PHYSICS 200A : MIDTERM EXAMINATION

Normative time limit: two hours (consecutive!)
Submission deadline: Friday, Nov. 6, 2:00 pm PST (via Gradescope)
You are allowed to consult the online PHYS 200A course materials.
[1] Consider a two-body central force,

$$
U(r)=-\frac{k}{r}+\frac{4 k b^{1 / 2}}{3 r^{3 / 2}}
$$

where $k>0$ and where $b>0$ has dimensions of length.
(a) Sketch the effective potential $U_{\text {eff }}(r)$. Prove that there is only one circular orbit. [14 points]
(b) Find the radius r_{0} of the circular orbit. Is this orbit stable? [12 points]
(c) For small perturbations about the circular orbit, find the frequency of the perturbation. You may express your answer in terms of quantities such as r_{0} itself. [12 points]
(d) Find the geometric equation of the shape of the perturbed orbit. Is the perturbed orbit closed? [12 points]

Note: I found it useful to define a dimensionless length $s \equiv r / a$ with $a \equiv \ell^{2} / \mu k$.
[2] Consider three masses $m_{1}=m, m_{2}=2 m$, and $m_{3}=3 m$ connected by two springs $k_{12}=k$ (unstretched length $4 a$) and $k_{23}=2 k$ (unstretched length a). The motion is frictionless and along a horizontal line (i.e. gravity does not enter this problem).
(a) Choose as generalized coordinates the positions $x_{1,2,3}$ of the masses. Write the Lagrangian. [8 points]
(b) Find the canonical momenta $p_{1,2,3}$ and the forces $F_{1,2,3}$. $[7$ points]
(c) Find the T and V matrices. [7 points]
(d) Find the characteristic polynomial $P\left(\omega^{2}\right)=\operatorname{det}\left(\omega^{2} \mathrm{~T}-\mathrm{V}\right)$. This expression can be reduced to one involving a single parameter by writing $\widetilde{P}(\lambda) \equiv P\left(\omega^{2}\right) / m^{3}$ where $\lambda \equiv \omega^{2} / \omega_{0}^{2}$, with $\omega_{0}^{2} \equiv k / m$. Show that $\widetilde{P}(\lambda)$ is a cubic which factorizes into a product of λ and a quadratic $a \lambda^{2}+b \lambda+c$. [7 points]
(e) Solve for the nonzero roots $\lambda_{ \pm}$. The corresponding eigenfrequencies are then given by $\omega_{ \pm}=\sqrt{\lambda_{ \pm}} \omega_{0}$. [7 points]
(f) Find expressions for three normal mode eigenvectors. (This means that you can express their components in terms of the values for $\lambda_{ \pm}$.) You don't have to normalize them. [7 points]
(g) Show that your zero mode agrees with the conclusions from Noether's theorem.
[7 points]

