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ABSTRACT

We give a self-contained modern linear stability analysis of a system of n

equal mass bodies in circular orbit about a single more massive body. Starting

with the mathematical description of the dynamics of the system, we form the

linear approximation, compute all of the eigenvalues of the linear stability matrix,

and finally derive inequalities that guarantee that none of these eigenvalues have

positive real part. In the end, we rederive the result that J.C. Maxwell found

for large n in his seminal paper on the nature and stability of Saturn’s rings,

which was published 150 years ago. In addition, we identify the exact matrix

that defines the linearized system even when n is not large. This matrix is then

investigated numerically (by computer) to find stability inequalities. Further-

more, using properties of circulant matrices, the eigenvalues of the large 4n× 4n

matrix can be computed by solving n quartic equations, which further facilitates

the investigation of stability. Finally, we have implemented an n-body simulator

and we verify that the threshold mass ratios that we derived mathematically or

numerically do indeed identify the threshold between stability and instability.

Throughout the paper we consider only the planar n-body problem so that the

analysis can be carried out purely in complex notation, which makes the equa-

tions and derivations more compact, more elegant and therefore, we hope, more

transparent. The result is a fresh analysis that shows that these systems are

always unstable for 2 ≤ n ≤ 6 and for n > 6 they are stable provided that the

central mass is massive enough. We give an explicit formula for this mass-ratio

threshold.

Subject headings: planets: rings
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1. Introduction

One hundred and fifty years ago, Maxwell (1859) was awarded the prestigious Adam’s

prize for a seminal paper on the stability of Saturn’s rings. At that time, neither the

structure nor the composition of the rings was known. Hence, Maxwell considered various

scenarios such as the possibility that the rings were solid or liquid annuli or a myriad of small

boulders. As a key part of this last possibility, Maxwell studied the case of n equal-mass

bodies orbiting Saturn at a common radius and uniformly distributed about a circle of this

radius. He concluded that, for large n, the ring ought to be stable provided that the following

inequality is satisfied:

mass(Rings) ≤ 2.298mass(Saturn)/n2.

The mathematical analysis that leads to this result has been scrutenized, validated, and

generalized by a number of mathematicians over the years.

We summarize briefly some of the key historical developments. Tisserand (1889) derived

the same stability criterion using an analysis where he assumed that the ring has no effect on

Saturn and that the highest vibration mode of the system controls stability. More recently,

Willerding (1986) used the theory of density waves to show that Maxwell’s results are correct

in the limit as n goes to infinity. Pendse (1935) reformulated the stability problem so

that it takes into account the effect of the rings on the central body. He proved that,

for n ≤ 6, the system is unconditionally unstable. Inspired by this work, Salo and Yoder

(1988) studied coorbital formations of n satellites for small values of n where the satellites

are not distributed uniformly around the central body. They showed that there are some

stable asymmetric formations (such as the well-known case of a pair of ring bodies in L4/L5

position relative to each other—i.e., one leading the other by 60 deg). Scheeres and Vinh

(1991) extended the analysis of Pendse to find the stability criterion as a function of the

number of satellites when n is small. The resulting threshold depends on n but for n ≥ 7, it

deviates only a small amount from the asymptotically derived value. More recently, Moeckel

(1994) studied the linear stability of n-body systems for which the motion is given as a

simple rotation about the center of mass and under the condition that all masses except one

become vanishingly small. This latter condition greatly simplifies the analysis. Under these

assumptions, Moeckel shows, using the invariant subspace of the linearized Hamiltonian, that

symmetric ring systems are stable if and only if n ≥ 7. For n ≤ 6, he gives some examples

of the stable configurations discussed in Salo and Yoder (1988) where the ring bodies are

not uniformly distributed. Finally, Roberts (2000) expanding on Moeckel’s work obtained

stability criteria that match those given by Scheeres and Vinh (1991).

In this paper, we give a self-contained modern linear stability analysis of a system of

equal mass bodies in circular orbit about a single more massive body. We start with the
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mathematical description of the dynamics of the system. We then form the linear approxi-

mation, compute all of the eigenvalues of the matrix defining the linear approximation, and

finally we derive inequalities that guarantee that none of these eigenvalues have positive real

part. In the end, we get exactly the same result that Maxwell found for large n. But, in addi-

tion, we identify the exact matrix that defines the linearized system even when n is not large.

This matrix can then be investigated numerically to find stability inequalities even in cases

where n is not large. Furthermore, using properties of circulant matrices, the eigenvalues

of the large 4n× 4n matrix can be computed by solving n quartic equations, which further

facilitates the investigation. Finally, we have implemented an n-body simulator based on a

leap-frog integrator (see Saha and Tremaine (1994); Hut et al. (1995)) and we verify that

the threshold mass ratios that we derived mathematically or numerically do indeed identify

the threshold between stability and instability.

Throughout the paper we consider only the planar n-body problem. That is, we ignore

any instabilities that might arise due to out-of-plane perturbations. Maxwell claimed, and

others have confirmed, that these out-of-plane perturbations are less destabilizing than in-

plane ones and hence our analysis, while not fully general, does get to the right answer.

Our main reason for wishing to restrict to the planar case is that we can then work in the

complex plane and our entire analysis can be carried out purely in complex notation, which

makes the equations and derivations more compact, more elegant and therefore, we hope,

more transparent.

Finally, we should point out that the relevance of this work to observed planetary rings

is perhaps marginal, since real ring systems appear to be highly collisional and the energy

dissipation associated with such collisions affects their stability in a fundamental way (see,

for example, Salo (1995)).

2. Equally-Spaced, Equal-Mass Bodies in a Circular Ring About a Massive

Body

Consider the multibody problem consisting of one large central body, say Saturn, having

mass M and n small bodies, such as boulders, each of mass m orbiting the large body in

circular orbits uniformly spaced in a ring of radius r. Indices 0 to n−1 will be used to denote

the ring masses and index n will be used for Saturn. Throughout the paper we assume that

n ≥ 2. For the case n = 1, Lagrange proved that the system is stable for all mass ratios

m/M .

The purpose of this section is to show that such a ring exists as a solution to Newton’s
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law of gravitation. In particular, we derive the relationship between the angular velocity

ω of the ring particles and their radius r from the central mass. We assume all bodies lie

in a plane and therefore complex-variable notation is convenient. So, with i =
√
−1 and

z = x + iy, we can write the equilibrium solution for j = 0, 1, . . . , n− 1, as

zj = rei(ωt+2πj/n) (1)

and

zn = 0. (2)

By symmetry (and exploiting our assumption that n ≥ 2), force is balanced on Saturn itself.

Now consider the ring bodies. Differentiating (1), we see that

z̈j = −ω2zj. (3)

From Newton’s law of gravity we have that

z̈j = −GM
zj − zn

|zj − zn|3
+
∑
k 6=j,n

Gm
zk − zj

|zk − zj|3
. (4)

Equations (3) and (4) allow us to determine ω, which is our first order of business. By

symmetry it suffices to consider j = 0. It is easy to check that

zk − z0 = reiωteπik/n2i sin(πk/n) (5)

and hence that

|zk − z0| = 2r sin(πk/n). (6)

Substituting (5) and (6) into (4) and equating this with (3), we see that

−ω2 = −GM

r3
+

n−1∑
k=1

Gm

4r3

ieπik/n

sin2(πk/n)
(7)

= −GM

r3
− Gm

4r3

n−1∑
k=1

1

sin(πk/n)
+ i

Gm

4r3

n−1∑
k=1

cos(πk/n)

sin2(πk/n)
. (8)

It is easy to check that the summation in the imaginary part on the right vanishes. Hence,

ω2 =
GM

r3
+

Gm

r3
In (9)

where

In =
1

4

n−1∑
k=1

1

sin(πk/n)
. (10)

With this choice of ω, the trajectories given by (1) and (2) satisfy Newton’s law of gravitation.
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3. First-Order Stability

In order to carry out a stability analysis, we need to counter-rotate the system so that

all bodies remain at rest. We then perturb the system slightly and analyze the result.

A counter-rotated system would be given by

e−iωtzj(t) = re2πij/n = zj(0).

In such a rotating frame of reference, each body remains fixed at its initial point. It turns

out to be better to rotate the different bodies different amounts so that every ring body is

repositioned to lie on the x-axis. In other words, for j = 0, . . . , n− 1, n, we define

wj = uj + ivj = e−i(ωt+2πj/n)zj. (11)

The advantage of repositioning every ring body to the positive real axis is that perturbations

in the real part for any ring body represent radial perturbations whereas perturbations in

the imaginary part represent azimuthal perturbations. A simple counter-rotation does not

provide such a clear distinction between the two types of perturbations (and the associated

stability matrix fails to have the circulant property that is crucial to all later analysis).

Differentiating (11) twice, we get

ẅj = ω2wj − 2iωẇj + e−i(ωt+2πj/n)z̈j. (12)

From Newton’s law of gravity, we see that

ẅj = ω2wj − 2iωẇj +
∑
k 6=j

Gmk
ξk,j

|ξk,j|3
, (13)

where

mk =

{
m, for k = 0, 1, . . . , n− 1,

M, for k = n,
(14)

ξk,j = eiθk−jwk − wj (15)

and

θk = 2πk/n. (16)

Let δwj(t) denote variations about the fixed point given by

wj ≡
{

r, for j = 0, 1, . . . , n− 1,

0, for j = n.
(17)
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We compute a linear approximation to the differential equation describing the evolution of

such a perturbation. Applying the quotient, chain, and product rules as needed, we get

δ̈wj = ω2δwj − 2iω ˙δwj +
∑
k 6=j

Gmk

|ξk,j|3δξk,j − ξk,j
3
2
|ξk,j|(ξk,jδξ̄k,j + ξ̄k,jδξk,j)

|ξk,j|6

= ω2δwj − 2iω ˙δwj −
1

2

∑
k 6=j

Gmk

|ξk,j|2δξk,j + 3ξ2
k,jδξ̄k,j

|ξk,j|5
, (18)

where

δξk,j = eiθk−jδwk − δwj

δξ̄k,j = e−iθk−jδw̄k − δw̄j.

The next step is to use (15) to re-express the ξk,j’s in terms of the wk’s and the wj’s and

then to substitute in the particular solution given by (17). Consider the case where j < n.

In this case we have

ξk,j =

{
r(eiθk−j − 1), for k < n,

−r, for k = n

and therefore

|ξk,j| =
{

2r sin(|θk−j|/2), for k < n,

r, for k = n.

Substituting these into (18) and simplifying, we get

δ̈wj = ω2δwj − 2iω ˙δwj −
GM

2r3
(e−iθjδwn + 3eiθjδw̄n) +

GM

2r3
(δwj + 3δw̄j)

−Gm

2r3

1

8

∑
k 6=j,n

eiθk−jδwk − δwj − 3eiθk−j(e−iθk−jδw̄k − δw̄j)

sin3(|θk−j|/2)
. (19)

4. Choice of Coordinate System

Without loss of generality, we can choose our coordinate system so that the center of

mass remains fixed at the origin. Having done that, the perturbations δwn and δw̄n can be

computed explicitly in terms of the other perturbations. Indeed, conservation of momentum

implies that

m
∑
k 6=n

δzk + Mδzn = 0.
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Hence,

δzn = −m

M

∑
k 6=n

δzk.

From the definition (11) of the wk’s in terms of the zk’s, it then follows that

e−iθjδwn = −m

M

∑
k 6=n

eiθk−jδwk.

Making this substitution for e−iθjδwn and an analogous substitution for eiθjδw̄n in (19), we

see that

δ̈wj = ω2δwj − 2iω ˙δwj +
Gm

2r3

∑
k 6=n

(
eiθk−jδwk + 3e−iθk−jδw̄k

)
+

GM

2r3
(δwj + 3δw̄j)

−Gm

2r3

1

8

∑
k 6=j,n

eiθk−jδwk − δwj − 3eiθk−j(e−iθk−jδw̄k − δw̄j)

sin3(|θk−j|/2)
. (20)

5. Circulant Matrix

Switching to matrix notation, let Wj denote a shorthand for the column vector
[

wj w̄j

]′
.

In this notation, we see that (20) together with its conjugates can be written as

d

dt



δW 0

δW 1

...

δW n−1

˙δW 0

˙δW 1

...
˙δW n−1


≈



I

I
. . .

I

D N1 · · · Nn−1 Ω

Nn−1 D · · · Nn−2 Ω
...

...
...

. . .

N1 N2 · · · D Ω





δW 0

δW 1

...

δW n−1

˙δW 0

˙δW 1

...
˙δW n−1


, (21)

where D, Ω, and the Nk’s are 2× 2 complex matrices given by

D =
3

2
ω2

[
1 1

1 1

]
+

Gm

2r3

[
1− In + Jn/2 3− 3Jn/2

3− 3Jn/2 1− In + Jn/2

]

Nk =
Gm

2r3

[
eiθk (1− Jk,n/2) 3e−iθk + 3Jk,n/2

3eiθk + 3Jk,n/2 e−iθk (1− Jk,n/2)

]

Ω = 2iω

[
−1 0

0 1

]
,



– 8 –

and where

Ik,n =
1

4 sin (π|k|/n)

Jk,n =
1

4 sin3 (π|k|/n)

and

In =
n−1∑
k=1

Ik,n ≈ 1

2π
n

(n−1)/2∑
k=1

1

k
≈ 1

2π
n log(n/2) (22)

Jn =
n−1∑
k=1

Jk,n ≈ 1

2π3
n3

∞∑
k=1

1

k3
=

n3

2π3
ζ(3) = 0.01938 n3. (23)

Here, the symbol ≈ is used to indicate asymptotic agreement. That is, an ≈ bn means that

an/bn → 1 as n → ∞ and ζ(3) denotes the value of the Riemann zeta function at 3. This

constant is known as Apéry’s constant (see, e.g., Arfken (1985)).

Finally, note that in deriving (21) from (20) we have made repeated use of the following

identity
n−1∑
k=1

eiθk

sin3 |θk|/2
= 4Jn − 8In. (24)

Let A denote the matrix in (21). We need to find the eigenvalues of A and derive

necessary and sufficient conditions under which none of them have a positive real part. At

this point we could resort to numerical computation to bracket a threshold for stability by

doing a binary search to find the largest value of m/M for which none of the eigenvalues

have positive real part. We did such a search for some values of n. The results are shown in

Table 1.

The eigenvalues are complex numbers for which there are nontrivial solutions to

I

I
. . .

I

D N1 · · · Nn−1 Ω

Nn−1 D · · · Nn−2 Ω
...

...
...

. . .

N1 N2 · · · D Ω





δW 0

δW 1

...

δW n−1

˙δW 0

˙δW 1

...
˙δW n−1


= λ



δW 0

δW 1

...

δW n−1

˙δW 0

˙δW 1

...
˙δW n−1


. (25)
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The first group of equations (above the line) can be used to eliminate the “derivative”

variables from the second set. That is,
˙δW 0

˙δW 1

...
˙δW n−1

 = λ


δW 0

δW 1

...

δW n−1


and therefore

D N1 · · · Nn−1

Nn−1 D · · · Nn−2

...
...

...

N1 N2 · · · D




δW 0

δW 1

...

δW n−1

+λ


Ω

Ω
.. .

Ω




δW 0

δW 1

...

δW n−1

 = λ2


δW 0

δW 1

...

δW n−1

 .

(26)

The matrix on the left-hand side is called a block circulant matrix. Much is known about

such matrices. In particular, it is easy to find the eigenvectors of such matrices. For general

properties of block circulant matrices, see Tee (2005).

Let ρ denote an n-th root of unity (i.e., ρ = e2πij/n for some j = 0, 1, . . . , n− 1) and let

ξ be an arbitrary complex 2-vector. We look for solutions of the form
δW 0

δW 1

...

δW n−1

 =


ξ

ρξ
...

ρn−1ξ

 .

Substituting such a guess into (26), we see that each of the n rows reduce to one and the

same thing (
D + ρN1 + . . . + ρn−1Nn−1

)
ξ + λΩξ = λ2ξ.

There are nontrivial solutions to this 2× 2 system if and only if

det(D + ρN1 + . . . + ρn−1Nn−1 + λΩ− λ2I) = 0.

For each root of unity, ρ, there are four values of λ that solve this equation (counting

multiplicites). That makes a total of 4n eigenvalues and therefore provides all eigenvalues

for the full system (25).
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6. Explicit Expression for
∑n−1

k=1ρ
kNk

In order to compute the eigenvalues, it is essential that we compute
∑n−1

k=1ρ
kNk as

explicitly as possible. To this end, we note the following reduction and new definition:

n−1∑
k=1

ρkJk,n =
1

4

n−1∑
k=1

e2πijk/n

sin3(θk/2)

=
1

4

n−1∑
k=1

cos(jθk)

sin3(θk/2)

=: J̃j,n. (27)

Similarly,
n−1∑
k=1

ρkeiθkJk,n = J̃j+1,n (28)

and
n−1∑
k=1

ρke−iθkJk,n = J̃j−1,n. (29)

Also we compute

n−1∑
k=1

ρkeiθk =
n−1∑
k=1

eijθkeiθk =
n−1∑
k=1

ei(j+1)θk =

{
n− 1 for j = n− 1

−1 otherwise
(30)

and
n−1∑
k=1

ρke−iθk =

{
n− 1 for j = 1

−1 otherwise .
(31)

Substituting the definition of Nk into
∑n−1

k=1ρ
kNk and making use of (27)-(31), we get

n−1∑
k=1

ρkNk =
Gm

2r3

[
−1 + nδj=n−1 − 1

2
J̃j+1,n −3 + 3nδj=1 + 3

2
J̃j,n

−3 + 3nδj=n−1 + 3
2
J̃j,n −1 + nδj=1 − 1

2
J̃j−1,n

]
, (32)

where δj=k denotes the Kronecker delta (i.e., one when j = k and zero otherwise).

7. Solving det
(
D +

∑n−1
k=1ρ

kNk + λΩ− λ2I
)

= 0.

Assembling the results from the previous sections, we see that

D +
n−1∑
k=1

ρkNk + λΩ− λ2I
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=

[
3
2
ω2 + 1

2
α2

j+1 − β2 − 2iωλ− λ2 3
2
ω2 − 3

2
α2

j
3
2
ω2 − 3

2
α2

j
3
2
ω2 + 1

2
α2

j−1 − β2 + 2iωλ− λ2

]

+
Gm

2r3

[
nδj=n−1 3nδj=1

3nδj=n−1 nδj=1

]
, (33)

where α2
j and β2 are shorthands for the expressions

α2
j =

Gm

2r3
(Jn − J̃j,n) ≥ 0,

and

β2 =
Gm

2r3
In ≥ 0.

and, as a reminder, In and Jn are defined by (22) and (23), respectively, whereas J̃j,n is

defined by (27).

It turns out in our subsequent analysis that the root of unity given by j = n/2 is the

most critical one for stability, at least for n ≥ 7. For n = 2, . . . , 6 the instability stems from

the eigenvectors associated with j = 1 and j = n − 1. We will analyze the key cases. But

first, we note that the critical j = n/2 case corresponds to perturbations in which every

other body is perturbed in the opposite direction. And, more importantly, it doesn’t matter

what the direction of the perturbation is. That is, if body 0 is advanced azimuthally, then all

of the even-numbered bodies are advanced azimuthally and all of the odd-numbered bodies

are retarded by the same amount. Similarly, if body 0 is pushed outward radially, then all

of the even-numbered bodies are also pushed outward whereas the odd-numbered bodies are

pull inward. Azimuthal and radial perturbations contribute equally to instability.

7.1. The Case Where n Is Arbitrary And j Is Neither 1 Nor n− 1.

Assuming that j is neither 1 nor n− 1, we see that

det

(
D +

n−1∑
k=1

ρkNk + λΩ− λ2I

)
=

(
3

2
ω2 +

1

2
α2

j+1 − β2 − 2iωλ− λ2

)
×
(

3

2
ω2 +

1

2
α2

j−1 − β2 + 2iωλ− λ2

)
−
(

3

2
ω2 − 3

2
α2

j

)2

. (34)
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Expanding out the products on the right-hand side in (34), we get that

det

(
D +

n−1∑
k=1

ρkNk + λΩ− λ2I

)
= λ4 + Ajλ

2 + iBjλ + Cj = 0, (35)

where

Aj = ω2 − 1

2

(
α2

j−1 + α2
j+1

)
+ 2β2 (36)

Bj = −ω
(
α2

j−1 − α2
j+1

)
(37)

Cj = 3ω2

(
1

4
(α2

j−1 + α2
j+1) +

3

2
α2

j − β2

)
+

(
1

4
(α2

j−1 + α2
j+1)− β2

)2

− 1

16
(α2

j−1 − α2
j+1)

2 − 9

4
α4

j . (38)

7.1.1. The Subcase Where n Is Even And j = n/2.

In the subcase where n is even and j = n/2, it is easy to see by symmetry that αn/2+1 =

αn/2−1. To emphasize the equality, we will denote this common value by αn/2±1. Equations

(36) to (38) simplify significantly. The result is

det

(
D +

n−1∑
k=1

ρkNk + λΩ− λ2I

)
= λ4 + (ω2 − α2

n/2±1 + 2β2)λ2

+3ω2

(
1

2
αn/2±1 +

3

2
α2

n/2 − β2

)
+

(
1

2
α2

n/2±1 − β2

)2

− 9

4
α4

n/2. (39)

For a moment, let us write this biquadratic polynomial (in λ) in a simple generic form and

equate it to zero

λ4 + Aλ2 + C = 0.

The quadratic formula then tells us that

λ2 =
−A±

√
A2 − 4C

2
.

To get the eigenvalues, we need to take square roots one more time. The only way for

the resulting eigenvalues not to have positive real part is for λ2 to be real and nonpositive.
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Necessary and sufficient conditions for this are that

A ≥ 0 (40)

C ≥ 0 (41)

A2 − 4C ≥ 0. (42)

It turns out that the third condition implies the first two (we leave verification of this fact

to the reader). In terms of computable quantities, this third condition can be written, after

simplification, as

ω4 + (−8α2
n/2±1 − 18α2

n/2 + 16β2)ω2 + 9α4
n/2 ≥ 0.

Again we use the quadratic formula to find that

ω2 ≥ 4α2
n/2±1 + 9α2

n/2 − 8β2 +
√

(4α2
n/2±1 + 9α2

n/2 − 8β2)2 − 9α4
n/2.

or

ω2 ≤ 4α2
n/2±1 + 9α2

n/2 − 8β2 −
√

(4α2
n/2±1 + 9α2

n/2 − 8β2)2 − 9α4
n/2.

It is the greater-than constraint that is relevant and so we take the positive root. Finally,

we recall that

ω2 =
GM

r3
+

Gm

r3
In

α2
n/2 =

Gm

2r3
(Jn − J̃n/2,n)

β2 =
Gm

2r3
In

and so the inequality on ω2 reduces to

M

m
≥ 2(Jn − J̃n/2±1,n) +

9

2
(Jn − J̃n/2,n)− 5In

+

√(
2(Jn − J̃n/2±1,n) +

9

2
(Jn − J̃n/2,n)− 4In

)2

− 9

4

(
Jn − J̃n/2,n

)2

. (43)

The second column in Table 1 shows thresholds computed using this inequality. It is

clear that for even values of n greater than 7, this threshold matches the numerically derived

threshold shown in the first column in the table. This suggests that inequalities analogous

to (43) derived for j 6= n/2 are less restrictive than (43). The proof of this statement is

obviously more complicated than the j = n/2 case because the general case includes a linear

term (Bj 6= 0) which vanishes in the j = n/2 case. The linear term makes it impossible simply

to use the quadratic formula and therefore any analysis involves a more general analysis of
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a quartic equation. Scheeres and Vinh (1991) analyzed the general case. Although their

notations are different, the fundamental quantities are the same and so their analysis is valid

here as well. Rather than repeating their complete analysis, we simply outline the basic

steps in the next subsection.

7.1.2. The Subcase Where j 6= n/2.

Let αj±1 denote the average of αj+1 and αj−1:

αj±1 = (αj+1 + αj−1)/2.

If we were to assume, incorrectly, for the moment that terms involving the difference αj+1−
αj−1 were not present in (36)–(38), then an analysis analogous to that given in the previous

subsection would give us the following inequality:

ω2 ≥ 4α2
j±1 + 9α2

j − 8β2 +
√

(4α2
j±1 + 9α2

j − 8β2)2 − 9α4
j .

Next, one uses the fact that α2
j±1 is unimodal as a function of j taking its maximum value at

j = n/2. Hence, the inequality associated with j = n/2 is the strictest of these inequalities.

Finally, the difference terms are treated as small perturbations to this simple case and a

homotopy analysis shows that the j = n/2 case remains the strictest case even as the

difference terms are fed in.

7.1.3. Large n

When n is large, J̃n/2±1,n ≈ J̃n/2,n and Jn � In. Furthermore,

J̃n/2,n ≈
1

2

n/2∑
k=1

(−1)k

sin3(kπ/n)
≈ n3

2π3

∞∑
k=1

(−1)k

k3

= −3

4

n3

2π3

∞∑
k=1

1

k3
≈ −3

4

1

2

n/2∑
k=1

1

sin3(kπ/n)
≈ −3

4
Jn.

Hence, (43) reduces to
M

m
≥ 7

8
(13 + 4

√
10)Jn,

or, equivalently,

m ≤ M
7
8
(13 + 4

√
10)Jn

≈ 2.299M/n3, (44)
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which is precisely the answer Maxwell obtained 150 years ago. Of course, we have assumed

here that n is even. For the odd case, as n →∞, |αj−1 − αj+1| → 0 so that the odd quartic

equation for j = (n − 1)/2 reduces to the the even equation for j = n/2 giving the same

stability criteria as the even particle case. This can be seen in our simultions as well. The

case n = 100 and n = 101 give the same threshold to several significant figures.

7.2. The Case Where j = 1 Or j = n− 1.

By symmetry, these two cases are the same. Hence, we consider only j = 1. Again after

some manipulation in which we exploit the fact that α2
0 = 0, we arrive at

det

(
D +

n−1∑
k=1

ρkNk + λΩ− λ2I

)
= λ4 + Ajλ

2 + iBjλ + Cj = 0, (45)

where

A1 = ω2 − 1

2

(
nγ + α2

2

)
+ 2β2 (46)

B1 = −ω
(
nγ − α2

2

)
(47)

C1 = 3ω2

(
1

4
α2

2 +
3

2
α2

1 − β2 − 1

2
nγ

)
+

(
1

4
(nγ + α2

2)− β2

)2

− 1

16
(nγ − α2

2)
2 − 9

4
α2

1(α
2
1 − nγ), (48)

and

γ =
Gm

r3
. (49)

Note that the coefficient B1 is imaginary whereas the other three coefficients are real.

This suggests making the substitution µ = iλ. In terms of µ, (45) becomes a quartic equation

with all real coefficients:

µ4 − A1µ
2 + B1µ + C1 = 0. (50)

This equation either has four real roots or not. If it does, then the corresponding values

for λ are purely imaginary and the system could be stable. If, on the other hand, there are

two or fewer real roots, then at least one pair of roots to (50) form a conjugate pair and

therefore the corresponding pair of values for λ will be such that one has positive real part

and the other negative real part. Hence, in that case, the system is demonstrably unstable.

Simple numerical investigation reveals that this is precisely what happens when 2 ≤ n ≤ 6

regardless of the mass ratio M/m.
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To see why, let us consider just the case when M/m is very large and hence the ratio

r = m/M

is very close to zero. In this asymptotic regime,

A1 = aM

B1 = b
√

Mm

C1 = cMm,

where a > 0 and the sign of c is the same as the sign of 1
4
α2

2 + 3
2
α2

1 − β2− 1
2
nγ. Substituting

rM for m and making the change of variables defined by ν = µ/
√

M , we get

ν4 − aν2 + brν + cr = 0.

For r = 0, this equation reduces to ν4 − aν2 = 0 which has three real roots, a positive

one, a negative one, and a root of multiplicity two at ν = 0. By continuity, for r small

but nonzero, the quartic still has a positive root and a negative root but the double root

at ν = 0 can either disappear or split into a pair of real roots. Since this bifurcation takes

place in a neighborhood of the origin, the quartic term can be ignored and the equation in

a neighborhood of zero reduces to a quadratic equation:

−aν2 + brν + cr = 0.

This equation has two real roots if and only if its discriminant is nonnegative:

r(rb2 + 4ac) ≥ 0.

Hence, if c is negative there will not be a full set of real roots for r very small and hence the

ring system will be unstable in that case. In other words, the system will be unstable if

1

4
α2

2 +
3

2
α2

1 − β2 − 1

2
nγ < 0.

This equation reduces to

n−1∑
k=1

1

sin
(

πk
n

) − n− 1

2
cot
( π

2n

)
< 0. (51)

It is easy to check that the expression is negative for n = 2, . . . , 6 and positive for n ≥ 7.

Therefore, we have proved that ring systems are unstable for n = 2, . . . , 6 at least when m is

very small relative to M . We have not proved the result for larger values of m but it seems

that such a case should be even more unstable, which is certainly verified by our simulator.
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8. Comparison With Prior Results

Of the prior work summarized in the introduction, the work of Roberts (2000) is the

most recent, most rigorous, and most self contained. In this section, we compare our results

with his. Like us, Roberts shows that the ring configuration is linearly unstable when n ≤ 6.

Furthermore, for n ≥ 7, Roberts shows that the ring is linearly stable if and only if M > hnm

where hn is a bifurcation value in a certain quartic polynomial. For n even, the formula he

derives for hn is

hn = A +
√

A2 −B,

where

A = 2σ + 8P + 18Q

B = 36Q2 − 8σP

and

σ =
1

2

n−1∑
k=1

1

sin θk/2
= 2In

P =
n−1∑
k=1

1− (−1)k cos θk

16 sin3 θk/2
=

1

4
(Jn − J̃n/2±1,n)

Q =
n−1∑
k=1

cos θk − (−1)k

16 sin3 θk/2
=

1

4
(Jn − 2In − J̃n/2,n).

In the above expressions, we have used formulas (22), (23), (24), (27), and (28) to establish

the alternate form of these expressions. From these alternate forms it is easy to see that the

right-hand side in (43) is precisely hn.

Furthermore, the fact that the asymptotic expression given by Roberts matches ours is

easy to very directly. Roberts wrote the asymptotic expression as

hn ≈
13 + 4

√
10

2π3

∞∑
1

1

(2k − 1)2
.

To verify the agreement, it suffices to note that
∞∑

k=1

1

k3
=

∞∑
k=1

1

(2k)3
+

∞∑
k=1

1

(2k − 1)3
=

1

8

∞∑
k=1

1

k3
+

∞∑
k=1

1

(2k − 1)3

and therefore
∞∑

k=1

1

(2k − 1)3
=

7

8

∞∑
k=1

1

k3
.

With this identity, it is easy to see that his expression matches ours given in (44).
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9. Ring Density

Suppose that the linear density of the boulders is λ. That is, λ is the ratio of the

diameter of one boulder to the separation between the centers of two adjacent boulders.

Then the diameter of a single boulder is λ(2πr/n). Hence, the volume of a single boulder is

(4π/3)(λπr/n)3. Let δ denote the density of a boulder. Then the mass of a single boulder is

(4π/3)(λπr/n)3δ. If we assume that the density of Earth is about 8 times that of a boulder

(Earth’s density is 5.5 and Saturn’s moons have a density of about 0.7 being composed of

porous water-ice), then we have

δ =
1

8

mE

(4π/3)r3
E

,

where mE denotes the mass of Earth and rE denotes its radius. Combining all of these

factors and assuming the central mass is equal to Saturn’s mass and the ring’s radius is

about the radius of the Cassini division (120, 000km), we see that the upper bound on the

linear density of boulders is

λ ≤
(

8
M/mE

(25.65)(0.01938)

)1/3
rE

r
= 0.219.

In other words, the linear density cannot exceed 22% otherwise the ring will be unstable. Of

course, this is for a one dimensional circular ring of ice boulders. Analysis of a two dimen-

sional annulus or the full three dimensional case is naturally more complicated. Nonetheless

the 22% linear density figure matches surprisingly well with the measured optical density

which hovers around 0.05 to 2.5.

10. Numerical Results

We have computed stability thresholds three different ways for various finite n.

First, we numerically solved for all eigenvalues of the 4x × 4n matrix in (25) and did

a binary search to locate the smallest mass ratio M/m for which no eigenvalue has positive

real part. We then tranlated this threshold into a value of γ for the threshold expressed as

m ≤ γM/n3

and tabulated those results in the column labeled Numerical in Table 1.

Secondly, for even values of n we used equation (43) to derive γ threshold values. These

values are reported in the second column of thresholds in Table 1. Note that for even values

of n larger than 7, these results agree with those obtained numerically.
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Lastly, and perhaps most interestingly, the third column of results in the table are

stability thresholds that were estimated using a simulator based on a leap-frog integrator

(Saha and Tremaine (1994); Hut et al. (1995)). In this column, two values are given. For

the larger value instability has been decisively observed. However, verifying stability is more

challenging since one should in principle run the simulator forever. Rather than waiting that

long, we use the rule of thumb that if the system appears intact for a period of time ten times

greater than the time it took to demonstrate instability, then we deem the system stable at

that mass. This is how the lower bounds in the table were obtained. It is our belief that

a symplectic simulator provides the most convincing method to discriminate between stable

and unstable orbits at least when the number of bodies remains relatively small, say up to

a few hundred. Unstable orbits reveal themselves quickly as the initial inaccuracy of double

precision arithmetic quickly cascades into something dramatic if the system is unstable. If,

on the other hand, the system is stable then the initial imprecisions simply result in an orbit

that it close to but not identical to the intended orbit. The situation does not decay. Any

reader who has never experimented with a good simplectic integrator is strongly encouraged

to experiment with the Java applet posted at

http://www.princeton.edu/∼rvdb/JAVA/astro/galaxy/StableRings.html

as hands on experience can be very convincing.

Of course, the amazing thing about the simulator results is that they match the numer-

ical results in the first column. The thresholds determined by linear stability analysis only

tell us definitively that for m larger than the threshold, the system is necessarily unstable.

But, for m smaller than the threshold, the mathematical/numerical analysis says nothing

since in those cases, the eigenvalues are all purely imaginary. Yet, simulation confirms that

the thresholds we have derived are truely necessary and sufficient conditions for stability.

As shown in Section 7.2 for 2 ≤ n ≤ 6, the system is unstable. The simulator verifies

this. In these cases, there is lots of room to roam before one body catches up to another.

Even the tiniest masses are unstable. The case n = 2 is especially interesting. For this case,

the two small bodies are at opposite sides of a common orbit. Essentially they are in L3

position with respect to each other. For the restricted 3-body problem (where one body has

mass zero) it is well-known that L3 is unstable no matter what the mass ratio. Our results

bear this out.
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Threshold Value for γ

n Numerical Eq. (43) Simulator Roberts

(even n only) result

2 0.000 * [0.0, 0.007] -

6 0.000 * [0.0, 0.025] -

7 2.452 - [2.45, 2.46] -

8 2.412 2.4121 [2.41, 2.42] 2.412

10 2.375 2.3753 [2.37, 2.38] 2.375

12 2.354 2.3543 [2.35, 2.36] 2.354

14 2.341 2.3411 [2.34, 2.35] 2.341

20 2.321 2.3213 [2.32, 2.33] 2.321

36 2.306 2.3066 [2.30, 2.31] -

50 2.303 2.3031 [2.30, 2.31] 2.303

100 2.300 2.2999 [2.30, 2.31] 2.300

101 2.300 - [2.30, 2.31] 2.300

500 2.299 2.2987 [ - , - ] 2.299

Table 1: Estimates of the stability threshold (i.e., γ in an inequality of the type m ≤ γM/n3).

The first column contains numerically derived obtained by a brute-force computation of

the eigenvalues together with a simple binary search to find the first point is at which an

eigenvalue takes on a positive real part. The second column gives thresholds computed

using (43). The column of simulator values corresponds to results from running a leap-frog

integrator and noting the smallest value of γ for which instability is clearly demonstrated.

This is the larger of the pair of values shown. The smaller value is a nearby value for which

the simulator was run ten times longer with no overt indication of instability. Finally, the

column labeled Roberts lists values from Table 3 in Roberts (2000). Cells marked with an ∗
are cells for which an entry is not relevent and cells marked with a − are cells for which an

entry is unavailable.
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