PHYSICS 200A : CLASSICAL MECHANICS PROBLEM SET #5

[1] A string of uniform mass density and length ℓ hangs under its own weight in the earth's gravitational field. Consider small transverse displacements u(x,t) in a plane.

(a) Compute the equilibrium tension in the string $\tau(x)$, where x is the distance from the point of suspension.

(b) Show that the normal modes satisfy Bessel's equation.

- (c) What are the boundary conditions?
- (d) What are the normal mode frequencies?
- (e) What are the normal modes?
- (f) Construct the general solution to the initial value problem.

[2] A string of length 2a is stretched to a constant tension τ with its ends fixed. The mass density of the string is given by

$$\sigma(x) = \sigma_0 \left(1 - \frac{|x|}{a} \right)$$

(a) Use a zero-parameter trial function to derive a variational estimate of the lowest resonant frequency ω_1 . Compare with the numerical value $\omega_1^2 \approx 3.477 \tau/a^2 \sigma_0$.

(b) Devise a one-parameter trial function and show that it leads to a better (e.g. lower frequency) estimate.

(c) Repeat part (a) for the next eigenfrequency ω_2 , whose numerical value is $\omega_2^2 \approx 18.956 \tau/a^2 \sigma_0$.

[3] A wave travels along an infinite string stretched to a tension τ . The mass density of the string is σ_0 for |x| > a and σ_1 for |x| < a.

(a) Solve the wave equation in the regions |x| > a and |x| < a, respectively, to find exact expressions for the transmission and reflection amplitudes.

(b) Show that the energy transmission coefficient is given by

$$T = 1 - R = \left\{ 1 + \left(\frac{k_1^2 - k_0^2}{2k_0k_1}\right)^2 \sin^2(2k_1a) \right\}^{-1},$$

where $k_i = \sqrt{\sigma_i/\tau} \,\omega = \omega/c_i$. Discuss the frequency dependence of T, noting the position and widths of the transmission resonances (where T = 1).

Figure 1: An infinite string of uniform mass density σ_0 with an inserted segment of length 2a with mass density σ_1 . Waves $A e^{ik_0x}$ and $F e^{-ik_0x}$ are incident from the left and right, respectively, giving rise to outgoing waves $B e^{-ik_0x}$ and E, e^{ik_0x} .

[4] Consider a uniform circular membrane of radius a, areal mass density σ , and tension τ .

(a) A point mass m is attached at the center of the membrane. Show that the total density is now

$$\sigma(r,\phi) = \sigma + \frac{m}{\pi r} \,\delta(r)$$

(b) Show that the wave equation $-\nabla^{\alpha} \left[\tau(\mathbf{r}) \nabla^{\alpha} u(\mathbf{r}) \right] = \omega^2 \sigma(\mathbf{r}) u(\mathbf{r})$ may be recast as $K\psi = E\psi$, where $E = \omega^2$ and

$$K = -\frac{1}{\sqrt{\sigma(\mathbf{r})}} \nabla^{\alpha} \tau(\mathbf{r}) \nabla^{\alpha} \frac{1}{\sqrt{\sigma(\mathbf{r})}}$$

Show that $K = K^{\dagger}$ is self-adjoint. Writing $\sigma(\mathbf{r}) = \sigma + \delta\sigma(\mathbf{r})$ and taking $\tau(\mathbf{r}) = \tau$, show that $K = K_0 + \delta K$ to first order in $\delta\sigma(\mathbf{r})$ and find an expression for δK .

(c) Show that the normalized eigenfunctions of K_0 are

$$\psi_{\ell,n}(r,\varphi) = \frac{1}{\sqrt{\pi} \, a \, J_{\ell+1}(x_{l,n})} \, J_\ell(x_{\ell,n}r/a) \, e^{i\ell\varphi}$$

where $J_{\ell}(x_{\ell,n}) = 0$, *i.e.* $x_{\ell,n}$ is the n^{th} root of $J_{\ell}(x)$. You may find the following result to be useful:

$$\int_{0}^{a} dr \ r \ J_{\ell}(x_{\ell,n} \ r/a) \ J_{\ell}(x_{\ell,n'} \ r/a) = \frac{1}{2} \ a^{2} \left[J_{\ell \pm 1}(x_{\ell,n}) \right]^{2} \delta_{n,n'}$$

where one may take either sign in the \pm symbol.

(d) Use first-order perturbation theory to show that only the circularly symmetric modes are affected by the point mass, in which case to first order in perturbation theory we have

$$\omega_{l,n}^2 = \frac{c^2 x_{l,n}^2}{a^2} \left\{ 1 - \frac{m \, \delta_{l,0}}{\pi \sigma a^2 J_1^2(x_{0,n})} \right\}$$

Discuss the behavior for large n and compare to the corresponding case of a point mass on a string.