PHYSICS 200A : CLASSICAL MECHANICS MIDTERM EXAMINATION SOLUTIONS

Normative time limit: four hours (consecutive!)
You are allowed to consult the online PHYS 200A course materials.
All problems are worth a total of 50 points each.
[1] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M, as shown in Fig. 1. Choose as generalized coordinates the horizontal position X of the right end of the block, the angle θ the ladder makes with respect to the floor, and the coordinates (x, y) of the ladder's center-of-mass. These four generalized coordinates are not all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder is $T_{\mathrm{CM}}+T_{\text {rot }}$, where $T_{\mathrm{CM}}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)$ is the kinetic energy of the center-of-mass motion, and $T_{\text {rot }}=\frac{1}{2} I \dot{\theta}^{2}$, where I is the moment of inertial. For a uniformly dense ladder of length 2ℓ, the moment of inertia is $I=\frac{1}{3} m \ell^{2}$.

Figure 1: A ladder of length 2ℓ leaning against a massive block. All surfaces are frictionless.
(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and their time derivatives. [10 points]
(b) Write down all the equations of constraint. [10 points]
(c) Write down all the equations of motion. [10 points]
(d) Find all conserved quantities. [10 points]
(e) Find an equation relating the angle θ^{*} at which the ladder detaches from the block and the initial angle of inclination θ_{0}. Your equation should only include θ^{*}, θ_{0}, and the dimensionless ratios M / m and $I / m \ell^{2}$, but not $\dot{\theta}$ or $\ddot{\theta}$. Hint: Find the energy of the system at the moment of detachment. [10 points]
[2] Two identical semi-infinite lengths of string are joined at a point of mass m which moves vertically along a thin wire, as depicted in fig. 2 . The mass moves with friction coefficient γ, i.e. its equation of motion is

$$
m \ddot{z}+\gamma \dot{z}=F,
$$

where z is the vertical displacement of the mass, and F is the force on the mass due to
the string segments on either side. In this problem, gravity is to be neglected. It may be convenient to define $K \equiv 2 \tau / m c^{2}$ and $Q \equiv \gamma / m c$.

Figure 2: A point mass m joining two semi-infinite lengths of identical string moves vertically along a thin wire with friction coefficient γ.
(a) The general solution with an incident wave from the left is written

$$
y(x, t)= \begin{cases}f(c t-x)+g(c t+x) & (x<0) \\ h(c t-x) & (x>0) .\end{cases}
$$

Find two equations relating the functions $f(\xi), g(\xi)$, and $h(\xi)$. [15 points]
(b) Solve for the reflection amplitude $r(k)=\hat{g}(k) / \hat{f}(k)$ and the transmission amplitude $t(k)=\hat{h}(k) / \hat{f}(k)$. Recall that

$$
f(\xi)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \hat{f}(k) e^{i k \xi} \quad \Longleftrightarrow \quad \hat{f}(k)=\int_{-\infty}^{\infty} d \xi f(\xi) e^{-i k \xi}
$$

et cetera for the Fourier transforms. Also compute the sum of the reflection and transmission coefficients, $|r(k)|^{2}+|t(k)|^{2}$. Show that this sum is always less than or equal to unity, and interpret this fact. [15 points]
(c) Find an expression which is a functional of $f(x)$ or $\hat{f}(k)$, for the total energy change ΔE of the string due to the friction acting on the mass point. Hint: You can compute ΔE by computing the net outgoing energy current at $x=0^{ \pm}$and then integrating over time. [10 points]
(d) For an incident wave whose characteristic wavelength λ satisfies $K \lambda \gg 1$ and $Q \lambda \gg 1$, find the ratio $|\Delta E| / E_{0}$, where E_{0} is the initial energy in the string. [10 points]
[3] Consider the map

$$
\begin{aligned}
& q_{n+1}=q_{n}+f\left(q_{n}, p_{n+1}\right) \\
& p_{n+1}=p_{n}+g\left(q_{n}, p_{n+1}\right) .
\end{aligned}
$$

(a) Under what conditions does this map generate a canonical transformation $\left(q_{n}, p_{n}\right) \rightarrow$ $\left(q_{n+1}, p_{n+1}\right)$? [10 points]
(b) Show that the conditions in part (a) are satisfied if f and g are expressed as first (partial) derivatives of a function $R\left(q_{n}, p_{n+1}\right)$. [10 points]
(c) For the map

$$
\begin{aligned}
& q_{n+1}=q_{n}+b q_{n}+c p_{n+1} \\
& p_{n+1}=p_{n}-a q_{n}-b p_{n+1}
\end{aligned}
$$

where a, b, and c are constants, what is the function $R\left(q_{n}, p_{n+1}\right)$ from part (b)? [10 points]
(d) Express the map in part (c) as $\boldsymbol{\varphi}_{n+1}=\hat{T} \boldsymbol{\varphi}_{n}$, where $\boldsymbol{\varphi}_{n}=\binom{q_{n}}{p_{n}}$. Find an explicit expression for \hat{T}. [10 points]
(e) For fixed $b>0$, plot the phase diagram in the (a, c) plane, identifying regions where $\left|\hat{T}^{n} \varphi_{0}\right|$ grows exponentially with n (for generic initial conditions $\boldsymbol{\varphi}_{0}$), and regions where it is bounded. Sketch your results. [10 points]
[4] Consider the Hamiltonian for one-dimensional particle motion in a gravitational field,

$$
H(z, p)=\overbrace{\frac{p^{2}}{2 m}+m g z}^{H_{0}}+\overbrace{\varepsilon \alpha z^{3}}^{\varepsilon H_{1}},
$$

where ε is small. The particle is constrained such that $z \geq 0$. It msy be useful to consult §15.5.5 of the Lecture Notes.
(a) Find the unperturbed Hamiltonian $\widetilde{H}_{0}\left(J_{0}\right)$ and the unperturbed frequency $\nu_{0}\left(J_{0}\right)$. [15 points]
(b) Find the unperturbed frequencies $\nu_{0}(h)$, where h is the amplitude of the z motion. Your result should look familiar. [15 points]
(c) Find the energy $E(J)$ to lowest nontrivial order in ε. [20 points]

