PHYSICS 200A : CLASSICAL MECHANICS FINAL EXAMINATION Do all problems

[1] Two identical point masses m are connected by a massless string of length b. One point mass slides frictionlessly along the two-dimensional surface $z = f(\rho)$, where (ρ, ϕ, z) are cylindrical coordinates in three dimensions. The other end of the string is threaded through a small hole at the bottom of the surface, which may be presumed to lie at $\rho = 0$. The situation is depicted in the figure below (shown for the case $f''(\rho) = 0$).

- (a) Using generalized coordinates (ρ, ϕ, z, ζ) as shown in the figure, write down the Lagrangian. [4 points]
- (b) Identify all constraints. [4 points]
- (c) Write the equations of motion, retaining the Lagrange multipliers, for a general surface of rotation $z = f(\rho)$. [4 points]
- (d) Identify all conserved quantities. [4 points]
- (e) Identify how the normal force F_n supplied by the surface and the string tension T are related to your Lagrange multipliers. [3 points]
- (f) For the case of a cone, $f(\rho) = \rho \tan \alpha$, solve for the undetermined multipliers. [3 points]
- (g) Eliminating the multipliers, find an equation of motion for ρ . [3 points]

[2] Two semi-infinite pieces of string, each with mass density μ and under tension τ , meet at x = 0 in a massless ring which is attached to a spring of spring constant K, providing a restoring force -Ku(t), and a pole which provides a frictional force $-\gamma \dot{u}(t)$, where u(t) is the height of the ring relative to its equilibrium position, as depicted in the figure below.

(a) Write down the two equations relating the functions $f(\xi)$, $g(\xi)$, and $h(\xi)$. [5 points]

- (b) Find the transmission coefficient $t(k) = \hat{h}(k)/\hat{f}(k)$, [5 points]
- (c) Suppose $f(x) = y_0 e^{-|x|/\ell}$. Find the total energy *E* of the wave. [5 points]
- (d) Find h(x). You may find it convenient to define $\lambda \equiv (2\tau + \gamma c)/K$, where $c \equiv \sqrt{\tau/\mu}$. [10 points]

[3] A particle of mass m and charge e moves frictionlessly along a massless hoop of radius a. The symmetry axis of the hoop rotates in the horizontal plane. The particle moves in the presence of both gravity $\vec{g} = -g\hat{z}$ and a rapidly oscillating AC electric field $\vec{E}(t) = E_0\hat{z}\cos\omega t$. The setup is depicted in the figure below.

- (a) Find the Lagrangian of the system $L(\theta, \phi, \dot{\theta}, \dot{\phi}, t)$. [5 points]
- (b) Find the Hamiltonian of the system $H(\theta, \phi, p_{\theta}, p_{\phi}, t)$. [5 points]
- (c) Using the method of fast perturbations, and invoking conservation of p_{ϕ} , find the effective Hamiltonian $K(P_{\Theta}, \Theta)$ for the slow time scale motion of the angle $\Theta(t)$, defined to be the slow component of $\theta(t)$. [5 points]
- (d) When $p_{\phi} = 0$, show that the point $\Theta = \pi$ becomes stable for small oscillations if the electric field strength $|E_0|$ exceeds a critical value, $E_{0,c}$. Find $E_{0,c}$. [5 points]

(e) For general p_{ϕ} , find an equation whose solution yields the equilibrium positions of Θ . It may be convenient to define the quantities

$$\omega_0 = \sqrt{\frac{g}{a}} \qquad,\qquad \Omega = \sqrt{\frac{eE_0}{ma}} \qquad,\qquad \nu = \frac{p_\phi}{ma^2} \quad,$$

all of which have dimensions of frequency. [5 points]

- [4] Provide short, accurate answers to each of the following.
- (a) A particle of mass m moves in two dimensions (x, y) subject to the potential U(x, y) = mgy and the constraint

$$x e^{y/a} + y e^{x/a} = b$$

where a and b are constants. Find the equations of motion. [5 points]

(b) A particle of mass m moves in three dimensions subject to a potential

$$U(x, y, z) = \frac{U_0}{(x+2z)^2 + (y-x)^2} .$$

Find all conserved quantities. [5 points]

- (c) In what sense do hurricanes rotate in the northern hemisphere, when viewed from above? Explain the basic physics which yields this result. [5 points]
- (d) Under what conditions is the Hamiltonian of a mechanical system equal to the sum of its kinetic and potential energies? [5 points]
- (e) A canonical transformation is generated by

$$F_2(q, P) = qP \cos \lambda + \frac{1}{2}(q^2 - P^2) \sin \lambda ,$$

where λ is a dimensionless parameter. Find Q(q, p) and P(q, p) and show explicitly that the transformation is canonical. [5 points]