PHYSICS 200A : CLASSICAL MECHANICS FINAL EXAMINATION

Do all problems
[1] Two identical point masses m are connected by a massless string of length b. One point mass slides frictionlessly along the two-dimensional surface $z=f(\rho)$, where (ρ, ϕ, z) are cylindrical coordinates in three dimensions. The other end of the string is threaded through a small hole at the bottom of the surface, which may be presumed to lie at $\rho=0$. The situation is depicted in the figure below (shown for the case $f^{\prime \prime}(\rho)=0$).

(a) Using generalized coordinates (ρ, ϕ, z, ζ) as shown in the figure, write down the Lagrangian. [4 points]
(b) Identify all constraints. [4 points]
(c) Write the equations of motion, retaining the Lagrange multipliers, for a general surface of rotation $z=f(\rho)$. [4 points]
(d) Identify all conserved quantities. [4 points]
(e) Identify how the normal force F_{n} supplied by the surface and the string tension T are related to your Lagrange multipliers. [3 points]
(f) For the case of a cone, $f(\rho)=\rho \tan \alpha$, solve for the undetermined multipliers. [3 points]
(g) Eliminating the multipliers, find an equation of motion for ρ. [3 points]
[2] Two semi-infinite pieces of string, each with mass density μ and under tension τ, meet at $x=0$ in a massless ring which is attached to a spring of spring constant K, providing a restoring force $-K u(t)$, and a pole which provides a frictional force $-\gamma \dot{u}(t)$, where $u(t)$ is the height of the ring relative to its equilibrium position, as depicted in the figure below.
(a) Write down the two equations relating the functions $f(\xi), g(\xi)$, and $h(\xi)$. [5 points]

(b) Find the transmission coefficient $t(k)=\hat{h}(k) / \hat{f}(k)$, [5 points]
(c) Suppose $f(x)=y_{0} e^{-|x| / \ell}$. Find the total energy E of the wave. [5 points]
(d) Find $h(x)$. You may find it convenient to define $\lambda \equiv(2 \tau+\gamma c) / K$, where $c \equiv \sqrt{\tau / \mu}$. [10 points]
[3] A particle of mass m and charge e moves frictionlessly along a massless hoop of radius a. The symmetry axis of the hoop rotates in the horizontal plane. The particle moves in the presence of both gravity $\vec{g}=-g \hat{\boldsymbol{z}}$ and a rapidly oscillating AC electric field $\vec{E}(t)=$ $E_{0} \hat{z} \cos \omega t$. The setup is depicted in the figure below.

(a) Find the Lagrangian of the system $L(\theta, \phi, \dot{\theta}, \dot{\phi}, t)$. [5 points]
(b) Find the Hamiltonian of the system $H\left(\theta, \phi, p_{\theta}, p_{\phi}, t\right)$. [5 points]
(c) Using the method of fast perturbations, and invoking conservation of p_{ϕ}, find the effective Hamiltonian $K\left(P_{\Theta}, \Theta\right)$ for the slow time scale motion of the angle $\Theta(t)$, defined to be the slow component of $\theta(t)$. [5 points]
(d) When $p_{\phi}=0$, show that the point $\Theta=\pi$ becomes stable for small oscillations if the electric field strength $\left|E_{0}\right|$ exceeds a critical value, $E_{0, \mathrm{c}}$. Find $E_{0, \mathrm{c}}$. [5 points]
(e) For general p_{ϕ}, find an equation whose solution yields the equilibrium positions of Θ. It may be convenient to define the quantities

$$
\omega_{0}=\sqrt{\frac{g}{a}} \quad, \quad \Omega=\sqrt{\frac{e E_{0}}{m a}} \quad, \quad \nu=\frac{p_{\phi}}{m a^{2}}
$$

all of which have dimensions of frequency. [5 points]
[4] Provide short, accurate answers to each of the following.
(a) A particle of mass m moves in two dimensions (x, y) subject to the potential $U(x, y)=$ mgy and the constraint

$$
x e^{y / a}+y e^{x / a}=b,
$$

where a and b are constants. Find the equations of motion. [5 points]
(b) A particle of mass m moves in three dimensions subject to a potential

$$
U(x, y, z)=\frac{U_{0}}{(x+2 z)^{2}+(y-x)^{2}} .
$$

Find all conserved quantities. [5 points]
(c) In what sense do hurricanes rotate in the northern hemisphere, when viewed from above? Explain the basic physics which yields this result. [5 points]
(d) Under what conditions is the Hamiltonian of a mechanical system equal to the sum of its kinetic and potential energies? [5 points]
(e) A canonical transformation is generated by

$$
F_{2}(q, P)=q P \cos \lambda+\frac{1}{2}\left(q^{2}-P^{2}\right) \sin \lambda,
$$

where λ is a dimensionless parameter. Find $Q(q, p)$ and $P(q, p)$ and show explicitly that the transformation is canonical. [5 points]

