
PHYSICS 200A : CLASSICAL MECHANICS
MIDTERM EXAMINATION SOLUTIONS
Normative time limit: four hours (consecutive!)

You are allowed to consult the online PHYS 200A course materials.

All problems are worth a total of 50 points each.

[1] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M ,
as shown in Fig. 1. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle θ the ladder makes with respect to the floor, and the
coordinates (x, y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder is T
CM

+ Trot, where T
CM

= 1
2
m(ẋ2 + ẏ2) is

the kinetic energy of the center-of-mass motion, and Trot =
1
2
Iθ̇2, where I is the moment of

inertial. For a uniformly dense ladder of length 2ℓ, the moment of inertia is I = 1
3
mℓ2.

Figure 1: A ladder of length 2ℓ leaning against a massive block. All surfaces are frictionless.

(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and
their time derivatives. [10 points]

We have L = T − U , hence

L = 1
2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 −mgy .

(b) Write down all the equations of constraint. [10 points]

There are two constraints, corresponding to contact between the ladder and the block, and
contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ℓ cos θ −X = 0

G2(X, θ, x, y) = y − ℓ sin θ = 0 .

(c) Write down all the equations of motion. [10 points]
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Two Lagrange multipliers, λ1 and λ2, are introduced to effect the constraints. We have for

each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ
=

k∑

j=1

λj

∂Gj

∂qσ
≡ Qσ ,

where there are k = 2 constraints. We therefore have

MẌ = −λ1

mẍ = +λ1

mÿ = −mg + λ2

Iθ̈ = ℓ sin θ λ1 − ℓ cos θ λ2 .

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X, θ, x, y, λ1, λ2}.

(d) Find all conserved quantities. [10 points]

The Lagrangian and all the constraints are invariant under the transformation

X → X + ζ , x → x+ ζ , y → y , θ → θ .

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣∣∣∣
ζ=0

= MẊ +mẋ .

Using the first constraint to eliminate x in terms of X and θ, we may write this as

Λ = (M +m)Ẋ −mℓ sin θ θ̇ .

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of t, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E = 1
2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 +mgy

=
Λ2

2(M +m)
+ 1

2

(
I +mℓ2 − m

M+m mℓ2 sin2θ
)
θ̇2 +mgℓ sin θ ,

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and θ.

(e) Find an equation relating the angle θ∗ at which the ladder detaches from the block
and the initial angle of inclination θ0 . Your equation should only include θ∗, θ0 , and the
dimensionless ratios M/m and I/mℓ2, but not θ̇ or θ̈. Hint: Find the energy of the system

at the moment of detachment. [10 points]
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The condition for detachment from the block is simply λ1 = 0, i.e. the normal force vanishes.
If we eliminate x and y in terms of X and θ, we find

x = X + ℓ cos θ y = ℓ sin θ

ẋ = Ẋ − ℓ sin θ θ̇ ẏ = ℓ cos θ θ̇

ẍ = Ẍ − ℓ sin θ θ̈ − ℓ cos θ θ̇2 ÿ = ℓ cos θ θ̈ − ℓ sin θ θ̇2 .

We can now write

λ1 = mẍ = mẌ −mℓ sin θ θ̈ −mℓ cos θ θ̇2 = −MẌ ,

which gives
(M +m)Ẍ = mℓ

(
sin θ θ̈ + cos θ θ̇2

)
,

and hence

Qx = λ
1
= − Mm

m+m
ℓ
(
sin θ θ̈ + cos θ θ̇2

)
.

We also have

Qy = λ2 = mg +mÿ

= mg +mℓ
(
cos θ θ̈ − sin θ θ̇2

)
.

We now need an equation relating θ̈ and θ̇. This comes from the last of the equations of
motion:

Iθ̈ = ℓ sin θ λ1 − ℓ cos θλ2

= − Mm
M+m ℓ2

(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mgℓ cos θ −mℓ2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)

= −mgℓ cos θ −mℓ2
(
1− m

M+m sin2θ
)
θ̈ + m

M+m mℓ2 sin θ cos θ θ̇2 .

Collecting terms proportional to θ̈, we obtain

(
I +mℓ2 − m

M+m sin2θ
)
θ̈ = m

M+m mℓ2 sin θ cos θ θ̇2 −mgℓ cos θ .

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −cos θ

sin θ
θ̇2 .

Substituting this into the previous equation, we obtain

(
I +mℓ2

)
θ̇2 = mgℓ sin θ .

Finally, we substitute this into the equation for the total energy E, we obtain the following
relation between the detachment angle, θ∗, and the initial angle of inclination, θ0 :

E − Λ2

2(M +m)
= mgℓ sin θ0 =

(
3− m

M +m
· mℓ2

I +mℓ2
sin2θ∗

)
· 1
2
mgℓ sin θ∗ .
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Figure 2: Plot of θ∗ versus θ0 for the ladder-block problem. Allowed solutions, shown
in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with α < 1, are shown in
magenta. The line θ∗ = θ0 is shown in red.

Thus, we have

sin θ0 =
3

2
sin θ∗ − 1

2

(
m

M +m

)(
mℓ2

I +mℓ2

)
sin3θ∗ = 3

2
sin θ∗ − 1

2
α−1 sin3θ∗ ,

where

α ≡
(
1 +

M

m

)(
1 +

I

mℓ2

)
.

Note that α ≥ 1, and that when M/m = ∞,1 we recover θ∗ = sin−1
(
2

3
sin θ0

)
, which is

the angle of detachment relation for a ladder slipping against a rigid wall. For finite α, the
ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0 is provided in Fig. 2. Note

that, provided α ≥ 1, detachment always occurs for some unique value θ∗ for each θ0.

[2] Two identical semi-infinite lengths of string are joined at a point of mass m which moves
vertically along a thin wire, as depicted in fig. 3. The mass moves with friction coefficient
γ, i.e. its equation of motion is

mz̈ + γż = F ,

1The ladder’s rotational inertia must satisfy I ≤ mℓ
2.
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where z is the vertical displacement of the mass, and F is the force on the mass due to
the string segments on either side. In this problem, gravity is to be neglected. It may be
convenient to define K ≡ 2τ/mc2 and Q ≡ γ/mc.

Figure 3: A point mass m joining two semi-infinite lengths of identical string moves verti-
cally along a thin wire with friction coefficient γ.

(a) The general solution with an incident wave from the left is written

y(x, t) =

{
f(ct− x) + g(ct + x) (x < 0)

h(ct− x) (x > 0) .

Find two equations relating the functions f(ξ), g(ξ), and h(ξ). [15 points]

The first equation is continuity at x = 0:

f(ξ) = g(ξ) + h(ξ) ,

where ξ = ct ranges over the real line [−∞,∞]. The second equation comes from Newton’s
2nd law F = ma applied to the mass point:

mÿ(0, t) + γ ẏ(0, t) = τ y′(0+, t)− τ y′(0−, t) .

Expressed in terms of the functions f(ξ), g(ξ), and h(ξ), and dividing through by mc2, this
gives

f ′′(ξ) + g′′(ξ) +Qf ′(ξ) +Qg′(ξ) = −1
2
K h′(ξ) + 1

2
K f ′(ξ)− 1

2
K g′(ξ).

Integrating once, and invoking h = f + g, this second equation becomes

f ′(ξ) +Qf(ξ) = −g′(ξ)− (K +Q) g(ξ) .

(b) Solve for the reflection amplitude r(k) = ĝ(k)/f̂ (k) and the transmission amplitude
t(k) = ĥ(k)/f̂ (k). Recall that

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ ⇐⇒ f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ ,
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et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission
coefficients,

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2. Show that this sum is always less than or equal to unity, and

interpret this fact. [15 points]

Using d/dξ −→ ik, we have

(Q+ ik) f̂(k) = −(K +Q+ ik) ĝ(k) .

Therefore,

r(k) =
ĝ(k)

f̂(k)
= − Q+ ik

Q+K + ik
.

To find the transmission amplitude, we invoke h(ξ) = f(ξ) + g(ξ), in which case

t(k) =
ĥ(k)

f̂(k)
= − K

Q+K + ik
.

The sum of reflection and transmission coefficients is

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2 = Q2 +K2 + k2

(Q+K)2 + k2
.

Clearly the RHS of this equation is bounded from above by unity, since both Q and K are
nonnegative.

(c) Find an expression which is a functional of f(x) or f̂(k), for the total energy change
∆E of the string due to the friction acting on the mass point. Hint: You can compute ∆E
by computing the net outgoing energy current at x = 0± and then integrating over time.

[10 points]

Recall the formulae for the energy density in a string,

E(x, t) = 1
2
µ ẏ2(x, t) + 1

2
τ y′

2
(x, t)

and
jE (x, t) = −τ ẏ(x, t) y′(x, t) .

The energy continuity equation is ∂t E + ∂x jE = 0. Assuming jE(±∞, t) = 0, we have

dE

dt
=

0−∫

−∞

dx
∂E
∂t

+

∞∫

0+

dx
∂E
∂t

= −jE(∞, t) + jE(0
+, t) + jE(−∞, t)− jE (0

−, t) .

Thus,
dE

dt
= cτ

([
g′(ct)

]2
+

[
h′(ct)

]2 −
[
f ′(ct)

]2)
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is the rate at which the string loses energy. We now integrate over all time, obtaining the
total energy change in the string:

∆E = τ

∞∫

−∞

dξ
([

g′(ξ)
]2

+
[
h′(ξ)

]2 −
[
f ′(ξ)

]2)

= −τ

∞∫

−∞

dk

2π

2QK k2

(Q+K)2 + k2
∣∣f̂(k)

∣∣2 .

(d) For an incident wave whose characteristic wavelength λ satisfies Kλ ≫ 1 and Qλ ≫ 1,
find the ratio |∆E|/E0, where E0 is the initial energy in the string. [10 points]

Note that the initial energy in the string, at time t = −∞, is

E0 = τ

∞∫

−∞

dk

2π
k2

∣∣f̂(k)
∣∣2 .

If the incident wave packet is very broad, say described by a Gaussian f(ξ) = A exp(−x2/2σ2)
with σK ≫ 1 and σQ ≫ 1, then k2 may be neglected in the denominator of the integrand
for ∆E, in which case

|∆E|
E0

≈ 2QK

(Q+K)2
≤ 1

2
E .

For the Lorentzian,

f̂(k) =
2β

k2 + β2
⇐⇒ f(ξ) = exp

(
−β|ξ|

)
,

we have the exact results

E0 =
1
2
βτ , ∆E = − KQβτ

(K +Q+ β)2
.

[3] Consider the map

qn+1 = qn + f(qn, pn+1)

pn+1 = pn + g(qn, pn+1) .

(a) Under what conditions does this map generate a canonical transformation (qn, pn) →
(qn+1, pn+1)? [10 points]

According to §16.1.2, the conditions are

∂f

∂qn
= − ∂g

∂pn+1

.
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To see this explicitly, take the differentials:

dqn+1 = dqn +
∂f

∂qn
dqn +

∂f

∂pn+1

dpn+1

dpn+1 = dpn +
∂g

∂qn
dqn +

∂g

∂pn+1

dpn+1 .

Bringing all differentials with iteration subscript n + 1 to the left and all with subscript n
to the right, we have



1 − ∂f

∂p
n+1

0 1− ∂g
∂p

n+1






dqn+1

dpn+1


 =



1 + ∂f

∂q
n

0

∂g
∂q

n

1






dqn

dpn


 .

Thus


dqn+1

dpn+1


 =

1

1− gp




{
(1 + fq)(1− gp) + gq fp

}
fp

gq 1






dqn

dpn


 ≡



dqn

dpn


 .

The Poisson bracket we seek is

{
qn+1, pn+1

}
{q

n
,p

n
}
=

∂qn+1

∂qn

∂pn+1

∂pn
− ∂qn+1

∂pn

∂pn+1

∂qn
= detM = 1 ,

and thus the map is canonical.

(b) Show that the conditions in part (a) are satisfied if f and g are expressed as first (partial)
derivatives of a function R(qn, pn+1). [10 points]

If

f(qn, pn+1) =
∂R(qn, pn+1)

∂pn+1

, g(qn, pn+1) = −∂R(qn, pn+1)

∂qn
,

then
∂f

∂qn
= − ∂g

∂pn+1

=
∂2R(qn, pn+1)

∂qn ∂pn+1

.

(c) For the map

qn+1 = qn + b qn + c pn+1

pn+1 = pn − a qn − b pn+1 ,

where a, b, and c are constants, what is the function R(qn, pn+1) from part (b)?
[10 points]

For

f(qn, pn+1) = b qn + c pn+1

g(qn, pn+1) = −a qn − b pn+1
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we have
R(qn, pn+1) =

1

2
a q2n + b qn pn+1 +

1

2
c p2n+1 .

(d) Express the map in part (c) as ϕn+1 = T̂ϕn, where ϕn =

(
qn
pn

)
. Find an explicit

expression for T̂ . [10 points]

From the equation pn+1 = pn − a qn − b pn+1 we obtain

pn+1 =
pn − a qn
1 + b

.

Substitute this into qn+1 = qn + b qn + c pn+1 to obtain the linear map



qn+1

pn+1


 =

T︷ ︸︸ ︷

1 + b− ac

1+b
c

1+b

− a
1+b

1
1+b






qn

pn


 .

Thus the action of the map T̂ is the action of the 2 × 2 matrix T on the vector of phase
space coordinates; the map is linear.

(e) For fixed b > 0, plot the phase diagram in the (a, c) plane, identifying regions where
|T̂ n

ϕ0| grows exponentially with n (for generic initial conditions ϕ0), and regions where it
is bounded. Sketch your results. [10 points]

The characteristic polynomial of a 2× 2 matrix such as T is

P (λ) = det(λI− T ) = λ2 − τλ+∆ ,

where τ = Tr T and ∆ = detT . Since ∆ = 1 as the map is canonical, the eigenvalues of T
are

λ± = 1
2
τ ± 1

2

√
τ2 − 4 ,

where τ = Tr T . Provided |τ | < 2, the eigenvalues are phases: λ± = exp
[
± i cos−1(τ/2)

]
.

In this case, there is no growth of the iterates ϕn. When |τ | > 2 both eigenvalues are real,
with λ± = exp

[
± cosh−1(τ/2)

]
sgn τ , and this if the initial vector ϕn=0 has any overlap

with the eigenvector corresponding to λ+, |ϕn| will grow exponentially for large n as |λ+|n.
In our case,

τ = Tr T = 1 + b+
1− ac

1 + b
.

Setting τ = 2 then yields the condition

τ = 1 + b+
1− ac

1 + b
= 2 =⇒ ac = b2 .

Setting τ = −2 yields

τ = 1 + b+
1− ac

1 + b
= −2 =⇒ ac = (b+ 2)2 .
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Figure 4: Solution to problem 3(e).

Thus the “no growth” region in which |λ±| = 1 lies between the hyperbolae ac = b2 and
ac = (b+ 2)2.

[4] Consider the Hamiltonian for one-dimensional particle motion in a gravitational field,

H(z, p) =

H0︷ ︸︸ ︷
p2

2m
+mgz +

εH1︷︸︸︷

εαz3 ,

where ε is small. The particle is constrained such that z ≥ 0. It msy be useful to consult
§15.5.5 of the Lecture Notes.

(a) Find the unperturbed Hamiltonian H̃0(J0) and the unperturbed frequency ν0(J0).
[15 points]

We have

H0 =
1

2m

(
∂W

∂z

)2
+mgz ≡ E

from which we obtain

p =
∂W

∂z
= ±

√
2m(E −mgz) ⇒ W (z) = const.∓

√
8

3
√
mg

(
E −mgz

)3/2
.
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The amplitude of the oscillations is h = E/mg. Thus, the action is

J0 =
1

π

h∫

0

dz
√

2m(E −mgz) =

√
8E3/2

3π
√
mg

.

Thus,

H̃0(J0) = E = 1

2

(
3πg

√
m

)2/3
J
2/3
0 .

The frequencies ν0(J0) are given by

ν0(J0) =
1

3

(
3πg

√
m
)2/3

J
−1/3
0 .

(b) Find the unperturbed frequencies ν0(h), where h is the amplitude of the z motion. Your
result should look familiar. [15 points]

To express in terms of the amplitude h, we note

h(J0) =
E

mg
=

(3π)2/3

2m2/3g1/3
J
2/3
0

and therefore

ν0(h) = π

√
g

2h
=

π

T
,

where T =
√

2h/g is the time to fall from h.

(c) Find the energy E(J) to lowest nontrivial order in ε. [20 points]

To find the perturbed frequencies, we must express H1 = αz3 in terms of (J0, φ0). The first
order of business, then, is to obtain φ0 = ∂F2(J0, z)/∂J0, where

F2(J0, z) = W (J0, z) = ∓πJ0

(
1− z

h(J0)

)3/2
.

The top sign corresponds to the part of the motion where ż > 0 and the bottom sign when
ż < 0. We obtain

φ0 = ∓π

(
1− z

h(J0)

)1/2
.

Note that φ0 advances from −π to 0 to +π as z moves from z = 0 to z = h and back down
to z = 0. Thus,

z = h

(
1− φ2

0

π2

)
,

and

〈
z3
〉
= h3

π∫

0

dφ0

π

(
1− φ2

0

π2

)3
= 16

35
h3 .
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Therefore, 〈
H̃1(J, φ0)

〉
φ
0

= 16

35
αh3(J)

and, to first order in ε,

E(J) = mgh(J) + 16
35
εαh3(J) +O(ε2) ,

where the function h(J) is as above: h(J) = 1
2

(
3π/m

√
g
)2/3

J2/3. While the above expres-
sion yields E(J) to O(ε1), this particular relation between the amplitude h and the action
J is valid only to O(ε0).
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