PHYSICS 200A : CLASSICAL MECHANICS MIDTERM EXAMINATION SOLUTIONS

Normative time limit: four hours (consecutive!)
You are allowed to consult the online PHYS 200A course materials.
All problems are worth a total of 50 points each.
[1] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M, as shown in Fig. 1. Choose as generalized coordinates the horizontal position X of the right end of the block, the angle θ the ladder makes with respect to the floor, and the coordinates (x, y) of the ladder's center-of-mass. These four generalized coordinates are not all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder is $T_{\mathrm{CM}}+T_{\text {rot }}$, where $T_{\mathrm{CM}}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$ is the kinetic energy of the center-of-mass motion, and $T_{\text {rot }}=\frac{1}{2} I \dot{\theta}^{2}$, where I is the moment of inertial. For a uniformly dense ladder of length 2ℓ, the moment of inertia is $I=\frac{1}{3} m \ell^{2}$.

Figure 1: A ladder of length 2ℓ leaning against a massive block. All surfaces are frictionless.
(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and their time derivatives. [10 points]

We have $L=T-U$, hence

$$
L=\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}-m g y .
$$

(b) Write down all the equations of constraint. [10 points]

There are two constraints, corresponding to contact between the ladder and the block, and contact between the ladder and the horizontal surface:

$$
\begin{aligned}
& G_{1}(X, \theta, x, y)=x-\ell \cos \theta-X=0 \\
& G_{2}(X, \theta, x, y)=y-\ell \sin \theta=0 .
\end{aligned}
$$

(c) Write down all the equations of motion. [10 points]

Two Lagrange multipliers, λ_{1} and λ_{2}, are introduced to effect the constraints. We have for each generalized coordinate q_{σ},

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)-\frac{\partial L}{\partial q_{\sigma}}=\sum_{j=1}^{k} \lambda_{j} \frac{\partial G_{j}}{\partial q_{\sigma}} \equiv Q_{\sigma}
$$

where there are $k=2$ constraints. We therefore have

$$
\begin{aligned}
M \ddot{X} & =-\lambda_{1} \\
m \ddot{x} & =+\lambda_{1} \\
m \ddot{y} & =-m g+\lambda_{2} \\
I \ddot{\theta} & =\ell \sin \theta \lambda_{1}-\ell \cos \theta \lambda_{2} .
\end{aligned}
$$

These four equations of motion are supplemented by the two constraint equations, yielding six equations in the six unknowns $\left\{X, \theta, x, y, \lambda_{1}, \lambda_{2}\right\}$.
(d) Find all conserved quantities. [10 points]

The Lagrangian and all the constraints are invariant under the transformation

$$
X \rightarrow X+\zeta \quad, \quad x \rightarrow x+\zeta \quad, \quad y \rightarrow y \quad, \quad \theta \rightarrow \theta
$$

The associated conserved 'charge' is

$$
\Lambda=\left.\frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\right|_{\zeta=0}=M \dot{X}+m \dot{x}
$$

Using the first constraint to eliminate x in terms of X and θ, we may write this as

$$
\Lambda=(M+m) \dot{X}-m \ell \sin \theta \dot{\theta} .
$$

The second conserved quantity is the total energy E. This follows because the Lagrangian and all the constraints are independent of t, and because the kinetic energy is homogeneous of degree two in the generalized velocities. Thus,

$$
\begin{aligned}
E & =\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\theta}^{2}+m g y \\
& =\frac{\Lambda^{2}}{2(M+m)}+\frac{1}{2}\left(I+m \ell^{2}-\frac{m}{M+m} m \ell^{2} \sin ^{2} \theta\right) \dot{\theta}^{2}+m g \ell \sin \theta,
\end{aligned}
$$

where the second line is obtained by using the constraint equations to eliminate x and y in terms of X and θ.
(e) Find an equation relating the angle θ^{*} at which the ladder detaches from the block and the initial angle of inclination θ_{0}. Your equation should only include θ^{*}, θ_{0}, and the dimensionless ratios M / m and $I / m \ell^{2}$, but not $\dot{\theta}$ or $\ddot{\theta}$. Hint: Find the energy of the system at the moment of detachment. [10 points]

The condition for detachment from the block is simply $\lambda_{1}=0$, i.e. the normal force vanishes. If we eliminate x and y in terms of X and θ, we find

$$
\begin{array}{ll}
x=X+\ell \cos \theta & y=\ell \sin \theta \\
\dot{x}=\dot{X}-\ell \sin \theta \dot{\theta} & \dot{y}=\ell \cos \theta \dot{\theta} \\
\ddot{x}=\ddot{X}-\ell \sin \theta \ddot{\theta}-\ell \cos \theta \dot{\theta}^{2} & \ddot{y}=\ell \cos \theta \ddot{\theta}-\ell \sin \theta \dot{\theta}^{2} .
\end{array}
$$

We can now write

$$
\lambda_{1}=m \ddot{x}=m \ddot{X}-m \ell \sin \theta \ddot{\theta}-m \ell \cos \theta \dot{\theta}^{2}=-M \ddot{X}
$$

which gives

$$
(M+m) \ddot{X}=m \ell\left(\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}\right),
$$

and hence

$$
Q_{x}=\lambda_{1}=-\frac{M m}{m+m} \ell\left(\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}\right) .
$$

We also have

$$
\begin{aligned}
Q_{y}=\lambda_{2} & =m g+m \ddot{y} \\
& =m g+m \ell\left(\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right) .
\end{aligned}
$$

We now need an equation relating $\ddot{\theta}$ and $\dot{\theta}$. This comes from the last of the equations of motion:

$$
\begin{aligned}
I \ddot{\theta} & =\ell \sin \theta \lambda_{1}-\ell \cos \theta \lambda_{2} \\
& =-\frac{M m}{M+m} \ell^{2}\left(\sin ^{2} \theta \ddot{\theta}+\sin \theta \cos \theta \dot{\theta}^{2}\right)-m g \ell \cos \theta-m \ell^{2}\left(\cos ^{2} \theta \ddot{\theta}-\sin \theta \cos \theta \dot{\theta}^{2}\right) \\
& =-m g \ell \cos \theta-m \ell^{2}\left(1-\frac{m}{M+m} \sin ^{2} \theta\right) \ddot{\theta}+\frac{m}{M+m} m \ell^{2} \sin \theta \cos \theta \dot{\theta}^{2}
\end{aligned}
$$

Collecting terms proportional to $\ddot{\theta}$, we obtain

$$
\left(I+m \ell^{2}-\frac{m}{M+m} \sin ^{2} \theta\right) \ddot{\theta}=\frac{m}{M+m} m \ell^{2} \sin \theta \cos \theta \dot{\theta}^{2}-m g \ell \cos \theta .
$$

We are now ready to demand $Q_{x}=\lambda_{1}=0$, which entails

$$
\ddot{\theta}=-\frac{\cos \theta}{\sin \theta} \dot{\theta}^{2} .
$$

Substituting this into the previous equation, we obtain

$$
\left(I+m \ell^{2}\right) \dot{\theta}^{2}=m g \ell \sin \theta .
$$

Finally, we substitute this into the equation for the total energy E, we obtain the following relation between the detachment angle, θ^{*}, and the initial angle of inclination, θ_{0} :

$$
E-\frac{\Lambda^{2}}{2(M+m)}=m g \ell \sin \theta_{0}=\left(3-\frac{m}{M+m} \cdot \frac{m \ell^{2}}{I+m \ell^{2}} \sin ^{2} \theta^{*}\right) \cdot \frac{1}{2} m g \ell \sin \theta^{*} .
$$

Figure 2: Plot of θ^{*} versus θ_{0} for the ladder-block problem. Allowed solutions, shown in blue, have $\alpha \geq 1$, and thus $\theta^{*} \leq \theta_{0}$. Unphysical solutions, with $\alpha<1$, are shown in magenta. The line $\theta^{*}=\theta_{0}$ is shown in red.

Thus, we have

$$
\sin \theta_{0}=\frac{3}{2} \sin \theta^{*}-\frac{1}{2}\left(\frac{m}{M+m}\right)\left(\frac{m \ell^{2}}{I+m \ell^{2}}\right) \sin ^{3} \theta^{*}=\frac{3}{2} \sin \theta^{*}-\frac{1}{2} \alpha^{-1} \sin ^{3} \theta^{*},
$$

where

$$
\alpha \equiv\left(1+\frac{M}{m}\right)\left(1+\frac{I}{m \ell^{2}}\right) .
$$

Note that $\alpha \geq 1$, and that when $M / m=\infty,{ }^{1}$ we recover $\theta^{*}=\sin ^{-1}\left(\frac{2}{3} \sin \theta_{0}\right)$, which is the angle of detachment relation for a ladder slipping against a rigid wall. For finite α, the ladder detaches at a larger value of θ^{*}. A sketch of θ^{*} versus θ_{0} is provided in Fig. 2. Note that, provided $\alpha \geq 1$, detachment always occurs for some unique value θ^{*} for each θ_{0}.
[2] Two identical semi-infinite lengths of string are joined at a point of mass m which moves vertically along a thin wire, as depicted in fig. 3. The mass moves with friction coefficient γ, i.e. its equation of motion is

$$
m \ddot{z}+\gamma \dot{z}=F \quad,
$$

[^0]where z is the vertical displacement of the mass, and F is the force on the mass due to the string segments on either side. In this problem, gravity is to be neglected. It may be convenient to define $K \equiv 2 \tau / m c^{2}$ and $Q \equiv \gamma / m c$.

Figure 3: A point mass m joining two semi-infinite lengths of identical string moves vertically along a thin wire with friction coefficient γ.
(a) The general solution with an incident wave from the left is written

$$
y(x, t)= \begin{cases}f(c t-x)+g(c t+x) & (x<0) \\ h(c t-x) & (x>0) .\end{cases}
$$

Find two equations relating the functions $f(\xi), g(\xi)$, and $h(\xi)$. [15 points]
The first equation is continuity at $x=0$:

$$
f(\xi)=g(\xi)+h(\xi)
$$

where $\xi=c t$ ranges over the real line $[-\infty, \infty]$. The second equation comes from Newton's 2nd law $F=m a$ applied to the mass point:

$$
m \ddot{y}(0, t)+\gamma \dot{y}(0, t)=\tau y^{\prime}\left(0^{+}, t\right)-\tau y^{\prime}\left(0^{-}, t\right) .
$$

Expressed in terms of the functions $f(\xi), g(\xi)$, and $h(\xi)$, and dividing through by $m c^{2}$, this gives

$$
f^{\prime \prime}(\xi)+g^{\prime \prime}(\xi)+Q f^{\prime}(\xi)+Q g^{\prime}(\xi)=-\frac{1}{2} K h^{\prime}(\xi)+\frac{1}{2} K f^{\prime}(\xi)-\frac{1}{2} K g^{\prime}(\xi)
$$

Integrating once, and invoking $h=f+g$, this second equation becomes

$$
f^{\prime}(\xi)+Q f(\xi)=-g^{\prime}(\xi)-(K+Q) g(\xi) .
$$

(b) Solve for the reflection amplitude $r(k)=\hat{g}(k) / \hat{f}(k)$ and the transmission amplitude $t(k)=\hat{h}(k) / \hat{f}(k)$. Recall that

$$
f(\xi)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{f}(k) e^{i k \xi} \quad \Longleftrightarrow \quad \hat{f}(k)=\int_{-\infty}^{\infty} d \xi f(\xi) e^{-i k \xi}
$$

et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission coefficients, $|r(k)|^{2}+|t(k)|^{2}$. Show that this sum is always less than or equal to unity, and interpret this fact. [15 points]

Using $d / d \xi \longrightarrow i k$, we have

$$
(Q+i k) \hat{f}(k)=-(K+Q+i k) \hat{g}(k)
$$

Therefore,

$$
r(k)=\frac{\hat{g}(k)}{\hat{f}(k)}=-\frac{Q+i k}{Q+K+i k}
$$

To find the transmission amplitude, we invoke $h(\xi)=f(\xi)+g(\xi)$, in which case

$$
t(k)=\frac{\hat{h}(k)}{\hat{f}(k)}=-\frac{K}{Q+K+i k}
$$

The sum of reflection and transmission coefficients is

$$
|r(k)|^{2}+|t(k)|^{2}=\frac{Q^{2}+K^{2}+k^{2}}{(Q+K)^{2}+k^{2}}
$$

Clearly the RHS of this equation is bounded from above by unity, since both Q and K are nonnegative.
(c) Find an expression which is a functional of $f(x)$ or $\hat{f}(k)$, for the total energy change ΔE of the string due to the friction acting on the mass point. Hint: You can compute ΔE by computing the net outgoing energy current at $x=0^{ \pm}$and then integrating over time. [10 points]

Recall the formulae for the energy density in a string,

$$
\mathcal{E}(x, t)=\frac{1}{2} \mu \dot{y}^{2}(x, t)+\frac{1}{2} \tau y^{\prime 2}(x, t)
$$

and

$$
j_{\mathcal{E}}(x, t)=-\tau \dot{y}(x, t) y^{\prime}(x, t)
$$

The energy continuity equation is $\partial_{t} \mathcal{E}+\partial_{x} j_{\mathcal{E}}=0$. Assuming $j_{\mathcal{E}}(\pm \infty, t)=0$, we have

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{-\infty}^{0^{-}} d x \frac{\partial \mathcal{E}}{\partial t}+\int_{0^{+}}^{\infty} d x \frac{\partial \mathcal{E}}{\partial t} \\
& =-j_{\mathcal{E}}(\infty, t)+j_{\mathcal{E}}\left(0^{+}, t\right)+j_{\mathcal{E}}(-\infty, t)-j_{\mathcal{E}}\left(0^{-}, t\right)
\end{aligned}
$$

Thus,

$$
\frac{d E}{d t}=c \tau\left(\left[g^{\prime}(c t)\right]^{2}+\left[h^{\prime}(c t)\right]^{2}-\left[f^{\prime}(c t)\right]^{2}\right)
$$

is the rate at which the string loses energy. We now integrate over all time, obtaining the total energy change in the string:

$$
\begin{aligned}
\Delta E & =\tau \int_{-\infty}^{\infty} d \xi\left(\left[g^{\prime}(\xi)\right]^{2}+\left[h^{\prime}(\xi)\right]^{2}-\left[f^{\prime}(\xi)\right]^{2}\right) \\
& =-\tau \int_{-\infty}^{\infty} \frac{d k}{2 \pi} \frac{2 Q K k^{2}}{(Q+K)^{2}+k^{2}}|\hat{f}(k)|^{2} .
\end{aligned}
$$

(d) For an incident wave whose characteristic wavelength λ satisfies $K \lambda \gg 1$ and $Q \lambda \gg 1$, find the ratio $|\Delta E| / E_{0}$, where E_{0} is the initial energy in the string. [10 points]

Note that the initial energy in the string, at time $t=-\infty$, is

$$
E_{0}=\tau \int_{-\infty}^{\infty} \frac{d k}{2 \pi} k^{2}|\hat{f}(k)|^{2}
$$

If the incident wave packet is very broad, say described by a Gaussian $f(\xi)=A \exp \left(-x^{2} / 2 \sigma^{2}\right)$ with $\sigma K \gg 1$ and $\sigma Q \gg 1$, then k^{2} may be neglected in the denominator of the integrand for ΔE, in which case

$$
\frac{|\Delta E|}{E_{0}} \approx \frac{2 Q K}{(Q+K)^{2}} \leq \frac{1}{2} E .
$$

For the Lorentzian,

$$
\hat{f}(k)=\frac{2 \beta}{k^{2}+\beta^{2}} \quad \Longleftrightarrow \quad f(\xi)=\exp (-\beta|\xi|)
$$

we have the exact results

$$
E_{0}=\frac{1}{2} \beta \tau \quad, \quad \Delta E=-\frac{K Q \beta \tau}{(K+Q+\beta)^{2}} .
$$

[3] Consider the map

$$
\begin{aligned}
& q_{n+1}=q_{n}+f\left(q_{n}, p_{n+1}\right) \\
& p_{n+1}=p_{n}+g\left(q_{n}, p_{n+1}\right) .
\end{aligned}
$$

(a) Under what conditions does this map generate a canonical transformation $\left(q_{n}, p_{n}\right) \rightarrow$ $\left(q_{n+1}, p_{n+1}\right)$? [10 points]

According to §16.1.2, the conditions are

$$
\frac{\partial f}{\partial q_{n}}=-\frac{\partial g}{\partial p_{n+1}}
$$

To see this explicitly, take the differentials:

$$
\begin{aligned}
& d q_{n+1}=d q_{n}+\frac{\partial f}{\partial q_{n}} d q_{n}+\frac{\partial f}{\partial p_{n+1}} d p_{n+1} \\
& d p_{n+1}=d p_{n}+\frac{\partial g}{\partial q_{n}} d q_{n}+\frac{\partial g}{\partial p_{n+1}} d p_{n+1}
\end{aligned}
$$

Bringing all differentials with iteration subscript $n+1$ to the left and all with subscript n to the right, we have

$$
\left(\begin{array}{cc}
1 & -\frac{\partial f}{\partial p_{n+1}} \\
0 & 1-\frac{\partial g}{\partial p_{n+1}}
\end{array}\right)\binom{d q_{n+1}}{d p_{n+1}}=\left(\begin{array}{cc}
1+\frac{\partial f}{\partial q_{n}} & 0 \\
\frac{\partial g}{\partial q_{n}} & 1
\end{array}\right)\binom{d q_{n}}{d p_{n}} .
$$

Thus

$$
\binom{d q_{n+1}}{d p_{n+1}}=\frac{1}{1-g_{p}}\left(\begin{array}{cc}
\left\{\left(1+f_{q}\right)\left(1-g_{p}\right)+g_{q} f_{p}\right\} & f_{p} \\
g_{q} & 1
\end{array}\right)\binom{d q_{n}}{d p_{n}} \equiv\binom{d q_{n}}{d p_{n}} .
$$

The Poisson bracket we seek is

$$
\left\{q_{n+1}, p_{n+1}\right\}_{\left\{q_{n}, p_{n}\right\}}=\frac{\partial q_{n+1}}{\partial q_{n}} \frac{\partial p_{n+1}}{\partial p_{n}}-\frac{\partial q_{n+1}}{\partial p_{n}} \frac{\partial p_{n+1}}{\partial q_{n}}=\operatorname{det} M=1
$$

and thus the map is canonical.
(b) Show that the conditions in part (a) are satisfied if f and g are expressed as first (partial) derivatives of a function $R\left(q_{n}, p_{n+1}\right)$. [10 points]

If

$$
f\left(q_{n}, p_{n+1}\right)=\frac{\partial R\left(q_{n}, p_{n+1}\right)}{\partial p_{n+1}} \quad, \quad g\left(q_{n}, p_{n+1}\right)=-\frac{\partial R\left(q_{n}, p_{n+1}\right)}{\partial q_{n}}
$$

then

$$
\frac{\partial f}{\partial q_{n}}=-\frac{\partial g}{\partial p_{n+1}}=\frac{\partial^{2} R\left(q_{n}, p_{n+1}\right)}{\partial q_{n} \partial p_{n+1}} .
$$

(c) For the map

$$
\begin{aligned}
& q_{n+1}=q_{n}+b q_{n}+c p_{n+1} \\
& p_{n+1}=p_{n}-a q_{n}-b p_{n+1},
\end{aligned}
$$

where a, b, and c are constants, what is the function $R\left(q_{n}, p_{n+1}\right)$ from part (b)? [10 points]

For

$$
\begin{aligned}
f\left(q_{n}, p_{n+1}\right) & =b q_{n}+c p_{n+1} \\
g\left(q_{n}, p_{n+1}\right) & =-a q_{n}-b p_{n+1}
\end{aligned}
$$

we have

$$
R\left(q_{n}, p_{n+1}\right)=\frac{1}{2} a q_{n}^{2}+b q_{n} p_{n+1}+\frac{1}{2} c p_{n+1}^{2} .
$$

(d) Express the map in part (c) as $\boldsymbol{\varphi}_{n+1}=\hat{T} \boldsymbol{\varphi}_{n}$, where $\boldsymbol{\varphi}_{n}=\binom{q_{n}}{p_{n}}$. Find an explicit expression for \hat{T}. [10 points]

From the equation $p_{n+1}=p_{n}-a q_{n}-b p_{n+1}$ we obtain

$$
p_{n+1}=\frac{p_{n}-a q_{n}}{1+b} .
$$

Substitute this into $q_{n+1}=q_{n}+b q_{n}+c p_{n+1}$ to obtain the linear map

$$
\binom{q_{n+1}}{p_{n+1}}=\overbrace{\left(\begin{array}{cc}
1+b-\frac{a c}{1+b} & \frac{c}{1+b} \\
-\frac{a}{1+b} & \frac{1}{1+b}
\end{array}\right)}^{T}\binom{q_{n}}{p_{n}} .
$$

Thus the action of the map \hat{T} is the action of the 2×2 matrix T on the vector of phase space coordinates; the map is linear.
(e) For fixed $b>0$, plot the phase diagram in the (a, c) plane, identifying regions where $\left|\hat{T}^{n} \varphi_{0}\right|$ grows exponentially with n (for generic initial conditions φ_{0}), and regions where it is bounded. Sketch your results. [10 points]

The characteristic polynomial of a 2×2 matrix such as T is

$$
P(\lambda)=\operatorname{det}(\lambda \mathbb{I}-T)=\lambda^{2}-\tau \lambda+\Delta,
$$

where $\tau=\operatorname{Tr} T$ and $\Delta=\operatorname{det} T$. Since $\Delta=1$ as the map is canonical, the eigenvalues of T are

$$
\lambda_{ \pm}=\frac{1}{2} \tau \pm \frac{1}{2} \sqrt{\tau^{2}-4}
$$

where $\tau=\operatorname{Tr} T$. Provided $|\tau|<2$, the eigenvalues are phases: $\lambda_{ \pm}=\exp \left[\pm i \cos ^{-1}(\tau / 2)\right]$. In this case, there is no growth of the iterates φ_{n}. When $|\tau|>2$ both eigenvalues are real, with $\lambda_{ \pm}=\exp \left[\pm \cosh ^{-1}(\tau / 2)\right] \operatorname{sgn} \tau$, and this if the initial vector $\varphi_{n=0}$ has any overlap with the eigenvector corresponding to $\lambda_{+},\left|\boldsymbol{\varphi}_{n}\right|$ will grow exponentially for large n as $\left|\lambda_{+}\right|^{n}$. In our case,

$$
\tau=\operatorname{Tr} T=1+b+\frac{1-a c}{1+b}
$$

Setting $\tau=2$ then yields the condition

$$
\tau=1+b+\frac{1-a c}{1+b}=2 \quad \Longrightarrow \quad a c=b^{2}
$$

Setting $\tau=-2$ yields

$$
\tau=1+b+\frac{1-a c}{1+b}=-2 \quad \Longrightarrow \quad a c=(b+2)^{2}
$$

Figure 4: Solution to problem 3(e).

Thus the "no growth" region in which $\left|\lambda_{ \pm}\right|=1$ lies between the hyperbolae $a c=b^{2}$ and $a c=(b+2)^{2}$.
[4] Consider the Hamiltonian for one-dimensional particle motion in a gravitational field,

$$
H(z, p)=\overbrace{\frac{p^{2}}{2 m}+m g z}^{H_{0}}+\overbrace{\varepsilon \alpha z^{3}}^{\varepsilon H_{1}},
$$

where ε is small. The particle is constrained such that $z \geq 0$. It msy be useful to consult §15.5.5 of the Lecture Notes.
(a) Find the unperturbed Hamiltonian $\widetilde{H}_{0}\left(J_{0}\right)$ and the unperturbed frequency $\nu_{0}\left(J_{0}\right)$. [15 points]

We have

$$
H_{0}=\frac{1}{2 m}\left(\frac{\partial W}{\partial z}\right)^{2}+m g z \equiv E
$$

from which we obtain

$$
p=\frac{\partial W}{\partial z}= \pm \sqrt{2 m(E-m g z)} \Rightarrow W(z)=\text { const. } \mp \frac{\sqrt{8}}{3 \sqrt{m} g}(E-m g z)^{3 / 2} .
$$

The amplitude of the oscillations is $h=E / m g$. Thus, the action is

$$
J_{0}=\frac{1}{\pi} \int_{0}^{h} d z \sqrt{2 m(E-m g z)}=\frac{\sqrt{8} E^{3 / 2}}{3 \pi \sqrt{m} g} .
$$

Thus,

$$
\widetilde{H}_{0}\left(J_{0}\right)=E=\frac{1}{2}(3 \pi g \sqrt{m})^{2 / 3} J_{0}^{2 / 3}
$$

The frequencies $\nu_{0}\left(J_{0}\right)$ are given by

$$
\nu_{0}\left(J_{0}\right)=\frac{1}{3}(3 \pi g \sqrt{m})^{2 / 3} J_{0}^{-1 / 3}
$$

(b) Find the unperturbed frequencies $\nu_{0}(h)$, where h is the amplitude of the z motion. Your result should look familiar. [15 points]

To express in terms of the amplitude h, we note

$$
h\left(J_{0}\right)=\frac{E}{m g}=\frac{(3 \pi)^{2 / 3}}{2 m^{2 / 3} g^{1 / 3}} J_{0}^{2 / 3}
$$

and therefore

$$
\nu_{0}(h)=\pi \sqrt{\frac{g}{2 h}}=\frac{\pi}{T}
$$

where $T=\sqrt{2 h / g}$ is the time to fall from h.
(c) Find the energy $E(J)$ to lowest nontrivial order in ε. [20 points]

To find the perturbed frequencies, we must express $H_{1}=\alpha z^{3}$ in terms of $\left(J_{0}, \phi_{0}\right)$. The first order of business, then, is to obtain $\phi_{0}=\partial F_{2}\left(J_{0}, z\right) / \partial J_{0}$, where

$$
F_{2}\left(J_{0}, z\right)=W\left(J_{0}, z\right)=\mp \pi J_{0}\left(1-\frac{z}{h\left(J_{0}\right)}\right)^{3 / 2} .
$$

The top sign corresponds to the part of the motion where $\dot{z}>0$ and the bottom sign when $\dot{z}<0$. We obtain

$$
\phi_{0}=\mp \pi\left(1-\frac{z}{h\left(J_{0}\right)}\right)^{1 / 2} .
$$

Note that ϕ_{0} advances from $-\pi$ to 0 to $+\pi$ as z moves from $z=0$ to $z=h$ and back down to $z=0$. Thus,

$$
z=h\left(1-\frac{\phi_{0}^{2}}{\pi^{2}}\right)
$$

and

$$
\left\langle z^{3}\right\rangle=h^{3} \int_{0}^{\pi} \frac{d \phi_{0}}{\pi}\left(1-\frac{\phi_{0}^{2}}{\pi^{2}}\right)^{3}=\frac{16}{35} h^{3} .
$$

Therefore,

$$
\left\langle\widetilde{H}_{1}\left(J, \phi_{0}\right)\right\rangle_{\phi_{0}}=\frac{16}{35} \alpha h^{3}(J)
$$

and, to first order in ε,

$$
E(J)=m g h(J)+\frac{16}{35} \varepsilon \alpha h^{3}(J)+\mathcal{O}\left(\varepsilon^{2}\right),
$$

where the function $h(J)$ is as above: $h(J)=\frac{1}{2}(3 \pi / m \sqrt{g})^{2 / 3} J^{2 / 3}$. While the above expression yields $E(J)$ to $\mathcal{O}\left(\varepsilon^{1}\right)$, this particular relation between the amplitude h and the action J is valid only to $\mathcal{O}\left(\varepsilon^{0}\right)$.

[^0]: ${ }^{1}$ The ladder's rotational inertia must satisfy $I \leq m \ell^{2}$.

