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AND THE ORIGIN OF THE NEBULAR VARIABLES
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SUMMARY

The evolution of discs under the action of viscosity is studied by both simi-
larity solutions and Green’s functions. The angular momentum is steadily
concentrated onto a small fraction of the mass which orbits at greater and
greater radii while the rest is accreted onto the central body.

We assume that the angular momentum excess of a proto-star is initially
concentrated onto one-third of the total mass which forms a disc orbiting
the new-born star. Viscous dissipation in this disc will cause it to shine with a
luminosity greater than the final main sequence star for a period of 103 yr
or so. Most of the properties of T Tauri stars can be expldined as a consequence
of disc evolution. Flares in Flare stars are interpreted as the entry of blobs
of an old disc into the late type stellar atmospheres. On this hypothesis flaring
activity could be observed in M stars of up to 5 X 108 yr old, and planetary
systems will be common. Disc solutions appropriate to dwarf novae and
X-ray sources are also given,

1.1 Introduction

Discs have played a large part in astrophysical thought ever since it was dis-
covered that the solar system is flat. Saturn’s ring and the shape of the Galaxies
likewise added interest to such problems, while rings around Be stars, U Gem
stars, accreting binary X-ray sources and possibly about black holes and quasars
all make the subject especially topical.

Protostellar material on condensing from 10724gcm=3 will decrease its
moment of inertia by a factor of 1016. Were angular momentum conserved this
would lead to ridiculous spin rates, so it has long been known that angular momen-
tum must be lost. Here we consider initial situations in which some of this excess
angular momentum has been stored in a massive disc which is left orbiting the star.
We show that for young stars the dissipation in such a disc leads to its shining
with a sizeable fraction of the total light of the system. The light from the disc
consists of two parts:

(i) from the disc itself we predict a slowly variable infrared spectrum with
approximate form* F, oc v43/(exp (hv/kT)—1) which becomes F, cc »1/3 for
small v, and

(i) from the boundary layer where the material in the disc grazes and enters
the surface of the star we predict a rapidly variable blue continuum, with emission
peaking in the ultraviolet. These phenomena are typical of the T Tauri stars. We
find that, in general, the smaller the mass of the underlying star, the longer the disc
dominates the luminosity output from the system. In addition the flaring of flare

* Here and wherever it is explicitly mentioned v is a frequency in the electromagnetic
spectrum. However, elsewhere in the bulk of the paper v is a kinematic viscosity.
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stars can be readily understood as the entry of blobs of gas from an elderly disc
into the stellar atmosphere. We estimate that the discs could produce flaring
activity in M stars with the observed intensity for about 5 x 108 yr after formation.

We are encouraged to believe that most of the nebula variables can be explained
in this way and it is possible that some of the infrared and ultraviolet colour
anomalies in the Orion Be stars etc are similarly attributable to shining orbiting
discs and their boundary layers. If this interpretation of T Tauri stars is correct,
their study will provide new and important evidence on the conditions under which
the planets in the solar system were formed.

Some years ago now (1) we worked out the basic similarity solutions for the
evolution of time-dependent Newtonian discs under the action of viscosity but
failed to find any solutions that evolved under their own self-gravity. However, in
many of the more recent applications the self-gravity is negligible so these solutions
are now of greater interest. This paper is an elementary one devoted to the behaviour
of time-dependent discs and showing that, whatever the dissipation mechanism,
the basic form of evolution is the expansion of the outermost parts to carry all the
angular momentum together with the collection of an ever increasing fraction of
the mass towards the centre. This process is much slower in systems of larger
scale and this fact encourages us to see analogies between the present state of the
Galaxy and a very much earlier stage of the solar system when that was a spinning
disc of gas and dust.

Section 2 gives the mathematics of the similarity solutions for viscous discs and
shows, by Green’s, functions, that all discs evolve towards these similarity discs.

Section 3 applies the solutions to galaxies and the different types of star that
may have equatorial discs surrounding them.

1.2 Does dissipation lead to rigid rotation?

We start our discussion with a well-known theorem which is perhaps the basis
of the supposition that dissipation will lead to bodies in uniform rotation.

Theorem. For a given density distribution and total angular momentum the
motion of least energy is uniform rotation.

Since the proof is very direct we give it:

The density being fixed the internal and gravitational energies are fixed so we
have only to minimize the kinetic energy

T = %fuzpdV= %fuzdm.
'The angular momentum is constrained to be H so
f Ruydm = H

where ¢ is azimuth measured about an axis through the mass centre and parallel
to H and R is distance from that axis.
Define the moment of inertia I.

I=JR2pdV= fRde.
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By Schwartz’s inequality

fuqbz dml = f uy2 dm f R2 dm> [f Ru, dm]2 = H?
where equality only holds down when #; oc R and then

uy = (HII)R
which is uniform rotation.
Evidently

T = -g-f@m;%fug dm> LH2|I

where the second equality only holds when all the motions are about the axis and
the third when the motions further reduce to uniform rotation.

As a corollary of this theorem we see that all states of minimum energy must
rotate uniformly whether or not the density is fixed; for if there were a non-
uniformly-rotating configuration of minimum energy we could fix its density
distribution and obtain an even lower energy state by constraining it to rotate
uniformly with the same angular momentum. Thereby we prove that the original
state was not a true minimum energy state but an imposter.

The theorem further suggests a ruse to help us find minimum energy states.
Instead of varying the whole energy we may always take the rotation energy to be
$H?2[I and the angular velocity to be H/I where I is the moment of inertia of the
configuration considered. The minimum energy problem is then reduced to
minimization with respect to all possible density distributions since I is known
once p is known.

Notice that the theorem does not require that the gravitational energy arises
from the body itself rather than from external sources.

By contrast with the above theorem consider what will happen to a disc, rotating
in centrifugal force versus gravity balance, when there is a small viscosity to dissi-
pate the energy. In the astronomically important cases the rotation is such that the
angular velocity Q(R) decreases outwards while the specific angular momentum
h = R2Q increases outwards. Since  decreases outwards the inner parts of the
disc shear past the outer parts, so the viscosity causes a couple. To the outer parts
of the disc (that already have large specific angular momentum) more angular
momentum is given, and from the inner parts (that have little) is taken away even
that which they have. On acquiring their gain the outer parts rather than increasing
their angular velocity and losing their tactical advantage increase their size instead
and thereby actually decrease their angular velocity. Likewise the inner parts can
only increase their angular velocity, consequent on their shrinkage as a result of
angular momentum loss. Thus the shearing is not reduced as a result of the angular
momentum flow.

At first sight it seems obvious that this system is not moving towards any
uniformly rotating state because the difference between the angular velocities of the
parts is accentuated by the angular momentum transference. How do we square
this with the idea that since energy is dissipated by the viscosity the system ought
to be moving towards a minimum energy state?

The theorem also lies somewhat incongruously with a similar theorem that for
a star of fixed angular momentum about the galactic centre the orbit of least energy
is circular. At first sight this would seem to imply a differential rotation for a
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system of stars, for in the galaxy circular motions of different radii have different
periods.

To elucidate this problem let us consider the minimum energy state of two
particles of masses m; and mj in the fixed potential of a galaxy, .

Many times we shall wish to refer to the angular momentum per unit mass and
the energy per unit mass. These names are too long so we propose the terms
¢ specific angular momentum ’ and ‘ specific energy’ for them. For a particle of
specific angular momentum /% the specific energy may be written in the form

Bour+ ) + PR~ (R, %) =

where i has a maximum for given R on 2 = o.
The minimum value of e for given 4 is attained with ug = u, = oand 3 = oin
the circular orbit of radius Rj which is the value of R at which

?*R™2— (R, o)

attains its minimum value, (k).
Thus Ry, is the solution of (9] 6R){1112R"2 H(R, o)} = o.
The minimum specific energy is in obvious notation

() = J2Ri2 —(Ry, 0) = 4724

We shall presently need the quantity de/dh. Since Ry is a function of & we would
expect to vary both % and Ry, in the expression for e(h), but the defining equation
for Ry shows that e(h) is locally stationary for variations of Ry, with 4 fixed. Thus

% = ¢(h) = de(h)|oh = hRy~2 = Q

where Q is the angular velocity around the circular orbit.

We wish to minimize the energy of our two particles, keeping the total angular
momentum constant. Clearly we may first minimize the energy of each separately,
keeping its angular momentum constant, and only then consider whether the
energy may be further lowered by exchange of angular momentum. Thus the two
particles may be taken to move in circles and their energy will be

E = mie(h1)+mae(hs)
and their angular momentum will be
H = mihy+mahs.

Now consider a small change in the angular momentum keeping the total H
constant
dE = my dhle'(h1)+m2 dhze'(hz)
where
my dh1+ms dhs = o
hence
dE = mq dhl[e'(hl)—— e'(hz)] = my dhl(ﬂl-—gz).

Thus energy can be reduced by exchanging angular momentum in such a way
that the orbit of least angular velocity gains angular momentum. Since in practical
cases ) decreases outwards this means that the energy is lowered if the angular
momentum flows outwards. It is likely that the ultimate driving energy for the
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spiral structure of galaxies arises because the spiral structure can transfer angular
momentum outwards and lower the energy of the whole configuration (2).

To get a fuller knowledge of the minimum energy states we now consider the
minimum problem when only the sum of the masses of the two particles is fixed.
If a mass dm; is transferred from ms in circular orbit to m; while the orbits of
my1 and mg are changed to keep H constant, then the change in energy is

dE = d[mie(h1)+mae(hs)]
where
dmy = —dms

and
dHl = d(mlhl) = —de = d(mzhz).

Using these relationships

dE = dmi[e(h1)— hi€'(h1)] + d(m1h1) € (h1)+ (similar terms in 2)
thus
dE = dmi{[e(h1)— h1Qu] — [e(h2) — haQa]} + dH1(Q1 — Qo).

Now e(h)—AQ increases outwards because

(e =h0) = & (~2=p) = -7 (Ge-F) = v 2 (P o

Not only is the energy lowered by moving the angular momentum outwards towards
smaller Q but also by moving mass inwards towards smaller values of e—/AQ.

Thus the minimum energy configuration is a limit in which one particle of
infinitesimal mass carries all the angular momentum in a circular orbit at infinity
while all the remaining mass aggregates at the centre. This conclusion is reached on
energy and angular momentum arguments alone. In the next section we give
some specific models of frictional evolution of discs which elucidate detailed
behaviour. Here we remark that although we fixed the gravity field in the above
calculations nevertheless the final configuration arrived at with almost everything
at the middle is the configuration of the greatest possible binding energy for a
self-gravitating system; so this configuration must be the state of least energy for
such systems too.

We may summarize this discussion by saying that energy dissipation will in
the long term transfer angular momentum outwards but while the radius-outside-
which-half-the-angular-momentum-is-stored will increase, the radius containing
half the mass will normally decrease.

1.3 Angular momentum transport by shearing stresses

Consider what will happen to a disc, rotating in centrifugal force versus gravity
balance, when there is a small friction to dissipate the energy. We shall assume
that the velocities in the disc are independent of height above the central plane.
We shall further assume that the frictional force per unit length of circumference
at radius R is dependent on the local rate of shear and the density so that the couple
g exerted on the stuff outside R by the stuff inside R can be written

g = R2nRvo24 (1)
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where A(R) is the local rate of shearing
= —3RdQ/dR (2)

Q is the angular velocity about the centre, and »(R) is the friction coefficient per
unit surface density o(R). v is not assumed constant; it might depend on R, 4, o or
time but it will be assumed to be positive. Notice that had the law been the law of
viscous friction then v would be kinematic viscosity.

An element of mass dm = 2wRo dR which lies initially between R and R+ dR
will normally have its angular momentum increased by the couple from the faster
rotating material inside it, and will have its angular momentum decreased by
shearing past the material further out. Thus if we write

h = QR?
then

D - _srRZ%
o (hom) = —5R -2

where DDt = 0[ot+u.V is the rate of change following the elements of the fluid.
Since D dm/Dt = o we deduce
Dh  og @ (

0Q

ZWRGE = "%k " R 2mR30v bﬁ) (3)
This equation tells us where the angular momentum is deposited. Consider for
instance the outer parts of the disc. If the disc is mainly supported by centrifugal
force then Q will be decreasing there. Furthermore the couple must tend to zero
at the edge of the disc so g will be positive and decreasing. We therefore deduce
that the outer parts of the disc, those with the most specific angular momentum,
will secularly get still more angular momentum as a result of friction. The gain in
angular momentum leads to movement to greater R and a resultant net loss of
angular velocity. A similar effect causes the central regions to rotate more rapidly
on loss of the angular momentum except where the system is mainly pressure
supported. While in the latter case uniform rotation may be achieved, the con-
figuration normally consists of a slowly rotating central mass which is pressure
supported, plus a small satellite at a large distance carrying most of the angular
momentum in an orbit so large that it is only traversed at the same slow rotation
rate. In the special case when the gravity field is fixed and 4 is a function of R,
but not ¢, then equation (3) takes the simpler form

dh__@g___@ o
PO = — % =~ (4Rovod) (9

where F is the outward flux of material through radius R. A special solution that
will concern us later is the steady state with F constant. That solution is given by

g=(=F)h+g
o = (4mv)L [— F(Q/A)+go/(R2A)]. (5)

Notice that: (1) when go = o, F must be negative so material flows into the origin,
(2) when F is positive then a central couple of at least go> Fhmax is needed to
drive a steady flux F out to a sink at that R where 4 = hnax.
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ENERGY FLOW

For the general case it is instructive to look at the equation of energy flow. We
derive this by taking the equations of motion in the form

u .
P = div s+ pVi (6)
multiplying by », and integrating them over the time dependent volume fdr
occupied by a chosen mass of fluid.

In the above the constant mass of fluid considered is M = [p dr, s is the stress

tensor describing both the pressure and the viscous stresses, and i is the (positive)
gravitational potential. The stress tensor § is given by

§ = —pl+2mn(e—iel)+ lel

where I is the unit tensor with components §;;, e is the rate of straining tensor
eif = 3(Ouif Ox;+ Ou;/ 0x;) and e is its trace which is also divu. 7 is the coefficient
of shear viscosity and { is the coefficient of bulk viscosity.

Performing the integration over 7 we find the energy equation:

I% (fiuz dm) = fu.(V.s) d'r+f(u.V)z/:dm

where
dm = p dr.
Now
D (o
D (f x/;dm) = fﬁ dm+f (u.V) ¢ dm,
and

fu.(V.s) dr = fV.(s.u)—(s.V).ud»r = f(s.u).dS—fs redr
= f(s.u).dS-!—f[p divu—2n(e—iel) : e—{e?] dr

= f(s.u).dS—f%%df—f [2n(e—}el) : (e— tel)+ Le?] dr.

These terms are (1) the rate at which viscous and pressure forces are conveying
energy into our chosen volume, (2) the rate at which the internal energy is being
increased by increased compression, and (3) the rate of viscous dissipation of
energy. Substituting these expressions in our energy equation it becomes

> U (Buz—y) dm] - f(s.u).derpr_%_ﬁfi)dm—fDldf-f%‘dm

where Dy is the viscous dissipation rate per unit volume.
"T'o apply this equation to our disc it is useful to put the equation in terms of the
couple g of the inside on the outside. This is in the £ direction

gg = —fos.dS
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where the integration extends over the surface of a cylinder of radius concentric
with the axis. Since dS is the parallel to R it is simple to see that the isotropic part
of s does not contribute to the integral and so

g = —2%. fo(ne).dS = —21rf R%%%dz

where Q = u,/R is the angular velocity of the fluid about the axis. Notice that this
equation agrees* with equation (1) with vo = f7 dz. In cylindrical coordinates we
likewise find

f(s.u).dS =om |

_ our\2 (uR)Z I ( 39)2] PR 2}
D, = {217 [(ﬁ) +lz + 5 R R + (£ — %n)(div u)
if dug|oR is negligible compared with Q then div u is likewise very small. If further

we take the velocities to be independent of height above the central plane of the
disc at least over the bulk of the matter then

0Q)\2 o0Q
- 3 = —
fDl dr = 2m ffnR (3R) dz d. fg R dR

finally our energy equation for the ring currently between R and Ry is

[eo]

Rug[— p-+div u({ — )] dz+ 2 f QRSy Zi; ds

Ry

i% [ f (3uz— ) dm] = [—szupr dz—gQ]Rl

The terms involving p describe the work done on this bit of the disc by pressure
and the rate of change of the internal energy. The terms that concern us are
rather the expression for the dissipation [g(— 0Q/dR) dR and the convection of

energy gQ due to the viscous couple. When p is negligible and the flow is steady
Qf(luz—z/;) dm = meo-uR_a (lu2—y)dR = F [’f—¢ *
Dt 2 oR \* 2 R,

and so equation (7) reads
u2 Rl RB Rl
-F [»—— z/:] = [gQ] + J‘ D2nR dR (8)
2 R, R, J B

the left-hand side is the energy generation caused by the material flowing into the
gravitational well; this energy is convected by gQ and dissipated by D, the frictional
dissipation rate per unit area. The equation of angular momentum flow can be
derived simply, by operating with £.[ 7 x (equation (6)) dr however this yields
exactly

D
E f hdm = g1—82
which is equivalent to equation (3) once we assume velocities independent of height.

* When 9Q/0R is independent of 2.
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2.1 Application to steady discs
For the steady state disc with no central couple the energy source is

1p 0¥ a¢ (—F)VQ

while the energy dissipated is
27RD(R) = (—F) V (—R %ﬁ) — _FV2A.
The difference is caused by the energy transport due to the viscous couple.*

A more realistic steady state disc has a central body of radius R = R, which
rotates more slowly than break-up speed at the equator. Since the disc will be
going faster than the stellar equator a boundary layer will form in which the
viscosity slows down the disc to the equatorial velocity. Thus Q, which was
increasing inwards, now decreases to that defined by the star’s equator. This
decrease can only occur in the region in which centrifugal force no longer balances
gravity, that is in the viscous boundary layer. We define the critical point R = R,
as that radius at which 0Q/dR = o. By integrating our exact equation (4) and
using equation (1)

g = 27TR3VO'Z—£2 (—F)k+go

9Q/dR changes sign in the boundary layer and this will be very close to the star’s
surface, so just outside the star we have g = o. At this critical point we must have
therefore R = Rg, gc = 0 and hence (— F) hc+go = o. Where a suffix ¢ indicates
the values at the critical point. Now starting just outside the boundary layer and
with R a little greater than Re, % will have the value given by centrifugal force
gravity balance. The boundary layer is thin and Q continues to increase inwards
down to Re, so ke will be very close to, although very slightly less than, the value
that would be given by centrifugal force gravity balance. This is in turn negligibly
different from the value %, that would produce centrifugal force gravity balance
in a star-grazing orbit. Thus with an error that vanishes with the viscosity we may

take
go= —(—F)hy
this gives us for our general solution
g = (= F)(h—hy).

This argument depends critically on the star rotating more slowly than the disc;
otherwise it is indeed untrue! Thus when a magnetosphere is being rotated so
fast that the disc is being dragged around by the star this solution is not the correct

one.

* For a Newtonian point mass Q oc R-3/2and so 24 = £Q.Thus the power liberated
at radii between R and R-+dR is three times larger than the energy generated there. In
such a model there is actually a large viscous transport of energy g(, out of the origin, that
makes up the difference. gQ vanishes at # = 6m for a Schwarzschild black hole so in that
case gQ only redistributes the same total power. Although the power in the outer parts of
the disc is three times greater than that generated locally this is compensated by a slightly
smaller power close to the Schwarzschild mouth. These phenomena were inadvertently
omitted from the relativistic discussion in (3). For solutions that are fully realistic down to
the origin the energy flux gQ out of the origin should vanish.

40
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Notice that g vanishes at the critical point so gQ vanishes and there is no flux of
energy coming out of the critical point into the disc. Thus the gQ term merely
redistributes the energy generated in the disc outside the critical point. In particular
if a point mass provides the gravity field then

iV2 = IGM|R, h = (GM)2R\2, Q = (GM)\2 R-3/2

we write equation (8) in the differential form

~F 2 () = ;ﬁ(gQ)+2wRD

and so we find

4 )= el o () e

Thus the dissipation D between R and R+dR is

1/2
_ (- F)4 (;]:‘34[ (%) ] per unit area. (9)

Furthermore since gQ vanishes both at R, and at infinity the total integral of
(9/ 9R)(gQ2) is zero, as it should be for any term that merely redistributes the energy
and does not make any. The surface density and couple in this steady solution are
given by equation (5) with go = —(—F)(GMR,)1/2. Although the couple acting
through the critical radius R, is zero, nevertheless the star does acquire the accreted
angular momentum and mass of the material falling on it. Thus the rate of increase
of the star’s mass and angular momentum are (—F) and (— F) h, respectively.
Further, in the transition through the boundary layer considerably more energy
is dissipated through the viscosity during what in space-age parlance would be
called ‘ entry’ into the atmosphere. The total energy dissipated must be such as
to bring the material down from orbit to rest on the star rotating with angular
velocity Qo. Thus the rate of energy dissipation in the boundary layer is
approximately

o[- jons] - on (@[-45)

Notice that for R> R, the above solution reduces to the go = o solution
obtained by setting R, = o.

2.2 Time-dependent examples of interest

The general nature of the evolution of a flat disc under friction is the expansion
of the outer part and the contraction of the main body, as we have discussed.
Nevertheless it is interesting to have some mathematical examples of this process.
Readily solvable problems of this nature are obtained when, as in the Galaxy, the
gaseous material subject to friction is not the main source of the gravity field. We
may then consider frictional evolution in a fixed gravitational field.

Equation (4) may be re-written

_F-_%
2nRoup = F = W (10)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

6102 Arenuer og uo Jasn saueiqi] obaiq ues ‘eluioyen Jo AusisAiun Aq 8¥6066/S09/E/89 | A0BSqe-8|01e/SeIuW/Wod dno olwapeoe//:sdpy WoJj papeojumoq


http://adsabs.harvard.edu/abs/1974MNRAS.168..603L

FI972VNRAS, 168- “603L !

No. 3, 1974 Evolution of viscous discs 613

where up is the slow radial drift velocity brought about by the friction. The
continuity equation for the fluid reads

Jdo 4, 0 (FY\ _
Et‘+R é—ﬁ(;&) = 0. (II)

If we substitute for F and ¢ in terms of g by using equations (1) and (10) we find

i ] e (3F) -

% 0 g
ohe ot [(2AvR%>}. (72
dR

that is

For further progress we need to know the behaviour of 24vR(dh/dR). In this
we shall be guided by two important applications.
(1) When the gravity field is that of a point mass M then

dQ

Q= (GM)2R32 A= —}R R= 3Q, h = (GMR)'/2
and hence
oh _ 4 vV 3 2 B2
2AvR R 4GM}—2 = $(GM)?2 vh2.

(2) When the gravity field is that corresponding to Mestel’s law (4) of galactic
rotation V = V)

Vo Vo

Q=E» A=PE’ h=V0R
and hence
dh
24vR R= Vo2v.
Both these special cases give
dh s

whenever v is constant or varies as a power of R. We shall adopt the form

dh
24vR R 412¢—2p2-111 (13)
where « and [ are constants and the precise form in which it is written is chosen for
later convenience. All power-law rotation curves V' oc R are included in the form
(13) and we do not need v to be independent of position but only that it vary as
some power of A. For v constant the above special cases have l = }, k=2 = 3(GM)2 v
for the point mass and [ = §, k=2 = V¢2v for the V = V) case.
Using equation (13), equation (12) takes the form

o%g k\2 ., o 08
Py 1 (l) h/-2 o (14)
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Method of solution for the time dependent case. We resolve equation (14) into
modes in which the variation of g with time is g oc 7%t On writing k2 = «2s we
find for such a mode

74 132
g'+i (12) h/-2g = o. (15)
If we now set & = h1/2l and g; = x~g we find

%1 8 ( 2__1_2) _
W"‘x -a;'{‘ k % g1 = 0.

Thus equation (15) is a transformation of Bessel’s equation and its solution is
g = et (k) [A(k) Ji(kx) + B(R) T ()]

where as before x = Al/21,
The general solution of equation (14) is a superposition of such modes so

g = f exp ( ) (kx)! [A(k) J1+ B(k) J1] dk. (16)

Once this solution has been fitted to the boundary conditions one may recover the
flux F = — 9g/0oh, the surface density o = g/(4mR2Av) and the radial velocity
ur = F/(2nRo).

The elementary solutions under the boundary condition that g vanishes at
x = x* are

[700)= FC0 7 k)] (s exp- (55

and the general solution under this boundary condition is a super-position of
these. Any distribution over the range x> x* can be analysed into such a super-
position initially, the A(k) determined from the initial condition, and the whole
temporal behaviour follows from expression (16).

The solutions for which x* is the origin have B(k) = o and are therefore a
little more amenable to handle. We use the Fourier—Bessel theorem to analyse the
given initial distribution into modes. The theorem states that

f f A(R) Jv(kx)(kx)172 dRJv(Ek' x)(k'%)1/2 dx = A(R').
o Jo
Hence applying this to equation (16) with ¢ = B(k) = o we find

f : &(h, 0) JyK'x)(k'x)17! dx = A(K). ()

Substituting these A(k) back into equation (16) yields the solution for g(A, f).
Certain special forms of g(#, o) give particularly simple solutions that we can analyse
in detail; we begin by such a study and later turn to Green’s function solution of
the general case.

2.3 Special solutions with no central couple

Consider the case when g(h, o) = Chexp (—ahl/l) = Cx? exp—ax? then
applying equation (17) and using ((30) formula 8.6-10)

A(k) = on C exp (—ax?) Jy(kx) kE1-lx1+l dx = Ck(24)~0+1) exp — (;rk;)
0
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No. 3, 1974 Evolution of viscous discs 615

Returning to equation (16) with these 4(k), and B(k) = o, we have
gh,t) = f exp [—k3(tk=2+ }a~1)] Ri+1xtd (kx) dRC (2a)~ 0D,
0
The integral is in essence the same as the last one so we obtain

2
2(h, 1) = CT~0+D42] exp— (";)

where T = 4ax—2t+1 which is a dimensionless time. In terms of the physical
variables this solution is

AV \
= (+1) _an™"
g = CT-UDp exp ( - ),
_F =% _ cT-0+D exp— (ahl”)[ _ahl/l]
F =g = CT 0 exp— =0 ) | 1= |-
g (18)
= (4mRZAY
__F _ _(olog g) _2RvA { _ahm}
“R = (27Ro) ( (2Rvd) = 7 I 79 .

For the special case of the point mass constant v solutions we have [ = },
k=2 = 3(GM)?2 v, h1'* = (GMR)? so the above solutions become

g = CT-54GMR)'/2 exp [_‘ﬂﬂ]{@f], \
= -5t xp [ - AOURE) s
F CcT €xp [ T 1 T , |
g CT5 [_a(GMRE] (18)
a 3mv P T s
ur = —3vR1 {1—4;9_(_(%‘4_1&2,}’

where T' = 12(GM)?2 vat+ 1. This solution is illustrated in Fig. 1.

We see from the formulae for F' and upg that the flux and velocity are outwards
for > (IT/a)! and inwards inside that radius. This point of velocity reversal moves
out as T increases and overtakes more and more material. Furthermore we see that
near the centre g ~ — F so that the solution has the same form as the steady state
solution with the outward flow of angular momentum due to the couple balanced
by the angular momentum convected inwards with the material.

The angular momentum distribution in this solution is interesting. The total
angular momentum within R is

R H(R)
H=J 2mRoh dR =f ghdh__ ZJ' ght/i=1 dh (x9)
0 o LR dh 4l
dR
HR) 2 ax? BRC [MR)
= K p—at1)x2 exp — () 2lx20-1 gy = ! —
H Cfo 412T %2 exp (T) 2lx21-1 dy e | ylexp (—y) dy
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F16. 1. Radial velocity, u, and surface density, o, in the disc as functions of radial distance
from the centre for the similarity solutions with no central couple. The unit of distance is
V'2R1. The distributions are plotted out three times and the spheres at R = o have volumes
corresponding to the mass that has fallen from the disc onto the central object.

where
ax? _ ahl/l
Y= =7 (20)

'This solution is a similarity solution, for the distribution of H with y remains
invariant. For the point mass solution this variable oc R?/T. Notice that the points
with y constant move outwards in time and that the angular momentum between

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

6102 Arenuer og uo Jasn saueiqi] obaiq ues ‘eluioyen Jo AusisAiun Aq 8¥6066/S09/E/89 | A0BSqe-8|01e/SeIuW/Wod dno olwapeoe//:sdpy WoJj papeojumoq


http://adsabs.harvard.edu/abs/1974MNRAS.168..603L

FI972VNRAS, 168- “603L !

No. 3, 1974 Evolution of viscous discs 617

two such rings remain constant. Similarly the mass between two specified values
of y will be
2C Ya x2C
Mz = 5. —y)dy = - —y1)—exp (—y2)}-

o= i | exp () dy = S e (<y0-exp (<3} (1)
Notice that the total mass in the disc decreases like 7! but that its distribution
spreads out such that corresponding points have £ oc T The decrease in mass is
accounted for by the mass flux into the origin

dMp
— — —(+1) = "¢
F(o) = CT 7
where C is the initial flux onto the star and
2
M D= — CcT-.
4la

While the ‘ wave form ’ of the density expands the material in the central parts is
moving inwards and draining into the origin. Thus the real matter distribution is a
growing central point mass surrounded by a density distribution which grows in
size but decreases in mass. A particular case is illustrated as Fig. 1.

As we have seen, the point of radial velocity reversal moves outwards over-
taking the material. Thus material that starts inside will move towards the origin
whereas material that starts outside will begin by moving outwards only to be over-
taken (if it is not on the extreme edge). Once overtaken it moves inwards and ends
in the ever-hungry sink at R = o. The trajectories of material particles illustrate
the behaviour rather well. If we follow the trajectory of a single particle we have
h = (dh|dR) up = — 412«~2h1-1Y1 — ah1/![IT} that is

a dhl/t ahl)
I dT = ‘{“'sz’
which integrates to give
pit = (g) [aho/i—1log T1 (22)

this gives the paths traced out by the particles as a function of time. They turn
around when

The convected energy flux is

ahl/t
gQ = CT-DQh exp — (-—T-) (23)
while the energy dissipated per unit area is D = (27R)™1 g(— 9Q/9R) and so
ahl/l
D = (47R2)"1 CT-"DAh exp — ( T ) (24)

The effective temperature of the disc, i.e. the temperature it would have if it
radiated like a black body, is [D/(200)]"/4 where o9 is Stefan’s constant. For a disc
about a point mass Ak oc R-1 and so this temperature is proportional to R-3/4
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32
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o
w
S
)
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o

25

F1G. 2. Trajectories of different fluid elements of the disc as functions of time. The unit of
R is 4/2R:.

just as for the steady discs, provided we restrict ourselves to the energy producing
region at small R.

Approximate solution with a central star (Fig. 3). We have seen that in the central
regions the solution has the steady state structure for zero couple. We also know
that the steady state structure for a central star only differs from the go = o solution
near the centre. We deduce that a good approximation to the time dependent
solution with a central star will be found by modifying the solution in its central
region to agree with the known form of the steady solution there. Thus a good
approximate solution will be

g0 ) = CT-0(—hg) exp— (“77) (25)

provided ahy YT is small. Once again D = (27R)™! g(—dQ/dR).

2.4 General solution with no central couple (Figs 4 and 5)

Our equation (12) for g is linear so different solutions may be superposed.
Dr Toomre pointed out to us that properties of the general solution are best
studied by use of Green’s functions. Any solution may be thought of as made up of
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Fi1c. 3. (a) Black body temperature, 9, in the disc as a function of radius measured in terms
of the central stars radius. Both diagrams are drawn for a boundary layer corresponding
to v = 1073 hy. Oy is the reference temperature defined by c0y%4mRy2 = 1GMM/Ry.
For the similarity solutions with no central couple M varies with time like T-5/% and so
Oy oc T—5/18, (b) The luminosity produced by the disc and boundary layer within radius R.
The unit of TS L is the initial luminosity of each of the disc and the boundary layer.
Both diagrams are drawn with the maximum boundary layer luminosity (that which is
achieved for a very slowly rotating central star).

elementary solutions whose initial density distributions are of the form
o(R1, R, 0) = (2mR1)"1 §(R— Ry)

where § is Dirac’s § function. The normalization has been chosen to make the total
mass unity. We now find how such elementary solutions behave with time. The
general solution is a superposition of these with positive coefficients. The couple
corresponding to our initial o is

dh

g(h1, b, 0) = 2RvA (Zﬁe) S(h—h1) = 412k—2hy2VI8(h—hy) = 22y 2-18(x— 1)
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620 D. Lynden-Bell and J. E. Pringle Vol. 168
g(h, h, t) follows on using equation (17) to determine 4(k) and (16) for g

A(k) = 2lk2x, k11T (k)
so from (16)

g = 2l 2xlxl f k exp — (k2k=2t) J (k1) Ji(kx) dk.
0
The integral may be found in Tables of Hankel transforms and so

R (m—@z) s (@) 6

g = 2lk w27y P\ o7 2 (T, (26)

where T, = 2«72¢/x12 and S ,(3) = (exp—2) I,(2) and [,(2) is the Bessel function

of imaginary argument. If the actual initial distribution is g(k1, o) then at later
times

© —1—1ql 2
_ o gy X1 (x.l,,—:x)] P (@)
g(h, 2) fo g, o) T, exp [ZT*MZ ! T, dx1 (27)

where & = hl/2l as previously.

8 T T T T T

6: ]
o] ]

00 04 2.4

X/X

Fi1G. 4. The surface density distribution with radius at four times for the & function initial
distribution of the disc. The lower dotted modification corvesponds to a central star whose
radius is 102 in these units, while the upper modification corresponds to the solution in which
a no-central-flux boundary condition is imposed, corrvesponding to the throwing off of the
disc by a strong magnetosphere.
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The function #)(2) has the form

£(E) = ) 3 ¥R+ R)Y
hence for

xfer KT
1 LT,

the elementary solution has the form
x\ 2 52
= @ et ()T e ep— ()
4 ( ) 1 X1 * p ZT*xlz
which has precisely the form of our special solution. Hence after sufficient time

each elementary solution approaches the form of our special solution. Since those

in turn have steady state form near the origin we see that all solutions attain that
form there.

30 T T

ol L

l
2
%
F1G. 5. The luminosity of the disc as a function of time for the 8 function initial condition
in the no central couple case. The boundary layer contributes an equal luminosity. Compare
the vise and fall with the luminosity curves of U Gem variables for which the unit of T is

about o's5 day. For long times the solution approaches the similarity solution of Figure 1
with L oc T—5/4,

2.5 Solution with no central flux

In our discussion of X-ray sources we shall find it important to consider the
situation in which the corotating magnetosphere is sufficiently strong to resist the
influx of matter. The relevant solutions are those with no flux of matter onto the
central body. Such solutions are approximately those with dg/0k = oath = o. The
solutions of equation (15) with this behaviour are the J_; solutions, the J; solutions
must be omitted (we have o<l<1). The B(k) may be found because equation
(17) remains true when J; is replaced by J_; and A(k’) by B(R).

Analogously to our special solution (18) we deduce the similarity solutions with
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no central flux to be
2 B/
g =gT"lexp [_a%] = g1 T lexp [—‘LT—«]
ahl/!
F = _g'(k) = glahl/l—lTl—Z CXP [—T]
. (28)

= (4nR%A)

_F _ dlog g ahl/l-1
UR= GGuRo) = 2R T = 2RvA Ty

where 4 = —}R(dQ/dR) and g, is a constant.

(Note that other special solutions may be obtained by differentiating with
respect to ‘a’ but we shall not discuss them as they are not similarity solutions.)
Returning to the solution above and using equation (19) we have the total angular
momentum within R

R (_a_xz)
=g ) fOT exp T 2lx dx
Tl Y¥(R)
= Kk2g1 7 (4la) exp (—y) dy

from which one checks that H = 2o, also the total mass between R; and Ry is
My = 45;1 al-1 y—‘ exp (—y) dy

which is constant if Ry and Ry are chosen to change so that y; and ys are both
constant. Note y = ax2/T = ah'/!/T. This demonstrates the similarity form of
the solution.

The convected energy flux is of course gQ, while the energy dissipated per unit
area is

“””’), (20)

= (47R?)1 g1 714 exp (— =

and the effective temperature in each ring is ($D/oo)l/4 where o¢ is Stefan’s
constant.

It is also worth recording here the corresponding Green’s function solutions
for the no central flux case. They are for unit mass in the disc

g = 2lk2 (gi)l Ty 1exp [—%E?*_x—l%—z] I [(leT*)] (30)

where we use the notation defined under the analogous solution (26). Taking the
limit of small x we find go = 2" Uk=2(x12T )L [T(1 — )]t exp — 3Ty 1. This
couple starts small and rises to a maximum where T, = 1/2(/— 1) when it achieves
the value

gane = 41 [ 2] (M=)t exp (1),
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3. APPLICATIONS
3.1 Galaxies

The main difficulty in applying the above considerations to galaxies is the
calculation of the frictional mechanism. In application to the Galaxy molecular
viscosity in the gas is negligibly weak so any evolution of this type will be due to
turbulent eddy viscosity or to some form of magnetic friction. The theory of both
these is still in a lamentable state so only the crudest of estimates can be made.
Some check is obtained from observations of the velocities of interstellar clouds
and of the galactic magnetic field in the solar neighbourhood.

(i) Eddy viscosity. Although there is considerable random motion of cosmic
clouds, both in the solar neighbourhood and elsewhere, it is not at present clear
what determines the magnitudes of these motions and whether they are at all
related to the rate of shearing caused by the differential rotation. It seems most
likely that these random motions are associated with star formation and as we have
no clear idea of that subject we cannot write down equations that determine the
amount of random motion as a function of distance from the galactic centre.
However, it is possible to obtain an idea of this velocity dispersion from the 21 cm
line observations.

It is likely that galaxies suffer some weak large scale gravitational instabilities
but it is not clear that these can lead to the small scale motions that are observed.
Such could be the case through the spiral-shocks discussed by Roberts (5).

The formula for the kinematic viscosity may be deduced from that given by
Jeans (6) and we find

v =4

where [; is the mean free path of a cosmic cloud (assumed to be independent of its
velocity) and ¢ is the mean speed of a cloud. For cosmic clouds collisions will be
inelastic so it is reasonable to take /; to be independent of ¢. For clouds filling a
fraction f of the volume the mean free path is approximately a/f where a; is the
radius of a cloud. In the neighbourhood of the Sun we find typical values of the
order of a1 ~ 10 pc, f ~ {5 and for the velocity dispersion in one direction 5 kms™1,
This should be approximately (7/8)1/2 ¢ so ¢ ~ 8 km s~1. Thus

v=31x8x%x100 = 250 km sl pc = 8§ x 1025 cm2s71,

In solution (18) for ¢ we see that significant evolution has taken place when T = 2
that is ¢t = }«2/a.

If to fix ideas we take a constant kinematic viscosity then approximating the
galaxy’s rotation by V' = constant that is / = %, we find a=1/2 is the initial angular
momentum scale and the time for things to happen is ta=1Vy=2y~1.

For (al2Vp)1 = 1kpc we have ¢ = 109yr.
For (al2Vg)1 = 10kpc we have ¢ = rollyr.

Thus the effective viscosity of interstellar clouds has important effects on small
scale distributions close to the galactic centre but probably does not grossly affect
things close to the Sun. Itis not unlikely that ¢ actually increases towards the galactic
centre as was deduced indirectly by Schmidt () and directly for the expanding arm
by Rougoor (8). Their data are fitted within the errors by ¢ oc R~ this implies
voc R1oc il and I = 1. If we write Ry = a1/3[V so that Ry is the initial
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length scale of the density distribution then the condition of significant evolution
T>2, t>«?/4a gives t>4x 107 R13 yr where R; is in kpc. For ¢ = 1010 yr this
condition is satisfied for

R; <6 kpc.

We deduce that frictional evolution of the distribution of the interstellar gas,
although negligible in the outer parts of the Galaxy under present conditions, is
likely to be important in the inner parts. At 100 pc from the centre it might be
important on the 10 to 105 yr time scale. This conclusion would be seriously
modified if the whole central region rotated uniformly, but the observational evi-
dence of Rougoor and Oort does not show uniform rotation. If Becklin and
Neugebauer’s results at 2:2 um are interpreted as a stellar density distribution then
within 10 pc of the centre (9) the circular velocity is only weakly dependent on 7,
varying like #0-2 approximately, assuming that there is no black hole at the centre.

Although on first inclination one might assume that both the angular velocity
and the surface densities approach some uniform values at the centre, we show in
Appendix II that such a situation is actually unstable in the presence of viscosity.
We have earlier demonstrated that this secular instability is also realized in the
absence of viscosity, provided that there is a magnetic field. We deduce that the
angular velocity is unlikely to become uniform at the centre so that something
closer to Mestel’s law V' = Vjy is likely there. Under these circumstances viscosity
will be important in forming a central mass.

When a galaxy is first formed there will be much more gas about and both the
scale and the speed of non-circular motions must be much larger than those we
find here today, since it is unlikely that galaxies are made in any carefully balanced
equilibrium. As a result the effective viscosity will be greater yielding a shorter time
scale than those we have calculated and the surface density of gas will be larger
leading to the generation of larger fluxes and a larger central mass. We have sug-
gested elsewhere that quasars and galactic nuclei arise in this way (x0).

(ii) Magnetic friction. With the magnetic field frozen into the interstellar gas
almost any shearing motion will increase the magnetic energy. The shearing will
then be opposed by magnetic forces which will depend on the detailed configura-
tion of the magnetic field. Only when the direction of shearing is along the magnetic
field lines, can this be avoided. Observed fields are not so directed, so we must
consider what will happen. Presumably the field will be stretched, and therefore
amplified, until it is able to react back strongly enough to break out of the con-
figuration that leads to its continual amplification. Thereafter a rather chaotic
cycle of amplification followed by breaking out might well continue. We have not
found a satisfactory way of analysing such a situation with any accuracy, although
rough estimates were given in (3) and (x0). Likewise we have not been able to find
suitable small scale experiments to investigate such processes.

3.2 Discs around stars

A number of interesting questions may be investigated using our basic solutions:

(a) What is the behaviour of the material left around a star after it has formed.
Here solution (25) is relevant, provided that any magnetic field of the star is
dominated by the weight of material left around it. The disc spreads to accommo-
date the angular momentum but the inner parts of the disc lose angular momentum
and fall onto the star.
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(b) A ring of material with specific angular momentum 4; is deposited about
a white dwarf or neutron star by its companion in a binary system. What is the
time dependence of the ensuing radiation? There are two cases according as the
material finds its way down onto the star or is expelled by a magnetic torque. The
first case corresponds to solution (26) and the second to (30).

(c) If the magnetic field is so strong that it dominates over the material, then
all the material within the corotation point will fall on the star on the timescale of

free fall while the remainder will be expelled following the solutions with no central

flux. The no central flux solutions (28) and (30) are appropriate to the expulsion
phase. If however the magnetic dominance ever fails at the corotation point, then
material will again get into the region where the magnetic field slows it downward
this will lead to further accretion into the star.

To apply any of our basic solutions we must have a value for the kinematic
viscosity v. As is usually the case in astrophysics ordinary molecular viscosity is
inadequate to effect any substantial evolution over the age of the stars. However,
the Reynolds numbers Q,R,2/v which are involved are very large when v is the
molecular viscosity. This suggests that pure smooth Keplerian flow is likely to be
disturbed by turbulent eddies. We suggest that in most fluid dynamical problems
of this type these eddies are fed with energy until the eddy viscosity reaches that
value at which the effective Reynolds number is reduced to the critical one for the
onset of turbulence. Further increase in the eddies would increase the viscosity so
much that the tendency to create further large scale eddies would be cut off. On
the other hand any lesser value will lead to a flow which has a tendency to create
further turbulence. Thus we take QR 2/veaqy = Z. the critical Reynolds number.

From experience in other fluid dynamical problems it is reasonable to take
% ~ 103. This gives the eddy viscosity v = 1073 h,. We shall hereafter work
with this value of » but we shall take care to mention how changes in the adopted
value of v will affect the results.

3.3 T Tauri and flare stars

Well-known problems connected with the shedding of angular momentum
during star formation, and the formation of planets lead one to expect that stars
form with excess angular momentum which may well be initially stored in discs
around them. Before tackling the problem of the evolution of such discs it is
convenient to gather together the disc formulae appropriate to solution (25) in a
form convenient for application.

Formulae:

Let Ry be the radius corresponding to the standard deviation of the gaussian
density distributions at 7" = 1, the initial time. Then in equations 18’ and 25 we
have

a = {GMR,)2,

and assuming R1>R*.equation (21) gives the mass of the disc*
Mp = 2Ri2v-1CT-V4 = M, T-V/4

* A more accurate formula is derived by integrating 27§ R dR from Ry to 0.

Mp = §R®v-ICT V4 1-123 Y124+ 31YV2 - L V44+ L V6—, ]
where

2 ,
Y 2R2T
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if we write M, for the initial disc mass. We have
C = %VMlRl“z, T = 12(GM)2vat+1 = 6vtR12+1
the flux onto the central star is
(=F)y =M= —Mp = %MlRl—ZvT—5/4—>4—]‘gll/4 v VAR 1/2t-5/4  for T>1.
From equations (1) and (25) the density outside the boundary layer is given by

M, T-5/4 R,\1/2 1 [R\2
o= (=(R) ) oo |3 ()]

and the inward velocity by

R,\1/2]-1 R2
- Sl (] e

The energy liberated in the boundary layer is §(GMM|R,)[1— Qo2R,3/GM] per
unit time. For a central star rotating at significantly less than break up speed the
square bracket is close to unity, and for the sake of definiteness we consider this
case. Then the power generated in the boundary layer is §GMM|R,, and provided
R1> R, the power generated in the rest of the disc

* DamRdR

Ry
is the same. In fact D is the same as for the steady disc case except for Rx R;.
Since little power comes from those regions we may write
GMM R\1/2
D =3 UMM ()
v (&)
This dissipated energy heats the disc which then radiates on both sides with an
effective temperature 6(R) equal to ((D/200)!/4) where ¢ is Stephan’s constant.

Thus
0R) [ B (5)—1/2] 1/4 (5)—3/4 )
=3 -5 R, (see Fig. 3)

* *

where the reference temperature

0 GMM V4 (Gpy T\1/4 Lp \14
¥ (—SWR*%) B ( 60:‘4) B (4-7TR*20'0) )

Lp is the total luminosity of the disc excluding the boundary layer. When the
optical depth through the disc is greater than unity the actual temperature of the
radiation is close to (R). Notice that when the disc radiates the same amount of
light as the central star then Lp = L, so 0, is then the effective temperature of the
star. In this case the disc is significantly cooler than the star, but, as we should
expect, the boundary layer’s temperature 6y, is hotter. The greatest temperature in
the main disc is 0°595 0y at R = £§ Ry. To calculate its spectrum we take each part
of the disc to radiate like a black body of temperature 8(R). The spectral distribu-
tion per factor ¢ in frequency is then

-]

AFy = 4mhc?\—4 47R aR
exp [ 2mhic ]_ :

EAO(R)

Ry
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Writing the integral in terms of X = R/R,, and A, = (27/ic/31/4k0,) we obtain*
3k40,4 )\_*)4 ® XdX

E27rﬁ)3}( exp [{\)_ie (1—X-L/2)-1/4 X3/4] —1.

AF, = {8772R*2c2 .

1

Using the full expression for Stephan’s constant and the definition of 6, the curly
bracket is related to the total flux by {bracket}

{ }=457"4Lp = 4577 (%GMM)
Ry

In the above A is the wavelength of light emitted: in terms of frequency distribution
AF, = vF, and v[vy = Ay/A where here the v is a light frequency and not a kine-
matic viscosity. The integral was computed as a function of Ay /A and the total
spectrum is plotted as Fig. 6. Notice that the peak in AF, comes at the peak of a
black body of temperature 107172 §,.. Notice that 8, is set by the accretion rate to
the power of one-quarter gl % = $GpylM. Since for T> 1,

M = 16-V/AM;y~1/AR,1/24-5/4

neither luminosity nor 6, are strongly dependent on precise values of v and even
R; only enters through its square root.

A low estimate of the boundary layer temperature, 6y, is obtained by assuming
that it behaves as a black body of constant temperature and thickness §. We then
have

—— Qo) 2
ooOp24mRyS = IGMMR,1 [I= (ﬁ) ]

*

Using the value of § from Appendix 1 equation (A6)

Oy R,\1/4 Qo) 2] 1/4 B\ 1/6 Qo) 2]1/4 s
ot 6 I e N o N E G R

where, at the last step, we have assumed that Q¢2<Q.2 and v = 1073h,. In
practice the boundary layer is not usually optically thick and the temperatures are
hotter than this as a result.

Inhomogeneities in the disc. Although viscosity smears out density differences
radially, nevertheless a turbulent disc will have density clumps within it which
form and decay with the turbulence. A lump entering the boundary layer or
atmospheric ¢ entry ’ zone yields its kinetic energy in a short time and so produces
a flare. The shortest time scale involved in such a flare depends on the rate at which
the lump burns up its translational energy as it enters the atmosphere. We find this
time scale # to be approximately #; = 6Q,71(b/Ry)'/2 where b is the scale height
of the atmosphere and €, is the angular velocity of the star-grazing orbit. Using
b = kbo/(geymu) and gy = GM|R? we obtain t; = 6(kOo/mm)l/2 g,~1 where mg
is the mass of the hydrogen atom and 0y is the star’s effective temperature. We note
that this time scale is inversely proportional to the star’s surface gravity.

* The integral gets its major contribution in the range below X = (A/A4)%/3. For large
A the integral is proportional to the square of this effective cut-off and is thus proportional
to (A 2A4)8/3. Thus for small frequency v: vF, = AF, oc v#3 while for large v the behaviour
is similar to Plank’s law. The approximation F, oc v¥/3/[exp (hv/RT)—1] gives a rough fit
to the computed values which are plotted in Fig. 6 (left-hand hump).

41
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F16. 6. The full spectrum of the disc around a slowly rotating star; if the star rotates near
break up speed then the boundary layer contribution is greatly reduced. The unit of lumi-
nosity varies with time like T —5/% and the unit of frequency, vy, like T —5/18, Dotted curves
show possible positions of the spectrum of the central star. If we assume that it is constant
then in our shrinking units of luminosity it will grow with time from the smallest curve
giving § of the disc luminosity to the next, equal-luminosity case, and on to the 2 x and 4 x
positions in which it dominates the spectrum.

Applications. To fix ideas imagine that each main sequence star when formed
has a disc with R; = 20 R, and a mass M; = {M. Our formulae deduced in the
assumption that R1> R, is then good initially to an accuracy of better than 20 per
cent and they improve in accuracy because the disc expands as time passes. If we
take v = 1073k, we have from equation (18’)

T=15x100%Q2+1 = 15x 1075 Qu(t+ 1)
where

3
t1 = §x1075 Q1 = 109 (}I;i) (]\]‘_%) s ~ 30yr.
o} *

The mass flux from equation (21) is
M = 3 1075 QuMT-54 = 2.0 MQ,~1/4(t + 1;)~5/4
and the luminosities of each of the disc and the boundary layer are

_ GMIf _

L R,

10 GM2R,~1Q,~V4(1 4 £1)-5/4.
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For the young Sun at 104 yr old this gives a disc luminosity of 1035 ergs™l at a
temperature of about 10712 0, = 4100 K plus a boundary radiating a similar
amount at 41 000 K. After 1-4 x 105 yr the boundary layer and the disc still radiate
with one solar luminosity the one is a factor 101/2 hotter than the Sun the other a
factor 1012 cooler. For the first 30 yr the disc about the Sun is shining at some
1038 erg s~1—a value that encroaches on the Eddington limit at which radiation
pressure balances gravity. The temperature of the disc would then be 23 000 K
but it is unlikely that our model is accurate in that regime.

TaBLE 1

Disc luminosity and disc temperature as a function of age and the star’s mass

Only discs to the left of the continuous line are brighter than the central main sequence
star. Discs to the right of the dotted line are not optically thick. The temperatures will be

higher in reality through the optical thickness effect and because of the radiation from the
central star.

M Age 104 105 108 107 108 10°

M, years

5 L ergs™! 96.10% 55.10%% 31.10%8 1} 17.1032 9'6.1030 5-5.1029
10-1/2 9, K 3600 1800 860 | 420 210 102

1 L ergs™! 1.10%%  5:6.1033 | 32.10%% | 1-8.103! 1.1030  §5-6.1028
10129, K 4100 2000 98 | 480 240 116

o4 L ergs™! 2:8.10% 1'5.10% | 8:8.103! | 5:0.1030 2-8.1029 1-5.1028
107129, K 4600 2300 1100 | 540 270 130

o1 L ergs™l 3:9.10%3 2:2.10%% 1-3.10%1 | 7°0.1029 | 3:9.1028 2:2.10%7
10712 9, K 4900 2400 1200 | 580 280 140

When the boundary layer, the star, and the main disc are all of equal luminosity,
the boundary layer will always be at least 101/2 times hotter than the star and the
main disc about 101/2 times cooler. The spectrum of the disc is flatter than a black
body towards the red; at low frequency, v, it varies as Fv oc v1/3 rather than 12.
The boundary layer contribution will be mainly in the ultraviolet and due to the
inherent suddenness of the entry of orbital material into an atmosphere the boun-
dary contribution may well be variable. These variations in the ultraviolet may be
of short duration down to

_ ¢ (ROo \172 ﬁ%) ... b0 (Ra(:)2 (]WO) .

while the main disc in the infrared and optical should show longer term variations
on the time scales down to #; = 3400 Q1 = 54 x 108 (Ry/R)32(Mo[/M)1/2 s~
2 months. In the above 6 is the star’s own effective temperature. T Tauri stars
have large infrared (12) and rapidly variable ultraviolet excesses (13). They are
clearly young and associated with stars of solar mass and below in their formation
stages. 'They have strong and broad emission lines (14) and if these widths are
interpreted as a rotation then they agree with a total width of

2QuR, sini ~ 875 sinikm s~1,
the orbital velocity spread. While T Tauri stars occur in clusters of up to 108 yr
age range, the older clusters have flare stars of progressively later spectral types (15).

Clusters of 108 yr old have M-type flare stars, while younger clusters have K-type
flare stars as well (16). Kunkel finds that the energy contained in flares of the local
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UV Ceti flare stars is less than 1 per cent of the stellar output (17), and that for all
flare stars the flare time scales are inversely proportional to stellar gravity as found
in the last section (x8). This increases our confidence that flares are the result of
agglomeration of matter in old discs entering the stellar atmosphere. It is probable
that a fraction of the braking of such material will be magnetic and so it is not
unreasonable that Lovell (19) should have found 1 per cent of the flare energy to
be emitted in the radio region. Flare stars are associated with young clusters and
it is probable that as old T associations age they become associations with flare
stars. We suggest that these phenomena occur as follows:

1. When a disc is brighter than its parent the star is called a T Tauri type star.
These stars are typically somewhat under a solar mass but, being brighter and
redder than their solitary equivalent, lie above the main sequence. Exceptionally
when the disc is more than 1000 times brighter than the star around which it lies
then it may be to the left of the main sequence. Such stars are known and we
predict that they evolve to the red and down in the H-R diagram following
L oc 64, Table I.

2. In the later stages such discs become dimmer than their parent stars and the
density in them drops. The disc breaks up into condensations which are slowly
accreted onto the star causing the flares. Table II. Notice from Table II that disc
effects last less long for bright stars although related phenomena occur (20).

TaBLE II
Disc variation times and ages as a function of stellar mass
M tr te to ti t1/2 %%
M, min months years years years
5 12 5°1 56 X 103 61 4 X 10°
1 2°5 2°0 14X 105 30 1x107
04 I 1°5 8-8 x 105 18 6-3 x 107
o1 025 048 1°4 % 107 5-8 IX10?
tr flare time scale,
te time scale for traversal of energy producing region by a material element,
t. time until disc, boundary layer and main sequence star will all have the same
luminosity,
t; initial evolution time scale,

t1/2% the time scale for which } per cent of the main sequence stellar luminosity can come
from the boundary layer. Kunkel estimates flaring activity gives <1 per cent of
the average stellar luminosity in flare stars.

3.4 Dwarf novae and binary X-ray sources

Dwarf novae are binary systems which are thought to be composed of a bright
white dwarf and a less luminous (often invisible) late-type dwarf which is filling
its Roche lobe (21). The systems have typically masses of 1 M and binary periods
of a few hours to a day. The prototype is U Geminorum. Every 100 days or so,
U Geminorum suddenly increases in brightness by Amy ~ 5™ in a few hours and
then returns to its normal brightness after a few days (22). It is probable (Bath)
that these regular outbursts are caused by periodic dumping of mass (about
10-9 M) onto the white dwarf by its companion (23). The transferred mass has,
in general, too much angular momentum to fall directly onto the white dwarf,
and initially forms a ring which evolves according to solution (26). The physical
implications of this solution will be discussed elsewhere and for the time being we
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merely draw attention to the similarity between the decay of L() in Fig. 5 and the
decay of a typical U Gem outburst.

Similar considerations apply to the binary systems that contain compact
X-ray sources (24)—(29). In particular in the system Her X1/HZ Her if we attribute
the gradual decay of the 1o-day ‘ on ’ state of the 354 cycle to an abrupt (<1 day)
cut off of the mass transfer rate for HZ Her, then the decay rate predicts a viscosity
v ~ 1073 iy in good agreement with our assumption throughout.

3.5 Magnetospheric dominance

A rough estimate of the couple that a magnetosphere exerts when it is invaded
down to a radius R; (= R, the corotation radius) is obtained by assuming that
every line of force that would have crossed the equatorial plane beyond R; is
dragged backwards by the disc so that it meets the equator at an angle of 45°.
This gives a torque of

© 5 Ba® (Ry)® 2 1B.2R.6R,~3

&= 2% |ZF) 27R2dR = L1B,2R,5R;
R 47 \R

where B, is the equatorial magnetic field of the star. The maximum possible

couple occurs when R; = R, the corotation radius given by GM/R,3 = Q2 that

is gmax = 1B42R5Q02/(GM). The steady constant couple solution will be given

by g = gi, R> R; and so the approximate similarity solution by

A
g=giexp( T ),

R>R; with g; = ginTV ! that is R; oc T1-0/3 oc TV4, This is the approximate
modification of solution (28). It is interesting to note that the couple on the star
falls off like 7'—3/4 so the star will slow down with Q¢ = K— L7T1/4 where K and
L are constants. As R, oc Qo2 we see that eventually the condition R;> R, will
be violated and after that a flux of material will fall through the magnetosphere
and onto the star. The basic solution changes at this point to one in which the star
continues to slow down but accumulates material in such a way that R; is kept
equal to R,. Almost all the material will end on the star which will rotate very
slowly but a small disc will exist from the now-large-R, outwards, carrying all
the angular momentum. In a binary system this conclusion will be modified since
some material ends up on the companion.

In solution (30) the central couple rises to a maximum and then decays. If the
central star has a magnetic field it will only manage to expel all the disc if the
maximum couple called for by solution (30) can be met by a magnetic couple
<1B,2R,5Q02/(GM). If that is not the case the magnetosphere will be invaded
deeper than the corotation point and the inward flux will only be halted if the disc
dies so that the magnetosphere can reassert itself at the corotation point. It is clear
that there are interesting phenomena to investigate here.
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APPENDIX I
THE STEADY VISCOUS BOUNDARY LAYER
The equations of motion read
ou.Vu = —Vp+div (2ne)+ V([{— %) div u]+ aVi;

considering a cold gas for simplicity and therefore omitting the pressure term and
writing down the components, we have

[ar (%) ~55] = 2% (1 ) +21 5 (%)
+'a% [(C ~ ) I»R—é% (RuR)] —o QR%’-{ (A1)

0 1 0 0Q
_ = 3 °°
OUR R (Ru¢) 72 R (nR aR)' (A2)

In the steady state the continuity equation yields constant flux F = 27Roug; so
we may re-write the above equation F dh/dR = — 0g/0R, where g is the couple
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g = —voR3dQ|dR and vo = 7. Integrating we get g = (—F)(h—H), where H
is the value of Ru, at which g and dQ/dR vanish. Writing the full expressions for
g and F into this last equation and solving for ur we have
dQ dQ
"dR 4R
UR = — = (A3)
Q—HR2  Q—Quax

where QO = u,/R = h[R2.

We now substitute expressions (A3) for ug and solve equation (A1) for Q
using the constant flux condition to eliminate o. If we use the dimensionless
variables v, w and x defined by
(A) R = Ry +x8 where 8 is the thickness of the boundary layer and « is of order
unity within the layer.

dQ dw
v dx _ dx
(B) Up = (3) v where v = I vl — (Ag)

-1/2
©) w=g(%1§) we<r
*

then the resulting equation has the form

e (5) 72 d (R °0) e [0 D getmo)

+[ d”+(n— Drs (Rv)] (log Ro)

R\3
8 (GM_ ¢, 3p \](Re 2(1_‘”2 (E)) A
[ (R oo | (RN == (s
wheren = [y, v has been assumed constant and wy, is the value of w when R = R,.
Notice that the final bracket is a dimensionless measure of the imbalance of centri-
fugal force and gravity which varies from unity at the star to zero as R - oo. By

construction each major bracket in the above equation is dimensionless. Further
by our assumption that x is of order unity all these brackets save possibly

[ (7 ~00m)]

are made up from expressions of order unity. Thus we must choose our as yet

indefinitely defined & so that this can indeed be true. We achieve this by taking the

bracket to be unity. The boundary layer thickness is then
5 = 213 (%]‘_/-’— QR )‘1/3.

*

(A6)

"The details of the boundary layer behaviour can only be found by solving equations
(A4) and (As5) simultaneously, but as we only need the above estimate of boundary
layer thickness we shall not do this here.

It is of interest to discuss how the situation with a slowly rotating star and a
boundary layer changes as the star is taken to have a more rapid rotation. Notice
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that as centrifugal-force-gravity balance is approached at the star’s equator so the
thickness of the boundary layer & becomes larger. Eventually, just before centrifugal
force gravity balance is achieved, w will cease to have a maximum within the boun-
dary layer and our argument for taking gc = o will then cease to hold. Finally
for a star in exact centrifugal force gravity balance no boundary layer occurs and
the disc solution (18) is valid right up to the star’s surface. Whenever the viscous
couple does not vanish there is the energy flow gQ into the viscous disc. In the
special case of centrifugal force gravity balance this flux of energy is double the
total power that becomes available as the material descends from orbit to orbit
down to the stellar surface.

If we imagine a rigid star rotating so fast the centrifugal force is stronger
than gravity at the equator then there is no valid solution of the type we have dis-
cussed, because the vorticity in the boundary layer is oppositely directed to the
vorticity just outside. As a result any boundary layer will be unstable. Further one
may argue that if any fluid is available at the stellar surface it will be flung off so
that the flux is outwards rather than inwards. In the absence of such material there
is no steady state in the absence of pressure and even with pressure there will be a
highly turbulent region outside the rigid star that will extend out to the radius at
which / is somewhat greater than QgR,2.

We shall not investigate this unphysical case further.

The condition that the boundary be so thick that Q no longer has a maximum
within it, is approximately the condition that just outside the boundary layer the
angular velocity shall be less than that for corotation with the star. That is
GM|(Ry+8)3 < Qo?, which may be written

) Q,\2/3
R (o) o
where Qo is the star’s spin and Q4,2 = GM|R,3.
Using expression (A6) for & this gives

v \23_ ((Q,)\2/3 Qo\ 2\ /3
() ()=~ (a))
where as before hy = Q,R,2.

If further we assume v <k, then Qo/Q, is close to 1 and the condition above
reduces to (Qo/Qy)2> 1 — A where (v/hy)2/3 = FA%3 that is A = 33/4(v[h, )12,

In summary then we have four cases:

(1) The common case Centrifugal Force <gravity and a thin boundary layer
(Qo/Qy)2 < 1—A that is §/Ry < 3A = 37V4(v[hy )12,

(2) The thick boundary layer case Q,2(1—A) < Qg% < Q2.

(3) Qo = Qy—when there is no boundary layer, and the viscous solution
continues to the star. The couple on the star provides two-thirds of the energy
dissipated in the disc in this case.

(4) Centrifugal force over-balances gravity; This case is unphysical and there
is no steady solution. Even in the presence of a flux source on the star the boundary
layer would be unstable.

This boundary layer treatment is correct for a constant viscosity, but when
applied to our turbulent viscosity problem it leads to inward velocities of order
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v[8. These are greater than the velocities of the turbulent elements so no elements
are travelling fast enough to communicate the couple outwards against the inward
flow. This is an inadequacy of treating the turbulent viscosity as a constant.

If near the star we modify our earlier argument for A, /v = %, ~ 103 by taking
the distance to the stellar surface multiplied by the velocity relative to that surface
to define the Reynolds number we then have

(QR-QR)R-Ry) _ , 0

14

- oo ()" Q8

and decreases the viscosity near the star. Since in this region we have steady state
form we can use our steady state formulae which we derived without any assump-
tions about the viscosity. These give the same energy generation in the disc as
before and

R.\1/2]-1
- )

By [(RA\Y2 Qo] R R.\1/2
= —3g 1 % | [ % i %
i R[(R) QJR*[”(R) ] R>Ry+9.

Thus within the reduced value of the viscosity these velocities are no longer faster
than the turbulent elements. The reduced and variable viscosity leads to higher
densities in the inner parts of the disc so that the same couple can be carried.
There are modifications to the boundary layer equations but once again they lead
to the conclusion that [83y — 2R, (Q,2% — Q¢?)] r,+s must be of order unity. But now
v itself contains a term (R/R,— 1) of order 6/R,; we thus obtain using our new
viscosity 8/ Ry ~ 2.2 in place of #,72/3 and for ordinary stars these new boundary
layers are so thin that they will be less than the scale height of the atmosphere
into which the disc is entering. In addition the temperature of the gas in the boun-
dary layer swells the disc to a thickness greater than the width of the boundary
layer.

In conclusion the turbulent disc has a region of modified viscosity whose
extent is of order R,. This does not effect the energy generation as a function of
radius but does lead to greater densities and smaller inward velocities taking in the
same flux. Although the energy generated in the boundary layer is the same the
layer is formally much thinner. However, it is thinner than the disc thickness and
so the temperature of the boundary layer is now set by the disc thickness and the
scale height of the stellar atmosphere. The high velocities of entry into the stellar
atmosphere keep the boundary layer hot so that any emission from this region will
be predominantly in the ultraviolet.

which gives

APPENDIX II

STABILITY OF THE UNIFORMLY ROTATING SHEET WHEN FRICTION
IS PRESENT

Earlier work on non-viscous self-gravitating slabs demonstrates that the thick-
ness of the slab is unimportant but that the effects of pressure within the plane of
the sheet are essential to a proper discussion of stability. For this reason we shall

42
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neglect the thickness but take into account the lateral pressure. To do this we
assume relative perturbations in surface pressure and surface density are propor-

tional
Afp dz Afpdz
=Y

jpo dz fpo dz

when pg and po are unperturbed pressures and densities and the integrations are
performed right through the thickness of the disc. For a uniform unperturbed
disc we have on denoting perturbed quantities at a given position by a suffix 1.

fpo dz
J-pl dz = v o1 = 020', (BI)

fpo dz

where ¢ is a constant velocity  of sound ’ and o1(= [p1 d2) is the perturbation in
surface density. We use (A1) to eliminate pressure in favour of surface density in
the equation of motion. Fourier transforming the usual perturbed equations of
motion for a uniformly rotating sheet at equilibrium we have on the disc

iwut2Qxu = —ike? T ik — vk2u+ ({4 3v) k(k.u). (B2)
o000
Acceleration Coriolis Surface Perturbed Viscous terms
Pressure gravity

where v = kinematic viscosity. {p = bulk viscosity.

Here Q is the angular velocity of the unperturbed sheet. The perturbed quanti-
ties have been Fourier analysed in the form ¢ = 6o+ o1 exp (fwt+kR) where
R = (x, y, 0). u is the perturbed velocity relative to axes that rotated with angular
velocity Q and 1 is the perturbed gravitational potential. The latter satisfies
Poisson’s equation

0%
V2(/‘1 = 72—2‘“—']@2!/'1 = '—“47TGO'1 8(2’)
where the appropriate solution is

g1 = IA] exp— | k| | %] (B3)

which reduces to y1 = 2mGo1[|k| on 2 = o where the disc lies.
Equations (B2) and (B3) must be supplemented by the continuity equation
which reads

iwcl-l—ik.uaoo =0 (B4)

u and ¢ may be eliminated from equations (B2-B4) by taking first the equation
(B2) k and then (B2) x k we find the dispersion relation

(:—1) {(fw)3+ ({w)? k(L + Tv) +iw[k2c2 — 2wGogo| k| + 402+ k2v({ + 4v)]
00
+ vk2(k2c2 —2mGog|k|)} = o. ' (B3)
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When v = { = o we find the familiar dispersion relation for the flat sheet:
iw[— w2+ k22 —21Gogo| k| +402] = o. (B6)

There are three modes, the sound waves travelling in each direction correspond to
the vanishing of the square bracket. We are interested here in sheets that are
ordinarily stable so we should have no solution with w? negative. The quadratic in
k must be positive to avoid such instabilities. This requires 72G20¢2 < 4Q2¢2; that
is sufficient rotation and pressure to overcome the self-gravity at all wavelengths.
However, beside these stable modes there are neutral modes with w = o, all k.
‘These correspond to distortions of the sheet into neighbouring wavy equilibrium
flows in which the velocities are balanced by Coriolis forces. When we return to
(Bs) we shall see that it is these modes that become unstable in the presence of
viscosity. They are the flat sheet generalizations of the deformations that make
Jacobi ellipsoids out of Maclaurin spheroids.

Return to equation (Bs) and denote the expression in curly brackets by E(iw).
Take modes such that 2wGogo| k| < k2¢2. Then for all positive iw, E(iw) is positive
because every coefficient is positive. Furthermore for small { and v one may show
that all the modes are damped by viscosity. However, if we assume instead that
27Gogo| k| > k2¢2 then E(o) is negative while E(c0) is positive so there is a real
positive root for iw. Since the variables behave like exp fwt this is an instability.
Now for wavelengths longer than A = ¢2/(Gago) this latter assumption is true and
c2/(Gago) is the natural length over which a pressure support could hold the body
up even in the absence of rotation. For an isotropic pressure it would be the thick-
ness of the sheet. The effect of the viscosity is to change back the condition of
stability to exactly what it would have been in the absence of rotation. So viscosity
removes the rotational stabilization. But only on the longer time-scale that the
viscosity take to act. (Notice also it is not { that causes this instability and the
presence of { alone does mot change the rotational stabilization.) A uniformly
rotating disc can only be stable when it is essentially able to support itself by pres-
sure. For this reason it seems sensible for our discussion of the frictional evolution
of non-pressure-supported discs to consider only the rotation laws in which no
pressure support is likely to be realistic.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

6102 Arenuer og uo Jasn saueiqi] obaiq ues ‘eluioyen Jo AusisAiun Aq 8¥6066/S09/E/89 | A0BSqe-8|01e/SeIuW/Wod dno olwapeoe//:sdpy WoJj papeojumoq


http://adsabs.harvard.edu/abs/1974MNRAS.168..603L

