
PHYSICS 200A : CLASSICAL MECHANICS
PROBLEM SET #4

[1] A mass m moves frictionlessly under the influence of gravity along the curve y = x2/2a.
Attached to the mass is a massless rigid rod of length ℓ, at the end of which is an identical
mass m. The rod is constrained to swing in the (x, y) plane, as depicted in the figure below.

(a) Choose as generalized coordinates x and φ, where x is the horizontal coordinate of the
upper mass. Find the kinetic energy T and potential energy U .

(b) For small oscillations, find the T and V matrices. It may be convenient to define
Ω1 ≡

√

g/a and Ω2 ≡
√

g/ℓ.

(c) Find the eigenfrequencies of the normal modes of oscillation.

(d) Suppose Ω1 =
√
3Ω0 and Ω2 = 2Ω0, where Ω0 has dimensions of frequency. Find the

modal matrix. Nota bene: Because the coordinates x and φ have different dimensions, the
dimensions of the elements of Aσi may differ depending on the row index σ.

[2] Two blocks and three springs are configured as in Fig. 1. All motion is horizontal.
When the blocks are at rest, all springs are unstretched.

Figure 1: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.

(b) Find the T and V matrices.
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(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.

(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0. Find

t∗, the next time at which x2 vanishes.

[3] Investigate the small amplitude oscillations of N + 1 identical point masses m, labeled
by σ ∈ {0, . . . , N}, joined by N identical springs of spring constant k.

(a) Let {uσ} be the deviations of each mass from its equilibrium position. Introduce the
quantities u−1(t) and uN+1(t) and the constraints u−1(t) = u0(t) and uN+1(t) = uN (t).
Since these are holonomic they may be substituted directly into the Lagrangian. Show that
the equations of motion are then given by

müσ = −k
(

2uσ − uσ+1 − uσ−1

)

,

where σ ∈ {0, . . . , N}.

(b) Show that
uσ(t) =

(

Aeiqσ +B e−iqσ
)

e−iωt

is a solution to the equations of motion provided that ω = ω(q) satisfies a particular
dispersion relation. Find ω(q).

(c) Now apply the boundary conditions, i.e. the constraint equations u−1 = u0 and uN =
uN+1. They should provide you with a mode quantization condition on the quantity q.

Show that this condition is e2(N+1)iq = 1. Then find the eigenvalues and eigenfunctions
of the normal mode problem, labeled by the discrete mode index arising from the mode
quantization.

(d) Show that the normal mode solutions are either even or odd under the reflection oper-
ation uσ(t) ↔ uN−σ(t).

(e) Identify the zero eigenmode resulting from overall translational invariance.

[4] Consider a linear chain of N + 2 mass points connected by springs and subject to fixed

end boundary conditions: u0 = uN+1 = 0. The allowed motion is one-dimensional, along
the direction of the chain.

(a) Following the method used in problem [3], verify the normal modes are of the form

u(j)σ (t) = Cj sin
( πjσ

N + 1

)

cos(ωjt+ δj)
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where

ωj = 2

√

k

m

∣

∣

∣

∣

sin
( jπ

2N + 2

)

∣

∣

∣

∣

and j ∈ {1, . . . , N}.

(b) Verify the orthonormality of the normal modes,

ψ(j)
σ =

√

2

(N + 1)m
sin
( πjσ

N + 1

)

.

(c) Let zℓ = exp
(

2πiℓ/M
)

with ℓ ∈ {0, . . . ,M − 1} be the complex M th roots of unity.
Verify, for any integer p, that

M−1
∑

ℓ=0

zpℓ =M δp , 0modM .

(d) Compare the eigenspectrum with that from problem [3] and comment on the differences.

[5] For the brave only! I will be impressed if you can solve this. (50 quatloos extra credit)
In equilibrium, a collection of six identical springs k and four identical massesm are arranged
in a perfect tetrahedron. One way to identify the vertices of a tetrahedron is to inscribe it
in a cube of side length 2a. With the origin at the center, the coordinates of the vertices
may be taken as (−a, a, a), (a,−a, a), (a, a,−a), and (−a,−a,−a). The side length of the
tetrahedron is then b = 2

√
2a.

(a) Find all the zero modes and provide explicit expressions for their eigenvectors ψ
(i)
σ . How

many zero modes should there be?

(b) Find numerically or analytically all the remaining normal modes and their eigenfrequen-
cies.

(c) The tetrahedral group Td , i.e. the discrete group of symmetry operations acting on a
tetrahedron, has 24 elements (arranged among five conjugacy classes) and five irreducible
representations (‘irreps’). The A1 and A2 irreps are each one-dimensional, the E irrep is
two-dimensional, and the T1 and T2 irreps are each three-dimensional. (If you sum the
squares of the dimensions of the irreps, you always get the order of the group, i.e. the
number of group elements. Lo and behold: 12 + 12 + 22 + 32 + 32 = 24.) Based on the
degeneracy of your finite frequency normal modes, identify what possible irreps they might
belong to. (See appendices for some notes on the discrete group theory involved.)
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Figure 2: The zincblende structure is two interpenetrating FCC lattices separated by
(a4 ,

a
4 ,

a
4 ), where a is the side length of the cube.

0.1 Appendix I : The Tetrahedral Group, Td

Many III-V semiconductors, such as GaAs, have a zincblende crystal structure, shown in
fig. 2. The zincblende structure AB consists of two interpenetrating FCC lattices A and
B, separated by (a4 ,

a
4 ,

a
4 ), where a is the side length of the cube. As fig. 2 shows, the B

sublattice sites within the cube form a tetrahedron. The crystallographic point group for
this structure is Td, the tetrahedral group. A noteworthy feature is that the zincblende
structure has no center of inversion symmetry.

If all the atoms are identical, i.e. A = B, then we get the diamond structure, which is
the structure of silicon and of course carbon diamond. The diamond lattice is inversion
symmetric, with the point of inversion halfway between the A and B sublattice sites. The
point group for diamond is the cubic group Oh. This might be surprising upon staring at
the structure for a time, because it doesn’t possess a cubic symmetry. However, the space
group for diamond is non-symmorphic, which means that the certain point group operations
must be combined with a glide plane or screw axis operation in order to leave the structure
invariant. A glide plane operation is a reflection in a plane, followed by a translation parallel
to that plane. A screw axis operation is a rotation about an axis followed by translation
along that axis. The diamond structure has a glide plane.

The group Td has 24 elements; these are listed in table 1. These are arranged in five group
classes. One class is the identity, E. Another class consists of three 180◦ rotations about
the x̂, ŷ, and ẑ axes, respectively. A third classs, with eight elements, consists of rotations
by ±120◦ about each of the four body diagonals. This amounts to 12 group operations, all
of which are proper rotations. The remaining 12 elements involve the inversion operator, I,
which takes (x, y, z) to (−x,−y,−z), and are therefore improper rotations, with determinant
−1. These elements fall into two classes, one of which consists of 180◦ rotations about
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diagonals parallel to one of the sides of the cube (e.g. the line y = x, z = 0), followed by
inversion. The last class consists of rotations by ±90◦ about x̂, ŷ, and ẑ, also followed by
an inversion.

0.1.1 Tetrahedral vs. Octahedral Symmetry

In the case of the octahedral group, O, the inversion operation is not included in the last
two classes, and they are written as 6C2 and 6C4, respectively. The symmetry operations
of O are depicted in fig. 4. The groups O and Td are isomorphic. Completing either of
them by adding in the inversion operator I results in the full cubic group, Oh, which has
48 elements.

While the groups Td and O are isomorphic, the symmetry of particular basis functions may
differ between the two groups. Consider, for example, the function ϕ = xyz. It is easy
to see from table 1 that every element of Td leaves ϕ invariant. Within O, however, the
classes 6σd and 6S4 are replaced by 6C2 and 6C4 when the inversion operation is removed.
Each element of these classes then takes ϕ to −ϕ. Thus, within Td, the function ϕ = xyz is
indistinguishable from unity, and it transforms according to the trivial A1 representation.
Within O, however, ϕ is distinguishable from 1 because ϕ reverses sign under the operation
of all group elements in classes 6C2 and 6C4.

In O, the triplets of basis functions {x, y, z} and {yz, zx, xy} belong to different repre-
sentations (T1 and T2, respectively). In Td, however, they must belong to the same rep-
resentation, since one set of functions is obtained from the other by dividing into xyz:

Table 1: Table of elements and classes for Td

class x y z g ∈ O(3) class x y z g ∈ O(3)

E x y z 1 6σd −y −x z IR[110](π)

3C2 x −y −z R[100](π) (6IC2) y x z IR
[11̄0]

(π)

−x y −z R[010](π) −z y −x IR[101](π)

−x −y z R[001](π) z y x IR
[1̄01]

(π)

8C3 z x y R[111](+
2π
3 ) x −z −y IR[011](π)

y z x R[111](−2π
3 ) x z y IR

[011̄]
(π)

z −x −y R
[11̄1]

(+2π
3 ) 6S4 −x z −y IR[100](+

π
2 )

−y −z x R
[11̄1]

(−2π
3 ) (6IC4) −x −z y IR[100](−π

2 )

−z x −y R
[111̄]

(+2π
3 ) −z −y x IR[010](+

π
2 )

y −z −x R
[111̄]

(−2π
3 ) z −y −x IR[010](−π

2 )

−z −x y R
[11̄1̄]

(+2π
3 ) y −x −z IR[001](+

π
2 )

−y z −x R
[11̄1̄]

(−2π
3 ) −y x −z IR[001](−π

2 )
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Figure 3: Symmetry operations of the tetrahedral group, Td. The group conjugacy classes
C2, C3, IC2, and IC4 are defined in the appendix.

Table 2: Irreducible representations and basis functions for Td and O

Γ(i) d basis functions ϕi
µ for Td basis functions ϕi

µ for O

Γ(1) = A1 1 1 or xyz 1

Γ(2) = A2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2) xyz

Γ(3) = E 2
{√

3 (x2 − y2) , 2z2 − x2 − y2
} {√

3 (x2 − y2) , 2z2 − x2 − y2
}

Γ(4) = T1 3
{

x (y2 − z2) , y (z2 − x2) , z (x2 − y2)
} {

x, y, z
}

Γ(5) = T2 3
{

x , y , z
}

or
{

yz , zx , xy
} {

yz , zx , xy
}

x = (xyz)/(yz), et cyc. But xyz transforms as the identity, so ‘polar’ and ‘axial’ vectors
belong to the same representation of Td.

Finally, let’s think about how O differs from Oh. Consider the function

ϕ = xyz ·
(

x4 (y2 − z2) + y4 (z2 − x2) + z4 (x2 − y2)
)

. (1)

One can check that this function is left invariant by every element of O. It therefore
transforms according to the A1 representation of O. But it reverses sign under parity,
so within the full cubic group Oh, it transforms according to separate one-dimensional
representation. Note that ϕ transforms according to the A2 representation of Td.
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Figure 4: Symmetry operations of the octahedral group, O.

0.2 Appendix II : Elements of Discrete Group Theory

We are concerned with representations of crystallographic point groups. A representation
Γ of a discrete group G is a mapping

Γ: G −→ GL(n,C) . (2)

i.e. the group G is mapped onto the space of complex matrices, such that the group multi-
plication table is preserved. Typically we shall be concerned with unitary representations
since the context here is quantum mechanics. A representation is reducible if it can be
brought to block diagonal form by a similarity transformation. We label the irreducible

representations with superscripts on Γ. Thus, Γ(i)(g)µν is the (µν) element of the matrix
which represents the group element g in the ith irreducible representation.

0.3 Great Orthogonality Theorem

The Great Orthogonality Theorem states that

∑

g

Γ(i)(g)∗µν Γ
(j)(g)αβ =

h

di
δij δµα δνβ (3)

where the Γ(i) are inequivalent, irreducible, unitary representations of a group, and di is the
dimension (rank) of Γ(i) and h is the order (number of elements) of the group. The sum of
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Table 3: Character table for the tetrahedral group, Td

Td E 8C3 3C2 6σd 6S4

Γ1 (A1) 1 1 1 1 1

Γ2 (A2) 1 1 1 −1 −1

Γ3 (E) 2 −1 2 0 0

Γ4 (T1) 3 0 −1 −1 1

Γ5 (T2) 3 0 −1 1 −1

the squares of the dimensions of the irreducible representations is equal to the number of
elements in the group:

∑

i

d2i = h . (4)

0.4 Group Characters

Two group elements g1 and g2 are said to be conjugate if there exists another group element
g3 such that g1 = g−1

3 g2 g3. Conjugacy is a transitive relation. The collection of all mutually
conjugate elements is a conjugacy class, C.

The character of a group element g in the representation Γ(i) is

χ(i)(g) = TrΓ(i)(g) =

di
∑

µ=1

Γ(i)(g)µµ . (5)

As the trace is invariant under a similarity transformation, the character is the same for all
elements within a given class.

The number of conjugacy classes of a group is equal to the number of irreducible repre-
sentations. Thus, the character table of a group, where the rows correspond to irreducible
representations and the columns to conjugacy classes, is a square matrix. The columns of
this matrix are mutually orthogonal, satisfying

∑

C

NC
χ(i)(C)∗ χ(j)(C′) = h δij , (6)

where NC is the number of elements in class C. The columns are also orthogonal:

∑

i

χ(i)(C)∗ χ(i)(C′) =
h

NC

δCC′ . (7)

As an exercise, one can verify these relations for the character table of Td, given in table 3.
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0.5 Decomposition of Reducible Representations

A reducible representation may be brought to block diagonal form, where each irreducible
di × di block occurs ai times. Clearly

χ(g) =
∑

j

aj χ
(j)(g) , (8)

which, using the row orthogonality of the character table, yields

aj = h−1
∑

g

χ(g)∗ χ(j)(g) . (9)

Suppose we take a product of two irreducible representations, Γ(i) and Γ(j). The matrix
corresponding to a group element g then has a composite form,

Γ(i×j)(g)µα,νβ = Γ(i)(g)µν Γ
(j)(g)αβ . (10)

and therefore
χ(i×j)(g) = χ(i)(g)χ(j)(g) . (11)

Thus, we can decompose the product representation, using the orthogonality of the rows of
the character table:

Γ(i) × Γ(j) =
∑

k

aijk Γ
(k)

aijk = h−1
∑

C

NC
χ(i)(C)χ(j)(C)χ(k)(C)∗

(12)

0.5.1 Example

As an example, consider the tensor product Γ4 × Γ4. We have

Γ4 × Γ4 =
∑

k

a44k Γ
(k) , (13)

where

a44k =
1

24

{

9χ(k)(E) + 3χ(k)(C2) + 6χ(k)(σd) + 6χ(k)(S4)
}

. (14)

Using Table 3,

a441 =
1
24

(

9 + 3 + 6 + 6
)

= 1

a442 =
1
24

(

9 + 3− 6− 6
)

= 0

a443 = 1
24

(

9 · 2 + 3 · 2 + 6 · 0 + 6 · 0
)

= 1

a444 =
1
24

(

9 · 3− 3− 6 + 6
)

= 1

a445 =
1
24

(

9 · 3− 3 + 6− 6
)

= 1

(15)
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and we conclude
Γ4 × Γ4 = Γ1 ⊕ Γ3 ⊕ Γ4 ⊕ Γ5 . (16)

Note that the dimension of the LHS is 32 = 9 and that of the RHS is 1 + 2 + 3 + 3 = 9.

0.6 Projection Operators

Let Pg be an operator which effects the group operation g, and let ϕ
(i)
ν be a basis function

belonging to the νth row of the ith irreducible representation. By definition,

Pg ϕ
(i)
ν =

di
∑

µ=1

ϕ(i)
µ Γ(i)(g)µν . (17)

Using the Great Orthogonality Theorem, we obtain

∑

g

Γ(j)(g)∗αβ Pg ϕ
(i)
ν =

di
∑

µ=1

ϕ(i)
µ

∑

g

Γ(i)(g)µν Γ
(j)(g)∗αβ

=
h

dj
δij δνβ ϕ

(i)
α .

(18)

Therefore we can define a projection operator,

Π
(j)
αβ =

di
h

∑

g

Γ(j)(g)∗αβ Pg , (19)

which annihilates any basis function ϕ
(i)
ν unless i = j and ν = β, i.e. unless the basis

function belongs to the βth row of Γ(j). Taking the trace, we obtain the projector onto Γ(j):

Π(j) =

dj
∑

α=1

Π(j)
αα =

dj
h

∑

g

χ(j)(g)∗ Pg . (20)

As an example, let us evaluate the projection of a function ψ(x, y, z) onto the Γ3 represen-

tation of Td, using the Tables 1 and 3. We find

Π(3)ψ(x, y, z) =1
6

[

ψ(x, y, z) + ψ(x,−y,−z) + ψ(−x, y,−z) + ψ(−x,−y, z)
]

− 1
12

[

ψ(z, x, y) + ψ(y, z, x) + ψ(z,−x,−y) + ψ(−y,−z, x)

+ ψ(−z, x,−y) + ψ(y,−z,−x) + ψ(−z,−x, y) + ψ(−y, z,−x)
]

(21)

We then find

Π(3)x2 = 1
3(2x

2 − y2 − z2)

Π(3)(x2 − y2) = x2 − y2

Π(3)xy = 0 ,

(22)

etc.
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Table 4: Standard Notation for Point Group Operations

Operation Description

E identity

Cn rotation through 2π/n about some axis n̂ ;

operator equivalent: e2πin̂·J/~ where J = F + S

I inversion (r → −r) ; leaves spinor coordinates invariant

σ C2 rotation followed by reflection in plane perpendicular

to the axis of rotation ; equivalent to IC2 or C2 I

σh reflection in a ‘horizontal’ plane perpendicular to a
principal axis of symmetry

σv reflection in a ‘vertical’ plane which contains a
principal axis of symmetry

σd reflection in a ‘diagonal’ plane containing a principal
axis of symmetry and which bisects the angle between
two twofold axes perpendicular to a principal axis

Sn improper rotation through 2π/n, i.e. a Cn rotation
followed by reflection in the plane perpendicular to

the rotation axis (I = S2)

Ē spinor rotation through 2π ; Ē = e2πin̂·S (S = 1
2) ;

leaves spatial coordinates (x, y, z) invariant

ḡ any point group operation g followed by Ē

Table 5: Character table for the double group of Td

3C2+ 6σd+

Td × {E, Ē} E Ē 8C3 8ĒC3 3ĒC2 6Ēσd 6S4 6ĒS4

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 1 1 −1 −1 −1

Γ3 2 2 −1 −1 2 0 0 0

Γ4 3 3 0 0 −1 −1 1 1

Γ5 3 3 0 0 −1 1 −1 −1

Γ6 2 −2 1 −1 0 0
√
2 −

√
2

Γ7 2 −2 1 −1 0 0 −
√
2

√
2

Γ8 4 −4 −1 1 0 0 0 0
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Figure 5: Schematic diagram of (common axis) double group rotation operators. The
operation of C2, for example, amounts to a 90◦ counterclockwise rotation on the diagram.
Taken from Fig. 1 of Koster et al. (1963).

0.7 Crystallographic Point Groups

Table 4 lists the standard abbreviations for elements of crystallographic point groups. The
group operations act on electron wavefunctions, which are spinor functions of the spatial
coordinates r = (x, y, z):

~ψ(r) =

(

ψ
↑
(r)

ψ↓(r)

)

. (23)

Rotations by an angle θ about an axis n̂ are represented by the unitary operator

U(θ; n̂) = eiθn̂·J/~ , (24)

where J = F + S is the sum of orbital (F ) and intrinsic spin (S) angular momenta. For
crystallographic point groups, θ = 2π/n where n = 1, 2, 3, 4, or 6.

When spin is neglected, the group is the usual point group. With spin, we must include the
operation Ē which reverses the sign of the spinor but leaves r unchanged. For S = 1

2 this
is equivalent to a rotation by 2π about any axis; Ē2 = E. The resulting group is called the
double group. A schematic description of proper rotations within a double group is shown
in Fig. 5. If g is an element of the point group, then we define ḡ = Ēg, which is an element
of the double group. Note that, for rotations about the same axis,

C2 C2 = C1 = Ē

σh σh = Ē

σ̄h σh = E ,

(25)
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et cetera. Thus, σ−1
h = σ̄h.

Most of the time, for each class C of a point group there will be a unique corresponding
class C̄ of the double group. The exception is when n = 2. In that case, C and C̄ can be
joined to form a single class C + C̄ if any twofold axis in C is bilateral. A bilateral axis is
one for which there exists a twofold rotation about an axis in the plane perpendicular to
the first axis. The same exception holds for improper rotations. In such cases, the number
of classes of the double group is less than twice the number of classes for the point group.
As an example, consider the tetrahedral group Td. There are three twofold axis: x̂, ŷ, and
ẑ. All are bilateral because a rotation by π about x̂ reverses the direction of both ŷ and
ẑ, etc. Accordingly, in the character table for the double group of Td, given in Table 5, the

classes C2 and C̄2 are adjoined, as are σd and σ̄d.
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Figure 6: Stereographic projections of simple point groups. Copied from Table 4.2 of M.
Tinkham, Group Theory and Quantum Mechanics.
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