PHYSICS 200A : CLASSICAL MECHANICS SOLUTION SET \#7

[1] A particle of mass m moves in one dimension subject to the potential

$$
U(x)=\frac{k}{\sin ^{2}(x / a)}
$$

(a) Obtain an integral expression for Hamilton's characteristic function.
(b) Under what conditions may action-angle variables be used?
(c) Assuming that action-angle variables are permissible, determine the frequency of oscillation by the action-angle method.
(d) Check your result for the oscillation frequency in the limit of small oscillations.
[2] Consider one-dimensional motion in the potential $V(x)=-V_{0} \operatorname{sech}^{2}(x / a)$ with $V_{0}>0$.
(a) Sketch the potential $V(x)$. Over what range of energies may action-angle variables be used?
(b) Find the action J and the Hamiltonian $H(J)$.
(c) Find the angle variable ϕ in terms of x and the energy E.
(d) Find the Solution for $x(t)$ by first solving for the motion of the action-angle variables.

Helpful mathematical identities :

$$
\begin{gathered}
\int_{0}^{\bar{u}(E)} d u \sqrt{E+V_{0} \operatorname{sech}^{2} u}=\frac{\pi}{2}\left(\sqrt{V_{0}}-\sqrt{-E}\right) \quad \text { if }-V_{0}<E<0 \\
\int d u\left(E+V_{0} \operatorname{sech}^{2} u\right)^{-1 / 2}=\left\{\begin{array}{lll}
(-E)^{-1 / 2} \sin ^{-1}\left(\sqrt{\frac{-E}{V_{0}+E}} \sinh u\right) & \text { if } & -V_{0}<E<0 \\
E^{-1 / 2} \sinh ^{-1}\left(\sqrt{\frac{E}{V_{0}+E}} \sinh u\right) & \text { if } & E>0
\end{array}\right.
\end{gathered}
$$

where $\bar{u}(E)=\cosh ^{-1} \sqrt{V_{0} /(-E)}$ in the first integral.
[3] A particle of mass m moves in the potential $U(q)=A|q|$. The Hamiltonian is thus

$$
H_{0}(q, p)=\frac{p^{2}}{2 m}+A|q|
$$

where A is a constant.
(a) List all independent conserved quantities.
(b) Show that the action variable J is related to the energy E according to $J=\beta E^{3 / 2} / A$, where β is a constant, involving m. Find β.
(c) Find $q=q(\phi, J)$ in terms of the action-angle variables.
(d) Find $H_{0}(J)$ and the oscillation frequency $\nu_{0}(J)$.
(e) The system is now perturbed by a quadratic potential, so that

$$
H(q, p)=\frac{p^{2}}{2 m}+A|q|+\epsilon B q^{2}
$$

where ϵ is a small dimensionless parameter. Compute the shift $\Delta \nu$ to lowest nontrivial order in ϵ, in terms of ν_{0} and constants.
[4] Consider the nonlinear oscillator described by the Hamiltonian

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}+\frac{1}{4} \epsilon a q^{4}+\frac{1}{4} \epsilon b p^{4}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.

