make it so .

Let's see just how this works .

Each of the expressions on the KHSs must be equal to its
average over too if it is to be independent of do :

s ftp.h-ojdaf.ofiolo ,
The averages c RHS Ido ,

J) ) are taken at fixed J andnot

at fixed Jo .

We must have that

Snl do , J) =e.E.sk, eHeil do

Thus

( 3¥
.

) = 2¥ ( Shhh, JI - Salo,J) ) = 0
Now let's implement this in our hierarchy .

Consider the

level lil equation ,

EIJI = IT , too , Jj + Ittf 09100,5112100
-

Taking the average ,
VolJt

Eiht -

- it
. too ,
th t ftIgl%¥ )

= L II
,
>

Tisanes



Thus ,

Eh = it
,
+ Not 3¥

.

⇒ osjfooI.es#ns--HioloFy
↳ (J)

If we Fourier decompose

Ido
,
Jt =.¥

.

nettle
ie &

then we obtain

f
x H - Se

,
o )

~

to : il Si
,
EIJI = IT , ,elJ ) ⇒ Si

,
EIJI = - ie Hi

,
EIJI

we are free to set S
, ,o
lol I 0 (why ? ) .

Now that we've got the hang of the logic here, let's go
to second order :

Edt -- Iosgl¥ + t.az#psifdoo.II+atTIgIosiHI
.

20/0
in - - -

T-

VolJt averages to zero LIFT 0¥
.

=ctIp- 0¥
.

=cth¥
Vo Vo

Taking the average ,
z

E
.

-

- ha it"t stiff I"÷ ,

which yields , after some work ,

3¥. -

-

- ÷ taffeta - III tin - 3¥ cant 3¥ t .
+ I HIFI https - att, it 24T , it, - HT) )



and the energy to second order is

EIJI = to t e att , > t 43¥ > it, > - c IET It , >
+

'zdIKiis - it.it/tOtH
Note that we don't need S Iolo ,Jt to obtain Elt) , though
of course we do need it to obtain (oh , Jo ) in terms of lot,J) .
The perturbed frequencies are uHT = 2E12J . For the

full motion , we need

14 , J ) → Ido , Jo ) → lot , p )

• Example : quartic oscillator
the Hamiltonian is for Etty

Hlat ,p )
-

- II t Imuight E, E q4
Recall the AAV for the SHO :

÷. :÷÷÷i÷÷i¥÷
Er
.

E- fh
"
sin do

p
-

- 1257mV cos do



Thus
, we

have

IT too
, Jol = v. To t F E (ITTF sin do)

"

= IET C-¥4 To
'

sin 't do

* no ,
-

It
,
too

,
Io )

we therefore have

FIJI = ett, I ¢. , j , > f
(sin44. > =3

= I sink = 3h47.
The frequency , .to order E , is then

NJ) = IEot E E, ) = Vo t
3E↳

t Ole
'

)
4mW

To this order
, we may replace J above by Jo

-

- I mvo At,
where A = amplitude of oscillations . Thus , pendulum :

HAI -- not- 3Efm + Ole 't

Only for the linear oscillator If = - upq is the oscillation

frequency independentof the amplitude .

Next , let's work through the CT ( doo , Jo ) → lol , J) .



We have

no }¥o=gI÷ (Z - sink)
⇒ S

, Ido ,J ) = fmI÷ (3+2sinold sin do cos too
and

¢ -

- doo t E 0¥ t Ole't
= loot t (3t2sin2¢o ) sin do cosolo t OE)4m2Vo3

Jo -

- J t E ZI
Hoo

= J t tgmT.pe/4cosl2lool-cosl4dol/tOlE7
To lowest nontrivial order we may invert to

obtain

J -

- Jo - tfmI÷ (4cos124. ) - cos1441 ) tOle 't
with q

-

- 125dm Vo )
"
sin do and p = (2mV To )

"'
cos¢o , we

can obtain ( q , p ) in terms of 14,J) .

• n > 1 : degeneracies and resonances

Generalizing the CEF formalism to n > I is straightforward .
We have S = S too

,
J )
,
so with aell , . . . , n} ,



Jo
"
= 3¥ = Jd t E 3¥ t EZ f¥g t .

. .

old = 3¥ = too t E Ift t E ' t
. .

.

and

Eo III = to III

Ei III = it, too .
It + v. yet dsilggpsl

EIJI = vices %f¥÷ t 's wEf Eight asifgI.gl
+
OH

,
too
,
It as , too .

It

¥ OF

where 44It = atolEllaJd. Now we average :

'HI
. .
Els -

-f"dI÷ . . flat
.
It

The equation for S, I Too ,It is

ya
as , Coto ,El

*
= stick ,

Eh - til Io
,
El

=
-¥1ifHe

ii. do

where
'

Vil JT = the III , i. e. I, too , E) = f ViE) e.
it#

o



The prime on the sum means I -- lo, o, . . .

,
o) is ex clouded

.

The solution is

silo Ek - iffy! 77¥17, e
ii. Too

when the resonance condition

I. Jolt1=0

pertains (with Ito) , the denominator vanishes and
CPT breaks down . One can always find such an twhenever
two or more of the frequencies v! If I have a rational
ratio

. Suppose for example that Vo? (F) lui II) = rts
with r

,
s e 27 relatively prime . Then r Vo

'
= s up and

with t = ( r
,
- S
,
O
,

.
. .

,
o) , we have I. to = O .

Even

if all the frequency ratios are irrational , for large enough
III we can make It as small (but finite ) as we please .

In § 15.9 ,
we'll see how any given resonance may be

removed canonically .

We're just looking at things the

wrong way at the moment.



Lecture 19 (Dec . 71
-

• Removal of resonances

we now consider how to deal with resonances arising
in canonical perturbation theory . We start with the
periodic time- dependent Hamiltonian ,

HI to , 'T, H = HotJI t EVlol ,J, t )
where

V lol , J , t ) = Vloft IT , J, t ) Vlot ,J,t t Tl

This is identified as n
.

= Zz degrees of freedom ,
since it is equivalent to a dynamical system of
dimension 2n =3 .

The double periodicity of Vld ,T, t) entails that it

may
be expressed as a double Fourier sum, viz .

Udit, H = IE
.
aime# I eikd e- iert

a. n
.
. e
-

- intel
where A- hitIT.

Hamilton 's equations are then
i 1h10 - ert)

J = - YIP = - E Ff = - it& kik , e ITI e

it = 7¥ = wolf t e f, gf eilkol
-ertl



where wot J ) = a HotJJ. The resonance condition follows

from inserting the Oleo ) solution 4 It ) = WITH , yielding

k wotJ ) - l r = 0

When this condition is satisfied
,
secular forcing results

in a linear increase of J with time .

To do better
,
let's

focus on a particular resonance (k , l ) = (ko , lol . The
resonance condition ko Wo (J) = for fixes the action J.

There is still an infinite set of possible 1k , e ) values leading
to resonance at the same value of J , i.e . Ikill = (p ko , plot
for all p c- 7L. . But the Fourier amplitudes Vp ko

, peo
(J )

decrease in magnitude , typically exponentially in Ipl .
So we will assume ko and lo are relatively prime, and
consider p e f

.

- I
,
o
, th .

We define

to
,
ol'T = Volt. . in

. . e.
1st = Iii

. .
.edit = title

is

a.nd obtain

J = 2 Eko VIJI sin (Kool - lohtt S )

if = WoHtt t t 2e cos IKool - lohtt 8)

Now let 's expand , writing J = Jot DJ and
o if f > O

4 = kool - lost t St (T, if C- L O



resulting in (assume wot og e > O )

BJ = -2E Kot
,
(Jol siint

il = how! Iso )SJ t c- hot!Hit - 2ekivi III cost

To lowest nontrivial order in E
,
we may drop the Oltl

terms in the second equation , and write

doit -- - Ey , iii. Ess
with

K14
,
DJ ) = tako wittol IAJT - 2e kob

,

'

II ) cost

which is the Hamiltonian for a simple pendulum !
The resulting equations of motion yield if TV'sin 4=0 ,
with V

'

= 2e bio nioholihltol .
So what do we conclude from this analysis ? The

original l - torus ( i.e .
circle S ' )

,
with

Jlt ) -- Jo ,
do It I = wotJo ) t t lolol

is destroyed . Both it and its ncigboring Tt - tori are

replaced
'

by a separatrix and surrounding libration
and rotation phase curves (see figure ) . The amplitude



Unperturbed l E = o ) : Hola , pl -- 2km ttzmwog

- libration s only
• - no separatrix

- elliptic fixed point o

Perturbed If > o ) :

ko -- l •

d
A

⑧

D B

r
ko -- 6 .

Libration s (blue )
,
rotations (green) , and separateices (black )

for ko -- l l left) and ko -- 6 (right) , plotted in Iq , p) plane .

Elliptic fixed points are shown as magenta dots . Hyperbolic (black)
fixed points lie at the self- intersections of the separations,

of the separatrix is (set, Itollw 'tJol)
"
.
This analysis

is justified provided (SJ)max K Jo and VKWo , or
d lnwo

C- k
dis
k te



• n -- 2 systems
we now consider the Hamiltonian HII

,
F) = HotIttfHill,It

with To -- I 4.
,
old and

.

I = (J
. ,
Jzl . We write

Hilo , It -- E,
E. ate

. eiko

with t -- l l , , ez ) and t.pl It = 'VEIFI since H, little .IR .

Resonances exist whenever rw
,
IF) = swift

,
where

4,21J) =
tho
JJ

,,z

We eliminate the resonance in two steps :

(il Invoke a CT ( Toit → 15,8! generated by

Fito,It -- Iroh - soldJit da Ja
This yields

J
,
= 5¥

,

-

- rJ , 4
,
= 3¥
,

= roh - Sola

Ja -- ¥÷= J2 - SJ , 42=372--0/2
Why did we do this ? We did so in order to transform



to a rotating frame where 9, = rot , - she is
slowly varying , i - e . I, = ril, - sik = rw, - SWE O .
We also have if = ifi wz . Now we could instead

have used the generator
Fz = 4 ,Jit Ird , - soldJz

resulting in 4, = ¢ , and 92 = r ¢ ,
- sofa .

Here he

is the slow variable while 4
,
oscillates with frequency = w, .

Which should we choose? We will wind up averaging over
the faster of 9,2 ,

and
'

we want the fast frequency
itself to be as slow as possible , for reasons which have to
do with the removal of higher order resonances . (More
on this further on below . ) we'll assume Wo log that w, > wz .

Inverting to find To lie)
,
we have

¢ , = tr 4, * Er lls ,
0/2=42

so we have

it lie
,It = HotEight E H, Ethel , JIJI )

=

= tolyl te JE VilIlexp e
, till't t
-

II
,
I -4,81

We now average over the fast variable 42 . This



yields the constraint slit rlz = O , which we solve

by writing (l , , ez ) = ( pr , - p s) for p c- 27. . We

then have

< it
, II. It > = §. Tpr, -psljleips

The averaging procedure is justified close to a resonance,
where lied >s lie, l . Note that Jz now is conserved,
i. e . J 2=0 .

Thus Jz -- f J, t Jz is a new invariant.

At this point , only the 19 , , J , ) variables are

dynamical . 4, has been averaged out and Ja is constant.
Since the Fourier amplitudes Fpr, -ps (Ty ) are assumed to
decay rapidly with increasing t.pl , we consider only pet- I, o, it )
as we did in the n -- { case . We thereby obtain the
effective Hamiltonian

Kth
,Ji , Jd = to Igi ,Jd t C- %

,
old , , Jd

+ ZE Fr
,
- slJi ,Ja ) cos 9,

where we have absorbed any phase in %.
- s lift into a

shift of 9 ,
so we may consider

%
,otgl and Er,sky to

be real functions of J = Ig , ,Jz ) . The fixed points of

the dynamics then satisfy



if = FIT te
'
tzejcosy -- o

j , = - 2E Jr, - s sin 4, = 0
Note that a stationary solution here corresponds to
a periodic solution in our original Variables , since we
have shifted to a rotating frame . Thus 4

,
= O or 4

,
= IT

,
and

Eg -

- Fi
. it :# 3¥

= rw
,
- S wz = 0

Thus fixed points occur for

*gg!I. ± 2K¥11 -- o Hei :
There are two cases to consider :

• accidental degeneracy Jz JIT )

In this case
,
the degeneracy condition #j,

VW
, ( Ji , J2 ) = Swz (Ji, Tz )

thus , we have Jz = Jz IT, ) . This is the case when Holt, , Jd

is a generic function of its arguments . The excursions



of J , relative to its fixed point value Ji
"
are then

on the order of C- Er
,
- s (gli

'
, Jal , and we may expand

to that -- tug
'
:
'

.miff
,

soit 's iffy it . . .

where derivatives are evaluated at (J!
'

,Ja ) . We thus arrive

at the standard Hamiltonian
,

K14, , AJ , ) =
'
za lbf ,Y - F cos 9

where

algal = I
go ,

i HH -

-
-2e E

.
-sigh"id

l , 821

Thus
,
the motion in the vicinity of every resonance

is like that of a pendulum .

F is the amplitude of the
first ( lpl -- t ) Fourier mode of the resonant perturbation,
and G is the

"

nonlinearity parameter
"

.
For FG I 0 ,

the elliptic fixed point (EFp) at 4=0 and the hyperbolic
fixed point (HFP) is at 9, = IT .

For FG so , their

locations are switched . The libration frequency about
the EFP is u

,

-

- IFI = Ofterms 1
,

which decreases to

zero as the separatrix is approached .
The maximum



excursion of DJ , along the separatrix is AJ ,)ma×=2fFkT
which is also OUTER

.
- s ) .

. intrinsic degeneracy
In this case , Holt , ,Jz ) is only a function of the
action Jz = (Slr ) J ,

t Jz . Then

KH. if I = to (Jal * C- To
,off It 2C- I, s (8) coil,

since both DJ , and S4, vary on the same Ole E.
.
. ) ,

we can 't expand in AJ , . However, in the vicinity of
an EFP we may expand in both S4, and SJ, to get

Klee , , by , ) -- IG by , I
'
t
'
z Ffs 4,12

with
a'to

aim tea'II÷t2e'Fifty,:p ,
FIJI = - 2 II. → 187,84

This expansion isgeneral, but for intrinsic case = O
.

Thus both F and G are O(EF.
.
. ) and u, -- IFI = OH

and the ratio of semimajor to semiminor axis lengths is

¥Iit÷
.

.

- FI -- on



121 Secondary resonances

Details to be found in § 15.9 . 3 .
Here just a sketch :

- CT (Al
, , SJ , ) → (Ii , X , I , given by

S4
,
= (2 IGIII , I

"
sinX

, DJ , = (2 IHIIi )
"'
cosX,

- Define X2=42 and Iz I Jz . Then

Ko 19
,J ) → KolIl = to (Ji

'

,
Iz ) tu, LILI , - FOGIIIIft . . .

- To this we add back the terms with slit rlz to which

we previously dropped :

IfI , It =

eIinE.WqnlIleinXi@ilslfrlzlXz1rwhereWi.ntIt-VelgY.I
at Tfl# ITI ITI, )
Bessel
function

- We now have III. It -- KolItt EI , II. It
Note that E also appears within Ko , and E

'
= E

.

- A secondary resonance occurs if r
'
v
,
= s

'
vz
,
where

4. atIt -- 3k¥!¥



- Do as we did before : CT (X
,
I ) → II, in ) via

Fz
'

II
,
till = (r 'X , - s ' Xz )Mit Xz Mz

Then

nxitlfhtlzlxz-F.lu, t (TF tf ht b) 42

and averaging over 42 yields nrs't Sr 'd , t rr 'd2=0 ,
which entails

n --yr
'

,
l
,

-

-
Kr

, le -js
'
- Ks

with jie c- 27
.

- Averaging results in [
see eqn .

15.304

<Rly
,

= Eolith te '

§, tri, .gs , title
- ith

- Mz = Is't 'II , tI, is the adiabatic invariant for

the new oscillation

Motion in the vicinity of a secondary resonance with
✓ '
= Go and Sl = I . EFps in green , HFPs in red .

Separateices in black and blue . Note self - similarity.



Lecture201Dec.ae : MAPLE ,
= 'T En )

• Motion on resonant for i

Consider the motion on a resonant torus in terms of the AAV :

Totti = WTFItt Tolo )

Resonance means that there exist some n - top les t-- fl,, . . ., en}
for which I. I = 0 . If the motion is periodic , so that

Wj = kj Wo with kj C- 27 for each j E 11 , . . .

,
n }

,
then all of

the frequencies are in resonance .
Let's consider the case n -- 2 . Dynamics sketched below :

¢ ,
c-

•
3

I
•

• I

50

• 4

0/2=-0

Since the energy E is fixed
,
we can regard Jz -

- J
,
IT., El

and the motion as occurring in the 3- dim
't
space (d., 4. , Jil .

Suppose we plot the consecutive intersections of the system 's

motion with the two -dim t subspace defined by fixing E and
also 4*2 Hay 102=0 ) .

Let's write 4=-4
,
and J = Ji ,



and define Ida
, Jd, to be the values of I/o , J) at the

hth consecutive intersection of the system 's motion. . ¥ ith the
subspace (42=0 , E fixed ) . The 2nd space 142 , Jal is called the

surface. of section .
Since 82 = Wz , we have

a. (j, = with
¢ htt - 01k = Wi . 2w±

,

I 2nd WITI

(E suppressed )
and therefore

¢ht , = ¢ k t 21T a (Jk ti )

Jkt , = Jk
"

twist map
"

Note that we've written here atJm , ) in the first equation .

(since Jw ,
= Jn

,
it doesn't matter since J never changes

for these dynamics . But writing the equations this way is more
convenient

. ] Note that (ton , Jn ) → (lone, , Tnt, I is canonical :

lol I
,¢ ,

= def
0144,5k€

htt IJKH
n , Jn 2 lol k , Jk )

= YEE - 24¥' dojo = i. i - o.o ⇐ i
k k k

k

Formally ,
we may write this map as

I = TF
htt k

where I = lol
,
J ) and I is the map . Note that if

k k k



x = Is € Q ,
then Is acts as the identity , leaving

every point in the 14 ,J) plane fixed .
For systems with n degrees of freedom , and with the

surface
.

of section fixed by tofu , Jn ) or 14h , E ) , define
it lol , , . . . , dm ) and I = Hi , . . .,I - it . Then with EI ( Hun , . . .,wj÷ ) ,

-

The
,
= G t 2K£ (Jan )

Fen -- In
which is canonical . Note th = 14,µ ,

. . . , 4mi , h ) where

Hj
,
h is the value of 9J the kth time the motion passes

through the SOS . We call this map the twist map .

Perturbed twist map : Now consider a Hamiltonian

HII TJ ) = Ho ITI TEH ,
I -4

, F) . Again we will take n
-

-2
.

We expect the resulting map on the Sos to be given by

Tf -4k = 4¥ , : µhtt
= 4kt 2Nd (Jkti ) t E fHk , Jw , I t . . .

J
ht,

= Jh t E g (4h , Jht, ) t . . .

Is this map canonical ? Let's check that def
dHhH'Jh
• Kk

. ,
Ja )

=/ :

d lout , = dotut 2Nd
'

Hht , )dJht, t tftp.d/0htEffT+,dJhHdJh+i--dJhtEf#nd4ut Effy
,

DJhtt



Now bring d lout, and dJh+, to the LHS of each eqh
and bring d Ion and d Jn to the RHS . We obtain

1 - 2nd (Tht , ) - E
¥

I it:*:i¥:n:*
A htt Bk

Thus

det 's"i¥¥=¥¥i÷ ..it:7#-=iaJIti
and we conclude the necessary condition is 3¥ = fft

,

.

This guarantees the map Te is canonical .
If we restrict to g

-

-g Clo ) , then we have f -- fII ) .

We may then
write 2nd (Jw , I t EfHht , I = 21TdelTeti ) .

(we'll drop the E subscript on a . ) thus , our perturbed
twist map is given by

¢h+ ,
= dnt 2Nd (Jati )

Jht, = Jh t Eg 14h )

For aH) --J and g lol) =
- sink

,
we obtain the standard map

¢ht , = Oth t 251 That I , Jht, = Jh - C- Sin 01h



. Maps from time - dependent Hamiltonians

- Parametric oscillator
,
e.g. pendulum with time - dependent

length Htt : I two HI x = 0 with Wohl = IGI .
This describes pumping a swing by periodically extending
and withdrawing one 's legs . We have

Ethel -- tutti
'ol l 'll cu -- nil

-
-w

"

THI AHI THI

The formal so I ' to itItt -- Alt) TH) is

THI -- T exp (ftdt ' Alt ' l) Tco )
where T is the time ordering operator which puts
earlier times to the right. Thus

T exp (ftdt ' Alt '1) = lim Ht Attn- its ) - - . ( t -t A lot 8)
N→ a

where tj = js with 8 = TIN .
Note if Alt ) is

time
. independent then

Texpfftdt ' Alt 't ) = eat = him
,
dit AI )

"



There are no general methods for analytically evaluating
time - ordered' exponentials as we have here .

But one tractable

case
.

is where the matrix Alt ) oscillates as a square. wave :

wtf I = ("
t t ) Wo if 2jt Et s Kjtilt

H- t ) Wo if Kj tilt St. cfzjtzyt
(for j E 27)

✓
(Itf ) w

Define in = Ift -- 2h51 .The period is 2T .

It-¥T¥¥IThen we have

Tnt
,
= e

A
-

t
e
Att you

-2T -T

NB : e
A
- teAtt* e (At

A-
+
It

with

A-
±

= f°w±z '

o ) , we = (HEI Wo

Note that AI = -WIA and that

U = et 'T = It A-±t t
'

z ,
AI t't IT

.

AIT't . . .
±

= ( t - I, wit
't# wit't . -

- II

+ It - I. wit't f. WI't
'
-

. . - I A-
±

= cos (wit ) I t WI
'

sin (wit ) A- ±

= (
cos (wt t ) WI's in lwit I

- wtsinlwt.tl cos Iwit ) )



Note also that det U
,
= 1

,
since U± is simply Hamiltonian

evolution over half a period , and it must be. canonical .

Now we need

U -

- I exp t AH) -- U- U+ = ( Ibd )
c'real , notsymmetric )

a = cos Iw
-
t ) cos(wth l - wi

'

wt Sin (wit sin lwtt I

b = WI
'

cosIw
-

t) sin (wit ) t w sinIw
-

II costwth I

C = - wt coslw.tl sinhtt t - W
-

Sin (w- t) cos lwtt )

d = cos Iwit costwith - WI
'

w
-

Sin (W-t ) sin lwttl

It follows from U -- N
- Ut that U is also canonical

(i.e . Int , = NIN is a canonical transformation ) .

The eigenvalues X± of U thus satisfy X
+
X
-

= 1
.

For a 2x 2 matrix U -

- l: bdl
,
the characteristic

polynomial is

PIN -- det ith - U ) = I - T X t s

where T -

- trill = atd and b -- det U = ad. -be . The

eigenvalues are then

X± ⇐ IT ± I ITT4D

But in our case U is special , and def U = 1
,
so



At = IT t.LI#
We therefore have :

ITI s 2 : X
+
= It = e is with 8 = cos

-

YET)

ITI > 2 : It = I 's e
"
synth with µ = cosh

- 'II ITI )

Note htt
.

= det U = I always . Thus
,
for ITI s 2 ,

the motion is bounded
,
but for IT I > 2 we have that

till increases exponentially with time , even though phase
space volumes are preserved by the dynamics . I. e . we

have exponential stretching along the eigenvector I, and
exponential squeezing along the eigenvector I. .

-s
→ - - -

Let's set O = wot = 2T't/ To where To is the natural

oscillation period when C- = 0 . Since the period of the pumping
is T

pump
= 2T

,
we have ¥

,

= %÷n÷ .
Find

T> 2 +←z

Tr U =
2c.us/20l-2E2cosl2E# f f

I - f2

T= t 2 : O -- htt 8
,
E = ± I

"

T
-

= - 2 : O = (ht ITt 8
,
C- = I 8

The phase. diagram in 10
,
El space

is shown at the right .



Kicked dynamics : Let Hftl -- Tlp ) t Vlf ) Kitt , where
n n n LK n n n

kith sit - htt ##too ,
As t -so

,
KH ) → 1 (constant) . - 3T -2T - I 0 I 2T 3T

Equations of motion :
"

Dirac comb
' '

q -- T
'

Ip ) , pa = - V
'

loft kltt

Define que q ft
-
- htt ) and pn =p It = not ) and integrate

from t -- htt to t = (nth Tt :

Anti = Gut IT
'

(pm )

putt = Pn - I V
'
(Gmt )

This is our map int, = Tin . Note that it is gut, which

appears as the argument of V
' in the second equation .

This is crucial in order that I be canonical :

dfw ,
= dah t TT

"

lpnldpn

dpn+, = dpn - TV
"

tant , ) dotnti

vi.mill::: =L :
"" ' Il:::LI ::: t.w.ia.in '

iii.an.it:::L



and thus

def Atnip = y
HANH , Priti )

The standard map is obtained from

Hitt = - Vcos 4 KAI

resulting in

dnt , = Ion t II Lu
Lnt , = Ln - TVs in ¢htt

Defining Jn =
.
Ln/VITTI and E = TIVIUTTT we arrive at

¢n+, = Ion t 21TE Jn
Jnt , = Jn - E Sin lout,

The phase space lol , J ) is thus a cylinder . As C- → o ,

Anticon → dads = 2TJ
'

→ It . . ..no,
) ⇒ Ei Ie::::&,

This is because C- → o means I→ o hence KH) → 1
,
which

is the simple pendulum . There is a separatrix at E -- I ,

along which 5141 = ± # last 211 .



Top : E -- O - 01 ( left )
,
C- = 0.2 (Center ) , E = 0.4 (right)

Bottom : details from C- = 0.4 (upper right)

Another example is Hae kicked Harper map , when

Htt t = - V
,
cos17¥) - K cos128¥) Kitt

this generates the map

Xnt , = Xu t a E Sin (UTyn ) x = of IQ a -- IVI

Ynti
= Yn

- 4-
'

E Sin 12TXun ) y =p/P e = Kitty
PQ

on the torus T2 -

- fo , t ) x fo , i] with x -- o , I identified

and
y
-

- oil identified
'

.



Kicked Harper map with 4=2 and C- = 0.01 NL ) , E
-

- 0.125 HR ),

C- = 0.2 (LL )
,
and C- = 5.0 (LR ) .

Note PSF
says KHL = t.IS/t-ntt=Icosf2TIt- )

and a kicked Hamiltonian
may

be written

HIT
,
d
,
t ) -- Holst t Vlol ) t 2441£

,

cos /
-

integrable
-

resonances



Poincare' -Birkhoff Theorem
-

Back to our perturbed twist map , Te :

dnt, = ¢ n t 2Nd(Tnt, I t E fllon ,Jati )

Jnt, = Jn t Eg (fu , Jun )

with

ftp.tf?y
,

= o ⇒ ie canonical

For E -- o
,
the map to leaves J invariant

,
and thus maps

circles to circles . If alt) ¢ IQ ,
the images of the iterated

map To become dense on the circle . Suppose xHT = Is C- IQ
,

and w dog assume a
'HI > O , so that on circles J± -- J t SJ we

have aHtt > rts and
'

aIII iris .
Under Fos

,
all points

on the circle C = Clt ) are fixed . The circle C+ = CCJH

rotates slightly counterclockwise while C. =CIII rotates

slightly clockwise . Now consider the action of Is , assuming
that C- a SJIJ . Acting on Ct

,
the result is still a net

counterclockwise shift plus a small radial component of Old .

Similarly , C- continues to rotate clockwise plus an OTE )

radial component . By the Intermediate Value Theorem, for
each value of ¢ there is some point J -- Jello ) where the

angular shift vanishes . Thus
, along the curve Jello) the



action of Ies is purely radial . Next consider the
curve Felch = If Jello ) . Since Ies is volume -preserving ,
these curves must intersect at an even number ofpoints .

\

The situation is depicted in the above figure .
The intersections

of Je loll and Feldt are thus fixed points of the map Fes .
We furthermore see that the intersection Jello) n Fellol consists
of an alternating sequence of elliptic and hyperbolic fixedpoints .
This is the content of the PBT : a small perturbation of a
resonant torus with a lJ ) = rls results in an equal number

of elliptic and hyperbolic fixed points for Ies . Since Te has

period s acting n these fixed points , the number of EFPs

and HFPs must be equal and a multiple of s. In the

vicinity of each EFP, this structure repeats (see the

figure below ) ..



Self- similar structures in the iterated twist map .

#
Stable and unstable manifolds °¥¥¥T
Emanating from each HFP are stable and unstable manifolds :

I c- [SITH ⇒ line. Itsy -- Eet Hoos to ie
* I

Te El ⇒nliy.FI
"I = It fftows from -4*1

Note Este! ) n Es lie; I = of and 24¥ In 24471=0
for it j ( no Sls or Ulu intersections ) . However ,

[ SITE ) and 2497 I can intersect . For i --j , this
is called a homo clinic point . (on its way from 4¥
to Iit . ) For it j , this is a hetero clinic point .



Homoclinic tangle for x.at, = yn and ynt, = latbynlyn - Xu
with a =2.693 , b = - 104.888 . Blue curve is the stable
manifold . Red curve is the unstable manifold. .

HFP at lo
, o ) .

The fact that neither red nor blue curve can self intersect

requires them to become increasingly tortured .

But since Ise is continuous and invertible
,
its action

on a homoclinic (heteroclinic ) point will produce a view
homo clinic (heteroclinic ) point, ad infinitum ! For
homo clinic intersections , the result is known as a

homoclinic tangle .

• Maps in D= I : Xnt , = fan )
; fixed point x*= f-txt )

If X = x
*
t U
,
then Unt, = f

'

txt ) Un t 01h21

FP is stable if I f '(x* Ill I
,
unstable if If

'

(x 'T I > 1
.



Cobweb diagram for flxl = r x(t- x)

Fixed points and cycles for tix) = rxli - x)
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