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These notes provide an introduction to the theory of the formation and early evolution of planetary
systems. Topics covered include the structure, evolution and dispersal of protoplanetary disks;
the formation of planetesimals, terrestrial and gas giant planets; and orbital evolution due to gas
disk migration, planetesimal scattering, planet-planet interactions, and tides.
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history. Many of the fundamental ideas in the theory

of terrestrial planet formation were laid out by Safronov
(1969) in his monograph “Evolution of the Protoplane-

* Astrophysics of Planet Formation (Armitage, 2010) is a graduate 5
level textbook based on earlier versions of these notes. I plan to ets”.

tary Cloud and Formation of the Earth and the Plan-
The core accretion theory for gas giant formation

continue updating these notes as an open access resource. was discussed by Cameron in the early 1970’s (Perri &



Cameron, 1973) and had been developed in recognizable
detail by 1980 (Mizuno, 1980). The data that motivated
and tested these theories, however, was relatively mea-
gre and limited to the Solar System. The last twenty-five
years have seen a wealth of new observations, including
imaging and spectroscopy of protoplanetary disks, the
discovery of the Solar System’s Kuiper Belt, and the de-
tection and characterization of extrasolar planetary sys-
tems. Many of these observations have revealed unex-
pected properties of disks and planetary systems, high-
lighting not so much gaps in our theoretical knowledge as
a lack of understanding of how known physical processes
combine to form the planetary systems.

The goal of these notes is to introduce the concepts
underlying planet formation, via a mix of worked-through
derivations and (necessarily incomplete) references to the
literature. The main questions we hope to answer are,

e How small solid particles grown to macroscopic di-
mensions within the environment of protoplanetary

disks.
e How terrestrial and giant planets form.

e What processes determine the final architecture of
planetary systems, and might explain the astound-
ing diversity of observed extrasolar planets.

First though, we briefly review observational properties
of the Solar System and extrasolar planetary systems
that we might hope a theory of planet formation would
explain.

A. Critical Solar System observations
1. Architecture

The orbital properties, masses and radii of the Solar
System’s planets are listed in Table I. The dominant plan-
ets in the Solar System are our two gas giants, Jupiter
and Saturn. These planets are composed primarily of
hydrogen and helium — like the Sun — though they have
a higher abundance of heavier elements as compared to
Solar composition. Saturn is known to have a substan-
tial core. Descending in mass there are two ice giants
(Uranus and Neptune) composed of water, ammonia,
methane, silicates and metals, plus low mass hydrogen /
helium atmospheres; two large terrestrial planets (Earth
and Venus) plus two smaller terrestrial planets (Mercury
and Mars). Apart from Mercury, all of the planets have
low eccentricities and orbital inclinations. They orbit in
a plane that is approximately, but not exactly, perpen-
dicular to the Solar rotation axis (the misalignment angle
is about 7°).

In the Solar System the giant and terrestrial planets
are clearly segregated in orbital radius, with the inner
zone occupied by the terrestrial planets being separated
from the outer giant planet region by the main asteroid
belt. The orbital radii of the giant planets coincide with

where we expect the protoplanetary disk to have been
cool enough for ices to have been present. This is a sig-
nificant observation in the classical theory of giant planet
formation, since in that theory the time scale for giant
planet formation depends upon the mass of condensable
materials. One would therefore expect faster growth to
occur in the outer ice-rich part of the protoplanetary disk.

2. Mass and angular momentum

The mass of the Sun is My, = 1.989 x 1033 g, made up
of hydrogen (fraction by mass X = 0.73), helium (Y =
0.25) and “metals” (which includes everything else, Z =
0.02). One observes immediately that,

ZMg > M, (1)

i.e. most of the heavy elements in the Solar System are
found in the Sun rather than in the planets. If most of
the mass in the Sun passed through a disk during star
formation the planet formation process need not be very
efficient.

The angular momentum budget for the Solar System
is dominated by the orbital angular momentum of the
planets. The angular momentum in the Solar rotation is,

Lo ~ kK*MoR2Q, (2)

assuming for simplicity solid body rotation. Taking
Q =29 x 1075 s7! and adopting k? = 0.1 (roughly
appropriate for a star with a radiative core), Ly =~
3 x 10*® g cm? s~!. By comparison the orbital angular
momentum of Jupiter is,

L;j=Mj;\/GMga=2x10"" g cm? s~ (3)

This result implies that substantial segregation of mass
and angular momentum must have taken place during
(and subsequent to) the star formation process. We will
look into how such segregation arises during disk accre-
tion later.

3. Minimum mass Solar Nebula

We can use the observed masses and compositions of
the planets to derive a lower limit to the amount of gas
that must have been present when the planets formed.
This is called the Minimum Mass Solar Nebula (Weiden-
schilling, 1977). The procedure is:

1. Start from the known mass of heavy elements (say
iron) in each planet, and augment this mass with
enough hydrogen and helium to bring the mixture
to Solar composition. This is a mild augmentation
for Jupiter, but a lot more for the Earth.

2. Divide the Solar System into annuli, with one
planet per annulus. Distribute the augmented mass



TABLE I Basic properties of planets in the Solar System, the semi-major axis a, eccentricity e, orbital inclination i, mass M,

and mean radius R,.

a/AU e i My/g R, /km
Mercury 0.387 0.206 7.0° 3.3 x 10%° 2.4 x 10°
Venus 0.723 0.007 3.4° 4.9 x 10*7 6.1 x 10°
Earth 1.000 0.017 0.0° 6.0 x 107 6.4 x 10°
Mars 1.524 0.093 1.9° 6.4 x 108 3.4 x 10°
Jupiter 5.203 0.048 1.3° 1.9 x 1030 7.1 x 10*
Saturn 9.537 0.054 2.5° 5.7 x 10%° 6.0 x 10*
Uranus 19.191 0.047 0.8° 8.7 x 1028 2.6 x 10*
Neptune 30.069 0.009 1.8° 1.0 x 10%° 2.5 x 10*

for each planet uniformly across the annuli, to
yield a characteristic gas surface density X (units
g cm~2) at the location of each planet.

The result is that between Venus and Neptune (and
ignoring the asteroid belt) ¥ oc r=3/2. The precise nor-
malization is mostly a matter of convention, but if one
needs a specific number the most common value used is
that due to Hayashi (1981),

-3/2
2 =1.7x 103 (ﬁ) g cm™2. (4)
Integrating out to 30 AU the enclosed mass is around
0.01 Mg, which is in the same ball park as estimates of
protoplanetary disk masses observed around other stars.

As the name should remind you this is a minimum
mass. It is not an estimate of the disk mass at the
time the Sun formed, nor is the ¥ o r~3/2 scaling nec-
essarily the actual surface density profile for a proto-
planetary disk. Theoretical models of disks based on
the a-prescription predict a shallower slope more akin
to X oc r=! (Bell et al., 1997), while models based on
first-principles calculations of disk angular momentum
transport suggest a complex ¥ profile that is not well-
described by a single power-law. Observations of proto-
planetary disks around other stars do not directly probe
the planet-forming region at a few AU, although on larger
scales (beyond 20 AU) sub-mm images are consistent
with a median profile ¥ oc =09 (Andrews et al., 2009).

4. Resonances

A resonance occurs when there is a near-exact rela-
tion between characteristic frequencies of two bodies. For
example, a mean-motion resonance between two planets
with orbital periods P; and P» occurs when,
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with 4, j integers (the resonance is typically important
if 4 and j, or their difference, are small integers). The
“approximately equal to” sign in this expression reflects
the fact that resonances have a finite width, which varies

with the particular resonance and with the eccentricities
of the bodies involved. Resonant widths can be calcu-
lated precisely, though the methods needed to do so are
beyond the scope of these notes (a standard reference is
Murray & Dermott, 1999). In the Solar System Neptune
and Pluto (along with many other Kuiper Belt objects)
are in a 3:2 resonance, while Jupiter and Saturn are close
to but outside a 5:2 mean-motion resonance'. There are
many resonant pairs among planetary moons. Jupiter’s
satellites Io, Europa and Ganymede, for example, form a
resonant chain in which Io is in 2:1 resonance with Eu-
ropa, which itself is in a 2:1 resonance with Ganymede. In
the Saturnian system, the small moons Prometheus and
Pandora occupy a 121:118 resonance. If planetary (or
satellite) orbits were distributed randomly, subject only
to the requirement that they be stable for long periods,
then the chances that two bodies would find themselves
in a resonance is low. Seeing a resonance is thus strong
circumstantial evidence that dissipative processes (tides
being the prototypical example) resulted in orbital evo-
lution and trapping into resonance at some point in the
past history of the system (Goldreich, 1965).

Although there are no mean-motion resonances today
between the Solar System’s major planets, other reso-
nances are dynamically important. In particular, secu-
lar resonances, which occur when the precession frequen-
cies of two bodies match, couple the dynamics of the
giant planets to that of the asteroid belt and inner Solar
System. The vg resonance, for example, which roughly
speaking corresponds to the precession rate of Saturn’s
orbit, defines the inner edge of the asteroid belt. It is
important for the delivery of meteorites and Near Earth
Asteroids to the Earth (Scholl & Froeschle, 1991).

5. Minor bodies

As a rough generalization the Solar System is dynami-
cally full, in that most locations where test particle orbits

1 A delightful account of how it was recognized that this proximity
influences the motion of Jupiter and Saturn is in Lovett (1895).



would be stable for 5 Gyr are, in fact, occupied by mi-
nor bodies (e.g., for the outer Solar System see Holman &
Wisdom, 1993). In the inner and middle Solar System the
main asteroid belt is the largest reservoir of minor bodies.
The asteroid belt displays considerable structure, most
notably in the form of sharp decreases in the number of
asteroids in the Kirkwood gaps. The existence of these
gaps provides a striking illustration of the importance of
resonances (in this case with Jupiter) in influencing dy-
namics. The asteroid belt also preserves radial gradients
in composition, with the water-rich bodies that are the
source of meteorites known as carbonaceous chondrites
residing in the outer belt, while the inner belt is domi-
nated by water-poor asteroids that source the enstatite
chondrites (Morbidelli et al., 2000).

Beyond Neptune orbit Kuiper Belt Objects (KBOs),
with sizes ranging up to a few thousand km (Jewitt
& Luu, 1993). The differential size distribution, de-
duced indirectly from the measured luminosity function,
is roughly a power-law for large bodies with diameters
D 2 100 km (Trujillo, Jewitt & Luu, 2001). A determi-
nation by Fraser & Kavelaars (2009) infers a power-law
slope ¢ ~ 4.8 for large bodies together with a break to a
much shallower slope at small sizes.The dynamical struc-
ture of the Kuiper Belt is extraordinarily rich, and this
motivates a dynamical classification of KBOs into several
classes (Chiang et al., 2007),

1. Resonant KBQOs are in mean-motion resonances
with Neptune. This class includes Pluto and the
other “Plutinos” in Neptune’s exterior 3:2 reso-
nance, and provided some of the original empirical
motivation for the idea of giant planet migration in
the Solar System (Malhotra, 1993).

2. Classical KBOs are objects whose orbits do not,
and will not, cross the orbit of Neptune given the
current configuration of the outer Solar System.
Many classical KBOs have low inclinations, and
hence these bodies may have suffered relatively lit-
tle in the way of dynamical excitation during the
past history of the Solar System.

3. Scattered disk KBOs are objects, also with perihe-
lion distances beyond Neptune, that have typically
high eccentricities and inclinations. These can also
be described as a “hot” Classical population.

The total mass in the observed Kuiper Belt populations
today is low (M ~ 0.01 Mg; Fraser et al., 2014), though
it is commonly suggested to have been many orders of
magnitude higher in the past. The rich dynamical struc-
ture of the Kuiper Belt preserves information about the
early dynamical history of the Solar System, and is our
best hope when it comes to distinguishing between mod-
els for the formation and migration of the giant plan-
ets. We will discuss some of the popular models later,
but for now just direct the reader to a handful of repre-
sentative models that give a flavor of the physical con-
siderations (Batygin, Brown & Fraser, 2011; Dawson &

Murray-Clay, 2012; Hahn & Malhotra, 2005; Levison et
al., 2008).

The Classical KBOs have an apparent edge to their
radial distribution at about 50 AU (Trujillo, Jewitt &
Luu, 2001). There are, however, a handful of known ob-
jects at larger distances, including some with perihelia
large enough that they are dynamically detached from
Neptune and the current outer Solar System. Sedna, a
large body with semi-major axis a = 480 £ 40 AU and
eccentricity e = 0.84 + 0.01, falls in this class (Brown,
Trujillo & Rabinowitz, 2004). The orbital elements of
the detached objects do not appear to be randomly dis-
tributed, a result which could imply the existence of a
planetary perturber (Trujillo & Sheppard, 2014) or of a
massive planetesimal disk (Madigan & McCourt, 2016)
at very large radii in the Solar System. The most devel-
oped model is that of Batygin & Brown (2016), who find
that a planet with a mass of &~ 10Mg, semi-major axis
a ~ 600 AU, eccentricity e ~ 0.5 and inclination i ~ 30°
would be consistent with the observations. The possi-
ble positions of this hypothetical planet, which would
be bright enough to potentially detect in the near-term,
are constrained but not excluded by more direct observa-
tions, for example ranging data to the Cassini spacecraft
around Saturn (Fienga et al., 2016). From a theoreti-
cal perspective, the existence of Sedna demonstrates that
dynamical perturbations other than those of the known
planets are or were operative in the outer Solar System,
and it is certainly possible to imagine that an additional
ice giant was ejected from the region of planet forma-
tion and captured into a high perihelion orbit due to
perturbations from other stars in the Sun’s birth cluster
(reviewed, e.g., by Adams, 2010).

The discovery of large numbers of extrasolar planetary
systems with short period super-Earth or ice giant plan-
ets raises the question of why there are no Solar System
bodies interior to Mercury. Dynamically, an annulus of
orbits between about 0.1 AU and 0.2 AU would be sta-
ble (Evans & Tabachnik, 1999). An inner asteroid belt
would, however, be subject to severe collisional and ra-
diative depletion (Stern & Durda, 2000), so while it may
be a puzzle why there are no planets interior to Mercury
the lack of a large population of Vulcanoid asteroids is
less surprising.

6. Ages

Radioactive dating of meteorites provides an absolute
age of the Solar System, together with constraints on
the time scales of some phases of planet formation. The
details are an important topic that is not part of these
lectures. Typical numbers quoted are a Solar System
age of 4.57 Gyr, a time scale for the formation of large
bodies within the asteroid belt of < 5 Myr (Wadhwa et
al., 2007), and a time scale for final assembly of the Earth
of ~ 100 Myr.



7. Satellites

Most of the planets possess satellite systems, some
of which are very extensive. Their observed properties,
and by inference their origins, are heterogeneous. All
four giant planets possess systems of regular satellites
that have prograde orbits approximately coincident with
the equatorial plane of the planet. The regular satel-
lites orbit relatively close to their planets (in one def-
inition, regular satellites orbit less than 0.05 Hill radii
away from their planet, where the Hill radius is defined
as ry = (M,/3Mg)"3a). The irregular satellites orbit
further out and exhibit a large range of eccentricities and
inclinations. Finally, the Earth’s Moon and Pluto’s com-
panion Charon are so anomalously massive as to suggest
that they belong to a third class.

There is a consensus that the Moon formed as a conse-
quence of a giant impact event late in the final assembly
of the Earth (Benz, Slattery & Cameron, 1986; Canup,
2004). The probability of a suitable collision is moder-
ately high — of the order of 10% (Elser et al., 2011) —
and it is well-established that an impact can eject debris
that would rapidly cool and coagulate to form a satellite
(Kokubo, Ida & Makino, 2000). The principle quanti-
tative challenge for giant impact models is to explain
the extremely close match between the composition of
the Earth and the Moon, measured for example in terms
of lunar and terrestrial oxygen isotope ratios. This is a
problem? because simulations of an impact that is just
large enough to produce the Moon predict that the disk
is preferentially composed of material from the impactor,
which would have formed in at least a slightly different
environment within the protoplanetary disk. A variety of
ideas have been advanced to explain the observed compo-
sitional similarity, including strong turbulent mixing be-
tween the Earth and the initially molten Moon-forming
disk (Pahlevan & Stevenson, 2007), or a larger impact
that generated a disk with an excess of angular momen-
tum that was subsequently lost (Canup, 2012; Cuk &
Stewart, 2012; Cuk et al., 2016).

The orbits of the irregular satellites suggest that
they were captured from heliocentric orbits (Jewitt &
Haghighipour, 2007). Under restricted 3-body gravita-
tional dynamics (the Sun, the planet, and a massless
test particle), however, permanent capture is impossible.
Several mechanisms have been advanced to evade this re-
striction, including collisions of small bodies close to the
planet, tidal disruption of small body binaries (Agnor &
Hamilton, 2006; Kobayashi et al., 2012) and capture fa-
cilitated by planetary perturbations during giant planet
migration (Nesvorny, Vokrouhlicky & Morbidelli, 2007).

The dynamically cold orbits of the regular satellite sys-

2 Amusingly, early discussions of the giant impact hypothesis stress
the gross compositional properties of the Moon as motivation for
the model (Hartmann & Davis, 1975).

tems make it tempting to regard them as miniature plan-
etary systems, with an analogous formation mechanism
(Lunine & Stevenson, 1982). The compositional gradi-
ent of Jupiter’s Galilean satellites, which become increas-
ingly ice-rich with distance from the planet, is consistent
with such a scenario, and all models for regular satel-
lite formation are based upon growth in a sub-nebular
disk (for a review, see e.g. Estrada et al., 2009). Re-
cent examples of models for the feeding and structure of
such disks include Tanigawa, Ohtsuki & Machida (2012)
and Martin & Lubow (2011). It is important, however,
to recognize that satellite formation involves significantly
different physics and is, in some respects, even more un-
certain. In addition to well-understood differences in the
dynamics, neither the initial conditions for the gaseous
disk component (which is at least initially derived from
the protoplanetary disk), nor for the solid component
(which at the late epoch of satellite formation is expected
to be highly evolved), are very well known. Different au-
thors have considered qualitatively distinct satellite for-
mation models. Canup & Ward (2002, 2008) described
a satellite formation scenario (the “gas-starved” model)
within a disk whose physics closely parallels standard ac-
tively accreting protoplanetary disk models. Aspects of
this model have been further developed by Sasaki, Stew-
art & Ida (2010) and Ogihara & Ida (2012). A different
scenario (the “solids-enhanced minimum mass disk”) has
been advanced by Mosqueira & Estrada (2003a,b). In
this model the regular satellites form within a disk that
is (at most) weakly turbulent, and hence almost static.

B. Extrasolar planet search methods

The first extrasolar planetary system was discovered by
Wolszczan & Frail (1992) around the millisecond pulsar
PSR1257+12. High precision timing of the radio pulses
from the neutron star was used to infer the reflex motion
caused by the orbiting planets. Shortly afterwards the
first generally accepted detection of an extrasolar planet
orbiting a main-sequence star, 51 Peg b, was announced
by Mayor & Queloz (1995). The detection method was
conceptually identical — high precision spectroscopy was
used to measure the time-dependent radial velocity shifts
that the planet induces on the star. 51 Peg b, a gas giant
with a 4.2 day orbital period, is unlike any Solar System
object and is the prototype for the “hot Jupiter” class of
extrasolar planets.

Figure 1 shows the distribution of a sample of extra-
solar planets as a function of mass and orbital radius.
Several thousand planets have been discovered from ra-
dial velocity surveys and transit searches, with NASA’s
Kepler mission contributing the largest numbers. Direct
imaging and microlensing searches have found smaller
numbers of systems, but among them are some of par-
ticular interest for constraining planet formation theory.
Despite this bonanza, it is clear from Figure 1 that large
regions of parameter space remain to be explored. There
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FIG. 1 The masses and orbital radii of many of the confirmed
extrasolar planets, as of early 2017 (this plot was generated
from exoplanets.org). The color coding shows the discovery
technique: radial velocity (blue), transit (red), microlensing
(green) and direct imaging (yellow).
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FIG. 2 A planet of mass M, orbits the common center of mass
at distance a1, while the star of mass M. orbits at distance
az. The system is observed at inclination angle .

is, to give one example, no current method that can find
an extrasolar analog of Saturn, which plays a significant
role in Solar System dynamics.

1. Radial velocity searches

The observable in a radial velocity search for extraso-
lar planets is the time dependence of the radial velocity
of a star due to the presence of an orbiting planet. For a
planet on a circular orbit the geometry is shown in Fig-
ure 2. The star orbits the center of mass with a velocity,

M,\ [GM.

Observing the system at an inclination angle i, we see the
radial velocity vary with a semi-amplitude K = v, sinz,

K o M, sinia~'/2. (7)
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FIG. 3 Schematic spectrum in the vicinity of a single spectral
line of the host star. The wavelength range that corresponds
to a single pixel in the observed spectrum is shown as the
vertical shaded band. If the spectrum shifts by a velocity dv
the number of photons detected at that pixel will vary by an
amount that depends upon the local slope of the spectrum.

If the inclination is unknown, what we measure (K) de-
termines a lower limit to the planet mass M,. Note
that M, is not determined from the radial velocity curve,
but must instead be determined from the stellar spectral
properties. If the planet has an eccentric orbit, e can be
determined by fitting the non-sinusoidal radial velocity
curve.

The noise sources for radial velocity surveys comprise
photon noise, intrinsic jitter in the star (e.g. from con-
vection or stellar oscillations), and instrumental effects.
The magnitude of these effects vary (sometimes dramat-
ically) from star to star. However, if we imagine an ide-
alized survey for which the noise per observation was a
constant, then the selection limit would be defined by,

Mp Sini|minimum - C(ll/Q, (8)

with C a constant. Planets with masses below this
threshold would be undetectable, as would planets with
orbital periods exceeding the duration of the survey
(since orbital solutions are poorly constrained when only
part of an orbit is observed unless the signal to noise of
the observations is very high). The effect of such a selec-
tion boundary is evident in the distribution of the blue
points in Figure 1. It favors the detection of low mass
planets at small orbital radii, and has a relatively sharp
cutoff beyond about 5 AU.

Extremely accurate radial velocity measurements are
a prerequisite for discovering planets via this technique.
For the Solar System,

12 ms™! (Jupiter)
0.1 ms™! (Earth). (9)
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Given that astronomical spectrographs have a resolving
power of the order of 10° (which corresponds, in velocity
units, to a precision of the order of kilometers per second)



it might seem impossible to find planets with such small
radial velocity signatures. To appreciate how detection of
small (sub-pixel) shifts is possible, it is useful to consider
the precision that is possible against the background of
shot noise (i.e. uncertainty in the number of photons due
purely to counting statistics). An estimate of the photon
noise limit can be derived by considering a very simple
problem: how accurately can velocity shifts be estimated
given measurement of the flux in a single pixel on the de-
tector? To do this, we follow the basic approach of Butler
et al. (1996) and consider the spectrum in the vicinity of
a spectral line, as shown in Figure 3. Assume that, in
an observation of some given duration, Ny, photons are
detected in the wavelength interval corresponding to the
shaded vertical band. If we now imagine displacing the
spectrum by an amount (in velocity units) v the change
in the mean number of photons is,

AN,y

SNy = Sv. (10)

Since a 1o detection of the shift requires that d/Vp, ~

Ngf, the minimum velocity displacement that is de-
tectable is,
N2
1) min ~ #h 11
Y AN,y /dv (11)

This formula makes intuitive sense — regions of the spec-
trum that are flat are useless for measuring dv while sharp
spectral features are good. For Solar-type stars with pho-
tospheric temperatures Tog ~ 6000 K the sound speed at
the photosphere is around 10 kms~'. Taking this as an
estimate of the thermal broadening of spectral lines, the
slope of the spectrum is at most,

1 dNp, 1
Npn dv 10 kms™!

~107* m™1s. (12)

Combining Equations (11) and (12) allows us to estimate
the photon-limited radial velocity precision. For exam-
ple, if the spectrum has a signal to noise ratio of 100 (and
there are no other noise sources) then each pixel receives
Npn ~ 10* photons and dvmin ~ 100 ms—!. If the spec-
trum contains Npix such pixels the combined limit to the
radial velocity precision is,

OVmin 100 ms~!
(S'Ushot - 1/2 ~ N1/2 (13)
pix pix

Obviously this discussion ignores many aspects that are
practically important in searching for planets from ra-
dial velocity data. However, it suffices to reveal the key
feature: given a high signal to noise spectrum and sta-
ble wavelength calibration, photon noise is small enough
that a radial velocity measurement with the ms™! preci-
sion needed to detect extrasolar planets is feasible.
Records for the smallest amplitude radial velocity sig-
nal that can be extracted from the noise have improved
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FIG. 4 Illustration of the light curve expected for the transit
of a gas giant planet across a Solar-type star.

dramatically over the years. Planets have now been de-
tected for which K is as small as about 0.5 ms™! (Pepe
et al., 2011), and there are plans (e.g. the ESPRESSO
instrument on ESO’s VLT) for next-generation instru-
ments able to reach the 0.1 ms™! precision needed to
find Earth analogs. It is important to remember that
these are best-case values — many stars are not stable
enough to allow anything like such high precision and
complete samples of extrasolar planets that are suitable
for statistical studies only exist for much larger K.

Detailed modeling is necessary in order to assess
whether a particular survey has a selection bias in eccen-
tricity. Naively you can argue it either way — an eccentric
planet produces a larger perturbation at closest stellar
approach, but most of the time the planet is further out
and the radial velocity is smaller. A good starting point
for studying these issues is the explicit calculation for the
Keck Planet Search reported by Cumming et al. (2008).
These authors find that the Keck search is complete for
sufficiently massive planets (and thus trivially unbiased)
for e < 0.6.

2. Transit searches

The observable for transit surveys is the stellar flux as
a function of time. Planets emit very little flux in the
visible, so to a good approximation a transiting planet
produces the “U-shaped” light curve that would result
from a perfectly obscuring disk moving across the stellar
surface as seen from Earth. Simple geometrical consid-
erations, illustrated in Figure 4, allow us to deduce two
important facts. The transit depth (the fraction of the
stellar flux that is blocked by the planet) is,

AF  (R,\’
— = 14
= () (1)
where I, and R, are the planetary and stellar radii. For
giant planets the depth is of the order of 1%, while for




the Earth around a Solar type star AF/F ~ 8.4 x 1075,
To see a transit requires a favorable, almost edge-on,
orbital alignment. For a planet at orbital radius a,
in a system observed at inclination angle ¢, some part
of the planet will touch the stellar disk provided that
cos(i) < (R, + R.)/a. Given random inclinations, the
probability of transit is then,

R, + R.

; (15)

Ptransit =
For an Earth analog this is about 0.5%. As with radial
velocity surveys, transit searches are thus strongly biased
toward small orbital radii. Once planets are observed to
transit, the measurable properties are the orbital period
and the ratio of the planetary to stellar radius. The semi-
major axis and planetary radius follow provided that the
stellar mass and radius are known to good precision.

Transit searches have to contend with both noise and
false positives — astronomical events unrelated to plan-
ets that masquerade as transit signals (eclipsing binaries
whose light is blended with an unrelated third star are
a major source of the latter). For ground-based transit
searches the dominant noise component is atmospheric
fluctuations, which make it hard to measure stellar fluxes
to a fractional precision better than around the 1073
level. For Solar-type stars this restricts ground-based
detections to the regime of gas or ice giants. (Low-mass
stars’ smaller radii allow the detection of smaller plan-
ets, with GJ1214b having R, ~ 2.7 Rg; Charbonneau
et al., 2009). From space, depending on the aperture of
the telescope and the brightness of the target, some com-
bination of photon noise and intrinsic stellar variability
dominates the noise budget. Analyses of Kepler data
by Gilliland et al. (2012) and Basri, Walkowicz & Rein-
ers (2012) come to somewhat different conclusions, but
are consistent with the broad-brush statement that the
Sun’s noise level is somewhere between typical and mod-
erately quiescent as compared to other Solar-type stars.
The measured stellar noise levels (when added to photo-
metric and instrumental noise sources) allowed Kepler to
discover large numbers of small planets, though the real-
ized precision and limited lifetime of the original mission
proved to be marginal for the original goal of measur-
ing the frequency of Earth-like planets at 1 AU around
Solar-type stars.

The information yielded by transit detections can be
increased in various special circumstances. The obser-
vation of multiple transit signals for a single target star
provides, first, near-certainty that the photometric sig-
nal is genuinely caused by a planet rather than being a
spurious false positive (because the probability of multi-
ple false positive signals, with different periods, afflicting
one star is very small; Lissauer et al., 2012). Second,
if the planets producing the multiple transit signals are
relatively closely spaced, their mutual gravitational per-
turbations may give rise to measurable Transit Timing
Variations (TTVs) (Agol et al., 2005; Holman & Murray,
2005). The strength of TTVs is a (complex) function of

the planets’ masses and orbital elements, but in a useful
subset of cases enough information is available to con-
strain the planets’ masses using transit data alone (Ford
et al., 2012). This is particularly important for the Ke-
pler systems around faint hosts, where precision radial
velocity follow-up is difficult and time-consuming.

When radial velocity data is available for a star with
one or more transiting planets it is immediately possible
to estimate the true mass and density of the planets. Less
obviously, with sufficiently precise radial velocity data it
is possible to determine whether the transiting planet or-
bits within the plane defined by the rotating star’s equa-
tor. This is possible because, as shown in Figure 5, an ex-
tra radial velocity perturbation is produced as the planet
obscures rotationally red-shifted or blue-shifted portions
of the stellar photosphere. When this effect, known as the
Rossiter-McLaughlin effect (McLaughlin, 1924; Rossiter,
1924)3, can be measured, it is possible to determine the
sky-projected angle between the orbital angular momen-
tum vector of the planet and the spin vector of the star.
Although this is not the true inclination angle of the or-
bit, it nonetheless provides very useful information that
can be used to test theories for the formation of close-in
planetary systems.

3. Other exoplanet search methods

Several other search techniques, although less impor-
tant for our current understanding of the exoplanet pop-
ulation, have either furnished unique information or have
significant future discovery potential.

Gravitational microlensing, which works by detecting
the planetary perturbation to the light curve of a distant
star lensed by a foreground planet host, is the ground-
based technique with the best sensitivity to low-mass
planets. A planet with a mass of roughly 5 Mg was found
with this technique more that a decade ago (Beaulieu et
al., 2006). The method is most sensitive to planets or-
biting near the Einstein ring radius (the radius at which
light from the background star traverses the lens system
en route to us) which, interestingly, is at about the radius
of the snow line (a few AU). A review of the method and
results can be found in Gaudi (2010). NASA’s proposed
WFIRST mission would be able to detect a large number
of low-mass planets via this technique.

Direct imaging is presently not competitive as a means
of discovering planets that would be analogs of the So-
lar System’s terrestrial or giant planets, but is sensitive

3 The physical principles at work here long precede the detec-
tion of extrasolar planets. Detections of the “rotational effect”
(as it was then called) in eclipsing binaries were published by
Richard Rossiter (as part of his Ph.D. studying the beta Lyrae
system), and by Dean McLaughlin (who studied Algol). Frank
Schlesinger, and possibly others, may have seen similar effects in
binaries.
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FIG. 5 Illustration of how radial velocity measurements during transit can constrain the degree of alignment between the
planetary orbital axis and the stellar spin. A planet whose orbit is aligned with the spin first obscures a fraction of the stellar
disk that is rotating towards us (blue shifted). A counter-rotating planet, on the other hand, first obscures a red shifted piece of
the stellar photosphere. The shape of the radial velocity perturbation caused by this effect constrains the sky-projected angle

between the orbital and spin vectors.

enough to detect massive planets at larger orbital radii.
From a theoretical viewpoint, by far the most interest-
ing system seen to date is that surrounding HR 8799
(Marois et al., 2008, 2010). The system has four very
massive planets orbiting at projected radii that extend
out to 70 AU. As we will discuss later, it is hard to see
how such a system could form in situ. Existing survey
results show that systems similar to HR 8799 are mod-
erately rare (occurring with a frequency of the order of
1%; Galicher, 2016), but the error bars are large. An
improvement is expected with results from surveys using
newer instruments, including the Gemini Planet Imager
and VLT Sphere.

Astrometry works in conceptually exactly the same
way as radial velocity surveys, except that the observ-
able is the variation of the two-dimensional position of
the star in the plane of the sky rather than the one-
dimensional line of sight velocity. The GAIA mission,
currently flying, is expected to discover a large number
of planets via this technique.

C. Exoplanet properties

The time has long since passed when a few pages could
summarize what is known observationally about extraso-
lar planetary systems. Here, we summarize some of their
basic properties and highlight a few of the open issues
that seem especially relevant to planet formation theory.

1. Planetary masses and radii

The mass distribution of extrasolar planets has been
well-constrained by radial velocity surveys across the

range of masses associated with ice and gas giants. An
analysis of data from 2,500 stars targeted as part of the
Lick / Keck / AAT survey identified 250 planets, dis-
tributed in mass and radius as (Marcy et al., 2008),

dN
Mt 1
am, = (16)
dN 0.4
=, 1
dloga xa (17)

Relatively few planets with orbital radii beyond 5 AU are
known, but with that caveat the observed mass distribu-
tion between about 5 Mg and 10 M; can be considered
reliably determined (compare the above analysis, for ex-
ample, to earlier work by Tabachnik & Tremaine, 2002).
A relatively modest extrapolation suggests that around
20% of Solar-type stars are orbited by giant planets with
semi-major axis less than 20 AU (Marcy et al., 2008).
Most of these planets are not part of the hot Jupiter sys-
tems that were the first to be discovered, but rather orbit
at larger distances from their hosts.

The most surprising result from the Kepler mission has
been the discovery of a very large population of small
planets in short-period orbits. For periods P < 50 days
and R, > 0.5Rg, for example, Youdin (2011) esti-
mate the number of planets per star to be around unity
(N ~0.7—1.4). As with the radial velocity sample, these
planets are smoothly distributed in size with a distribu-
tion that increases steeply toward small radii. Howard et
al. (2012) found that for planets interior to 0.25 AU the
size distribution followed,

dN —-1.9
ThogE, * B (18)

down to radii B, ~ 2 Rg. Intriguingly, the data does
not display a bimodal distribution of sizes, as might be



expected based on the clear separation between the radii
of Solar System terrestrial and giant planets. Below 2 Rg
there is a decrease in the slope of the size distribution,
which may be roughly flat between 1 — 2 Rg (Petigura,
Marcy & Howard, 2013).

Masses (and hence mean densities) are only available
for the small subset of the Kepler sample that have preci-
sion Doppler measurements or useful transit timing vari-
ation constraints. It is clear, however, that the “mid-
sized” Kepler planets form a heterogeneous sample con-
taining both “super-Earths” (rocky planets with masses
and radii greater than the Earth) and “mini-Neptunes”
(planets with cores but also substantial gaseous en-
velopes). The Kepler-36 system, for example, contains
two planets in adjacent orbits, one with a mass of 4.5 Mg
and a density of 7.5 g cm ™3, and the other with a mass of
8 Mg and a density of 0.9 g cm~3 (Carter et al., 2012).
Analysis and follow-up of the Kepler data is ongoing,
but current work is consistent with a picture where plan-
ets with R, < 1.5 Rg are predominantly super-Earths,
while samples of larger planets contain a rising popu-
lation of mini-Neptunes (Marcy et al., 2014; Weiss &
Marcy, 2014).

2. Orbital properties

The distribution of giant planets in the a-e plane is
shown in Figure 6, using a sample of data taken from the
exoplanets.org database. The closest-in hot Jupiters
have circular orbits, due to tidal dissipation in the star
and planet®. At larger radii, however, the observed sam-
ple of exoplanets shows a striking spread in eccentric-
ity. The median eccentricity is (e) ~ 0.28, and some ex-
tremely eccentric planets exist with e > 0.8. One should
bear in mind that most of the detected planets are at
smaller orbital radius than any of the gas giants in the
Solar System, and many are more massive. Nonetheless,
these large eccentricities are strikingly unlike the near-
circular orbits that we are familiar with.

Several properties of observed giant planet systems are
considered to furnish clues to the origin of eccentricity
and hot Jupiters. One is the fact that “hot Jupiters are
(almost always) alone”. Around stars that do not have
a hot Jupiter, detections of multiple giant planets are
reasonably common, with Hartman et al. (2014) quoting
an abundance of 22% (this number is evidently affected
by many selection effects, so its absolute value is not im-
portant). In contrast, those systems with a hot Jupiter
(defined as P < 10 days) have an abundance of detected
companions that is only around 3%. A qualitatively sim-
ilar result holds true for lower mass companions to hot
Jupiters (Steffen et al., 2012). This paucity of nearby

4 Using a tidal model Hansen (2010) fits a circularization period
of about 3 days to similar data.
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FIG. 6 The distribution of a sample of extrasolar planets in
semi-major axis and eccentricity (red triangles). Solar System
planets are shown for comparison as the blue squares. The
dashed curve denotes a line of constant periastron distance.
The figure uses data from exoplanets.org and includes plan-
ets that have 1 M; < M, sini < 10 M.

companions suggests that the formation process of hot
Jupiters is most often inconsistent with the formation or
survival of another close-in planet.

An independent clue to hot Jupiter origins comes from
measurements of the Rossiter-McLaughlin effect for tran-
siting hot Jupiters. Winn et al. (2012) found that
hot Jupiters orbiting stars with effective temperatures
Terr = 6250 K showed a broad distribution of projected
obliquities, including some systems with polar and retro-
grade orbits. Cooler stars, on the other hand, showed a
greater preponderance of aligned planetary orbits. The
current obliquities may well be affected by tidal evolution
— complicating quantitative comparisons — but the ex-
istence of some highly misaligned hot Jupiters certainly
suggests that the formation process knew nothing about
the spin axis of the star.

The prevalence of resonant planetary systems is also
of interest. An early example was the GJ 876 system,
which contains two massive planets in a 2:1 mean motion
resonance. Unfortunately, an iron-clad determination of
resonant behavior in an exoplanet system requires de-
tailed observations that are not available for all known
multi-planet systems. Among the best-characterized
multi-planet systems containing gas giants, however, res-
onant configurations appear to be common. Wright et
al. (2011), for example, estimate a resonant fraction of
around a third. As in the Solar System, the existence of
these resonances is taken as evidence for dissipative pro-
cesses occurring during the evolution of the system (Lee
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FIG. 7 The fraction of stars that host giant extrasolar planets
is plotted as a function of the stellar metallicity, from data
(their Figure 4) reported by Fischer & Valenti (2005).

& Peale, 2002).

The above discussion of resonances applies to giant
planet systems discovered via radial velocity surveys.
The period ratios observed in multiple planet Kepler
systems show a subtle, but even more intriguing struc-
ture. Most Kepler multiple systems are non-resonant,
but there is a significant excess of pairs that are just
outside first order MMRs such as the 2:1 and 3:2 (Fab-
rycky et al., 2014). This result is not easy to interpret, as
it seems to imply simultaneously that these planets are
influenced by resonant effects while avoiding the large-
scale trapping into resonance that would be the simplest
prediction of gas disk migration models. The short as-
sembly time scale of planets in close-in orbits means that
the effects of gas disk migration are likely significant, and
hence one idea is that a higher fraction of primordial res-
onances has been subsequently disrupted. A broad range
of theoretical ideas have been studied, but there is no
consensus as to the most important physical processes
responsible for the observed Kepler systems. Paper that
discuss various aspects of the problem include Petrovich,
Malhotra & Tremaine (2013), Goldreich & Schlichting
(2014), Hands, Alexander & Dehnen (2014), Chatterjee
& Ford (2015), Pu & Wu (2015) and Coleman & Nelson
(2016).

3. Host properties

The dependence of giant planet frequency with stel-
lar metallicity is shown in Figure 7, using data from the
paper by Fischer & Valenti (2005). A strong trend is ev-
ident. Changes in metallicity of a factor of a few lead to
large variations in the incidence of detected giant plan-
ets. This is not surprising. Within the core accretion
model for giant planet formation, a prerequisite for form-
ing a gas giant is the ability to assemble a solid core of
5 — 10 Mg during the few million year lifetime of the
gas disk, and this is evidently easier to fulfill if the total
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inventory of disk solids is boosted. The same is not true
of lower mass planets. Sousa et al. (2008) found that
the abundance of Neptune analogs is not a strong func-
tion of host metallicity, and Everett et al. (2013), and
other groups, find that the same is true of the smaller
planets in the Kepler sample. These results suggest that
even if critical stages of planet formation — such as the
formation of planetesimals — require threshold levels of
metallicity (as suggested by, e.g., Johansen, Youdin &
Mac Low, 2009), it is still possible for stars with moder-
ately sub-Solar metallicity to form systems of lower-mass
planets.

The frequency of relatively close-in planets has been
measured as a function of stellar type from Kepler data.
Howard et al. (2012) find that planets with radii of 2 —
4 Rg are substantially (by a factor of 7) more abundant
around the coolest stars (T' ~ 4000 K) than around stars
with T~ 7000 K. I am not aware of a simple explanation
for this trend.

Kepler data has also identified a small number of cir-
cumbinary planets (Doyle et al., 2011; Welsh et al., 2012),
whose properties are consistent with low mass gas giants.
Estimates suggest that of the order of 1% of tight bina-
ries have such gas giants in almost coplanar orbits, so
these are not particularly rare systems. They are par-
ticularly interesting for planet formation because grav-
itational perturbations from the binary would have in-
creased the collision velocities of planetesimals above the
values seen around single stars, making it harder for cores
to grow in situ (Lines et al., 2014, and references therein).

4. Planetary structure

Empirical determination of the planetary mass-radius
relation (from a combination of transit measurements of
the radius, and radial velocity or TTV determinations of
the mass) provides a test of models for planetary struc-
ture. To leading order the expectation for gas giants
is that the mass-radius relation ought to be flat, with
R, ~ R; being a decent approximation for sub-Jovian to
several Jupiter mass planets. Actual transit data, how-
ever, shows that hot Jupiter radii scatter substantially
above and below the expected values. The undersized
gas giants are interesting, but pose no special theoreti-
cal conundrum. To first order, the radius of a gas giant
of a given mass varies with the total mass of heavy ele-
ments it contains®; hence a plausible explanation for any
small planet is that it has an above-average heavy ele-
ment content. The measured radius of the Saturn mass
planet orbiting HD 149026, for example, is generally in-
terpreted as providing evidence for approximately 70Mg

5 Whether those heavy elements are distributed evenly within the
planet or concentrated at the center in a core also affects the
radius, but at a more subtle level.



of heavy elements in the interior (Sato et al., 2005). The
inflated planets, on the other hand, are more mysterious,
since some (examples include TrES-4 and WASP-12b)
are too large even when compared to pure hydrogen /
helium models. Explaining their radii requires an addi-
tional source of heat.

The origin of the heat source needed to explain inflated
hot Jupiter radii is not fully understood, and may not be
unique. Empirically it is observed that the prevalence of
inflated radii increases with the degree of stellar irradia-
tion (see, e.g., plots in Demory & Seager, 2011; Spiegel
& Burrows, 2013), suggesting that in at least some cases
stellar heating can couple into the convective interior ef-
ficiently enough to impact the radius. Suggestions for
how this coupling might be realized physically include
substantial changes to atmospheric opacities (Burrows et
al., 2007), waves that connect the radiative and convec-
tive regions (Guillot & Showman, 2002), and magnetic
fields that generate Ohmic heating of the interior (Baty-
gin & Stevenson, 2010; Ginsburg & Sari, 2016). Spiegel
& Burrows (2013) provide a much more extensive list of
references to proposed mechanisms.

The composition of lower mass planets is plausibly
much more diverse. In the Solar System we have have
only the terrestrial planets (dominated by rock, with at-
mospheres that are negligible from a mass-radius per-
spective) and the ice giants, but the results from Kepler
show that the Solar System gap between these classes
is not a general outcome of planet formation. Taking
generality to its extreme limit, we might then consider
the structure of low-mass planets composed of arbitrary
mixtures of iron, silicates, ices and H/He. This approach
yields instructive limits: an inferred density higher than
that of a pure iron planet is unphysical, while a den-
sity lower than that of a pure silicate world implies the
existence of an atmosphere of volatiles. An analysis by
Rogers (2015) suggests that most Kepler planets larger
than 1.6 Mg have transit radii that are determined by
their atmospheres or envelopes. It is clear, of course,
that there are normally too many variables to admit a
unique determination of the composition given only mea-
surements of the mass and radius, and other constraints
are needed to break degeneracies. Such constraints could
come from additional observations (e.g. of the atmo-
spheric composition) or from theoretical priors (e.g. a
100% water planet is hard to construct outside of science
fiction).

5. Habitability

The primary long-term goal of observational exoplanet
research is to identify low-mass planets and character-
ize their atmospheres via either transmission or emission
spectroscopy. We currently know almost nothing about
the diversity of terrestrial planet atmospheres, so such an
exercise is certain to be scientifically interesting. More-
over, it is possible that we might identify one or more

12

T T T T T T T T ‘ T T T T ‘ T T T T ‘ T T T T
[ runaway maximum ]
B greenhouse greenhouse T
7000 — \\ -
L N 4
L \ 4
L \ 4
\
L N 4
6000 — Venus', -
X = 4
\ =]
~ r \ z 7
- L \ o 4
E? \ N
L \ 4
« 5000 \ | -
© L \ m \ 4
= \
n r \ m I 1
L \ = \ i
4000 (- ! = [
L ! | 4
L \ \ 4
L | | 4
|- ! ! 4
| |
3000 — \ f—
- l 1 4
L 1 | 4
Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il Il Il
2.5 2 1.5 1 0.5 0

incident stellar flux F / Fg

FIG. 8 The predicted width of the habitable zone for stars
with different effective temperatures T.g, here plotted in
terms of the incident stellar flux on the planet relative to that
for the present-day Earth. The solid red and blue curves show
theoretical estimates for the location of the inner and outer
boundaries of the habitable zone, based on one-dimensional
planetary atmosphere models that incorporate the warming
effects of greenhouse gases (Kopparapu et al., 2013). The
dashed curves show empirical estimates based on the idea
that relatively recent Venus and early Mars may both have
been habitable.

biomarkers — atmospheric constituents that have a bio-
logical origin on Earth and which would be removed from
the atmosphere by abiotic processes on a short time scale.
Oxygen is much the most important of these. If it proves
possible both to measure one or more biomarkers, and to
robustly exclude non-biological interpretations, we will
have discovered evidence for life elsewhere.

In the current absence of such empirical evidence, the
best we can do is to make educated guesses as to which
extrasolar planets have the best chance of being hab-
itable. Habitability is not a precisely defined concept,
and discussion of it invites speculation as to which plan-
etary properties are either essential or favorable for life.
On the Earth, for example, we owe the long-term sta-
bility of the climate to the negative feedback of the
carbonate-silicate cycle, by which the volcanic outgassing
of greenhouse gases is balanced against the temperature-
dependent weathering of silicate rocks (Walker, Hays &
Kasting, 1981). The operation of this cycle requires plate
tectonics, which then may (or may not) be a prerequisite
for habitability. Similarly, magnetic fields — which re-
duce the rate of atmospheric erosion due to high energy
radiation — and a stable obliquity have been suggested
to contribute to the Earth’s benign environment.



The prospects for remotely measuring all of the prop-
erties that might impact habitability are slim. We can,
however, plausibly identify planets whose temperatures
and pressures could support liquid water on their sur-
faces. The presence of liquid water on the surface is
probably neither a necessary nor a sufficient condition for
a planet to be habitable (note that in the Solar System,
there is interest in moons such as Europa that likely sup-
port sub-surface oceans), but by convention the range of
orbital radii across which planets on circular orbits could
maintain surface water is called the habitable zone (Kast-
ing, Whitmire & Reynolds, 1993). The habitable zone
varies with both time (the young Sun was as much as 30%
fainter than it is today; Sagan & Mullen, 1972) and plane-
tary mass (Kopparapu et al., 2014). The uncertain role of
greenhouse gases means that even this simplest element
of habitability is not easy to calculate accurately. Let us
first consider a planet devoid of any atmosphere. Bal-
ancing incoming stellar radiation 7R L., /(4mwa®) against
outgoing thermal radiation 47rR1270TS4 gives, for a plane-
tary albedo A,

1—A\Y* L \YY, 0 \-1/2
T, =255 —2 4 K. (1
s 55( 0.7 > (L@) (1AU) (19)

This estimate gives a temperature significantly lower
than the actual temperature when applied to the Earth
(taking A = 0.3). Clearly, an accounting for the warming
effects of the atmosphere is essential.

Two approaches have been used to estimate the extent
of the habitable zone. The theoretical approach, pio-
neering by Kasting, Whitmire & Reynolds (1993), uses
planetary atmosphere models to bracket the conditions
under which a greenhouse gas atmosphere can sustain
liquid water on the surface. The inner edge of the habit-
able zone is set by the onset of a runaway greenhouse, in
which increased surface temperatures lead to increased
evaporation of surface water (itself a greenhouse gas),
so that the entire ocean inventory of water ultimately
ends up in the atmosphere. The outer edge is set by
a mazimum greenhouse condition. Although a volcanic
planet can outgas very large quantities of COs, the max-
imum atmospheric content (and consequently the maxi-
mum extent of warming) is limited by the onset of COq
condensation. Figure 8 shows the width of the habitable
zone defined theoretically by these physical considera-
tions (Kopparapu et al., 2013).

The theoretical habitable zone is not very broad. For
current Solar conditions the inner edge is not far inside
1 AU, while the outer extent would not stretch to encom-
pass the orbit of Mars given the faintness of the young
Sun. As discussed in the review by Giidel et al. (2014)
it is likely that the true habitable zone differs from the
idealized theoretical one, due to known simplifications
(e.g. using one dimensional atmosphere models) and,
possibly, neglected physical effects. It is then useful to
consider an empirical habitable zone defined, not by the-
ory, but rather by Solar System observations. There is
both in situ and geomorphological evidence that liquid
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water flowed on Mars around 4 Gyr ago, suggesting but
not proving that Mars lay inside the outer edge of the
habitable zone despite the lower Solar flux at that time.
Less securely, there are suggestions that Venus may have
been habitable in the relatively recent past, even though
it is well inside the theoretical inner boundary of the hab-
itable zone. From these considerations we can define an
empirical habitable zone for the Solar System and, by
appropriate scaling, for other stellar types. These limits,
which are shown as the dashed lines in Figure 8, can be
regarded as optimistic inner and outer bounds.

Il. PROTOPLANETARY DISKS

A more extensive review of protoplanetary disk physics
can be found in “Physical processes in protoplanetary
disks” (Armitage, 2015). The reader whose main inter-
ests lie in disks may want to start there.

A. The star formation context

Stars form in the Galaxy today from the small fraction
of gas that exists in dense molecular clouds. Molecular
clouds are observed in one or more molecular tracers —
examples include CO, *CO and NH3z — which can be
used both to probe different regimes of column density
and to furnish kinematic information that can give clues
as to the presence of rotation, infall and outflows. Obser-
vations of the dense, small scale cores within molecular
clouds (with scales of the order of 0.1 pc) that are the im-
mediate precursors of star formation show velocity gradi-
ents that are of the order of 1 km s™! pc=!. Even if all of
such a gradient is attributed to rotation, the parameter,

Erot

B
| Egrav|

(20)

is small — often of the order of 0.01. Hence rotation is
dynamically unimportant during the early stages of col-
lapse. The angular momentum, on the other hand, is
large, with a ballpark figure being Jeore ~ 10?4 g cm? s71.
This is much larger than the angular momentum in the
Solar System, never mind that of the Sun, a discrep-
ancy that is described as the angular momentum problem
of star formation. The problem has multiple solutions.
Many stars are part of binary systems with large amounts
of orbital angular momentum. For the single stars, mag-
netic flux that is approximately conserved within the col-
lapsing gas can remove angular momentum from the sys-
tem (this process can be too efficient, resulting in a “mag-
netic braking catastrophe” that precludes disk formation;
Li et al., 2014). For our purposes, it suffices to note that
the specific angular momentum of gas in molecular cloud
cores would typically match the specific angular momen-
tum of gas in Keplerian orbit around a Solar mass star
at a radius of ~ 10 — 10? AU.
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FIG. 9 Schematic depiction of the Spectral Energy Distribu-
tion of a young star surrounded by a disk. The presence of a
disk is inferred from an infra-red excess (above the expected
photospheric value) at wavelengths longward of around 1 pm.
An ultra-violet excess is also commonly detected, and this is
attributed to gas accretion on to the stellar surface producing
hot spots.

The observed properties of molecular cloud cores are
thus consistent with the formation of large disks — of
the size of the Solar System and above — around newly
formed stars. At least initially, those disks could be quite
massive. One would also expect the disks to retain some
net magnetic field that is a residual of the complex fields
that likely threaded the molecular cloud core.

Young Stellar Objects (YSOs) are classified observa-
tionally according to the shape of their Spectral Energy
Distribution AFy(\) in the infra-red. As shown schemat-
ically in Figure 9, YSOs often display,

1. An infra-red excess (over the stellar photospheric
contribution) that is attributed to hot dust in the
disk near the star.

2. An ultra-violet excess, which is ascribed to high
temperature regions (probably hot spots) on the
stellar surface where gas from the disk is being ac-
creted.

To quantify the magnitude of the IR excess, it is useful
to define a measure of the slope of the IR SED,

AR — 7 (21)

between the near-IR and the mid-IR. Conventions vary,
but for illustration we can assume that the slope is mea-
sured between the K band (at 2.2um) and the N band
(at 10um). We can then classify YSOs as,

e Class 0: SED peaks in the far-IR or mm part of
the spectrum (~ 100 pm), with no flux being de-
tectable in the near-IR.

e Class I: approximately flat or rising SED into mid-
IR (OqR > 0).
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e Class II: falling SED into mid-IR (—1.5 < aig <
0). These objects are also called “Classical T Tauri
stars”.

e Class III: pre-main-sequence stars with little or
no excess in the IR. These are the “Weak lined
T Tauri stars” (note that although WTTs are de-
fined via the equivalent width of the Ha line, this
is an accretion signature that correlates well with
the presence of an IR excess).

This observational classification scheme is theoretically
interpreted, in part, as an evolutionary sequence (Adams,
Lada & Shu, 1987). In particular, clearly objects in
Classes 0 through II eventually lose their disks and be-
come Class III sources. Observational estimates for the
duration of the gas disk phase are typically a few Myr
(Haisch, Lada & Lada, 2001). While the gas is present,
however, viewing angle may well play a role in determin-
ing whether a given source is observed as a Class I or
Class II object.

B. Passive circumstellar disks

An important physical distinction needs to be drawn
between passive circumstellar disks, which derive most
of their luminosity from reprocessed starlight, and active
disks, which are instead powered by the release of gravi-
tational potential energy as gas flows inward. For a disk
with an accretion rate M, surrounding a star with lumi-
nosity L and radius R, = 2R, the critical accretion
rate below which the accretion energy can be neglected
may be estimated as,

GM, M

SR, (22)

1

L =

10
where we have anticipated the result, derived below, that
a flat disk intercepts one quarter of the stellar flux. Nu-
merically,

M ~3x1078 Mgyr—t. (23)

Measured accretion rates of Classical T Tauri stars (Gull-
bring et al., 1998) range from an order of magnitude
above this critical rate to two orders of magnitude below,
so it is oversimplifying to assume that protoplanetary
disks are either always passive or always active. Rather,
the dominant source of energy for a disk is a function
of both time and radius. We expect internal heating to
dominate at early epochs and / or small orbital radii,
while at late times and at large radii reprocessing domi-
nates.

1. Vertical structure

The vertical structure of a geometrically thin disk (ei-
ther passive or active) is derived by considering vertical
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FIG. 10 Geometry for calculation of the vertical hydrostatic
equilibrium of a circumstellar disk.

hydrostatic equilibrium (Figure 10). The pressure gradi-
ent is,

dpP
— = Y- (24)

dz
where p is the gas density. Ignoring any contribution
to the gravitational force from the disk (this is justified
provided that the disk is not too massive), the vertical
component of gravity seen by a parcel of gas at cylindrical
radius r and height above the midplane z is,

GM, . GM,
9:= ~p sinf = b (25)
For a thin disk z < r, so
g, ~ 0%z (26)

where Q = /GM,/r3 is the Keplerian angular veloc-
ity. If we assume for simplicity that the disk is vertically
isothermal (this will be a decent approximation for a pas-
sive disk, less so for an active disk) then the equation of
state is P = pc?, where ¢ is the (constant) sound speed.
The equation of hydrostatic equilibrium (equation 24)
then becomes,

2dp

- = 0%z 27
3, pz (27)

The solution is,
2 2
p=poe /7" (28)
where pp = p(z = 0) and h, the vertical scale height, is

given by,

Cs
h= 5 (29)

Integrating equation (28) over z, we can write the mid-
plane density pg in terms of the surface density and ver-
tical scale height,

_ 1z
po = or b

We can also compare the disk thickness to the radius,

(30)

h_ e (31)
r (%)
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FIG. 11 Geometry for calculating the temperature profile of
a flat, passive disk. We consider unit surface area in the disk
plane at distance r from a star of radius R.. The axis of
spherical polar co-ordinates is the line between the surface
and the center of the star, with ¢ = 0 in the direction of the
stellar pole.

where vy is the local orbital velocity. We see that the
aspect ratio of the disk h/r is inversely proportional to
the Mach number of the flow.

The shape of the disk depends upon h(r)/r. If we pa-
rameterize the radial variation of the sound speed via,

cs o P (32)
then the aspect ratio varies as,
h
= o A2, (33)
r

The disk will flare — i.e. h/r will increase with radius
giving the disk a bowl-like shape — if § < 1/2. This
requires a temperature profile T(r) o< 7~1 or shallower.
As we will show shortly, flaring disks are expected to be
the norm.

2. Radial temperature profile

The physics of the calculation of the radial tempera-
ture profile of a passive disk is described in papers by
Adams & Shu (1986), Kenyon & Hartmann (1987) and
Chiang & Goldreich (1997). We begin by considering the
absolute simplest model: a flat thin disk in the equato-
rial plane that absorbs all incident stellar radiation and
re-emits it as a single temperature blackbody. The back-
warming of the star by the disk is neglected.

We consider a surface in the plane of the disk at dis-
tance r from a star of radius R.. The star is assumed to
be a sphere of constant brightness I,. Setting up spheri-
cal polar co-ordinates, as shown in Figure 11, the stellar
flux passing through this surface is,

F = /I* sin 0 cos ¢df). (34)

We count the flux coming from the top half of the star
only (and to be consistent equate that to radiation from
only the top surface of the disk), so the limits on the
integral are,

—m/2< ¢ <7/2
0< 6 <sin! <R*> (35)

r



Substituting df2 = sin #dfd¢, the integral for the flux is,
/2 sin” ! (R. /T)
F=1, / cos ¢do / sin? 0d6, (36)
—7/2 0

which evaluates to,

F =1, |sin! (}i) - (i) 1-— (%‘)2 . (37)

For a star with effective temperature T, the brightness
I, = (1/7)oT?, with o the Stefan-Boltzmann constant

(Rybicki & Lightman, 1979). Equating F' to the one-
sided disk emission 0T}, we obtain a radial temperature

profile,
2
o (B)-(2) o (2)
r r r

Tisr \* 1
T, T

(38)
Integrating over radii, we obtain the total disk flux,
Faisk = 2 X / 2rraT . dr
R,
_ 1 (39)
= b

We conclude that a flat passive disk extending all the way
to the stellar equator intercepts a quarter of the stellar
flux. The ratio of the observed bolometric luminosity
of such a disk to the stellar luminosity will vary with
viewing angle, but clearly a flat passive disk is predicted
to be less luminous than the star.

The form of the temperature profile given by equation
(38) is not very transparent. Expanding the right hand
side in a Taylor series, assuming that (R./r) < 1 (i.e.
far from the stellar surface), we obtain,

Taiere o 7 3/4, (40)

as the limiting temperature profile of a thin, flat, passive
disk. For fixed molecular weight wp this in turn implies a
sound speed profile,

co o3/, (41)

Assuming vertical isothermality, the aspect ratio given
by equation (33) is,

h oc /8, (42)

r
and we predict that the disk ought to flare modestly to
larger radii. If the disk does flare, then the outer regions
intercept a larger fraction of stellar photons, leading to
a higher temperature. As a consequence, a temperature
profile Ty o ~3/* is probably the steepest profile we
would expect to obtain for a passive disk.
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FIG. 12 Schematic disk spectrum. At short wavelengths, we
see an exponential cut-off corresponding to the highest tem-
perature annulus in the disk (normally close to or at the inner
edge). At long wavelengths, there is a Rayleigh-Jeans tail re-
flecting the coldest material in the outer disk. At intermediate
wavelengths, there is a flatter portion of the spectrum, so that
the overall SED resembles a stretched blackbody.

3. Spectral energy distribution (SED)

Suppose that each annulus in the disk radiates as a
blackbody at the local temperature Ty;s (7). If the disk
extends from 7y, to rous, the disk spectrum is just the
sum of these blackbodies weighted by the disk area,

Fy / " o BA[T()]dr (43)

in

where B, is the Planck function,

2hc? 1

BA(T) = N5 eh¢/XKT _ 1°

(44)
The behavior of the spectrum implied by equation (43)
is easy to derive. At long wavelengths A > he/kT (Tout)
we recover the Rayleigh-Jeans form,

AFy ox A3 (45)

while at short wavelengths A < he/kT (rin) there is an
exponential cut-off that matches that of the hottest an-
nulus in the disk,

AFy oc X~ dehe/ART (rin) (46)
For intermediate wavelengths,
he he
— LA 47
()~ ¥ (rom) “7)
the form of the spectrum can be found by substituting,
hc r\ /4
=— [ — 48
v )\kT(Tin) (Tin) ( )

into equation (43). We then have, approximately,

Fy o A77/3 /°° /o
0

e ATT/3 (49)



and so
APy ox A48, (50)

The overall spectrum, shown schematically in Figure 12,
is that of a “stretched” blackbody (Lynden-Bell, 1969).

The SED predicted by this simple model generates an
IR-excess, but with a declining SED in the mid-IR. This
is too steep to match the observations of even most Class
II sources.

4. Sketch of more complete models

Two additional pieces of physics need to be included
when computing detailed models of the SEDs of passive
disks. First, as already noted above, all reasonable disk
models flare toward large r, and as a consequence inter-
cept and reprocess a larger fraction of the stellar flux. At
large radii, Kenyon & Hartmann (1987) find that consis-
tent flared disk models approach a temperature profile,

Taiare o 7~ 1/2, (51)

which is much flatter than the profile derived previously.
Second, the assumption that the emission from the disk
can be approximated as a single blackbody is too simple.
In fact, dust in the surface layers of the disk radiates at a
significantly higher temperature because the dust is more
efficient at absorbing short-wavelength stellar radiation
than it is at emitting in the IR (Shlosman & Begelman,
1989). Dust particles of size a absorb radiation efficiently
for A < 2ma, but are inefficient absorbers and emitters for
A > 27a (i.e. the opacity is a declining function of wave-
length). As a result, the disk absorbs stellar radiation
close to the surface (where 7i,m ~ 1), where the optical
depth to emission at longer IR wavelengths 7ig < 1. The
surface emission comes from low optical depth, and is not
at the blackbody temperature previously derived. Chi-
ang & Goldreich (1997) showed that a relatively simple
disk model made up of,

1. A hot surface dust layer that directly re-radiates
half of the stellar flux

2. A cooler disk interior that reprocesses the other
half of the stellar flux and re-emits it as thermal
radiation

can, when combined with a flaring geometry, reproduce
most SEDs quite well. A review of recent disk modeling
work is given by Dullemond et al. (2007).

The above considerations are largely sufficient to un-
derstand the structure and SEDs of Class II sources. For
Class I sources, however, the possible presence of an en-
velope (usually envisaged to comprise dust and gas that
is still infalling toward the star-disk system) also needs
to be considered. The reader is directed to Eisner et al.
(2005) for one example of how modeling of such systems
can be used to try and constrain their physical properties
and evolutionary state.
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C. Actively accreting disks

The radial force balance in a passive disk includes con-
tributions from gravity, centrifugal force, and radial pres-
sure gradients. The equation reads,

2
Vs _ G M,

r r2

ldapr
pdr’

(52)

where vy is the orbital velocity of the gas and P is the
pressure. To estimate the magnitude of the pressure gra-
dient term we note that,

idp = 1P
p dr pr
_Lp
pr
GM, [h\?
~ -2 (T> , (53)

where for the final step we have made use of the relation
h = c¢s/Q. If v is the Keplerian velocity at radius r, we

then have that,
N
1-— - 4
o(+) ] , (54)

i.e pressure gradients make a negligible contribution to
the rotation curve of gas in a geometrically thin (h/r <
1) disk®. To a good approximation, the specific angular
momentum of the gas within the disk is just that of a
Keplerian orbit,

2=k

1 =7r*Q =+/GM,r, (55)

which is an increasing function of radius. To accrete
on to the star, gas in a disk must lose angular momentum,
either,

1. Via redistribution of angular momentum within the
disk (normally described as being due to “viscos-
ity”, though this is a loaded term, best avoided
where possible).

2. Via loss of angular momentum from the star-disk
system, for example in a magnetically driven disk
wind.

Aspects of models in the second class have been stud-
ied for a long time — the famous disk wind solution of
Blandford & Payne (1982), for example, describes how a
wind can carry away angular momentum from an under-
lying disk. Observationally, it is not known whether mag-
netic winds are launched from protoplanetary disks on

6 This is not to say that pressure gradients are unimportant — as
we will see later the small difference between vy and vy is of
critical importance for the dynamics of small rocks within the
disk.



1—100 AU scales (jets, of course, are observed, but these
are probably launched closer to the star), and hence the
question of whether winds are important for the large-
scale evolution of disks remains open. An review of the
theory of disk winds as applied to protostellar systems
is given by Konigl & Salmeron (2011), while Bai et al.
(2016) present wind models, motivated by recent simula-
tions, that incorporate both magnetic and thermal driv-
ing. To get started though, we’ll initially assume that
winds are not the dominant driver of evolution, and de-
rive the equation for the time evolution of the surface
density for a thin, viscous disk (Lynden-Bell & Pringle,
1974; Shakura & Sunyaev, 1973). Clear reviews of the
fundamentals of accretion disk theory can be found in
Pringle (1981) and in Frank, King & Raine (2002).

1. Diffusive evolution equation

Let the disk have surface density 3(r,¢) and radial ve-
locity v,(r,t) (defined such that v, < 0 for inflow). The
potential is assumed fixed so that the angular velocity
Q = Q(r) only. In cylindrical co-ordinates, the conti-
nuity equation for an axisymmetric flow gives (see e.g.
Pringle (1981) for an elementary derivation),

r— + o (r¥v,) =0. (56)

Similarly, conservation of angular momentum yields,

0 (Erzﬁ) 0 1 0G
— (r3w. - r2Q) = — = 57
T +37‘(T Ut ) 2 Or’ (57)
where the term on the right-hand side represents the net
torque acting on the fluid due to viscous stresses. From
fluid dynamics (Pringle, 1981), G is given in terms of the
kinematic viscosity v by the expression,

dQ

G =2nr - vXr o " (58)
where the right-hand side is the product of the circum-
ference, the viscous force per unit length, and the level
arm r. If we substitute for GG, eliminate v, between equa-
tion (56) and equation (57), and specialize to a Keplerian
potential with © o 7~3/2, we obtain the evolution equa-
tion for the surface density of a thin accretion disk in its
normal form,

0% 309 | 120 1/2
ot  ror {T or (VET ) ’ (59)

This partial differential equation for the evolution of the
surface density ¥ has the form of a diffusion equation.
To make that explicit, we change variables to,

X = 271/2

;= gzx. (60)
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For a constant v, equation (59) then takes the prototyp-
ical form for a diffusion equation,

af 0% f
— =D 1
ot 0X? (61)
with a diffusion coefficient,
12v

The characteristic diffusion time scale implied by equa-
tion (61) is X2/D. Converting back to the physical vari-
ables, we find that the evolution time scale for a disk of
scale r with kinematic viscosity v is,

T~ —. 63

. (63)
Observations of disk evolution (for example determina-
tions of the time scale for the secular decline in the ac-
cretion rate) can therefore be combined with estimates of

the disk size to yield an estimate of the effective viscosity
in the disk (Hartmann et al., 1998).

2. Solutions

In general v is expected to be some function of the
local conditions within the disk (surface density, radius,
temperature, ionization fraction etc). If v depends on X,
then equation (59) becomes a non-linear equation with
no analytic solution (except in some special cases), while
if there is a more complex dependence on the local con-
ditions then the surface density evolution equation will
often need to be solved simultaneously with an evolution
equation for the central temperature (Pringle, Verbunt &
Wade, 1986). Analytic solutions are possible, however, if
v can be written as a power-law in radius (Lynden-Bell &
Pringle, 1974), and these suffice to illustrate the essential
behavior implied by equation (59).

First, we describe a Green’s function solution to equa-
tion (59) for the case v = constant. Suppose that at
t = 0, all of the gas lies in a thin ring of mass m at
radius rq,

m

Y(rt=0) = S

o(r —rp). (64)

One can show that the solution is then,

1 2
S, 7) = m2 Sy Ve ( :c) )
T

where we have written the solution in terms of dimen-
sionless variables x = r/rg, 7 = 12ur52t, and I;,4 is a
modified Bessel function of the first kind.

Unless you have a special affinity for Bessel functions,
this Green’s function solution is not terribly transparent.
The evolution it implies is shown in Figure 13. The most
important features of the solution are that, as ¢t — oo,
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FIG. 13 The Green’s function solution to the disk evolution
equation with v = constant, showing the spreading of a ring
of mass initially orbiting at » = 7. From top down the curves
show the behavior as a function of the scaled time variable
T = 121/7'5215, for 7 = 0.004, 7 = 0.008, 7 = 0.016, 7 = 0.032,
7=0.064, 7 = 0.128, and 7 = 0.256.
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FIG. 14 The self-similar solution to the disk evolution equa-
tion is plotted for a viscosity v o r. The initial surface density
tracks the profile for a steady-state disk (with ¥ oc 771) at
small radius, before cutting off exponentially beyond r = ry.
The curves show the surface density at the initial value of the
scaled time T' = 1, and at subsequent times T' =2, T' = 4 and
T =28.

e The mass flows to r = 0.

e The angular momentum, carried by a negligible
fraction of the mass, flows toward r = oo.

This segregation of mass and angular momentum is a
generic feature of viscous disk evolution, and is obviously
relevant to the angular momentum problem of star for-
mation.

Of greater practical utility is the self-similar solution
also derived by Lynden-Bell & Pringle (1974). Consider
a disk in which the viscosity can be approximated as a
power-law in radius,

vor?. (66)
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stellar
surface

FIG. 15 Schematic depiction of the angular velocity €(r) for
a slowly rotating star surrounded by a thin accretion disk
that extends to the stellar equator. At large radii in the disk,
the angular velocity has the normal Keplerian form Q~%/2,
shown as the dashed green curve. To match smoothly on to
the star, the angular velocity must turn over at smaller radii in
a transition zone known as the boundary layer. The existence
of a boundary layer implies that at some radius dQ2/dr = 0,
at which point the viscous stress vanishes.

Suppose that the disk at time ¢ = 0 has the surface den-
sity profile corresponding to a steady-state solution (with
this viscosity law) out to r = r1, with an exponential cut-
off at larger radii. As we will shortly show, the initial
surface density then has the form,

S(t=0)=—C

3T T

exp [—7’(2_7)] ) (67)

where C is a normalization constant, 7 = r/ry, and v =
v(r1). The self-similar solution is then,

F(2—7)
(7, T) = LT—(5/2—7)/(2—7) exp [_r 7 ] , (68)

3Ty
where,
t
T = —+1
ts +
1 r?
ts = ——————. 69
= e (69)

This solution is plotted in Figure 14. Over time, the disk
mass decreases while the characteristic scale of the disk
(initially 71) expands to conserve angular momentum.
This solution is quite useful both for studying evolving
disks analytically, and for comparing observations of disk
masses, accretion rates or radii with theory (Hartmann
et al., 1998).

A steady-state solution for the radial dependence of
the surface density can be derived by setting /0t =
0 and integrating the angular momentum conservation
equation (57). This yields,

dQ
Yr3Qu, = VET’?’E + constant. (70)



Noting that the mass accretion rate M = —27rYv, we
have,
M deQ
— 57"29 = VZTSE + constant. (71)

To determine the constant of integration, we note that
the torque within the disk vanishes if dQ/dr = 0. At
such a location, the constant can be evaluated and is
just proportional to the local flux of angular momentum

constant oc Mr2QQ. (72)

Usually this is determined at the inner boundary. A par-
ticularly simple example is the case of a disk that extends
to the equator of a slowly rotating star. This case is il-
lustrated in Figure 15. In order for there to be a transi-
tion between the Keplerian angular velocity profile in the
disk and the much smaller angular velocity at the stellar
surface there must be a maximum in 2 at some radius
r« + Ar. Elementary arguments (Pringle, 1977) — which
may fail at the very high accretion rates of FU Orionis
objects (Popham et al., 1993) but which are probably
reliable otherwise — suggest that Ar < r,, so that the
transition occurs in a narrow boundary layer close to the
stellar surface. The constant can then be evaluated as,
M ,

GM,
constant ~ ——r
2T

r3 7

(73)

*

and equation (71) becomes,

uzzé\;{(l— ) (74)

Given a viscosity, this equation defines the steady-state
surface density profile for a disk with an accretion rate
M. Away from the boundaries, %(r) oc v1.

The origin of angular momentum transport within the
boundary layer itself presents interesting complications,
since the boundary layer is a region of strong shear that is
stable against the magnetorotational instabilities that we
will argue later are critical for transporting angular mo-
mentum within disks. As a consequence, magnetic field
evolution is qualitatively different within the boundary
layer as compared to the Keplerian disk (Armitage, 2002;
Pringle, 1989). Analytic and simulation work by Belyaev,
Rafikov & Stone (2013) shows that acoustic waves pro-
vide the dominant source of transport in the boundary
layer region.

The inner boundary condition which leads to equation
(74) is described as a zero-torque boundary condition.
As noted, zero-torque conditions are physically realized
in the case where there is a boundary layer between the
star and its disk. This is not, however, the case in most
Classical T Tauri stars. Observational evidence suggests
(Bouvier et al., 2007) that in accreting T Tauri stars
the stellar magnetosphere disrupts the inner accretion
disk, leading to a magnetospheric mode of accretion in
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which gas becomes tied to stellar field lines and falls bal-
listically on to the stellar surface (Konigl, 1991). The
magnetic coupling between the star and its disk allows
for angular momentum exchange, modifies the steady-
state surface density profile close to the inner trunca-
tion radius, and may allow the star to rotate more slowly
than would otherwise be the case (Armitage & Clarke,
1996; Collier Cameron & Campbell, 1993). Whether such
“disk-locking” actually regulates the spin of young stars
remains a matter of debate, however, and both theoret-
ical and observational studies have returned somewhat
ambiguous results (Herbst & Mundt, 2005; Matt & Pu-
dritz, 2005; Rebull et al., 2006).

3. Temperature profile

Following Frank, King & Raine (2002), we derive the
radial dependence of the effective temperature of an ac-
tively accreting disk by considering the net torque on a
ring of width Ar. This torque — (0G/9r)Ar — does work
at a rate,

& or

where 0 = dQ2/dr. Written this way, we note that if we
consider the whole disk (by integrating over r) the first
term on the right-hand-side is determined solely by the
boundary values of G{2. We therefore identify this term
with the transport of energy, associated with the viscous
torque, through the annulus. The second term represents
the rate of loss of energy to the gas. We assume that
this is ultimately converted into heat and radiated, so
that the dissipation rate per unit surface area of the disk
(allowing that the disk has two sides) is,
GQ' 9 9

e 8V§]Q , (76)
where we have assumed a Keplerian angular velocity pro-
file. For blackbody emission D(r) = oT4,. Substituting
for 2, and for v¥ using the steady-state solution given
by equation (74), we obtain,

3GM,. M (1_ 7“*)

8mor3 r

% A= [‘9 (GO) — GQ’} Ar (75)

D(r)

Téllisk = (77)

We note that,

e Away from the boundaries (r > r.), the tem-
perature profile of an actively accreting disk is
Thisk < r—3/4. This has the same form as for a
passive disk given by equation (40).

e The temperature profile does not depend upon the
viscosity. This is an attractive feature of the the-
ory given uncertainties regarding the origin and ef-
ficiency of disk angular momentum transport. On
the flip side, it eliminates many possible routes to
learning about the physics underlying v via obser-
vations of steady-disks.



Substituting a representative value for the accretion rate
of M = 107" Myyr~!, we obtain for a Solar mass star at
1 AU an effective temperature Tyisx = 150 K. This is the
surface temperature, as we will show shortly the central
temperature is predicted to be substantially higher.

4. Shakura-Sunyaev disks

Molecular viscosity is mnegligible in protoplanetary
disks. For a gas in which the mean free path is A, the
viscosity

v~ s (78)

where ¢, is the sound speed. In turn, the mean free
path is given by A\ = 1/no, where n is the number
density of molecules with cross-section for collision o.
These quantities are readily estimated. For example,
consider a protoplanetary disk with ¥ = 10% g ecm™2 and
h/r = 0.05 at 1 AU. The midplane density is of the order
of n ~X/2mph ~ 4 x 10" cm~3, while the sound speed
implied by the specified h/r is ¢s ~ 1.5 x 105 cm s~ 1.
The collision cross-section of a hydrogen molecule is of
the order of (Chapman & Cowling, 1970),

o~2x107 cm?, (79)
and hence we estimate,

A~ 1lcm

g7t (80)

v ~ 2x10° cm
The implied disk evolution time scale 7 ~ r%/v then
works out to be of the order of 10 yr — at least 10°
times too slow to account for observed disk evolution.
In a classic paper Shakura & Sunyaev (1973) noted
that turbulence within the disk can provide an effec-
tive viscosity that greatly exceeds molecular viscosity.
For isotropic turbulence, the maximum scale of turbu-
lent cells within the disk will be of the same order as
the vertical scale height h, while the maximum velocity
of turbulent motions relative to the mean flow is com-
parable to the sound speed ¢ (any larger velocity would
lead to shocks and rapid dissipation of turbulent kinetic
energy into heat). Such considerations motivate a pa-
rameterization,

v = acsh, (81)

where « is a dimensionless parameter that measures how
efficient the turbulence is at creating angular momentum
transport. We note at the outset that the existence of
turbulence within the disk does not, a priori, guarantee
that the outward angular momentum transport necessary
to drive accretion will occur.

In the standard theory of so-called “a-disks”, « is
treated as a constant. If this is done, it is possible to
solve analytically for the approximate vertical structure
of an actively accreting disk and derive a scaling for v as
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a function of r, ¥ and a. Textbook discussions of this
procedure can be found in Frank, King & Raine (2002),
Armitage (2010), and many other places. Combining the
known functional form for v with the disk evolution equa-
tion (59) then yields a full theory for the predicted time
dependence of the disk, with the only unknown being the
appropriate value for a. This is all very well, but there is
no physical reason to assume that « is a constant, and if
instead « is regarded as a free function then much of the
beguiling simplicity of the theory is lost. a-disk models
should therefore be regarded as illustrative rather than
definitive predictions for the evolution of the disk.

It is straightforward to estimate how large o must be
to account for the observed evolution of protoplanetary
disks. Suppose, for example, that the evolution time scale
at 50 AU is 1 Myr. Then starting from the a-prescription
(equation 81), and noting that ¢, ~ hS), the evolution
time scale becomes,

r? R\ % 1

Substituting for 7 and r, and assuming again that h/r =
0.05, we obtain an estimate for a ~ 0.02. This is fairly
typical — observational attempts to constrain « on large
scales in protoplanetary disks (none of which are much
more sophisticated than our crude estimate) tend to re-
sult in estimates that are around 1072 (Hartmann et al.,
1998)7. These values are an order of magnitude smaller
than the values of « derived from the modeling of dwarf
nova outbursts that occur in accretion disks around white
dwarfs (Cannizzo, 1993; King, Pringle & Livio, 2007). Of
course the disks around white dwarfs, and around other
compact objects, are invariably more highly ionized than
protoplanetary disks.

D. Angular momentum transport

Significant uncertainties persist as to the physical
origin and properties of angular momentum transport
within protoplanetary disks. The Reynolds number of
the flow in the disk,

_ UL

v

Re (83)

where U is a characteristic velocity and L a character-
istic size scale, is extremely large (of the order of 1014

7 An important exception is modeling of the large-amplitude
eruptive events known as FU Orionis outbursts (Hartmann &
Kenyon, 1995), which, if interpreted as self-regulated thermal
instabilities, require small values of a of the order of 1073 or
less (Bell & Lin, 1994). My own opinion is that these values are
unreasonably small, and that FU Orionis events are instead trig-
gered by instabilities that arise at larger radii (Armitage, Livio &
Pringle, 2001; Martin & Lubow, 2011; Zhu, Hartmann & Gam-
mie, 2009).



using the parameters that we previously estimated when
considering the magnitude of molecular viscosity). Ter-
restrial flows typically develop turbulence above a criti-
cal Reynolds number of the order of 104, so one’s intu-
ition would suggest that disk flows would surely be highly
turbulent due to purely hydrodynamic effects. Detailed
studies, however, do not support this conclusion. We first
note that the condition for linear hydrodynamic stability
in a differentially rotating fluid (the Rayleigh criterion)
is that the specific angular momentum increase outward,

d
T (r*Q) > 0. (84)
In a Keplerian disk, r2Q  r!/2, so the flow is always

linearly stable.

Many authors have investigated the possibility of non-
linear instabilities that might lead to turbulence within
accretion disks. To date there is no compelling evidence
that astrophysically relevant instabilities exist. At least
in the model system of an isothermal unstratified disk,
hydrodynamic perturbations are found to have the po-
tential to exhibit transient growth (Afshordi, Mukhopad-
hyay & Narayan, 2005; Ioannou & Kakouris, 2001) but
ultimately decay (Balbus & Hawley, 2006; Balbus, Haw-
ley & Stone, 1996; Shen, Stone & Gardiner, 2006). Ex-
periments yield a similar result (Ji et al., 2006; Schart-
man et al.,, 2012). In stratified disks it has been sug-
gested that vortices may be able to replicate themselves
and give rise to turbulence (Marcus et al., 2015), though
more work is needed both to clarify numerical aspects of
this instability and the regime in which it would operate
in protoplanetary disks (Lesur & Latter, 2016).

In the absence of simple hydrodynamic instabilities,
the standard model appeals to angular momentum trans-
port by self-gravity (at early times) and magnetorota-
tional instability (Balbus & Hawley, 1991). As we discuss
below, the action of the magnetorotational instability,
and more generally any magnetohydrodynamic process,
will be strongly modified by the low ionization fraction of
protoplanetary disks. The poor coupling between mag-
netic fields and fluid that results leads to the qualitative
concept of a “dead zone” (Gammie, 1996). There are
also known hydrodynamic instabilities that act, not on
the stable radial shear, but rather on either the wvertical
shear or the radial entropy gradient. The effect these hy-
drodynamic processes have on the qualitative picture of
protoplanetary disks remains rather murky.

1. Magnetorotational instability

The hydrodynamic stability condition given by equa-
tion (84) is dramatically altered by the presence of a weak
magnetic field. Whereas a hydrodynamic flow is sta-
ble provided only that the specific angular momentum
increase outward, a magnetohydrodynamic (MHD) flow
requires that the angular velocity itself be an increasing

22

function of radius,

o (9% >0, (85)

in order to be stable (Balbus & Hawley, 1991; Chan-
drasekhar, 1961; Velikhov, 1959)%. This condition is not
satisfied in Keplerian disks. As a consequence, in ideal
(zero diffusivity) MHD an arbitrarily weak magnetic field
renders a Keplerian disk linearly unstable, with pertur-
bations growing exponentially on a dynamical time scale.

A comprehensive review of the physics of this instabil-
ity — called the magnetorotational (MRI) instability — is
given by Balbus & Hawley (1998). The MRI is a linear
instability that leads to self-sustaining turbulence within
sufficiently well-ionized accretion disks (Brandenburg et
al., 1995; Stone et al., 1996). It transports angular mo-
mentum outward, as is required to allow mass to flow
inward and liberate gravitational potential energy. The
magnitude of the effective «, generated by the MRI un-
der ideal MHD conditions, has been estimated from local
simulations to be of the order of a ~ 1072 (Davis, Stone
& Pessah, 2010; Simon, Beckwith & Armitage, 2012).
This may appear to be in encouraging agreement with the
values inferred empirically for protoplanetary disks, but
(as discussed below) ideal MHD is a poor approximation
across much of the radial extent of real disks. Accord-
ingly, although the MRI is generally accepted to solve the
problem of angular momentum transport in well-ionized
disks around black holes and compact objects, it remains
possible that hydrodynamic processes play an important
role in the protoplanetary context.

2. Hydrodynamic transport processes

Hydrodynamic transport is known to occur if disk self-
gravity is important. A sufficiently massive disk is unsta-
ble (Toomre, 1964) to the development of trailing spiral
arms, which act to transport angular momentum out-
ward. We will discuss the physics underlying this insta-
bility later in the context of models for planetesimal and
giant planet formation, but for now we note that insta-
bility occurs when, roughly,

Maisk _ h
M > = (86)

8 The significance of Chandrasekhar’s result for the origin of turbu-
lence within the protoplanetary disk was appreciated by Safronov
(1969), who noted that the MHD stability criterion does not re-
duce to the Rayleigh criterion as the magnetic field tends toward
zero, and that “for a weak magnetic field the cloud should be less
stable than we found earlier in the absence of the field”. Safronov
then, however, dismisses the MRI on the (incorrect) grounds that
the instability requires that the viscosity and diffusivity are iden-
tically zero. The importance of the MRI for accretion disks was
only appreciated more than 20 years later by Balbus & Hawley.



Self-gravity could therefore play a role in protoplanetary
disks at early epochs — when the disk may well be massive
enough — but will not be important at late times when
Myisk <€ M. Models for when self-gravity is important,
and for the long-term evolution of disks evolving under
the action of self-gravity, have been calculated by several
authors (Clarke, 2009; Rafikov, 2009; Rice & Armitage,
2009). The basic conclusion of such models is that — if
other sources of angular momentum transport are weak
or non-eristent — then gas in the disk will settle into a
stable self-gravitating state out to ~ 10? AU. Such disks
are necessarily massive, and have a steep surface density
profile.

In non-self-gravitating disks linear hydrodynamic in-
stability is possible if the vertical entropy profile is un-
stable to convection. For many years it was thought that
convection in disks transports angular momentum inward
but simulations by Lesur & Ogilvie (2010) demonstrate
that convection does yield a positive value of a. Nonethe-
less, the difficulty of sustaining a sufficiently unstable ver-
tical entropy profile means that convection is not consid-
ered likely to be an important process in protoplanetary
disks.

Linear instability is also possible if there is a suffi-
ciently strong wvertical shear. In the presence of both ra-
dial and vertical gradients of specific angular momentum
[, the stability criterion involves both these quantities and
the gradients of specific entropy S. Specifically, stability
requires,

o> 9S  01% 08
or 0z 0z or 0- (87)
A non-zero vertical shear can thus destabilize the disk.
This “vertical shear instability” has been analyzed in de-
tail by Nelson, Gressel & Umurhan (2013), who show
that it can give rise to significant levels of turbulence and
transport in the upper layers of disks where the radiative
cooling time scale is relatively short. It is closely related
to the Goldreich-Schubert-Fricke instability of differen-
tially rotating stars (Fricke, 1968; Goldreich & Schubert,
1967). Lin & Youdin (2015) discuss where and when the
VSI might operate in protoplanetary disks.

If we instead consider purely radial displacements, the
condition for a rotating flow to be stable to linear ax-
isymmetric disturbances in the presence of an entropy
gradient is known as the Solberg-Hoiland criterion. For
a Keplerian disk it can be written as,

N%4+0? >0, (88)
where N, the Brunt-Viisalé frequency, is,
1 0P P
N2=——a—gln (), (89)
p’Y
with v the adiabatic index. Protoplanetary disks are sta-

ble to radial convection by this criterion. They can, how-
ever, be unstable to a local, finite amplitude instability
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that is driven by the radial entropy gradient. This insta-
bility, called the subcritical baroclinic instability (Lesur &
Papaloizou, 2010; Petersen, Stewart & Julien, 2007), is
present when,

N?% <0, (90)

(i.e. when the disk is Schwarzschild unstable), and there
is either significant thermal diffusion or a thermal bal-
ance set by irradiation and radiative cooling. The sub-
critical baroclinic instability results in the formation of
vortices (Klahr & Bodenheimer, 2003) — hydrodynamic
structures of the type exemplified by Jupiter’s Great Red
Spot with non-zero vorticity w = V x v. Vortices are of
particular interest because they can both transport angu-
lar momentum and, by trapping dust within their cores,
accelerate the formation of larger solid bodies (Barge &
Sommeria, 1995). How efficient they are at accomplish-
ing these tasks is quite hard to assess, because in three
dimensional disks vortices are subject to disruptive insta-
bilities (Barranco & Marcus, 2005; Lesur & Papaloizou,
2009; Lithwick, 2009; Shen, Stone & Gardiner, 2006)°.
The population of vortices present in a disk will reflect a
balance between mechanisms that generate vorticity and
instabilities that destroy it.

3. Simple dead zone models

Returning now to magnetohydrodynamic transport
processes, a critical complication arises because the low
ionization fraction in protoplanetary disks leads to a fi-
nite conductivity. Resistivity (and other departures from
ideal MHD due to ambipolar diffusion and the Hall effect)
can then damp or modify the MRI and suppress turbu-
lence and resulting angular momentum transport. The
linear physics in this regime has been analyzed in numer-
ous papers, including works by Blaes & Balbus (1994),
Desch (2004) and Salmeron & Wardle (2005). Reviews by
Balbus (2011), Armitage (2011) and Turner et al. (2014)
discuss the physics of the MRI in the non-ideal regime,
which is highly complex. A good place to start though
is with a toy model, in which the MRI is modified from
the ideal MHD limit by Ohmic diffusion alone. This is
the “dead zone” or “layered accretion” model proposed
by Gammie (1996).

Following Gammie (1996), we begin by noting that in
the presence of resistivity the magnetic field obeys the
usual induction equation,

0B

E_VX(VXB)—VX('TIVXB% (91)

9 In two dimensions, on the other hand, vortices are known to
be long lived and quite effective agents of angular momentum
transport (Godon & Livio, 1999; Johnson & Gammie, 2005).



where 7) is the magnetic diffusivity. In turn, 1 can be
written in terms of the electron fraction © = n./ny via,

n=065x10"%2"" em?s~'. (92)

Our goal is to determine the minimum « for which the
MRI will be able to operate despite the damping caused
by the diffusivity. To do this, we note that resistivity
damps small scales most easily. We therefore consider
the largest disk scale [ = h, and equate the MRI growth
time scale (Balbus & Hawley, 1998),

h
TMRI ~ —— (93)
vA

where vy = /B?/(4wp) is the Alfvén speed, with the
damping time scale,

h2

Tdamp ™~ —- 94
R (94)
This yields a simple criterion for the MRI to operate:

1 < hvg. (95)

It remains to estimate appropriate values for A and v4.
For a crude estimate, we can guess that at 1 AU h ~
10'2 cm and that va ~ ¢s ~ 10° cm s™! (more accurately,
va ~ a'/2¢, in MRI turbulence that yields an effective
Shakura-Sunyaev «). In that case the limit becomes n <
10'" em? s~! which translates into a minimum electron
fraction,

x> 10713, (96)

which is more or less the “right” value derived from
more rigorous analyses (Balbus & Hawley, 1998; Gam-
mie, 1996). The most important thing to note is that
this is an extremely small electron fraction! The linear
MRI growth rate is so large that a tiny electron fraction
couples the gas to the magnetic field well enough that the
MRI can overcome the stabilizing influence of diffusion.

Although only a small degree of ionization is required
for the MRI to work, there may be regions in the pro-
toplanetary disk where even  ~ 10713 is not attained.
Considering first thermal ionization processes, calcula-
tions of collisional ionization by Umebayashi (1983) show
that ionization of the alkali metals suffices to drive z >
10~13. This, however, requires temperatures 7 ~ 10° K
and above. Ounly the very innermost disk — within a few
tenths of an AU of the star — will therefore be able to
sustain the MRI as a result of purely thermal ionization.

At larger disk radii the ionization fraction will be de-
termined by a balance between non-thermal ionization
processes and recombination. Various sources of ioniza-
tion are potentially important,

e Ionization by stellar X-rays. T Tauri stars are ob-
served to be strong X-ray sources (Feigelson et al.,
2007), and the harder components of the emission
are penetrating enough to ionize a fraction of the
column through the disk (Ercolano & Glassgold,
2013).
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e Tonization by cosmic rays. Cosmic rays have a
stopping length that is of the order of Yjper =
100 g cm™2 (Umebayashi & Nakano, 1981). If
present they are therefore likely to be more pene-
trating and important than X-rays. The disk may,
however, be screened from the interstellar cosmic
ray flux by the magnetized plasma flowing away
from the system in a wind. Cleeves et al. (2015)
present evidence for such screening derived from
observations of molecular line emission from the
disk in the TW Hya system.

e Ionization by far ultraviolet radiation (Perez-
Becker & Chiang, 2011), which yields a relatively
high ionization fraction (z ~ 107°, coming from
elements such as carbon) within a very thin skin
on the surface of the disk (Ziayer ~ 1072 —
107! g cm™2).

e Radioactive decay, primarily from short-lived ra-
dionuclides such as 26Al, which provides a mini-
mum level of ionization independent of the other
external ionizing agents.

The degree of ionization that results from these processes
also depends on the efficiency of recombination, which
is a sensitive function of the abundance of metal ions
and dust particles. Detailed calculations, however, show
that at radii where the disk is simultaneously too cool
to be collisionally ionized, and dense enough that the in-
terior is shielded from non-thermal ionization, non-ideal
MHD effects will be very important. In the case of Ohmic
dissipation, as originally considered by Gammie (1996),
the prediction is that MHD turbulence in the mid-plane
ought to be strongly damped. Accretion in that case
would occur primarily through an ionized surface layer,
with the interior forming a “dead zone”.

4. Non-ideal MHD transport processes
In reality, of course, Ohmic diffusion is not the only

non-ideal process that can affect the evolution of the
MRI. The full non-ideal MHD induction equation reads,

%—?:Vx[vaanxB
JxB JxB B
_IxB  UxB)xB) (97)
en. cYppI

Here the current J = (¢/47)V x B, and the third and
fourth terms on the right-hand-side describe the Hall ef-
fect and ambipolar diffusion. The Hall effect depends
upon the electron number density n., while ambipolar
diffusion depends upon the ion density p; and on the
drag co-efficient v describing the collisional coupling be-
tween ions and neutrals.

The absolute strength of the non-ideal effects depends
upon the ionization state of the disk, and can be cal-
culated with a chemical model. These models are gen-
erally complex, and subject to significant uncertainties
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FIG. 16 The relative ordering of non-ideal MHD terms plot-
ted in the (p,T) plane (this version from a review by Ar-
mitage, 2011), for a magnetic field with va/cs = 0.1 and a
dust-free disk model. Also shown are approximate tracks
of the radial variation of density and temperature at the
mid-plane, and near the disk surface. The mid-plane con-
ditions are appropriate for a disk around a star with ¥ =
103(r/1 AU)™! g em ™2, and (h/r) = 0.04. The surface condi-
tions assume the density at z = +4h (using a gaussian density
profile), and a temperature given by the effective temperature

for a steady disk accreting at M=10"" Moyr—t.

arising, for example, from the unknown abundance of
small dust grains that play an important role in recom-
bination. Somewhat simpler is an estimate of the relative
strengths of the different non-ideal terms, which follows
from a dimensional analysis of equation (97) given as-
sumptions as to the strength and structure of the mag-
netic field (Balbus & Terquem, 2001; Kunz & Balbus,
2004). Such an analysis is shown in Figure 16, which
shows the estimated ordering of the importance of the
different non-ideal terms as a function of the disk den-
sity and temperature. Ohmic diffusion is important at
high densities (in the inner disk) whereas ambipolar dif-
fusion dominates in disk regions where the density is very
low (at large radii, and in the disk atmosphere). The Hall
effect is most important at intermediate densities.

The nature of accretion that is driven by MHD pro-
cesses in non-ideal disks has been studied with both local
and global numerical simulations. Local or “shearing-
box” simulations model a small co-rotating patch of
disk with a linearized shear profile and radially periodic
boundary conditions that are modified to account for the
shear. Local simulations with reasonably realistic ion-
ization models have been used to study protoplanetary
accretion at radii between 1 and 100 AU:

e In the outer disk (30-100 AU, and beyond) am-
bipolar diffusion is the dominant non-ideal effect.
An approach similar to that used for Ohmic diffu-
sion in §II1.D.3 can be used to estimate when am-
bipolar diffusion damps the MRI, and the general
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expectations of such an estimate are borne out by
simulations (Bai & Stone, 2011). In the absence of
any net magnetic field ambipolar diffusion damps
turbulence to such an extent that it is difficult to
achieve accretion rates that match those observed
much closer to the star (Simon et al., 2013a). Ac-
cretion rates that are of the right order of mag-
nitude are only recovered if the disk is threaded
with a weak net vertical field, with a ratio of mid-
plane gas to magnetic pressure (in the vertical com-
ponent) B, = Pyas/(B2/87) ~ 10* (Simon et al.,
2013b). This result suggests that net fields—which
are in any event an almost unavoidable consequence
of star formation from magnetized molecular cloud
cores—are also critical drivers of disk accretion.

e In the inner disk (1-10 AU) the physics is more
complex. Ohmic and ambipolar diffusion damp
turbulence throughout most of the disk column,
though in the presence of a net field accretion could
still occur via angular momentum loss in a disk
wind (Bai & Stone, 2013). Accretion in this re-
gion can also be driven by the Hall effect, as a re-
sult of the “Hall shear instability” (Kunz, 2008)
which can amplify magnetic fields via a mechanism
that is essentially independent of the usual MRI.
The novel feature of the Hall effect is that it op-
erates differently depending upon the sign of the
net field relative to the angular momentum vector
of the disk rotation. An aligned field leads to a
substantial, largely laminar magnetic stress, while
an anti-aligned field supports only very weak stress
(Bai, 2014; Lesur, Kunz & Fromang, 2014).

Taken together the results of local simulations suggest
that the strength and evolution of net disk fields are ma-
jor players in disk evolution, and that the nature of accre-
tion in the inner disk depends upon not just the strength
but also the orientation of the field. Simulations by Si-
mon et al. (2015) indicate that the angular momentum
transport efficiency at 1 AU could differ by 1-2 orders of
magnitude depending upon whether the net field in this
region is aligned or anti-aligned to the rotation axis.
Local simulations are unsuitable tools for studies of
disk winds, and so the fact that local models point to
winds being important for protoplanetary disk accretion
is more than a little concerning. Global simulations that
include Ohmic and ambipolar diffusion have been re-
ported by Gressel et al. (2015), while Béthune, Lesur
& Ferreira (2017) present simulations including all three
non-ideal effects. The global results are rather hard to
summarize, but they confirm the likely importance of
disk winds and suggest a weaker but still significant po-
larity dependence of angular momentum transport as a
consequence the Hall effect. They also show the develop-
ment of small-scale radial structure in the net field, via
a process of self-organization that may have observable
consequences for the distribution of dust within disks.
Figure 17 shows a schematic depiction of our “best
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FIG. 17 Schematic illustration of the dead zone model for
protoplanetary disks, originally proposed (in somewhat dif-
ferent form) by Gammie (1996). In this model, the innermost
regions of the disk are hot enough that thermal ionization
suffices to couple the magnetic field to the gas and allow the
MRI to operate. At larger radii ionization is provided by a
combination of non-thermal processes, stellar X-rays, far ul-
traviolet radiation, cosmic rays, and radioactive decay. The
MRI is damped by Ohmic and ambipolar diffusion, while the
Hall effect leads to a laminar magnetic stress at intermediate
radii. There may also be magnetic torques exerted on the
surface of the disk due to a wind.

guess” for what these non-ideal MHD simulation results
imply for the global structure of protoplanetary disks.
Three main regions are indicated. The innermost disk is
hot enough to be thermally ionized, ideal MHD is a rea-
sonable approximation, and the MRI results in turbulent
transport of angular momentum. Further out turbulence
is damped by a combination of Ohmic diffusion (near the
mid-plane) and ambipolar diffusion (in the atmosphere).
Angular momentum transport here may occur via largely
laminar magnetic stresses, and there may also be angu-
lar momentum loss via disk winds. Finally, in the outer
disk ambipolar diffusion damps the MRI strongly, with
accretion occurring primarily in thin surface layers.

The paradigm of protoplanetary accretion described
above, developed from theoretical considerations, is
testable via several avenues. Furthest along are efforts
to measure the turbulent broadening of molecular lines,
which probe different regions of the vertical column de-
pending upon their optical thickness (CO 3 — 2 tran-
sitions, for example, are probes of the disk atmosphere,
whereas HCO™ traces the mid-plane). To date, Flaherty
et al. (2015) report upper limits of a few percent of the
sound speed on turbulent broadening of CO lines in the
HD 163296 system, while Teague et al. (2016) find results
consistent with turbulence in the TW Hya disk at a level
of 20-40 percent of the sound speed. These results may be
compared to theoretical predictions for HD 163296 which
imply turbulent velocities of at least tens of percent of the
sound speed in the layer of the disk probed by CO (Si-
mon et al., 2015b). There is an interesting conflict here
between observations and theory, whose consequences re-
main to be understood.
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5. Disk dispersal

Loss of the gaseous component of protoplanetary disks
sets a time limit for the completion of gas giant forma-
tion, and will affect the environment for terrestrial planet
formation as well. If only accretion is involved then the
self-similar solution for a viscous disk (equation 68) pre-
dicts that the surface density and accretion rate decline
as power-laws at late times, and hence that the transition
between disk and diskless states should be very gradual.
This will be modified if winds remove significant amounts
of either mass or angular momentum from the disk. The
best-developed models for dispersal focus on mass loss
via thermal winds (photoevaporation), but mass or an-
gular momentum loss in MHD flows may very well play
a role as well if the disk retains magnetic flux through-
out its lifetime (Armitage, Simon & Martin, 2013; Bali,
2016).

The original motivation for considering photoevapo-
rarion came from HST observations of low mass stars
exposed to the strong ionizing flux produced by massive
stars in the core of the Orion Nebula’s Trapezium cluster
(O’Dell, Wen & Hu, 1993). The images reveal tadpole-
shaped nebulae surrounding young stars with circumstel-
lar disks, which are interpreted as the signature of pho-
toevaporation and escape of disk gas as a result of illumi-
nation by external ionizing radiation (Johnstone, Hollen-
bach & Bally, 1998). The physics underlying this process
is relatively simple (Bally & Scoville, 1982; Hollenbach
et al., 1994; Shu, Johnstone & Hollenbach, 1993), and
is closely related to the well-studied problem of Comp-
ton heated winds from accretion disks in Active Galactic
Nuclei (Begelman, McKee & Shields, 1983). Extreme ul-
traviolet (EUV) photons with E > 13.6 eV ionize and
heat a surface layer of the disk, raising it to a temper-
ature T ~ 10* K characteristic of an HII region. The
sound speed in the photoionized gas is ¢; ~ 10 kms ™!,
Outside a critical radius r4, given by,

(98)

the sound speed in the hot gas exceeds the local Keplerian
speed. The gas is then unbound, and flows away from
the disk as a thermal wind. For a Solar mass star, r, as
estimated by equation (98) is at 9 AU.

The same basic process can occur regardless of whether
the EUV flux arises from an external source, such as a
massive star in a cluster, or from the central star itself.
In the typical star formation environment (Lada & Lada,
2003), however, most low mass stars receive too low a
dose of EUV radiation from external sources to destroy
their disks (Adams et al., 2006). Photoevaporation due
to radiation from the central star is therefore likely to be
necessary for disk dispersal. In this regime, Hollenbach
et al. (1994) derived an estimate for the mass loss rate
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FIG. 18 Schematic depiction of how photoevaporation driven
by a central source of UV radiation is predicted to disperse
the protoplanetary disk. In the initial phase, UV radiation
(shown as the red arrows) ionizes the surface of the disk, pro-
ducing a vertically extended bound atmosphere for r < ry and
mass loss in a thermal wind for » > ry. The ionizing flux that
photoevaporates the outer disk arises primarily from stellar
photons scattered by the atmosphere at small radii (the ‘dif-
fuse field’). After several Myr, the disk accretion rate drops
to a value that is of the same order as the wind mass loss
rate. At this point, the wind opens up a gap in the disk close
to 74, cutting off the inner disk from resupply by the disk
further out. The inner disk then drains rapidly on to the star
— producing an inner hole — and the direct UV flux from the
star photoevaporates the outer region.

due to photoevaporation,

. > Y2/ MmN\
~ —10 * —1
Maing =~ 4 x 10 <1o41 S_1> ( ) Myt

Mg
(99)
where @ is the stellar ionizing flux. Most of the wind mass

loss is predicted to originate close to r4, with a radial de-
-5/2

pendence of the mass loss given by Yo . Numerical
hydrodynamic simulations by Font et al. (2004) largely
confirm this basic picture, although in detail it is found
both that mass is lost for radii r < r, and that the in-
tegrated mass loss is a factor of a few smaller than that
predicted by the above equation.

The combination of a photoevaporative wind and vis-
cous disk evolution leads to rapid disk dispersal (Clarke,
Gendrin & Sotomayor, 2001). Calculations by Alexan-
der, Clarke & Pringle (2006) suggest a three-stage sce-
nario depicted schematically in Figure 18,

e Initially M > Mwind. The wind mass loss has neg-
ligible effect on the disk, which evolves in a similar
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way to an ordinary viscous model. The mass accre-
tion rate and surface density gradually drop on the
viscous time scale of the entire disk (determined at
large radii), which is of the order of a Myr.

e After a few Myr, the accretion rate drops suffi-
ciently so that M ~ Myinq. The wind is then
strong enough to dominate the disk surface den-
sity evolution near r4, opening up a gap in the disk
and cutting off the inner disk from resupply by gas
flowing in from the reservoir at larger radii. The
inner disk then drains on to the star on its own
(short) viscous time scale, which can be of the or-
der of 10° yr or less.

e Once the inner disk has drained, the remaining gas
in the outer disk is directly illuminated by UV radi-
ation from the star (previously, the dominant flux
was photons scattered on to the outer disk from a
bound atmosphere at smaller radii). This radiation
rapidly burns through the outer disk removing all
remaining gas.

The primary source of uncertainty in these models is the
origin and magnitude of the stellar ionizing flux. There
are few constraints on ® for Solar mass T Tauri stars
(Alexander, Clarke & Pringle, 2005), and essentially no
information on any scaling with stellar mass.

The physics of the EUV-ionized gas flows described
above is particularly easy to calculate. Qualitatively sim-
ilar flows, however, can be driven by softer FUV radiation
(6 eV < F < 13.6 eV), which suffices to dissociate Hy
molecules and drives evaporative flow from the outer disk
where the escape velocity is smaller. The detailed physics
of such flows — which resemble photodissociation regions
rather than HII regions — is harder to calculate because
the temperature of the heated gas is determined by a
balance between grain photoelectric heating and cooling
by both atomic and molecular lines (Adams et al., 2006;
Gorti & Hollenbach, 2009). Harder X-ray photons can
also be important, and X-rays may in fact dominate the
total photoevaporative mass loss rate for protoplanetary
disks (Ercolano, Clarke & Drake, 2009). Alexander et al.
(2014) provide a review of both the theory of these flows
and some of the observational constraints on photoevap-
oration models.

E. The condensation sequence

In an actively accreting disk, there must be a temper-
ature gradient in z in order for energy to be transported
from the dense midplane where it is probably liberated
to the photosphere where it is radiated (note that for a
thin disk with h/r < 1 gradients in z will dominate over
radial gradients, which can consistently be ignored). A
simple application of the theory of radiative transport
in plane-parallel media (Rybicki & Lightman, 1979) al-
lows us to derive the relation between the central disk
temperature T, and the effective disk temperature Tyjgy-



To proceed, we define the optical depth to the disk
midplane,
1

T = *F;RZ,

. (100)

where kg is the Rosseland mean opacity and ¥ is the
disk surface density. The vertical density profile of the
disk is p(z). If the vertical energy transport occurs via
radiative diffusion (in some regions convection may also
be important), then for 7 > 1 the vertical energy flux
F(z) is given by the equation of radiative diffusion,

_ 16073 g
3kpp dz’

F(z) = (101)
Let us assume for simplicity that all the energy dissipa-
tion occurs at z = 0'°. In that case F(z) = oT4,, is
a constant with height. Integrating assuming that the
opacity is a constant,

16 Taisk z
—3—0 T3dT = UTc‘fisk/ p(z")dz'
KR JT, 0
160 [T47 7 e ¥
e = Tcziliskfv (102)
3kr | 4 o, 2

where for the final equality we have used the fact that
for 7 > 1 almost all of the disk gas lies below the photo-
sphere. For large 7 we expect that T+ > Té‘isk, and the
equation simplifies to,

T4

c
4
Tdisk

~ ZT. (103)
The implication of this result is that active disks with
large optical depths are substantially hotter at the mid-
plane than at the surface. For example, if 7 = 10% to
the thermal radiation emitted by the disk at some radius
then T, ~ 3Tgjqk. This is important since it is the central
temperature that determines the sound speed that enters
into the viscosity (equation 81), and it is also the central
temperature that determines which ices or minerals can
be present. Relatively modest levels of accretion can thus
affect the thermal structure of the disk substantially.
For both terrestrial planet formation, and gas giant
planet formation if it occurs via the core accretion mech-
anism, the evolution of the trace solid component of the
disk is of great interest. The gas that forms the proto-
planetary disk will contain interstellar dust grains made
up of a mixture of silicates, graphite and polycyclic aro-
matic hydrocarbons (PAHs). In the interstellar medium,
measurements of the wavelength dependence of extinc-
tion can be fit by assuming that the dust grains follow a

10 In magnetized disks this is certainly not true, and both ideal
(Miller & Stone, 2000) and non-ideal (Hirose & Turner, 2011)
MHD simulations suggest that an interesting fraction of the dis-
sipation may occur at low optical depths.
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TABLE II Condensation temperatures for selected materials

T Material
1680 K Al O3
1590 K CaTiOs
1400 K MgAl,O4
1350 K Mg2SiOy, iron alloys
370 K FesO4
180 K water ice
130 K NHs - H.O
40K-80K methane, methane ices
50 K argon

power-law size distribution (Mathis, Rumpl & Nordsieck,
1977),

n(a) oc a=3® (104)

where a is the grain size (assumed to be spherical) and
the distribution extends from 0.005 pym to about 1 pm.
This distribution is generally assumed to be the starting
point for further evolution within the denser conditions
prevailing within the disk. In the hottest, inner regions
of the disk the central temperature can be high enough
to destroy the grains (1000 K to 2000 K, depending on
whether the grains are made of carbon or silicate). The
resulting absence of dust very close to the star consti-
tutes one of the main arguments against an in situ origin
for hot Jupiters, but the dust destruction radius is suffi-
ciently close in (normally substantially less than 1 AU)
that it rarely impacts either terrestrial or, especially, gi-
ant planet formation. It is, however, important observa-
tionally, since once the dust is destroyed the remaining
gas phase opacity is greatly reduced. There will there-
fore be an opacity “hole” in the inner disk even if gas is
present there.

If the gas that makes up the protoplanetary disk has
a known elemental composition (for example that of the
Sun), then it is a well defined problem (for a chemist!)
to calculate the most thermodynamically stable mix of
chemical species at any given pressure and temperature.
The abundance of different minerals and ices within the
disk will follow this condensation sequence provided that
there is sufficient time for chemical reactions to reach
equilibrium. This may be a reasonable assumption in
the hot inner disk but deviations will occur due to slow
chemical reactions in the cool outer disk and radial drift
of both gas and solids. The equilibrium mix depends
more strongly on temperature than on pressure, so we
can roughly map the condensation sequence into a pre-
dicted variation of disk composition with radius. Ta-
ble II, adapted from Lodders (2003), lists characteris-
tic temperatures below which different ices and min-
erals are predicted to be dominant. Of these, by far
the most important is the temperature below which wa-
ter ice can be present — this is 180 K at a pressure of
10~* bar (though for the conditions in the protoplane-
tary disk, water ice requires moderately cooler conditions



with 7'~ 150 K). For a Solar mix of elements, the sur-
face density of condensable materials rises dramatically
once water ice forms,

Y(ices + rock) ~ 4% (rock) (105)
though the ratio depends upon still uncertain determi-
nations of the exact Solar composition (Lodders, 2003).
It is tempting — and extremely plausible — to associate
changes in the efficiency or outcome of planet formation
(in particular the division between terrestrial and gas gi-
ant planets in the Solar System) with the large change in
the predicted surface density of solids that occurs at this
radius.

The radius in the protoplanetary disk beyond which
water ice can be present is called the snow line. In the
Solar System, water-rich asteroids are found only in the
outer asteroid belt (Morbidelli et al., 2000), which sug-
gests that the snow line in the Solar Nebula fell at around
3 AU. Passive protoplanetary disks are predicted to have
snow lines at substantially smaller radii — in some cases
interior to 1 AU — though accretion rates within the plau-
sible range for Classical T Tauri disks suffice to push the
snow line out to the inferred location of 3 AU (Garaud
& Lin, 2007; Lecar et al., 2006).

11l. PLANET FORMATION

The formation of planets from sub-micron size dust
particles requires growth through at least 12 orders of
magnitude in spatial scale. It is useful to consider dif-
ferent size regimes in which the interaction between the
solid component and the gas is qualitatively distinct:

e Dust — small particles ranging from sub-micron to
cm in scale. These particles are well-coupled to the
gas, but there can be slow drift either vertically or
radially. Growth occurs through physical collisions
leading to agglomeration.

e “Rocks” — objects of meter scale. These particles
have increasingly weak coupling to the gas, and so
it can be useful to approximate their dynamics as
being a combination of Keplerian orbits plus aero-
dynamic drag. Growth through this size regime is
deduced to be rapid but the mechanism remains
uncertain.

e Planetesimals — bodies of km scale and above.
Planetesimals are massive enough that their dy-
namics is largely decoupled from that of the gas.
A population of bodies of this size is often consid-
ered as the initial condition for subsequent stage
of planet formation, since the evolution of such a
population is a well-posed N-body problem involv-
ing primarily purely gravitational forces (though
for smaller planetesimals, questions regarding the
bodies material strength can also be pertinent). In
the classical scenario for planet formation we ignore
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dust and rocks once planetesimals have formed, but
in fact aerodynamically assisted accretion of small
bodies may play a substantial role in protoplane-
tary growth. This is “pebble accretion”.

e Earth mass planets or progenitors of the giant
planet cores. Once growing planets reach masses
of the order of that of Earth, they again become
coupled to the gas disk, though this time via gravi-
tational rather than aerodynamic interactions. We
will discuss this coupling later in the context of dif-
ferent regimes of planetary migration. For terres-
trial planet formation it is possible that the forma-
tion of Earth mass bodies occurs after the gas disk
has been dispersed (in which case this coupling is
moot), but for growing giant planet cores it is in-
evitable that interaction will take place.

e Planetary cores with masses of the order of
10 Mg. At around this mass, there is a transition
from a quasi-hydrostatic core + envelope structure
to a regime of rapid gas accretion.

Although it predates the discovery of extrasolar plane-
tary systems, the review by Lissauer (1993) remains an
excellent, readable summary of much of the physics that
we will address in this section.

A. From dust to planetesimals

A spherical particle of radius a, moving relative to the
gas at velocity v, experiences an aerodynamic drag force
Fp that opposes its motion,

1
Fp=—5Cp -ma® - pv* (106)
where Cp is the drag coefficient. The form of the drag co-
efficient depends upon the size of the particle compared
to the mean free path A of molecules in the gas (Wei-

denschilling, 1977b; Whipple, 1972). For small particles
(typically of cm size or less) for which,

9
a < =\, (107)
4
the drag coefficient is,
87
Cp=—-- 108
b= 3y (108)

where v = (8/7)'/2¢c, is the mean thermal velocity in
the gas. This is called the Epstein regime of drag. For
larger particles the Stokes drag law is valid. Defining the
Reynolds number via,

2
Re = 2%

v

(109)

where v is the microscopic (molecular) viscosity in the
gas, the drag coefficient can be expressed as a piecewise



function,
Cp = 24Re™! Re<1
Cp = 24Re %% 1 < Re < 800
Cp = 0.44 Re > 800. (110)

We will apply these drag laws to consider both the ver-
tical distribution and radial drift of small solid bodies
within the gas disk.

1. Dust settling

Dust particles are strongly coupled to the gas via drag
forces. For a particle of mass m, the friction time scale
is defined as,

muv

ol (111)

teric =

It is the time scale on which drag will lead to order unity

changes in the relative velocity between the particle and

the gas. Writing the particle mass m = (4/3)ma3py in

terms of the material density pg, the friction time scale

has a simple form in the Epstein regime,
Pd @

tfric -

. (112)

Adopting conditions appropriate to 1 AU within the disk,
p=5x10"1 gcecm™3, v = 2.4 x 10° cms™! and pg =
3 g cm ™3 we obtain tgi. ~ 2.5 s. Small particles are thus
very tightly coupled to the gas.

Consider a thin, vertically isothermal gas disk with sur-
face density ¥ and scale height h = ¢;/Q . The vertical
density profile is,

b)) 2 /072
_ —z“/2h
= ———¢€ .
pl2) ==

To start with, let us ignore the effects of turbulence and
assume that the disk is entirely quiescent. In this case the
important forces acting on a particle at height z above
the midplane are the vertical component of gravity and
gas drag, given by,

(113)

| Fgrav| = mQ%{z

|Fp] gwa%pv. (114)
Given the strong coupling expected for dust particles ter-
minal velocity will rapidly be attained, so we equate these

to obtain the settling speed,

02\ p
K d
Usettle = ( e —az.

; (115)

Settling is more rapid at higher z (where the gas density
is lower and the vertical component of gravity stronger),
and for larger grains. For example, for micron sized dust
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particles at z = h at 1 AU the settling velocity is vgettie =
0.1 cms™! and the settling time scale,

— = ~2x10° yr.
‘Usett1e|

tsettle = (116)
In the absence of turbulence, then, we expect micron
sized dust particles to sediment out of the upper layers
of the disk on a time scale that is short compared to the
disk lifetime, while for particles with sizes < 0.1 ym the
time scale is marginal.

Only the density in the equation for the settling time
scale is a function of height. Inserting the expression for
the vertical density profile the general expression for the
settling time scale becomes,

2 X

tsettle = —

—22/2n?
e .
m QKpda

(117)

The strong z-dependence implies that dust will settle out
of the upper regions of the disk rather rapidly in the ab-
sence of turbulence. This is of some interest since scat-
tered light images of protoplanetary disks (e.g. Burrows
et al., 1996) are sensitive to dust well away from the mid-
plane.

2. Settling in the presence of turbulence

The conditions necessary for turbulence to stir up the
dust enough to oppose vertical settling can be estimated
by comparing the settling time (equation 117) with the
time scale on which diffusion will erase spatial gradients
in the particle concentration. To diffuse vertically across
a scale z requires a time scale,

2

IS

tdlffuse - Da (118)
where D is an anomalous (i.e. turbulent) diffusion co-
efficient. Equating the settling and diffusion time scales
at z = h we find that turbulence will inhibit the for-
mation of a particle layer with a thickness less than h
provided that,

D> mel/? pmah2QK.

~o2 3

This result is not terribly transparent. We can cast it
into a more interesting form if we assume that the tur-
bulence stirring up the particles is the same turbulence
responsible for angular momentum transport within the
disk. In that case it is plausible that the anomalous dif-
fusion co-efficient has the same magnitude and scaling as
the anomalous viscosity, which motivates us to write,

(119)

2
acs
. 120
o (120)
With this form for D the minimum value of « required
for turbulence to oppose settling becomes,

D~y=

mel’? pga
> L 121




which is roughly the ratio between the column density
through a single solid particle and that of the whole gas
disk. For small particles this critical value of a is ex-
tremely small. If we take ¥ = 102 g cm ™2, pg = 3 g cm™3
and @ = 1 pum, for example, we obtain o > 107°. This
implies that small particles of dust will remain suspended
throughout much of the vertical extent of the disk in the
presence of turbulence with any plausible strength. For
larger particles the result is different. If we consider par-
ticles of radius 1 mm — a size that we know from obser-
vations is present within disks — we find that the critical
value of a ~ 1072. This value is comparable to most
large scale estimates of « for protoplanetary disks. Par-
ticles of this size and above will therefore not have the
same vertical distribution as the gas in the disk.

To proceed more formally we can consider the solid
particles as a separate fluid that is subject to the com-
peting influence of settling and turbulent diffusion. If the
“dust” fluid with density p, can be treated as a trace
species within the disk (i.e. that p,/p < 1) then it
evolves according to an advection-diffusion equation of
the form (Dubrulle, Morfill & Sterzik, 1995; Fromang &
Papaloizou, 2006),

0 0 0 0
% = D& |:P6,Z (p:)] + 9 (Q%(tfricppz) . (122)
Simple steady-state solutions to this equation can be
found in the case where the dust layer is thin enough that
the gas density varies little across the dust scale height.
In that limit the dimensionless friction time Qtg;e is in-
dependent of z and we obtain,

2
e (%) ool
— =\ Pl—=53 >
p P/ .m0 2h;

where hg, the scale height describing the vertical distri-
bution of the particle concentration p,/p, is,

| D
ha = ——-
¢ Q%(tfric

If, as previously, we assume that D ~ v, we can write
a compact expression for the ratio of the concentration
scale height to the usual gas scale height,

@ N «
h QthI‘iC .

The condition for solid particles to become strongly con-
centrated toward the disk midplane is then that the di-
mensionless friction time is substantially greater than a.
For any reasonable value of « this implies that substantial
particle growth is required before settling takes place.

Our discussion of dust settling in the presence of turbu-
lence sweeps a number of tricky issues under the carpet.
More careful treatments need to consider:

(123)

(124)

(125)

e Whether plausible sources of disk turbulence really
generate an effective turbulent diffusivity that is
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related to the effective turbulent viscosity. There
has been a great deal of work on this issue over the
years — a good modern starting point is Zhu, Stone
& Bai (2015).

e The relationship between the effective diffusivity of
the gas and that of particles aerodynamically cou-
pled to it. This is non-trivial once particles become
large enough that Qgtgic ~ 1 (Youdin & Lithwick,
2007).

3. Settling with coagulation

In addition to being affected by turbulence, settling
is also coupled to coagulation and particle growth. The
settling velocity increases with the particle size, so coag-
ulation hastens the collapse of the dust toward the disk
midplane.

To estimate how fast particles could grow during sed-
imentation we appeal to a simple single particle growth
model (Dullemond & Dominik, 2005; Safronov, 1969).
Imagine that a single “large” particle, of radius a and
mass m = (4/3)wa3pg, is settling toward the disk mid-
plane at velocity vgett1e through a background of much
smaller solid particles. By virtue of their small size, the
settling of the small particles can be neglected. If every
collision leads to coagulation, the large particle grows in
mass at a rate that reflects the amount of solid material
in the volume swept out by its geometric cross-section,

dm

— = 7ra2|vsett1e|fp(z)7

= (126)

where f is the dust to gas ratio in the disk. Substituting
for the settling velocity one finds,

dm  3Q%f

Since z = z(t) this Equation cannot generally be inte-
grated immediately!!, but rather must be solved in con-
cert with the equation for the height of the particle above
the midplane,

de _ _padgn (128)
dt pu
Solutions to these equations provide a very simple model
for particle growth and sedimentation in a non-turbulent
disk.

Figure 19 shows solutions to equations (127) and (128)
for initial particle sizes of 0.01 pm, 0.1 gm and 1 gm. The
particles settle from an initial height zp = 5h through a

11 Note however that if the particle grows rapidly (i.e. more rapidly
than it sediments) then the form of the equation implies expo-
nential growth of m with time.
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FIG. 19 The settling and growth of a single particle in a lami-
nar (non-turbulent) protoplanetary disk. The model assumes
that a single particle (with initial size a = 1 pm (solid line),
0.1 um (dashed line), or 0.01 ym (long dashed line) accretes
all smaller particles it encounters as it settles toward the disk
midplane. The smaller particles are assumed to be at rest.
The upper panel shows the height above the midplane as a
function of time, the lower panel the particle radius a. For
this example the disk parameters adopted are: orbital radius
r = 1 AU, scale height h = 3 x 10*' cm, surface density
¥ =10% g cm ™2, dust to gas ratio f = 1072, and mean ther-
mal speed ¥ = 10° cm s™'. The dust particle is taken to have
a material density ps = 3 g cm™? and to start settling from
a height zo = 5h.

disk whose parameters are chosen to be roughly appro-
priate to a (laminar) Solar Nebula model at 1 AU from
the Sun. Both particle growth and vertical settling are
extremely rapid. With the inclusion of coagulation, par-
ticles settle to the disk midplane on a time scale of the
order of 10 yr — more than two orders of magnitude
faster than the equivalent time scale in the absence of
particle growth. By the time that the particles reach the
midplane they have grown to a final size of a few mm,
irrespective of their initial radius.

The single particle model described above is very sim-
ple, both in its neglect of turbulence and because it as-
sumes that the only reason that particle-particle colli-
sions occur is because the particles have different ver-
tical settling velocities. Other drivers of collisions in-
clude Brownian motion, turbulence, and differential ra-
dial velocities. The basic result, however, is confirmed
by more sophisticated models (Dullemond & Dominik,
2005), which show that if collisions lead to particle adhe-
sion growth from sub-micron scales up to small macro-
scopic scales (of the order of a mm) occurs rapidly. There
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are no time scale problems involved with the very earliest
phases of particle growth. Indeed, what is more problem-
atic is to understand how the population of small grains
— which are unquestionably present given the IR excesses
characteristic of Classical T Tauri star — survive to late
times. The likely solution to this quandary involves the
inclusion of particle fragmentation in sufficiently ener-
getic collisions, which allows a broad distribution of par-
ticle sizes to survive out to late times. Fragmentation
is not likely given collisions at relative velocities of the
order of a cm s~™! — values typical of settling for micron-
sized particles — but becomes more probable for collisions
at velocities of a m s~ or higher.

4. Radial drift of particles

Previously we showed (equation 54) that the azimuthal
velocity of gas within a geometrically thin disk is close
to the Keplerian velocity. That it is not identical, how-
ever, turns out to have important consequences for the
evolution of small solid bodies within the disk (Weiden-
schilling, 1977b). We can distinguish two regimes,

e Small particles (¢ < cm) are well-coupled to the
gas. To a first approximation we can imagine that
they orbit with the gas velocity. Since they don’t
experience the same radial pressure gradient as the
gas, however, this means that they feel a net in-
ward force and drift inward at their radial terminal
velocity.

e Rocks (a > m) are less strongly coupled to the gas.
To a first approximation we can imagine that they
orbit with the Keplerian velocity. This is faster
than the gas velocity, so the rocks see a headwind
that saps their angular momentum and causes them
to spiral in toward the star.

To quantify these effects, we first compute the magnitude
of the deviation between the gas and Keplerian orbital
velocities. Starting from the radial component of the
momentum equation,

1ap

By G 1
pdr’

. (129)

r r

we write the variation of the midplane pressure with ra-
dius as a power-law near radius 7,

P=P (T) (130)
To
where Py = poc?. Substituting, we find,
Vg,gas = VK (1 — 77)1/2 (131)
where
2
n=n—s (132)



Typically n is positive (i.e. the pressure decreases out-
ward), so the gas orbits slightly slower than the local
Keplerian velocity. For example, for a disk of constant
h(r)/r = 0.05 and surface density profile ¥ o 7= we

have n = 3 and,

Vp,gas = 09961)[( (133)

The fractional difference between the gas and Keplerian
velocities is small indeed! However, at 1 AU even this
small fractional difference amounts to a relative velocity
of the order of 100 ms~!. Large rocks will then experience
a substantial, albeit subsonic, headwind.

The effect of the drag force on the dynamics of particles
of arbitrary sizes has been calculated by Weidenschilling
(1977b). Here, we adopt the approach of Takeuchi &
Lin (2002) and proceed by considering the radial and
azimuthal equations of motion for the particle!'?,

dv, Uﬁ 1
- Or — fe (Ur — Ur gas)
d r
3 (700) = - (Vg — Vg, gas) (134)

We simplify the azimuthal equation by noting that the
specific angular momentum always remains close to Ke-
plerian (i.e. the particle spirals in through a succession
of almost circular, almost Keplerian orbits),

d d 1
T (rvg) >~ v (rvg) = SUrUK- (135)
This yields,
1t ricUr
v¢fv¢7gasgf§ﬂ. (136)

r

Turning now to the radial equation, we substitute for Qx
using equation (131). Retaining only the lowest order
terms,

dv, v%( A% 1
i” =+ == (U = Vs gas) r—

(Vr = Vrgas) -

(137)

The dv,./dt term is negligible, and for simplicity we also

assume that v, gos < v, which will be true for those par-

ticles experiencing the most rapid orbital decay. Elimi-

nating (vy — vVg,gas) between equations (136) and (137)
we obtain,

e — (138)

T vk 4. r 4—1-
VK thrlc + VK tfric

This result can be cast into a more intuitive form by
defining a dimensionless stopping time,

Ttric = taricSlK, (139>

12 Although this calculation is straightforward, it’s easy to confuse
the three different azimuthal velocities that are involved — that
of the particle, that of the gas, and the Kepler speed. Be careful!
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FIG. 20 Radial drift velocity of particles at the midplane of
a protoplanetary disk with h/r = 0.05, plotted as a function
of the dimensionless stopping time 7gic. The radial velocity
of the gas has been set to zero. The most rapid inward drift
occurs for a physical stopping time Q;{l, which for typical disk
models translates to a particle size in the 10 cm to m range.
At 1 AU, the peak inward velocity is around 60 ms™*, which
implies a decay time of less than 100 yr.

in terms of which the particle radial velocity is,

Y _ *7"_1 (140)
UK Thic T Thic

The peak radial velocity is attained when 73 = 1 (i.e.
when the friction time scale equals Qi}l), and equals
Nk /2 independent of the disk properties.

Figure 20 plots v, /v as a function of the dimension-
less stopping time for a fiducial disk with h/r = 0.05.
Using equations (108) and (110), one can associate a par-
ticular 74 with a unique particle size a given known con-
ditions in the protoplanetary disk. Generically, one finds
that at radii of a few AU the peak inspiral rate is attained
for particles with size of the order of 10 cm to a few m.
The minimum inspiral time scale at a given orbital radius
depends only on 7 — at 1 AU it is of the order of 100 yr.
The inescapable conclusion is that the radial drift time
scale < disk lifetime for meter-scale bodies in the
protoplanetary disk.

The above analysis assumes that the density of solid
particles is low enough (compared to the gas density) that
there is no back-reaction of the solids on the gas. In some
important circumstances (particularly when considering
models for planetesimal formation) this criterion will be
violated. Nakagawa, Sekiya & Hayashi (1986) have cal-
culated models of settling and radial drift that are valid
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FIG. 21 Tlustration of how local pressure maxima within a
disk could concentrate solid bodies, forming a ring in this ide-
alized axisymmetric example. Local pressure maxima might
arise as a consequence of turbulence within the disk.

in the more general case where the solid and gas phases
can have comparable densities.

As we noted earlier, the fact that most of the heavy
elements in the Solar System are found in the Sun means
that we can tolerate some loss of planetary raw mate-
rial during planet formation. However, radial drift time
scales as short as 100 yr would clearly lead to a catas-
trophic loss of mass into the star unless, in fact, growth
through the meter-scale size regime is very fast. The
most important conclusion from this analysis is, there-
fore, that planetesimal formation must be a rapid pro-
cess. This is a robust inference since it derives directly
from the unavoidable existence of a velocity differential
between the gas disk and solid bodies orbiting within it.

The radial drift velocities given by equation (140) im-
ply significant radial migration over the lifetime of the
disk — not just for particles at the most vulnerable meter-
scale size range but also for substantially smaller and
larger bodies. This means that we should expect substan-
tial changes in the local ratio of solids to gas as a function
of time and radius in the disk (Takeuchi, Clarke & Lin,
2005). Under some circumstances, radial drift may allow
solids to pileup within the inner disk, potentially improv-
ing the chances of forming planetesimals there (Youdin
& Chiang, 2004).

Radial drift can be slowed or locally reversed if the gas
disk has a non-monotonic radial pressure profile. The
inward motion of solid bodies embedded within the disk
occurs as a consequence of a gas pressure gradient that
leads to sub-Keplerian gas orbital velocities. In general,
radial drift drives particles toward pressure mazima, so
in a disk where the mid-plane pressure declines smoothly
the motion is typically inward. If, on the other hand, it
were possible to create local pressure maxima these would
also act as sites where solids concentrate. This possibility
was recognized in a prescient paper by Whipple (1972),
whose Figure 1 is more or less reproduced here as Fig-
ure 21. If the perturbation to the pressure occurs on a
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scale Ar, then to obtain a maximum we require that the
local pressure gradient ~ P/Ar exceed the global gradi-
ent ~ P/r. The time scale to concentrate solids locally
is then faster than the global inspiral time by a factor
~ (Ar/r)2.

Several physical processes can create pressure max-
ima. Persistent local pressure maxima could form in a
disk at particular locations (for example, at the inner
edge of dead zones), while transient maxima could occur
due to the large-scale effects of disk turbulence. Rice
et al. (2004) and Durisen et al. (2005) discussed how
self-gravitating turbulence might concentrate particles
within spiral arms or axisymmetric gas rings. Johansen,
Youdin & Klahr (2009b) showed that “zonal flows”—
axisymmetric local perturbations to the pressure that are
maintained by variations in vg—could form within MRI
turbulent disks. The edges of gaps carved by massive
planets are another obvious location where a pressure
maxima may be expected.

5. Planetesimal formation via coagulation

The growth of micron-sized dust particles up to small
macroscopic dimensions (of the order of a mm) is driven
by pairwise collisions that lead to sticking and particle
growth. (Simultaneously, high velocity impacts may lead
to fragmentation.) The most economical hypothesis for
planetesimal formation is that the same process contin-
ues uninterrupted up to the planetesimal size scale (for
an early calculation, see e.g. Weidenschilling, 1980). A
coagulation model for planetesimal formation, however,
faces two independent challenges. First, the material
properties of colliding bodies with a realistic velocity dis-
tribution must permit growth (rather than bouncing or
fragmentation) across the full range of sizes between dust
particles and planetesimals. Second, the rate of growth
must be high enough to form planetesimals before the
material is lost into the star via aerodynamic drift. These
constraints are not easily satisfied (or summarized), but
neither are they obviously insurmountable.

The outcome of collisions between micron to cm-sized
bodies can be studied experimentally, ideally under low-
pressure microgravity conditions. Good introductions to
the extensive literature on experimental results are given
by Blum & Wurm (2008), Giittler et al. (2010) and Testi
et al. (2014). The bulk of the experimental work has been
performed using silicate particles and aggregates, repre-
sentative of materials found interior to the snow line. The
most basic result is the critical velocity below which indi-
vidual grains stick together. For 1 um silicate monomers
this velocity is about 1 m s=! (Poppe, Blum & Henning,
2000). For similarly sized water ice monomers the veloc-
ity is approximately 10 m s~! (Gundlach & Blum, 2015).
This order of magnitude difference presages the likeli-
hood of differences in particle growth outcomes interior
to and outside the water snow line.

Going beyond monomers, it is generally assumed that



the colliding bodies are aggregates made up these smaller
sub-units. The porosity of the aggregates represents an
extra dimension that must be taken into account in mod-
eling growth. A porous body can dissipate energy on col-
lision through rearrangement of its structures (and hence
can be “stronger” in some sense than a single particle),
but can also be compactified by the action of multiple
collisions. Theoretical models suggest that aggregates
growing outside the snow line can, in some situations,
be extremely porous, with internal densities as low as
107* g em™3 (Okuzumi et al., 2012).

Models for particle growth need to account consistently
for how the size distribution evolves given the predicted
collision speeds between particles (Ormel & Cuzzi, 2007;
Weidenschilling & Cuzzi, 1993), the experimentally mea-
sured or theoretically predicted collision outcomes, and
the local change in solid density due to radial drift. It’s a
difficult problem whose solution is uncertain. Generally
it appears that:

e There are mno material barriers preventing
monomers from growing into at least mm-
sized particles anywhere in the disk. The size

distribution of particles in the range between pm
and mm — cm is likely set by a balance of coagula-
tion and fragmentation processes (Birnstiel, Ormel
& Dullemond, 2011).

e Interior to the snow line, the onset of bouncing cre-
ates a barrier to growth at around mm or cm sizes
(Zsom et al., 2010). Growth likely continues be-
yond these sizes, but is more severely limited by
fragmentation and is not fast enough to form plan-
etesimals in the presence of radial drift.

e Qutside the snow line, growth to larger sizes is
in principle allowed because icy particles stick at
higher velocities and are more resistant to frag-
mentation (which may not occur until collision ve-
locities reach several tens of meters per second).
Growth may be limited by radial drift itself, lead-
ing to a “drift-limited growth” scenario in which the
particle size as a function of radius is determined
by the condition that that the growth time roughly
equals the drift time (Birnstiel, Klahr & Ercolano,
2012). Growth to larger sizes is possible if the disk
structure supports persistent or transient particle
traps that slow radial drift (Pinilla et al., 2012).

e In vapor-rich regions adjacent to ice lines (Steven-
son & Lunine, 1988) growth via condensation of
vapor on to pre-existing particles may play a role
(Ros & Johansen, 2013).

Based upon these results most workers infer that a plan-
etesimal formation mechanism distinct from simple colli-
sional growth is needed to explain how planetesimals can
form across a broad range of radii both interior to and
outside the snow line.
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FIG. 22 Geometry for the calculation of the stability of a
uniformly rotating sheet.

6. The Goldreich-Ward mechanism

The alternate hypothesis for planetesimal formation
holds that planetesimals form from gravitational frag-
mentation of dense clumps of particles. In its simplest
form, particles might settle vertically so strongly that a
dense sub-disk of solids at the mid-plane becomes vul-
nerable to collapse (Goldreich & Ward, 1973)13. As we
will discuss this specific model does not work, because
it turns out to be very difficult to settle a layer of small
dust particles to densities high enough for gravitational
instability. Nonetheless the basic idea remains attractive
since it forms planetesimals while entirely bypassing the
size scales that are most vulnerable to radial drift, and
it useful to discuss the original idea before considering
contemporary theories for planetesimal formation that
likewise invoke collective instabilities followed by frag-
mentation.

The basic idea of the Goldreich-Ward (1973) mecha-
nism for planetesimal formation is that vertical settling
and radial drift results in the formation of a dense dust
sub-disk within which the solid density exceeds the local
gas density (this obviously requires a very thin sub-disk
if the local ratio of gas to dust surface density is com-
parable to the fiducial global value of 100). The solid
sub-disk then becomes gravitationally unstable, and frag-
ments into bound clumps of solid particles that subse-
quently dissipate energy via physical collisions and col-
lapse to form planetesimals.

Gravitational instability requires that the disk be mas-
sive (high surface density) and / or dynamically cold
(low velocity dispersion). The classic analysis of the
conditions for gravitational instability is that of Toomre
(1964). Here, we consider the stability of a rotating fluid
sheet — this is somewhat easier than the collisionless cal-
culation, gives the same answer to a small numerical fac-
tor when the gas sound speed is identified with the parti-
cle velocity dispersion, and carries over to the instability

13 Similar considerations are discussed in Safronov (1969), who in
turn quotes earlier work by Gurevich & Lebedinskii from as early
as 1950.



of a gas disk that we will discuss later. The simplest
system to analyze is that of a uniformly rotating sheet
— in what follows I follow the notation and approach of
Binney & Tremaine (1987).

The setup for the calculation is as shown in Figure 22.
We consider a sheet of negligible thickness in the z =
0 plane, with constant surface density ¥y and angular
velocity 2 = Qz. Our aim is to calculate the stability of
the sheet to in-plane perturbations. Working in a frame
that corotates with the (unperturbed) angular velocity
), the fluid equations are,

0%

S TV (Ev) =0 (141)
ov _Vp
+0? (2% + ) (142)

where the momentum equation picks up terms for the
Coriolis and centrifugal forces in the rotating frame.
These equations apply in the z = 0 plane only. The
gravitational potential ® is given by the Poisson equa-
tion,

V20 = 47G%6(2) (143)
which describes @ in all space. In these equations, v =
vgX + v,y is the velocity in the rotating frame, ¥ is the
surface density, and p = p(X) is the vertically integrated
pressure. The sound speed is defined via,

d
= . (144)
5 dY S=%,

C

In the unperturbed state, ¥ = ¥y, ® = &3, v = 0 and
p = po = p(Xo). Substituting these values into the mo-
mentum equation yields V®¢ = Q?(zX + yy).

We now consider perturbations to the surface density,
velocity, pressure and potential,

Y = EO + El(x7y7t)
A4 Vl(m7yat)

P = Do +p1(x7yat)
o = (I)O+(I)1(xay7zat)

(145)

where it is assumed that 37 < ¥ etc. Substituting these
expressions into the fluid equations, and retaining only
those terms that are linear in the perturbed quantities,
we find,

ox

Ttl + SV-vi =0 (146)
ov c?

871 = fE—SOVEl - V&, —2Q x vy (147)

V20, = 47G%,6(z) (148)

where we have made use of the fact that since p is only a
function of ¥, Vp = (dp/d¥)VX. Note that these equa-
tions only involve temporal or spatial derivatives of the
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perturbed quantities. Since the equations are (by con-
struction) linear, the evolution of an arbitrary perturba-
tion can be decomposed into fourier modes. Assuming a
wavevector k that is parallel to X, we therefore write the
perturbations in the form,

Si(z,y,t) = Sae'Frmet (149)
vy = (vaxf(—&—vayy)ei(kz_”t) (150)
B = Pyetlhr—wt) (151)

where the final expression describes the potential pertur-
bations in the z = 0 plane only. Substitution of these
expressions into the perturbation equations will reduce
them to algebraic expressions, which can be combined to
yield the dispersion relation for the system.

First though, we simplify the system by noting that
perturbations in ¥ are the source of perturbations in .
We can therefore write ®, in terms of ,. To do this, let
the general form for ®; (i.e. not just at z = 0) be,

By = Bt 5 f(2) (152)
where f(z) is some function that needs to be determined.
Requiring that V2®; = 0 for z # 0, we find,

a2 f

dz?

=k2f (153)

which has a general solution f = Ae~** 4+ B¥* with A
and B arbitrary constants. Since ®; must remain finite
as z — £0o, the general form of @y is,

b, = (I)aei(kx—wt)—\kz\. (154)

This is valid throughout all space.
To determine ®,, we integrate the Poisson equation
vertically between z = —e and z = +e,

“+e +e
/ V2<I>1dz:/ 4G 8(2)dz.

—€ —€

(155)

Mathematically this requires a bit of care, since the inte-
grand on the left hand side is zero everywhere except at
z = 0. However, noting that 9>®; /0z? and 9?®, /0y? are
continuous at z = 0, while 92®, /022 is not, we obtain,

+e 0P, +e +e
V20,dz = 5 :/ 4rG¥16(2)dz.  (156)
e z e J-e
Taking the limit as € — 0,
—2|k|®, = 471G, (157)
and,
20G3Eq (i
S —— T el(k).l/—wt)—lkzl' (158)

||

We are now in a position to substitute X7, v; and &4
into the remaining equations (continuity plus the z and
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FIG. 23 The dispersion relation (solid black line) for a uni-
formly rotating sheet, illustrating the contributions from pres-
sure, rotation, and self-gravity (dashed blue lines). The sys-
tem is unstable if, at any value of the wavenumber k, w? falls
below the red line and is negative. Pressure is a stabiliz-
ing influence that is most important at large k (small spatial
scales), while rotation acts to stabilize the system at small k
(large spatial scales).

y components of the momentum equation). The resulting
algebraic equations are,

—iwX, = —ikXoUaz
2 2rGiX gk

Ciwvey = — ik, 4 2GR 0., (159)
Yo k|

—iWlqy = —2Qgz. (160)

We seek a dispersion relationi.e. aformula for the growth
rate w = f(k) of modes of different scale k. Eliminating
Uz and vy in turn, we obtain,

w? = A2k? — 21GT k| + 492 (161)

This is the dispersion relation for a uniformly rotating
thin sheet. The scale-dependence of the different terms
is shown graphically in Figure 23.

Looking back to the form of the perturbations, we note
that the sheet is:

e STABLE if w? > 0, since in this case w is real and
the perturbations are oscillatory.

e UNSTABLE if w? < 0, for which case w is imagi-
nary and perturbations grow exponentially.

The rotational term (4Q2) is stabilizing at all scales,
while the pressure term (c2k?) has a strong stabilizing in-
fluence at large k (i.e. small spatial scales). Self-gravity,
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represented by the —2mG¥|k| term, has a negative con-
tribution to w? and so destabilizes the sheet.

The condition for marginal stability is that w? > 0 at
all spatial scales. The most unstable scale k. can be
found by setting dw?/dk = 0, which yields,

WGZO

5 -
Cs

(162)

kcrit =

The sheet is marginally stable when w?(kei) = 0, which
gives the stability condition as,
s

os. ~ 2 (163)

This analysis can be extended in several ways — for exam-
ple to include differential rotation or global rather than
local stability. A generic way of expressing the results of
such calculations is to define the Toomre () parameter,

cs§2
TGYL’

Q= (164)
In terms of Q, a disk is unstable' to its own self-gravity
if Q < Qerit, and stable if Q > Q. Typically Qi ~ 1
— for the specific system we have investigated it would be
1/2.

We have derived the stability of a fluid disk in uniform
rotation. Differential rotation and global effects alter the
value of @i, but do not fundamentally change the re-
sult. For a collisionless disk (e.g. one made of stars or
small solid particles) a comparable result applies if we re-
place the sound speed ¢4 by the one-dimensional velocity
dispersion o.

The most unstable wavelength is,

2w 2c?
Aait = —— = ——. 165
ertt kcrit CTVZO ( )

Comparing this to the scale height of the disk h = ¢5/9,
we find that at marginal stability,

Acrit

W ~ 21

(166)

i.e. the instability afflicts small-ish spatial scales within
the disk.

Let us apply this analysis to the problem of planetes-
imal formation. If we ignore radial drift, then at 1 AU
Sdust ~ 107284, or about 10 g cm™? for a minimum

14 For a differentially rotating disk, it is easy to verify that stability
depends upon the parameter combination ¢sQ/(GXg) via a time
scale argument. First derive the time scale for shear to separate
two points that are initially Ar apart, and equate this to the
collapse time scale under gravity to find the maximum scale on
which collapse can occur without being affected by shear. Taking
the ratio of this scale to the Jeans scale (the smallest scale on
which collapse can occur without being inhibited by pressure
gradients) yields the correct functional form of Q.



mass Solar Nebula model (note that a gas to dust ratio of
100 is a commonly used approximation in protoplanetary
disk theory). Setting @ = 0Q/(7rGZqust) = 1, and tak-
ing M, = Mg, we find that instability requires a critical
velocity dispersion in the solid component,

o~ 10 cms ™. (167)

Since the gas sound speed at this radius is of the order of
10° cms™!, and the scale heights of the gas and particle
disks are respectively proportional to ¢s; and o, we see
that an extremely thin disk is required before instability
will set in!

If instability occurs, the most unstable wavelength is
predicted to be,

Aerit & 3 x 10% cm. (168)
The mass within an unstable patch is then,
m o~ T8 qust Ay ~ 3 x 10% g (169)
which would correspond to a spherical body of size,
r= (41”;)1/3 ~ 6 km (170)

for a material density of pg = 3 g cm™3.

time scale at distance At from mass m,

The collapse

3
/\crit (171)

te =
ff 2G'm

is very short — less than a year for the parameters adopted
above. Even if we allow for the fact that angular momen-
tum will preclude a prompt collapse, the derived time
scale for planetesimal formation via gravitational insta-
bility remains extremely short — perhaps of the order of
10® yr (Goldreich & Ward, 1973).

Formation of planetesimals via the Goldreich-Ward
mechanism has several attractive features, most notably
the short time scale and complete bypass of the size
regime most vulnerable to radial drift. However in its
simplest form, the mechanism fails to work. The problem
lies in the fact that even in an intrinsically non-turbulent
gas disk, the formation of a dense solid sub-disk leads
to self-generated turbulence and associated vertical stir-
ring prior to gravitational instability. As noted above,
for gravitational instability to operate we require a thin
sub-disk in which, for our choice of parameters,

hdust N 10_4.

172
g (172)

Within this midplane layer, the volume density of solids
would ezceed the density of gas by a factor of the order
of 100 — i.e. the extreme thinness of the solid disk in-
verts the normal gas to dust ratio which favors gas by
the same factor. Since the gas and dust are well cou-
pled for small particle sizes, within the sub-disk (where
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the solid component dominates) we expect both the gas
and the dust to orbit at the natural velocity for the solid
component, which is the Kepler velocity. The gas just
above the layer, on the other hand, will rotate slower due
to the radial gas pressure gradient. There will therefore
be a velocity gradient in the z direction that is of the
order of (hgas/7)*vk /haust. This shear will be Kelvin-
Helmholtz unstable, leading to turbulence that prevents
the layer ever getting thin enough to fragment into plan-
etesimals (Cuzzi, Dobrovolskis & Champney, 1993). The
condition for Kelvin-Helmholtz instabilities to develop
(Sekiya, 1998; Youdin & Shu, 2002) is that the Richard-
son number, which measures the competition between
vertical shear and buoyancy, is Ri < Rigt, where,

NZ
Ri=z=———— 173
' (00y/02)? (173)
and N, the Brunt Vaisala frequency, is defined as,
Olnp
N?=g, . 174
95, (174)

The standard stability analysis obtains a critical Richard-
son number Ri = 0.25, but both analytic calculations
including the effect of Coriolis forces, and numerical sim-
ulations, favor a larger value of around unity (Gomez &
Ostriker, 2005; Johansen, Henning & Klahr, 2006).

7. Streaming instabilities

Although it is very hard to settle a particle layer to the
point where it becomes gravitational unstable, coagula-
tion plus settling can plausibly lead to a mid-plane layer
in which the local particle density p, is comparable to
that of the gas py. Current interest in gravitational insta-
bility as a mechanism for planetesimal formation is based
upon the realization that the weaker condition p, ~ pg
suffices to trigger non-gravitational clumping of particles
via the streaming instability, that can be strong enough
to form clumps that will subsequently collapse under self-
gravity.

The term “streaming instability” is used generically
to describe instability in aerodynamically coupled mix-
tures of particles and gas in Keplerian disks. The original
analysis by Youdin & Goodman (2005) considered a ver-
tically unstratified system in which an incompressible gas
interacts with a compressible particle “fluid” via two-way
aerodynamic forces'®. This system is described by a pair

15 Particle clustering in turbulence also occurs in the “passive” limit
where the aerodynamic back reaction on the gas is neglected. In
this regime, particles concentrate in the regions between vortices.
This type of aerodynamic clustering may have interesting conse-
quences for protoplanetary disks (Cuzzi, Hogan & Shariff, 2008;
Pan et al., 2011), but the natural scale is much smaller (of the
order of the viscous scale in the turbulence) and the process is
entirely distinct from the streaming instability.



of continuity and momentum equations representing the
two fluids,

V.v, = 0,
dp
a_tp + V- (ppvp) = 0,
ovy PpVp —V VP
_+V .VV — _Q2r+_pu__7
ot g g K Py tiic Pg
b _
SALNE v, Vv, = —Q%r — Y (175)
ot tfric

(The notation here ought to be self-explanatory.) The
above equations are not a full description of the physical
system found in protoplanetary disks. Vertical stratifi-
cation is neglected, together with the effect of intrinsic
turbulence which might loosely be supposed to lead to an
effective diffusivity for the particles. Taking the gas to be
incompressible and treating the particles as a fluid (with,
necessarily, a single-valued velocity field at each point)
are good approximations, but approximations nonethe-
less.

The equilibrium state of steady radial drift defined
by the above equations is the Nakagawa-Sekiya-Hayashi
(NSH) equilibrium mentioned earlier (Nakagawa, Sekiya
& Hayashi, 1986). Youdin & Goodman (2005) showed
that the NSH equilibrium is linearly unstable for a broad
range of system parameters, of which the important ones
are the local solid to gas ratio, the dimensionless stop-
ping time of the particles, and the amount of pressure
support in the gas. The simplest unstable modes are ax-
isymmetric, typically of small scale (substantially smaller
than h), and have growth rates that can be as large as
~ O.IQI}1 but which are often much smaller. The linear
instability does not have any known explanation that is
particularly compelling or intuitive.

Numerical simulations have established that the
streaming instability provides a pathway to forming
dense clumps that can collapse gravitationally to form
planetesimals (Johansen et al., 2007), though the pre-
requisite particle size and local metallicity are not triv-
ially satisfied. Work by Carrera, Johansen & Davies
(2015) and Yang, Johansen & Carrera (2017) shows that
the non-linear evolution of the streaming instability leads
to strong clumping that would precipitate rapid planetes-
imal formation in a U-shaped region of local metallicity /
stopping time space spanning 1073 < 7g5. < 10. The low-
est required metallicity—which is still super-Solar (Jo-
hansen, Youdin & Mac Low, 2009)—occurs for 74 ~ 0.1,
which corresponds to particles larger than those that ob-
viously form from coagulation in the inner disk. Smaller
values of Tic ~ 1073, which lead to strong clumping
only for metallicities of Z 2 0.04, match up better with
expected initial particle sizes. It appears plausible that
planetesimal formation occurs, albeit at a slower rate, for
local solid to gas ratios modestly lower than the currently
established thresholds.

Once collapse of streaming-initiated over-densities oc-
curs the outcome is a population of planetesimals. The
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FIG. 24 Tllustration of the physical processes that may be
involved in the formation of planetesimals. Vertical settling
and coagulation lead to the formation of a relatively high
density particle layer near the disk mid-plane. Aerodynamics
forces mean that particles drift radially as they grow, reduc-
ing the abundance of solids in the outer disk and (potentially)
increasing it closer to the star. Where the stopping time
and local dust-to-gas ratio satisfy the right conditions, the
streaming instability (Youdin & Goodman, 2005) leads to
strong clumping of solids. Some of these over-densities col-
lapse gravitationally, forming a population of planetesimals
with a range of masses. (Simulation of planetesimal forma-
tion via the streaming instability from Simon et al., 2016,
http://jila.colorado.edu/~jasil566/3dstreaminginsta.html).

initial mass function of the resultant planetesimals can
be fit with a power-law that is cut-off above some char-
acteristic mass. A recent determination by Simon et al.
(2016) obtains a differential mass function,

AN
dM,

o< M, (176)
with p = 1.6 £0.1. Results by Schifer, Yang & Johansen
(2017) are consistent. This is a mass function in which
the largest bodies in the population have most of the
mass.

Figure 24 illustrates how the various processes that
we have discussed—coagulation, vertical settling, radial
drift, and the streaming instability—might conspire to-



gether to lead to planetesimal formation. It is not obvious
what radial profile of planetesimal surface density ought
to result, though barring some remarkable fluke it will
not be the simple power-law envisaged in the Minimum
Mass Solar Nebula model. There has been some discus-
sion of how the hypothesis that the streaming instability
forms planetesimals could be tested, either in the aster-
oid belt (Morbidelli et al., 2009) or in the Kuiper Belt
(Nesvorny, Youdin & Richardson, 2010), but more work
is needed before drawing strong conclusions.

Other flavors of particle clustering in turbulence may
also be important. Attaining the relatively high local
dust to gas ratios needed to trigger the streaming insta-
bility may be aided and abetted by local pressure maxima
in zonal flows (Johansen, Youdin & Klahr, 2009b; Simon
& Armitage, 2014) or vortices (Barge & Sommeria, 1995),
which may be formed at the edges of dead zones (Lyra
et al., 2009). The loss of gas (Throop & Bally, 2005) and
formation of an inner hole via photoevaporative disk dis-
persal (Alexander & Armitage, 2007) could also enhance
Z, potentially triggering a late episode of planetesimal
formation.

B. Growth beyond planetesimals

Once planetesimals have formed the gas in the disk
will continue to influence their dynamics through two di-
ametrically opposed effects. Residual aerodynamic inter-
actions will act to damp planetesimal eccentricity and
inclination, while surface density fluctuations produced
by turbulence will exert fluctuating gravitational forces
that excite eccentricity (Laughlin, Steinacker & Adams,
2004; Nelson, 2005; Okuzumi & Ormel, 2013). These ef-
fects are significant, but overall further dynamical inter-
action between the solid and gaseous components of the
disk is limited until bodies with sizes > 10% km form that
are large enough to have a gravitational coupling to the
gas. We will discuss the impact of gravitational coupling
(“migration”) later in the context of the early evolution
of planetary systems.

How do planetesimals grow to form planetary em-
bryos, planets and giant planet cores? We will start by
discussing the physics of the classical model for planet
formation, in which the dominant dynamics is mutual
gravitational interactions between the bodies and growth
occurs from planetesimal-planetesimal and eventually
planetesimal-protoplanet collisions. This is a well-posed
problem that is usually studied using a combination of
statistical and N-body methods. Later, we will describe
a popular modern variant in which the dynamics remains
largely gravitational, but where growth occurs due to
the aerodynamically assisted accretion of small particles
(“pebbles”) that failed to form planetesimals.
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FIG. 25 Setup for calculation of gravitational focusing. Two
bodies of mass m, moving on a trajectory with impact pa-
rameter b, have a velocity at infinity of o /2.

1. Gravitational focusing

For sufficiently small bodies, the effects of gravity can
be ignored for the purposes of determining whether they
will physically collide. A massive planet, on the other
hand, can gravitationally focus other bodies toward it,
and as a result has a collision cross section that is much
larger than its physical cross section.

To evaluate the magnitude of this gravitational focus-
ing, consider two bodies of mass m, moving on a trajec-
tory with impact parameter b, as shown in Figure 25. The
relative velocity at infinity is 0. At closest approach, the
bodies have separation R, and velocity Vihax. Equating
energy in the initial (widely separated) and final (closest
approach) states we have,

Gm?
2 2

-mo* =mVg. — .
4 ma: Rc

(177)

Noting that there is no radial component to the veloc-
ity at the point of closest approach, angular momentum
conservation gives,

10

Vmax = iﬁco— (178)

If the sum of the physical radii of the bodies is R, then
for R. < R there will be a physical collision, while larger
R, will result in a harmless flyby'6. The largest value of
the impact parameter that will lead to a physical collision
is thus,

4GmR,

b> = R? + s (179)

which can be expressed in terms of the escape velocity

from the point of contact, v2,. = 4Gm/R; as,

b’ = R? (1 + UQ) (180)
] 02 .

16 This is true for solid bodies — for giant planets or stars tidal
effects can lead to significant dissipation of energy even when
Rc > R, (Fabian, Pringle & Rees, 1975).



The cross section for collisions is then,
2
_ 2 vesc
F = 7TRS (1 + O'2> B

where the term in brackets represents the enhancement to
the physical cross section due to gravitational focusing.
Clearly a planet growing in a “cold” planetesimal disk
for which ¢ < vesc Will grow much more rapidly as a
consequence of gravitational focusing. As a consequence,
determining the velocity dispersion of bodies of different
masses during the planet formation process is extremely
important.

(181)

2. Growth versus fragmentation

When two initially solid bodies physically collide the
outcome can be divided broadly into three categories:

e Accretion. All or most of the mass of the impactor
becomes part of the mass of the final body, which
remains solid. Small fragments may be ejected, but
overall there is net growth.

e Shattering. The impact breaks up the target
body into a number of pieces, but these pieces re-
main part of a single body (perhaps after reaccumu-
lating gravitationally). The structure of the shat-
tered object resembles that of a rubble pile.

e Dispersal. The impact fragments the target into
two or more pieces that do not remain bound.

To delineate the boundaries between these regimes quan-
titatively, we consider an impactor of mass m colliding
with a larger body of mass M at velocity v. We define
the specific energy @ of the impact via,

mv2

Q=5 (182)
and postulate that this parameter largely controls the
result. The thresholds for the various collision outcomes
can then be expressed in terms of Q. Conventionally, we
define the threshold for catastrophic disruption @7, as
the minimum specific energy needed to disperse the tar-
get in two or more pieces, with the largest one having a
mass M /2. Similarly Q% is the threshold for shattering
the body. More work is required to disperse a body than
to shatter it, so evidently @7, > Q%. It is worth keeping
in mind that in detail the outcome of a particular colli-
sion will depend upon many factors, including the mass
ratio between the target and the impactor, the angle of
impact, and the shape and rotation rate of the bodies
involved. Quoted values of @}, are often averaged over
impact angles, but even when this is done the parame-
terization of collision outcomes in terms of @ is only an
approximation.

The estimated values of 7, for a target of a particular
size vary by more than an order of magnitude depending
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upon the composition of the body, which can broadly
be categorized into solid or shattered rock, and solid or
porous ice. For any particular type of body, however, two
distinct regimes can be identified:

e Strength dominated regime. The ability of
small bodies to withstand impact without being
disrupted depends upon the material strength of
the object. In general, the material strength of
bodies declines with increasing size, owing to the
greater prevalence of defects that lead to cracks. In
the strength dominated regime @)}, decreases with
increasing size.

e Gravity dominated regime. Large bodies are
held together primarily by gravitational forces. In
this regime @7, must at the very least exceed the
specific binding energy of the target, which scales
with mass M and radius a as Qp o« GM/a o pga®.
In practice it requires a great deal more than this
minimum amount of energy to disrupt the target —
so @p is not a good estimate of 7, — but nonethe-
less 7, does increase with increasing size.

Although the transition between these regimes is reason-
ably sharp there is some influence of the material proper-
ties (in particular the shear strength) on the catastrophic
disruption threshold for smaller bodies within the gravity
dominated regime.

Values of Q% and @7, can be determined experimen-
tally for small targets (Arakawa, Leliwa-Kopystynski &
Maeno, 2002). Experiments are not possible in the grav-
ity dominated regime, but @7, can be estimated theo-
retically using numerical hydrodynamics (Benz & As-
phaug, 1999; Leinhardt & Stewart, 2009) or (for rub-
ble piles) rigid body dynamics simulations (Korycansky
& Asphaug, 2006; Leinhardt & Richardson, 2002). The
simplest parameterization of the numerical results is as
a broken power law that includes terms representing the
strength and gravity regimes,

a \¢ a \¢
@b =4 (1 cm) tgpd (R) '
Often (but not always) @7, is averaged over impact ge-
ometry, and g¢s, g4, ¢ and d are all constants whose values
are derived by fitting to the results of numerical simula-
tions.

Benz & Asphaug (1999) and Leinhardt & Stewart
(2009) determined the values of the fitting parameters in
equation (183) from the results of an ensemble of simu-
lations of impacts into icy or rocky targets. Their results
are given in Table III and plotted as a function of target
size in Figure 26. One observes immediately that the re-
sults for a particular target material vary with the impact
velocity, and hence that @7, is not the sole determinant
of the outcome of collisions. There is, however, a clear
transition between the strength and gravity dominated
regimes, with the weakest bodies being those whose size
is comparable to the cross-over point. The most vulner-
able bodies are generally those with radii in the 100 m to

(183)



TABLE III Parameters for the catastrophic disruption
threshold fitting formula (equation 183), which describes how
QD scales with the size of the target body. The quoted val-
ues were derived by Benz & Asphaug (1999) and Leinhardt &
Stewart (2009) using numerical hydrodynamics simulations of
collisions, which are supplemented in the strength dominated
regime by experimental results.

v/ qs / 9 / c d

kms ! ergg ™! ergcm?® g2
Ice (weak) 1.0 1.3 x 10° 0.09 -0.40 1.30
Ice (strong) 0.5 7.0x107 2.1 -0.45 1.19
Ice (strong) 3.0 1.6x107 1.2 -0.39 1.26
Basalt (strong) 3.0 3.5 x 107 0.3 -0.38 1.36
Basalt (strong) 5.0 9.0 x 107 0.5 -0.36 1.36

1 km range. Just how vulnerable such bodies are to catas-
trophic disruption depends sensitively on their make-up,
and it would be unwise to place too much trust in pre-
cise numbers. As a rough guide, however, the weakest
icy bodies have minimum Q%, ~ 10° erg g~!, while the
strongest conceivable planetesimals (unfractured rocky
bodies) have minimum Q% > 10° erg g~ 1.

As a reality check, we may note that asteroids in the
main belt with e ~ 0.1 would be expected to collide to-
day with typical velocities of the order of 2 km s~!. For a
mass ratio m/M = 0.1 the specific energy of the collision
is then around Q = 2x10° erg g~ !, which from Figure 26
is sufficient to destroy even quite large solid bodies with
a =~ 100 km. This is consistent with the observation of as-
teroid families, and the interpretation of such families as
collisional debris. Evidently the random velocities that
characterize collisions must have been much smaller dur-
ing the epoch of planet formation if we are to successfully
build large planets out of initially km-scale planetesimals.

3. Shear versus dispersion dominated encounters

A more subtle distinction that nevertheless plays a cru-
cial role in planet formation is whether encounters be-
tween bodies can be described via 2-body dynamics —
in which only the gravity of the two objects themselves
matters — or whether the tidal influence of the Sun also
needs to be considered (3-body dynamics). Goldreich,
Lithwick & Sari (2004) summarize in simple terms why
the distinction between 2 and 3-body dynamics matters
at different stages of the planet formation process. We
consider a 3-body system consisting of a large body (a
“planet”) with mass M, a small body of negligible mass
(described as a test particle), and the Sun, and define the
Hill radius vy as the radius within which the gravity of
the planet dominates (in astrophysical contexts, the same
concept is referred to as the “Roche lobe”). Roughly, this
is obtained by equating the angular velocity for an orbit
at distance rg from the planet with the angular velocity
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FIG. 26 The specific energy Q7 for catastrophic disruption of
solid bodies is plotted as a function of the body’s radius. The
solid and short dashed curves show results obtained using fits
to theoretical calculations for impacts into “strong” targets
by Benz & Asphaug (1999). The long dashed curve shows
the recommended curve for impacts into “weak” targets from
Leinhardt & Stewart (2008), derived from a combination of
impact experiments and numerical simulations. In detail the
solid curves show results for basalt at impact velocities of
5kms™" (upper curve) and 3 km s~ (lower curve). The short
dashed curves show results for water ice at 3 km s™* (the lower
curve for small target sizes) and 0.5 km st (upper curve for
small target sizes). The long dashed curve shows results for
normal impacts into weak water ice targets at 1 km s™*.

of the planet around the star. We find,

B Mp 1/3
rg = 3M* a

where the factor 3 is included for consistency with more
detailed derivations. For circular orbits, collisions are
forbidden for an orbital separation Aa between the small
body and the planet such that Aa < rgy (c.f. the Trojan
asteroids in the Solar System). If we define a character-
istic velocity at the Hill radius,

(184)

G,

TH

g =

(185)

then for,

e 0 > vy 2-body dynamics describes collisions quite
well. This regime is called dispersion domi-
nated.

e 0 < vy 3-body effects are important. This regime
is called shear dominated.



When o < vy and we are shear dominated, the collision
rate is modified compared to expectations based on 2-
body dynamics.

4. Accretion versus scattering

A third general consideration is the balance between
impacts (which will lead to accretion if the bodies are
large enough) and gravitational scattering events. To
estimate this, we consider a planetesimal orbiting just
close enough to a growing planet that gravitational per-
turbations result in an encounter. As we will show later
(Section IV.C.1), this condition implies that the orbital
separation Aa scales with the Hill radius 5. The veloc-
ity difference between the planetesimal and the planet is
then (ignoring factors of the order of unity),

d’UK

1/3 2/3
GM P |

a

Av ~ TH ~ (186)

A close encounter between the planetesimal and the
planet will give the planetesimal a kick (a gravitational
“slingshot”, akin to those used to modify the trajectory
of spacecraft) whose magnitude depends upon the point
of closest approach. The maximum kick will occur for a
grazing counter, resulting in a kick whose size plausibly
scales with the escape velocity vesc from the planet. If
Vese < Aw, it is then impossible for the planet to scat-
ter the planetesimal into a significantly different orbit,
and ultimately the two must collide. Conversely, for
Vese > Aw, scattering will dominate over physical col-
lisions. Taking the ratio,

vesco( MP 1o i 12
Av M, R, ’

we find that for fixed planetary properties scattering (fa-
vored at large values of vese/Av) becomes more impor-
tant at large distances from the star, whereas collisions
and accretion dominate close-in. This basic dynamical
fact has two important consequences,

(187)

e Kepler’s super-Earth systems contain planets with
masses greater than Mg and orbits substantially
interior to 1 AU. This is well into the regime where
accretion dominates over scattering. Accordingly
— in the absence of gas or other dissipative pro-
cesses — planets growing at small orbital radii end
up accreting the large majority of the reservoir of
solids dynamically accessible to them.

e A giant planet core, with a mass of the order
of 10 Mg, moves increasingly into the scattering
regime for orbital radii substantially past 10 AU. In
particular, at 50-100 AU, a core is much more effi-
cient at scattering than accretion of planetesimals.
The dominance of scattering means that there is
a severe barrier to forming giant planets in situ at
large orbital radii.
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The Solar System’s terrestrial planets fall into an inter-
mediate regime. To a first approximation, the rocky bod-
ies remaining near 1 AU after the gas disk disperses as-
semble “in place” into the terrestrial planets, but some
scattering and radial migration does take place. This
is the basis, for example of the Hansen (2009) model in
which Mars is a planetary embryo scattered outward from
a formation location closer to 1 AU.

5. Growth rates

We now proceed to derive an estimate for how fast a
planet will grow due to accretion of planetesimals. We
assume that the growing body, of mass M, radius R, and
surface escape speed ves. is embedded within a “swarm”
of planetesimals with local surface density %,, velocity
dispersion o, and scale height h,. The volume density of
the planetesimal swarm is,

(188)

Then if 3-body effects can be ignored, the large body
grows at a rate,

dM v2
i psw(fﬂ'Rz (1 + ;SQC) .

5 (189)

This can be simplified since h, ~ ¢/ and hence ps,, is
inversely proportional to o. We find,

dM 1 v2,

ke §szwR§ (1 + 02) (190)

where the numerical prefactor, which has not been de-

rived accurately here, depends upon the assumed veloc-

ity distribution of the planetesimals. For an isotropic

distribution the prefactor is v/3/2 (Lissauer, 1993).
This simple result is important. We note that:

e The velocities of the planetesimals enter only via
the gravitational focusing term, which can however
by very large.

e The rate of mass growth scales linearly with 3, —
we expect faster growth in disks that have more
mass in planetesimals (due to a higher gas mass
and / or a higher ratio of solids to gas).

e Other things being equal, growth will be slower at
large radii, due to lower ¥, and smaller €2.

Complexity arises because as a planet grows, it stars to
influence both the velocity dispersion and, eventually, the
surface density of the planetesimal swarm in its vicinity.

Two simple solutions of the growth equation give an
idea of the possibilities present in more sophisticated
models. First, assume that the gravitational focusing
term Fy is constant. In this regime,

T R? < M?*/? (191)



which has solution,

R, x t. (192)

The radius of the planet grows at a linear rate. Writing
the planet mass M = (4/3)7rR§’pplanet, where pplanet is
the planet density,

dR,  X,0
dt 8pplanet

(193)

If we assume that at the orbital radius of Jupiter 3, =

10 g cm ™2, then for Pplanct = 3 & cm ™3,

dR,
dt

~0.2F, cm yr . (194)
This initial growth rate is slow, which implies that to
form the cores of the giant planets in a reasonable time,
large gravitational focusing factors are needed. For ex-
ample, to reach 1000 km in 10° yr, we require F, ~ 5000.
The need for large gravitational enhancements to the col-
lision rate is even more severe for the ice giants, but sub-
stantially easier in the terrestrial planet region.

Since empirically F, must be large, a second useful
limit to consider is the case where F; > 1. If we as-
sume that o is constant (i.e. consider the regime where
the growing planet has not yet managed to dominate the
dynamical excitation of the planetesimal swarm) then,

Vas
Fg (1 + J;)

2

~ Yesc
~
M
—. 195
x (195)
The growth equation (190) gives,
dM
— x MR, 196
7 & (196)
with solution,
M= _ (197)
(Mg * = k)
where My is the initial mass at time ¢ = 0 and k is

a constant. In this regime the increasing gravitational
focusing factor means that M — oo in a finite time,
allowing much more rapid growth.

6. Isolation mass

As noted above, rapid growth requires that ¢ remain
low — i.e. that the planetesimals remain on roughly
circular orbits. This means that there is a finite supply
of planetesimals that have orbits that pass close enough
to a growing planet to collide — once these have all been
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consumed growth is bound to slow. The mass at which
this slowdown occurs is described as the isolation mass
Miso-

To estimate the isolation mass, we note that a planet
grows by accreting planetesimals within a ‘feeding zone’.
The size of the feeding zone Aay,ax is set by the maximum
distance over which the planet’s gravity is able to perturb
planetesimal orbits sufficiently to allow collisions, so it
will scale with the Hill radius. Writing

Abtmax = Cry (198)
with C a constant of order unity, we have that the mass
of planetesimals within the feeding zone is,

270 - 2Dy - Bp o< M3, (199)
Note the 1/3 power of the planet mass, which arises
from the mass dependence of the Hill radius. As a
planet grows, its feeding zone expands, but the mass of
new planetesimals within the expanded feeding zone rises
more slowly than linearly. We thus obtain the isolation

mass by setting the planet mass equal to the mass of the
planetesimals in the feeding zone of the original disk,

Mo\ /3
Migo = dma - C <3M> a3, (200)
which gives,
8 _
Migo = %ﬁ/?(}?’/?M* 2323, (201)

Evaluating this expression in the terrestrial planet region,
taking « = 1 AU, ¥, = 10 gem 2, M, = Mg and
C = 2+/3 (Lissauer, 1993), we obtain,
Miso >~ 0.07 Mg. (202)
Isolation is therefore likely to occur late in the forma-
tion of the terrestrial planets. Repeating the estimate for
the conditions appropriate to the formation of Jupiter’s
core, using ¥, = 10 g cm™? as adopted by Pollack et al.
(1996)17, gives,
Miso ~ 9 Mg. (203)
This estimate is comparable to, or larger than, the cur-
rent best determinations for the mass of the Jovian core
(Guillot, 2005). The concept of the isolation mass may or
may not be relevant to the formation of Jupiter, depend-

ing upon the adopted disk model (and other issues, such
as the importance of pebble accretion and migration).

17 Note that this is a factor of several enhanced above the minimum
mass Solar Nebula value.



7. Pebble accretion

Observations show that mm and smaller-sized particles
are retained within protoplanetary disks for most of their
lifetimes, though the size of the dust disk may be substan-
tially smaller than that of the gas (Cleeves et al., 2016).
Protoplanets and planetesimals must therefore co-exist
with smaller solids that remain aerodynamically coupled
to the gas, and in some circumstances planetary growth
may occur predominantly by accretion of the small solids
rather than by collisions with planetesimals. This is the
basic idea of aerodynamically assisted or “pebble” ac-
cretion, which has been developed by Ormel & Klahr
(2010) and Lambrechts & Johansen (2012). Our account
here leans heavily on the Lambrechts & Johansen (2012)
treatment, though note that our definition of the radial
pressure support parameter n (equation 131) differs by
a factor of two from theirs. The calculation has three
parts. First, we determine the speed with which aerody-
namically coupled solids—henceforth pebbles—approach
a protoplanet on a strictly Keplerian orbit. Second, we
estimate the radius out to which the gravity of the proto-
planet affects the trajectories of the pebbles. Finally, we
obtain an effective cross-section by requiring that gravity
acts fast enough to capture the pebbles before they are
swept out of the planet’s region of influence by the gas
flow.

To begin, we compute the relative velocity between a
radially drifting pebble and a protoplanet on a Keplerian
orbit with zero eccentricity and inclination. The radial
and azimuthal components of the pebble drift at the orbit
of the planet are given by equations (131), (136) and
(140). We have,

e

_ 204
Teric + Tf;i}: ( )

Up = —

1 T;iIT}UK
_,fcil. (205)

C

Vp — VK —
2 Teric + Teri

These expressions neglect radial flow of the gas, and are
hence valid provided the radial drift speed of particles in
the mid-plane exceeds that of the gas. Adding in quadra-
ture the pebble approach speed is,

1 nvk . (206)

1
Av=——+——
2 Ttric + Ttric
The functional dependence on T is within 15% of unity
for 1073 < 744 < 1, so for practical purposes it suffices
to assume that,

1
Av ~ —nugk.

- (207)

The pebble approach speed is thus dependent on the disk
properties (recall from equation 132 that 1 oc (h/r)?) but
not on the particle size. Small particles approach the
protoplanet on almost azimuthal trajectories, while large

45

particles have a greater radial component but roughly
the same total speed.

In the same way that we distinguish between shear-
and dispersion-dominated regimes of planetesimal ac-
cretion (§II1.B.3), how pebbles accrete depends upon
whether the tidal field of the star needs to be taken into
account. We first define two relevant radii. Ignoring both
tidal (3-body) and gas drag effects a pebble approaching
a protoplanet at velocity Av with impact parameter b will
suffer a strong deflection of the order of Af ~ 1 radian if
b < rp, where

G,
B~ Av?

(208)

(This is justified to within factors of order unity in
§IV.A.1.) Following (rather confusing) convention we re-
fer to this critical radius for large-angle scattering as the
Bondi radius. A second characteristic scale is provided
by the Hill radius (equation 184),

B Mp 1/3
rTH = 3M* a,

which defines the boundary beyond which tidal effects are
important. At the Hill radius Keplerian shear introduces
a velocity relative to the protoplanet Avy = —(3/2)Qrg.
Comparing this to the aerodynamic pebble approach
speed (equation 207) we find,

A’UH - rep
Av Ny
Under the assumption that strong 2-body deflection is
a pre-requisite for aerodynamically assisted accretion we

can then distinguish the two regimes of pebble accretion
illustrated in Figure 27:

(209)

(210)

e If rg < ry pebbles that can potentially be accreted
approach the protoplanet with a velocity set by ra-
dial drift. Accretion can be modeled without con-
sidering tidal effects. This is the regime of drift
limited accretion.

e If rg > ry Keplerian shear dominates the approach
velocity for large impact parameters, and limits
the capture cross-section to roughly the Hill radius.
This is Hill limited accretion.

The transition between these regimes occurs when rg =
rg. The transition mass is,

1 Av?
M, — \[ Av?

3 GQ
with Av as given in eq. (207). There is a very strong
dependence on the disk structure via the radial pressure
support parameter 7. Restricting ourselves to power-law

disk models (equation 130) with mid-plane P o< =" we
have that n = n(h/r)?. A disk with ¥ oc =1 and T,

(211)
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FIG. 27 Illustration of the two main regimes of aerodynamically assisted (“pebble”) accretion. For lower mass protoplanets
(left) the Bondi radius rp, within which purely gravitational 2-body interactions would lead to strong scattering, is smaller than
the Hill radius ry. Aerodynamically coupled particles enter the Bondi radius with their radial drift velocity and are accreted
if their stopping time is shorter than the time it takes to traverse the Bondi radius. For higher mass protoplanets (right) the
Bondi radius exceeds the Hill radius, and the encounter velocity of particles approaching the planet is set by Keplerian shear
rather than radial drift. Only those particles that enter the Hill sphere have a chance of being accreted.

r~1/2 has n = 11/4, and we estimate the transition mass

as,
3 6
~ —3(_n h/r
My~ 8> 10 <11/4) (0.05> Me.

We should remember that the fundamental dependence
is on dP/dr rather than on (h/r), and revert to the basic
equations when considering locations such as planetary
gap edges or pressure traps. With that caveat, however,
we expect a modest increase in (h/r) with radius in the
disk, and a larger increase in the transition mass with
distance from the star.

Requiring that particles suffer strong deflections due
to the gravity of the planet is a necessary but not suffi-
cient condition for them to be accreted in the presence of
gas drag. We can determine the capture cross-section via
a time scale argument. In the drift dominated case ap-
propriate for small protoplanets there are three relevant
time scales:

(212)

e The friction time scale tgc.

e The time scale for a pebble to cross the Bondi ra-
dius tg = rp/Av.

e The time scale for the planet, with gravity g, to
modify the velocity of a pebble with impact pa-
rameter b, t, = Av/g = (Av/GM,)b>.

To be accreted we require that the planet’s gravity be
strong enough to “pull” a pebble out of the aerodynamic
flow, i.e. that t; < tmic (this assertion is supported by
numerical integrations; Lambrechts & Johansen, 2012;

Ormel & Klahr, 2010). Taking t; = tgic to define the
capture cross-section ry we obtain,

—1/2
Td = rB.
tfric

The best situation for pebble accretion corresponds to
tp ~ tuic, in which case a large fraction of particles en-
tering the Bondi radius end up getting accreted. With
the same power-law disk model we used before this con-
dition implies,

8 (M) ()7
Tfric = n3 M, , .

Once again there is a strong dependence on the geomet-
ric thickness of the gas disk. For nominal parameters
appropriate to a protoplanet with a mass similar to the
transition mass (equation 212), M, = 1072 Mg and
(h/r) = 0.05, the optimal dimensionless stopping time
is Tfric ~ 1.

Particles participating in pebble accretion are likely to
have settled vertically, and depending upon the thickness
of the settled layer (relative to r4) the geometry of ac-
cretion may be either two- or three-dimensional. If the
pebbles have surface density 3, and mid-plane density
pp simple geometry gives the appropriate accretion rate
in the two regimes,

(213)

(214)

(215)
(216)

What sort of growth is this? Substituting for r4 in the
expression above we find, in the three dimensional limit,

(217)

y 2
Mpebble73D = 71-rglppAU7

Mpebble,2D = 2TdEpA’U.

MpebbleﬁD X pptfrich .



Both p, and tgc are properties of the particle disk rather

than of the planet, so we have simply that Mp o< M, and
a prediction of exponential growth.

Identical considerations govern the expected accretion
rate in the Hill limited regime (Lambrechts & Johansen,
2012). In this case the crossing time of the Hill radius
is 271, and the requirement that tgic ~ Q™' implies im-
mediately that the best particle size has 75 ~ 1. Most
commonly the two dimensional accretion geometry is rel-
evant, so we have,

Myebble,Hin2p = 2ruSpAvy ocrfy oc M5, (218)
We expect a transition in growth rates as protoplanets
accreting pebbles via this aerodynamic mechanism pass
from the drift to Hill limited regimes.

The sketch of the physics of pebble accretion given
above is greatly simplified, and the reader is directed to
the original papers of Ormel & Klahr (2010) and Lam-
brechts & Johansen (2012) both for more details and for
justification of some of the assertions that we have made.
Hydrodynamic calculations confirm that although the
smallest particles get swept past embedded protoplan-
ets by the aerodynamic flow, estimates based on three-
body integrations of particle trajectories with drag are
valid for most of the relevant particle sizes (Morbidelli
& Nesvorny, 2012; Ormel, 2013). Within a pebble ac-
cretion scenario the growth rates of protoplanets depend
critically upon the local abundance of particles of the
right size to participate in the process. This is hard to
determine, as the particle sizes of interest are precisely
those that are subject to rapid radial drift with presump-
tively short residence times in the disk. Nonetheless,
many estimates suggest that pebble accretion could be
the dominant growth mechanism for at least some classes
of planets. Examples of papers that discuss how plan-
etary growth proceeds under pebble accretion include
Lambrechts & Johansen (2014), Bitsch, Lambrechts &
Johansen (2015), Levison, Kretke & Duncan (2015a) and
Levison et al. (2015D).

8. Coagulation equation

For both dust and planetary growth the basic mathe-
matical question is how a size distribution evolves under
the action of discrete collision events (possibly supple-
mented by a component of smooth accretion). The quan-
titative framework for addressing such questions is based
on the coagulation equation (Smoluchowski, 1916). This
allows us to drop our rather poorly defined descriptions
of “large” and “small” bodies though at the expense of
an enormous increase in complexity.

To write the coagulation equation in its simplest
form'®, assume that the masses of bodies are integral

18 Tt is also possible to write the coagulation equation as an integro-
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multiples of some small mass mi. At time ¢ there are ny
bodies of mass my = km,. The coagulation equation in
discrete form is,

dny, 1 >
E = § Z Aijnmj — Nk Z A;.”‘ni
i+j=k i=1

(219)

where A;; is the rate of mergers between bodies of mass
m; and m;. The first term on the right-hand side of the
equation describes the increase in the number of bodies
of mass my, due to collisions of all possible pairs of bodies
whose masses m; and m; sum to my. The second term
describes the decrease due to bodies of mass my being
incorporated into even larger bodies. The possibility of
fragmentation is here neglected. In this formulation of
the problem of planetary growth, all of the physics —
such as gravitational focusing — enters via the rate co-
efficients A;;.

Equation (219), or variants of it, has been used ex-
tensively to study planet formation (Inaba et al., 2001;
Kenyon & Luu, 1998; Safronov, 1969; Wetherill & Stew-
art, 1993), either on its own or in combination with direct
N-body simulations (Bromley & Kenyon, 2006). Gener-
ally the coagulation equation needs to be supplemented
with additional equations that describe the evolution of
the velocity dispersion as a function of mass, as described
for example in Kenyon & Luu (1998). Because of the fact
that all 7, j such that m; 4+ m; = my, contribute to the
evolution of ny, even the coagulation equation on its own
is not a simple equation to deal with, and few analytic
solutions are known. One (over)-simple case for which
an analytic solution exists is for the case when,
with « a constant. Then, if the initial state of the sys-
tem comprises nq bodies all of mass m1, the solution to
equation (219) is,

g = m fP(1=f)F!
f=

1+ Jant’ (221)
This solution is shown as Figure 28. The mass spectrum
remains smooth and well-behaved as growth proceeds,
and with increasing time the characteristic mass increases
linearly while maintaining a fixed shape.

More generally, solutions to the coagulation equation
fall into two classes (e.g. Lee, 2000):

differential equation for a continuous mass function n(m,t)
(Safronov, 1969), or as a discrete equation where bodies are
binned into arbitrary mass intervals (typically logarithmic).
Kenyon & Luu (1998) provide a clear description of how the
coagulation equation may be formulated and solved in the more
general case.
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FIG. 28 Tllustrative analytic solution to the coagulation equa-
tion for the simple case in which A;; = a, with a a constant.
Initially all bodies have mass mi. The solution is plotted for
scaled times t' = anit equal to 1, 10, 100 and 10%. The up-
per panel shows the number of bodies ny of each mass (the
vertical scale is arbitrary), while the lower panel shows how
the mass distribution evolves. This solution is an example of
orderly growth — as time progresses the mean mass steadily
increases while the shape of the mass spectrum remains fixed.

e Solutions that exhibit orderly growth, in which the
mass distribution evolves smoothly with time to-
ward higher mean masses. The analytic solution
given above for the case A;; = constant is an ex-
ample of this type of evolution. Another analytic
example is A;; « (m; +m;).

e Solutions that show runaway growth. In this case
the mass distribution develops a power-law tail to-
ward high masses — physically this corresponds to
one or a handful of bodies growing rapidly at the
expense of all the others. The long-term validity
of the coagulation equation once runaway growth
occurs is evidently limited. An analytic example
occurs for a rate coefficient A;; oc m;m;.

Looking back to equation (190), we note that the rate
coefficient is expected to scale as A o< R? oc m?/3 in the
regime where gravitational focusing is unimportant, and
A o R202,. o« m*/3 once gravitational focusing is dom-
inant. By comparison with the aforementioned analytic
solutions, we expect that the initial growth of planetes-
imals will occur in the orderly regime, while runaway
growth may occur once the largest bodies are massive
enough for gravitational focusing to become significant.
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9. Overview of terrestrial planet formation

We conclude the discussion of terrestrial planet for-
mation by summarizing briefly the main stages of the
process:

1. Dust particles agglomerate to form, eventually,
planetesimals. Initially this occurs via pairwise col-
lisions, though how (or whether) this process can
continues to work for cm to meter scale particles
remains somewhat murky. Gravitational instabil-
ity, probably initiated by the streaming instability,
may allow a bypass of these tricky sizes.

2. Growth beyond planetesimals occurs via direct col-
lisions, with an increasing role for gravitational fo-
cusing as masses become larger. Pebble accretion
contributes to growth, by an amount that depends
upon the abundance and size of surviving small
solids. Dynamical friction keeps the velocity dis-
persion of the most massive bodies low. A phase of
runaway growth may occur in which a few bodies
grow rapidly at the expense of the rest.

3. Runaway growth ceases once the largest bodies be-
come massive enough to stir up the planetesimals in
their vicinity. A phase of oligarchic growth ensues,
in which the largest objects grow more slowly than
they did during runaway growth, but still more
rapidly than small bodies (Kokubo & Ida, 1998;
Thommes, Duncan & Levison, 2003). Growth con-
tinues in this mode until the isolation mass is ap-
proached, at which point growth slows further.

4. Further evolution occurs as a result of collisions
between the initially relatively isolated planetary
embryos left over after oligarchic growth. The em-
bryos are perturbed onto crossing orbits due to the
influence of the giant planets and mutual secular
resonances (Chambers & Wetherill, 1998). The fi-
nal assembly of the terrestrial planets takes around
100 Myr, with the predicted configuration vary-
ing depending upon the assumed surface density of
planetesimals and existence (or not) of giant plan-
ets (Kokubo, Kominami & Ida, 2006; Levison &
Agnor, 2003; Raymond, Quinn & Lunine, 2005). In
the Solar System, one of the final impacts on the
Earth is widely considered to have given rise to the
ejection of enough mass into orbit to subsequently
form the Moon (Canup, 2004).

The dominant uncertainties in theoretical models for ter-
restrial planet formation are arguably found during stage
1 — the formation of planetesimals. It is also true that
most simulations of the late stages of terrestrial planet
formation lead to planetary properties (such as the ec-
centricity, and the mass of Mars compared to the other
terrestrial planets) that differ somewhat from those ob-
served in the Solar System. Thus, although there is gen-
eral confidence that the basic physics of terrestrial planet
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FIG. 29 Ilustration of the main stages of the core accretion
model for giant planet formation.

formation is understood, it is clear that current models
do not include all of the ingredients needed to accurately
match Solar System constraints (Raymond et al., 2009).

C. Gas giant formation

The formation of at least the vast majority of known
gas giant planets is thought to occur as a consequence
of core accretion (Bodenheimer & Pollack, 1986; Mizuno,
1980). The core accretion model, which had a lengthy
gestation period leading up to the landmark paper of
Pollack et al. (1996), postulates that the envelopes of gas
giants are accreted subsequent to the formation of a large
core, which is itself assembled in a manner analogous to
terrestrial planet formation.

Core accretion is the most widely accepted theory for
massive planet formation. There is, however, an alterna-
tive model, based on the idea that a massive protoplane-
tary disk might collapse directly to form massive planets
(Boss, 1997; Cameron, 1978; Kuiper, 1951). In this Sec-
tion, we review the physics of these theories in turn. We
also discuss the observational constraints on the different
theories, which include inferences as to the core masses
of the gas giants in the Solar System and the properties
of extrasolar planetary systems.

1. Core accretion model

The main stages in the formation of a gas giant via core
accretion are illustrated in Figure 29. A core of rock and
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/ or ice forms via the same mechanisms that we have pre-
viously outlined for terrestrial planet formation. Initially,
there is either no atmosphere at all (because the poten-
tial is too shallow to hold on to a bound atmosphere),
or any gas is dynamically insignificant. However, as the
core grows, eventually it becomes massive enough to hold
on to a significant envelope. At first, the envelope is able
to maintain hydrostatic equilibrium. The core contin-
ues to grow via accretion of planetesimals (or pebbles),
and the gravitational potential energy liberated as these
solids rain down on the core provides the main source of
luminosity. (In the limiting case where there is no plan-
etesimal luminosity, analyzed in detail by Piso & Youdin
(2014), energy comes instead from Kelvin-Helmholtz con-
traction of the envelope.) This growth continues until
the core reaches a critical mass. Once the critical mass
is reached the envelope can no longer be maintained in
hydrostatic equilibrium. The envelope contracts on its
own Kelvin-Helmholtz time scale, and a phase of rapid
gas accretion occurs. This process continues until (a) the
planet becomes massive enough to open up a gap in the
protoplanetary disk, thereby slowing down the rate of gas
supply, or (b) the gas disk itself is dispersed.

The novel aspect of the core accretion model is the
existence of a critical core mass. Mizuno (1980) used nu-
merical models to demonstrate the existence of a maxi-
mum core mass, and showed that it depends only weakly
on the local properties of the gas within the protoplane-
tary disk. A clear exposition of this type of calculation
is given in, for example, Papaloizou & Terquem (1999).
The simplest toy model that exhibits the key property of
a critical core mass is that due to Stevenson (1982), who
considered the (unrealistic) case where energy transport
is due solely to radiative diffusion. We reproduce his ar-
gument here. Rafikov (2006) is a good place to start for
understanding more realistic models in which convection
also plays a role.

Consider a core of mass M. and radius Reope, SUr-
rounded by a gaseous envelope of mass M,,. The total
mass of the planet,

Mt = Mcore + Menv~ (222)

The envelope extends from Reoe to some outer radius
Rout, which marks the boundary between the gas bound
to the planet and the gas in the protoplanetary disk.
R,y may be determined by thermal effects (in which
case Rous ~ GM,;/c?, with ¢, the disk sound speed) or
by tidal considerations (giving an outer radius of rp),
whichever is the smaller. If the envelope is of low mass,
then the largest contribution to the luminosity is from
accretion of planetesimals onto the core. This yields a
luminosity,

GMCOI'EMCOI'G
L= ——7"— 223
Rcore ( )
which is constant through the envelope.
If we assume that radiative diffusion dominates the

energy transport, then the structure of the envelope is



determined by the equations of hydrostatic equilibrium
and radiative diffusion,

dP GM(r)

R 224
dr 2 P (224)
L 16 ¢T3 dT
B el 22
4mr? 3 kgp dr (225)

where o is the Stefan-Boltzmann constant and kg the
Rosseland mean opacity (assumed constant). Eliminat-
ing the density between these equations we find that,

dT 3I<;RL

dP ~ 64noGMTS’ (226)

We now integrate this equation inward from the outer
boundary, making the approximation that M(r) ~ M,
and taking L and kg to be constants,

T P
p 3I€RL
T3dT = —2— dP.
/ 647mGMt/

Tdisk Pdisk

(227)

Once we are well inside the planet we expect that 7% >
Té‘isk and that P > Pjyisk, so the integral yields, approx-
imately,

1o ral
T 16mr oGM,

(228)
Substituting P in this equation with an ideal gas equation
of state,

kg

wmp

P= oT, (229)

we eliminate T2 in favor of the expression involving
dT/dr and integrate once more with respect to radius
to obtain,

pmy\ GM;
T ~ e 230
( kB ) 4r ( )
64wo [ umyGM; ‘1
~ —. 231
P = 3kpL ( Ak ) 3 (231)

Having derived the density profile the mass of the enve-
lope follows immediately,

Rout
= / 4 p(r)dr

Reore

256720 ( pm,GM, 4ln Rout
- 3I<CRL 4kB Rcorc

Meny

) . (232)

The right-hand-side of this equation has a strong depen-
dence on the total planet mass M; and a weaker depen-
dence on the core mass M.y, via the expression for the
luminosity,

— GMcoreMcore o M2/3 Mcore.

core
Rcore

L (233)
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FIG. 30 Solutions to equation (235) for the core mass Mcore
and total mass Miotal. The blue curve is for a higher plan-
etesimal accretion rate than for the red curve. The critical
core mass is shown as the vertical dashed line. One should
not take solutions to this toy model very seriously, but the
numbers have been fixed here to correspond roughly to the
values obtained from real calculations.

In principle there are further dependencies to consider
since Roy; is a function of M; and Rcre is a function of
Meore, but these enter only logarithmically and can be
safely ignored. Noting that,

Mcore = Mt - Menv» (234)

we find that,

(235)

4
Mcore = Mt - ( ¢ > Mt

ErMcore Mczo/ri ’
where we have shown explicitly the dependence on the en-
velope opacity and planetesimal accretion rate but have
swept all the remaining constants (and near-constants)
into a single constant C.

Solutions to equation (235) are plotted as Figure 30.
One sees that for fixed Mcore, there exists a maximum or
critical core mass M.;; beyond which no solution is pos-
sible. The physical interpretation of this result is that as
the mass of the envelope increases relative to that of the
core, ever higher pressures at the core-envelope bound-
ary are needed to maintain the envelope in hydrostatic
balance. At the critical mass, adding more gas to the en-
velope to raise the base pressure fails to help, because the
added gas contributes more to the self-gravity tending to
compress the envelope than to the pressure holding it
up. Once the critical mass is exceeded hydrostatic equi-
librium cannot be achieved in the envelope. Rather the



envelope will contract, and further gas will fall in as fast
as gravitational potential energy can be radiated.

This toy model should not be taken too seriously. How-
ever, it does illustrate the most important result from
more detailed calculations — namely that the critical
mass increases with larger M., and with enhanced opac-
ity. Ikoma, Nakazawa & Emori (2000) derive an approx-
imate fit to numerical results,

. 1/4
Mcrit ~ 12 Mcore / KRR 14
My 10-6 Mgyr—1 1 cm2g—!

(236)
where the power-law indices are uncertain by around
+0.05. The weak dependence of the critical core mass on
the planetesimal accretion rate means that, within a par-
ticular core accretion model, we can always speed up the
approach to runaway gas accretion simply by increasing
the assumed surface density of planetesimals in the vicin-
ity of the growing core. Contrary to what is sometimes
implied, there is no intrinsic difficulty in building planets
quickly via core accretion. However, faster growth occurs
at the expense of a larger final core mass.

Although they appear very detailed, extant calcula-
tions of planet growth via core accretion should probably
be regarded as illustrative rather than definitive. Three
sources of particular uncertainty are present,

e What is the magnitude of the opacity? Al-
though kpr enters equation (236) as rather a weak
power, its magnitude is highly uncertain. Hu-
bickyj, Bodenheimer & Lissauer (2005), and more
Movshovitz et al. (2010), have computed core ac-
cretion models in which the opacity is either arbi-
trarily reduced or computed from a settling and co-
agulation model. These models suggest, first, that
the appropriate value of the opacity in the enve-
lope is greatly reduced (by a factor of the order
of 10?) from the interstellar value (Podolak, 2003).
Second, they indicate that the reduced opacity re-
sults in substantially faster growth of massive plan-
ets. Formation time scales as short as a Myr, or
(for longer formation times) core masses as small
as 5 Mg, are achievable.

e The neglect of core migration. Theoretical
work, which we will discuss more fully in a sub-
sequent Section, suggests that planets or planetary
cores with masses exceeding Mg are highly vulner-
able to radial migration as a consequence of grav-
itational torques exerted by the gas disk. This ef-
fect is not included in the calculations of Pollack
et al. (1996) or Hubickyj, Bodenheimer & Lissauer
(2005). Papaloizou & Terquem (1999) and Alibert
et al. (2005) have studied the effect of steady inward
migration on core formation, and have showed that
it makes a large change to the time scale and out-
come of the process. Radial migration could also
be driven by dynamical interactions between grow-
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ing cores and planetesimals (Levison, Thommes &
Duncan, 2010).

e The relative role of planetesimal versus small
particle accretion. In the classic model of Pol-
lack et al. (1996), and its later refinements, the
core grows exclusively by accreting planetesimals.
However, as we noted in §III.B.7, the accretion
of smaller aecrodynamically coupled solids could be
equally or more important for core growth (Cham-
bers, 2014; Lambrechts & Johansen, 2012; Ormel
& Klahr, 2010). The size of primordial planetesi-
mals is an important factor in determining the rel-
ative contribution of planetesimals versus pebbles.
Small planetesimals—with radii of the order of a
km—retain enough aerodynamic damping to stay
dynamically cold, and have large gravitational fo-
cusing factors. Larger planetesimals, such as those
produced to arise from simulations of the streaming
instability (Schéfer, Yang & Johansen, 2017; Simon
et al., 2016), are less favorable building blocks for
rapid core formation, and if most of the mass in
the planetesimal population is in ~ 100 km bodies
pebble accretion may well be needed.

To summarize, the broad outlines of how core accretion
works are well established, but even the most sophisti-
cated models are probably lacking some essential physical
elements.

2. Gravitational instability model

A sufficiently massive and / or cold gas disk is gravi-
tationally unstable. Gravitational instability can lead to
two possible outcomes: stable angular momentum trans-
port or fragmentation. Kratter & Lodato (2016) pro-
vide a comprehensive review of both possibilities, here
we focus on the idea that fragmentation could provide a
mechanism for giant planet formation (Cameron, 1978;
Kuiper, 1951).

We have already derived the necessary conditions for
gravitational instability to occur. We need the Toomre
@ parameter to be low enough, specifically,

A
™GX

where ¢, is the sound speed in a gas disk of local sur-
face density ¥ and the disk mass is assumed to be
small enough that the distinction between the orbital
and epicyclic frequencies is of little import. If we con-
sider a disk with h/r = 0.05 at 10 AU around a Solar
mass star, then the relation h/r = c¢s/vy4 yields a sound
speed ¢ ~ 0.5 kms™*. To attain Q = 1, we then require
a surface density,

Q=

< Qerit >~ 1 (237)

Y~ 1.5 x10% g cm?. (238)

This is much larger than estimates based, for example, on
the minimum mass Solar Nebula, from which we conclude



that gravitational instability is most likely to occur at an
early epoch when the disk mass is still high. Recalling
that the characteristic wavelength for gravitational in-
stability is Aeie = 2¢2/(GY), we find that the mass of
objects formed if such a disk fragmented would be,

4 4
My, ~ T8N0 ~ 75;5 ~5M,; (239)

where M is the mass of Jupiter. At an order of mag-
nitude level it appears that gravitational instability fol-
lowed by fragmentation could form objects with masses in
the giant planet range. For those objects to remain plan-
ets, however, requires that they accrete relatively mod-
est amounts of gas from their young, gas-rich environ-
ment. Keeping fragments formed from gravitational col-
lapse from growing into brown dwarfs or low mass stars
is thus a significant challenge (Kratter, Murray-Clay &
Youdin, 2010).

It is also straightforward to derive where in the disk
gravitational instability is most likely to occur. Noting
that in a steady-state accretion disk v¥ = M /(37), we
use the a prescription (Shakura & Sunyaev, 1973) and
obtain,

Q x —=. (240)

The sound speed in a protoplanetary disk decreases
outward, so a steady-state disk becomes less stable at
large radii. Indeed, unless the temperature becomes so
low that external irradiation (not that from the central
star) dominates the heating, a steady-state disk will be-
come gravitational unstable provided only that it is large
enough.

To derive sufficient conditions for fragmentation, we
need to go beyond these elementary considerations and
ask what happens to a massive disk as instability is ap-
proached. The critical point is that as () is reduced, non-
azrisymmetric instabilities set in which do not necessarily
lead to fragmentation. Rather, the instabilities gener-
ate spiral arms which transport angular momentum and
lead to dissipation and heating. The dissipation results
in heating of the disk, which raises the sound speed and
can lead to a stable self-gravitating state in which heat-
ing and cooling balance (Paczynski, 1978). On a longer
time scale, angular momentum transport also leads to
lower surface density and, again, enhanced stability (Lin
& Pringle, 1990).

Given these consideration, when will a disk fragment?
Gammie (2001) used both analytic arguments and local
numerical simulations to identify the cooling time as the
control parameter determining whether a gravitationally
unstable disk will fragment. For an annulus of the disk
we can define the equivalent of the Kelvin-Helmholtz time
scale for a star,

U

t = —F 241
cool QUT:iliSk ( )
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where U is the thermal energy content of the disk per
unit surface area. Then for an ideal gas equation of state
with v = 5/3 Gammie (2001) found that the boundary
for fragmentation is:

o teool < 3071 — the disk fragments.

o ool = 3071 — disk reaches a steady state in which
heating due to dissipation of gravitational turbu-
lence balances cooling.

This condition is intuitively reasonable. Spiral arms re-
sulting from disk self-gravity compress patches of gas
within the disk on a time scale that is to order of mag-
nitude Q7. If cooling occurs on a time scale that is
shorter that Q~!, the heating due to adiabatic compres-
sion can be radiated away, and in the absence of extra
pressure collapse is likely. The above condition was de-
rived locally, but initial global simulations suggested that
it provides a good approximation to the stability of proto-
planetary disks more generally (Rice et al., 2003b). One
can also express the fragmentation boundary in terms of
a mazximum stress that a self-gravitating disk can sus-
tain without fragmenting (Gammie, 2001). Writing this
in terms of an effective « parameter, amayx =~ 0.06 (Rice,
Lodato & Armitage, 2005).

In a real disk, the cooling time is determined by the
opacity and by the mechanism of vertical energy trans-
port: either radiative diffusion or convection. Using
a disk model, one can then estimate analytically the
conditions under which a disk will become unstable to
fragmentation (Clarke, 2009; Levin, 2007; Rafikov, 2005,
2009). For standard opacities, the result is that fragmen-
tation is expected only at quite large radii of the order of
50 or 100 AU. On these scales a large reservoir of mass is
typically available locally and the likely outcome would
be very massive planets or brown dwarfs (Stamatellos &
Whitworth, 2009). At smaller radii the disk may still
be gravitationally unstable, but the instability will sat-
urate prior to fragmentation and, instead, contribute to
angular momentum transport.

The idea that the criterion for fragmentation can be
written in terms of a threshold value of t.,0€2, as dis-
cussed above, is useful but somewhat too simple. On
the 50-100 AU scales where fragmentation is most likely
to occur stellar irradiation cannot be ignored, and mod-
ifies the criteria for fragmentation (Rice et al., 2011).
Moreover, the numerical simulations used to study frag-
mentation exhibit quite subtle convergence properties
(as originally shown by Meru & Bate, 2011), and the
detailed results can be sensitive both to stochastic ef-
fects (Pardekooper, 2012) and to the treatment of cooling
(Rice et al., 2014). Further high resolution simulations
that include both radiative transport (Boley et al., 2010)
and MHD (Forgan, Price & Bonnell, 2017) are probably
needed.



3. Comparison with observations

The architecture of the Solar System’s giant planets
provides qualified support for the core accretion model.
The time scale for core accretion increases with orbital
radius, which is qualitatively consistent with the general
trend of planetary properties in the outer Solar System
— Jupiter is closest to Solar composition (reflecting a
fully formed gas giant), while Saturn and the ice giants
are relatively gas poor. Perhaps these outermost plan-
ets formed as the gas disk was in the process of being
dispersed.

The most direct test of core accretion in the Solar Sys-
tem involves measurement of the core masses of Jupiter
and Saturn. Information as to the interior structure of
the gas giants can be derived from exterior measurements
of the gravitational multipole moments (for Jupiter, from
the Galileo orbiter). When combined with interior struc-
ture models, which rely on knowledge of the equation of
state at high pressures and densities, the measured mul-
tipole moments yield constraints on the core mass. Cur-
rently, the uncertainties on reasonable interior structure
models appear to be large enough as to frustrate defini-
tive conclusions. Militzer et al. (2008) have calculated
Jovian models that include a substantial (14 — 18 Mg)
core, while Nettelmann et al. (2008) have computed sim-
ilarly state-of-the-art models that support earlier sugges-
tions (Guillot, 2005) that any core must be small. The
differences appear to result primarily from different as-
sumptions made by the two groups as to the number of
distinct layers within the interior of Jupiter. NASA’s
JUNO mission will return additional data that will yield
new constraints on the interior structure of Jupiter, and
it is to be hoped that this data will result in improved
measurements of the planet’s core mass.

Observations of extrasolar planets also yield con-
straints. Core accretion predicts that a greater surface
density of planetesimals would lead to faster core growth
and an increased chance of reaching runaway prior to disk
dispersal. This is consistent with the observed correla-
tion of massive planet frequency with host metallicity
(Fischer & Valenti, 2005; Ida & Lin, 2004). There are
also known extrasolar planets whose small radii imply a
large mass of heavy elements (HD 149026 being one ex-
ample; Sato et al., 2005), properties consistent with the
outcome of core accretion.

This does not, of course, mean that disk instability
does not occur. As we have emphasized fragmentation
is expected to occur only at large disk radii, whereas
almost all known exoplanets have been discovered via
search techniques that are most sensitive to planets with
small to intermediate separations. If disk instability does
occur then we would expect a second population of mas-
sive planets in wide orbits (Boley et al., 2009) with a dif-
ferent host metallicity distribution (Rice et al., 2003c).
Among known systems HR 8799 (Marois et al., 2008)
is the closest to matching the expectations for a system
formed via disk instability, but the evidence (for either
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fragmentation or core accretion) is inconclusive and to
date there are no planets that clearly demand a disk in-
stability origin.

IV. EVOLUTION OF PLANETARY SYSTEMS

The story is not over once planets have managed to
form. Theoretical models, which are now strongly sup-
ported by observations of the Solar System and of extra-
solar planetary systems, suggest at least five mechanisms
that can lead to substantial post-formation orbital evo-
lution:

e Interaction between planets and the gaseous
protoplanetary disk. This leads to orbital migra-
tion (Goldreich & Tremaine, 1980) as a consequence
of angular momentum exchange between the planet
and the gas disk, and can be important for both
terrestrial-mass planets and gas giants while the
gas disk is still present. Gas disk migration was
the first process suggested as an explanation for
the existence of hot Jupiters (Lin, Bodenheimer &
Richardson, 1996).

e Interaction between planets and a remnant
planetesimal disk. Planets, especially giant plan-
ets, can also exchange angular momentum by in-
teracting with and ejecting planetesimals left over
from the planet formation process. This mecha-
nism appears likely to have caused orbital migra-
tion of at least the ice giants, and possibly also Sat-
urn, during the early history of the Solar System
(Levison et al., 2007).

e Interaction within an initially unstable sys-
tem of two or more massive planets. There
is no guarantee that the architecture of a newly
formed planetary system will be stable over the
long run. Instabilities can lead to planet-planet
scattering, which usually results in the ejection of
the lower mass planets, leaving the survivors on
eccentric orbits. This could be the origin of the
typically eccentric orbits seen in extrasolar plane-
tary systems (Lin & Ida, 1997; Rasio & Ford, 1996;
Weidenschilling & Marzari, 1996). A fraction of
scattered planets are typically injected on to highly
eccentric and inclined orbits that may subsequently
circularize to form hot Jupiters.

e Interaction between orbiting planets and
stellar binary companions. A planet whose or-
bital plane is substantially misaligned with that
of a binary companion has its eccentricity excited
by the Kozai-Lidov mechanism (Kozai, 1962; Li-
dov, 1962). The eccentricity can become large
enough that, at closest approach, energy is dissi-
pated in tidal interactions with the star, forming
hot Jupiters (Wu & Murray, 2003).



e Tidal interactions between planets and their
host stars, which are of particular importance for
hot Jupiters given that their orbital radii are, in
some cases, just a handful of stellar radii.

This Section gives an elementary introduction to a selec-
tion of these mechanisms (for a higher-level review, see
Davies et al., 2014). The focus here is exclusively on
dynamical evolution of newly formed planetary systems.

A. Gas disk migration

The calculation of the torque experienced by a planet
embedded within a viscous disk is highly technical, and
although the basic principles are secure the details are
anything but. Here, we first give a semi-quantitative
treatment based on the impulse approximation (Lin &
Papaloizou, 1979). We then sketch some of the key ideas
that underlie more detailed computations, which are
based on summing the torque over a set of discrete reso-
nances between the planet and the gaseous disk (Goldre-
ich & Tremaine, 1979). Several excellent reviews are rec-
ommended for the reader seeking more details (Baruteau
et al., 2014; Kley & Nelson, 2012; Lubow & Ida, 2010).

1. Torque in the impulse approximation

Working in a frame of reference moving with the
planet, we consider the gravitational interaction between
the planet and gas flowing past with relative velocity Awv
and impact parameter b. The change to the perpendic-
ular velocity that occurs during the encounter can be
computed by summing the force along the unperturbed
trajectory. It is,

2GM,
bAv ’

where M), is the planet mass. This velocity is directed
radially, and hence does not correspond to any angu-
lar momentum change. The interaction in the two-body
problem is however conservative, so the increase in the
perpendicular velocity implies a reduction (in this frame)
of the parallel component. Equating the kinetic energy of
the gas particle well before and well after the interaction
has taken place we have that,

[0vy | = (242)

Av? = |6vy > + (Av = bv))?, (243)
which implies (for small deflection angles),
1 [(2GM,\*

If the planet has a semi-major axis a the implied angular
momentum change per unit mass of the gas is,

o 2G2M§a
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It is worth pausing at this juncture to fix the sign of the
angular momentum change experienced by the gas and
by the planet firmly in our minds. Gas exterior to the
planet’s orbit orbits the star more slowly than the planet,
and is therefore “overtaken” by the planet. The decrease
in the parallel component of the relative velocity of the
gas therefore corresponds to an increase in the angular
momentum of the gas exterior to the planet. Since the
gravitational torque must be equal and opposite for the
planet the sign is such that:

e Interaction between the planet and gas exterior to
the orbit increases the angular momentum of the
gas, and decreases the angular momentum of the
planet. The planet will tend to migrate inward,
and the gas will be repelled from the planet.

e Interaction with gas interior to the orbit decreases
the angular momentum of the gas and increases
that of the planet. The interior gas is also repelled,
but the planet tends to migrate outward.

In the common circumstance where there is gas both
interior and exterior to the orbit of the planet the net
torque (and sense of migration) will evidently depend
upon which of the above effects dominates.

The total torque on the planet due to its gravitational
interaction with the disk can be estimated by integrating
the single particle torque over all the gas in the disk. For
an annulus close to but exterior to the planet, the mass
in the disk between b and b + db is,

dm =~ 2maXdb (246)
where ¥ (assumed to be a constant) is some character-
istic value of the gas surface density. If the gas in the
annulus has angular velocity 2 and the planet has an-
gular velocity €, all of the gas within the annulus will
encounter the planet in a time interval,

2w

At=——" . (247)
‘Q - Qp|
Approximating |Q — Q,] as,
3Q
Q—Q,| ~=—2p 24
09, = 5, (248)

which is valid provided that b < a, we obtain the to-
tal torque on the planet due to its interaction with gas
outside the orbit by multiplying Aj by dm, dividing by
At, and integrating over impact parameters. Formally
we would have that,
dJ < 8G*M2a¥ db
Afz—/ T opandh (249)
dt 0 9. b
but this integral is clearly divergent — there is what must

be an unphysically infinite contribution from gas passing
very close to the planet. Sidestepping this problem for



now, we replace the lower limit with a minimum impact
parameter by, and integrate. The result is,
dJ 8 G2M5a2
at 27 Q23

P~ min

(250)

It is possible to tidy up this calculation somewhat, for
example by taking proper account of the rotation of the
planet frame around the star, and if this is done the result
is that the expression derived above must be multiplied
by a correction factor (Papaloizou & Terquem, 2006).

Aside from the sign of the torque the most important
result that we can glean from this calculation is that the
torque on the planet due to its interaction with the gas
scales as the square of the planet mass. This scaling can
be compared to the orbital angular momentum of the
planet, which is of course linear in the planet mass. We
conclude that if all other factors are equal — in particular
if neither 3 in the vicinity of the planet nor by,;, vary with
M, — the time scale for the planet to change its orbital
angular momentum significantly will scale inversely with
the planet mass. The migration velocity in this limit will
then be proportional to M, — more massive planets will
migrate faster.

Finally we can estimate the magnitude of the torque for
parameters appropriate to different stages of giant planet
formation. First, let us consider a rather low mass core
(M, = Mg) growing at 5 AU in a gas disk of surface
density ¥ = 102 g cm~2 around a Solar mass star. Our
treatment of the interaction has assumed that the disk
can be treated as a two-dimensional sheet, so it is ar-
guably natural to take as a minimum impact parameter
bmin = h =~ 0.05a. Using these numbers we find that the
exterior torque would drive inward migration on a time
scale,

o J
 JdJ/di]

Of course this will be partly offset by the interior torque
— which has the opposite sign — but absent some physical
reason why these two torques should cancel to high pre-
cision we would predict changes to the semi-major axis
on a time scale of the order of a Myr. This is already
rapid enough to be a potentially important effect dur-
ing giant planet formation via core accretion. Second,
we can evaluate the torque for a fully-formed gas giant.
A Jupiter mass planet has a Hill sphere rg > h, so it
seems reasonable to argue that the value of b, that we
adopted for an Earth mass core is too small in this case.
Picking a modestly larger value by, = 0.2a results in a
time scale,

~ 1 Myr. (251)

T ~2x10° yr, (252)

that is an order of magnitude shorter than typical pro-
toplanetary disk lifetimes. If these estimates can be
trusted to even an order of magnitude the conclusion is
inescapable — gas disk migration ought to be an impor-
tant process for the early evolution of the orbits of giant
planets.

%)

2. Torque at resonances

A more involved — but ultimately more powerful — ap-
proach to calculate the torque is to decompose it into
a sum over partial torques exerted at resonant loca-
tions with the disk (Goldreich & Tremaine, 1979; Tanaka,
Takeuchi & Ward, 2002). For simplicity, we start by con-
sidering a planet orbiting a star on a circular orbit with
angular frequency €2,. A standard exercise in dynamics
(e.g. Binney & Tremaine 1987) yields the conditions for
resonances. A corotation resonance exists for radii in the
disk where the angular frequency €2,

Q=Q,. (253)
Lindblad resonances exist when,
m(Q —Q,) = £ko (254)

where m is an integer and kg, the epicyclic frequency, is

defined as,
— 4 2
Ro = ( drz =+ 3Q )

(255)

with ®q the stellar gravitational potential. For a Kep-
lerian potential ko = 2. If we approximate the angular
velocity of gas in the disk by the Keplerian angular ve-
locity, the Lindlad resonances are located at,

1\2/3
rp = (1 + m) Tp

where 7, is the planet orbital radius. The locations of
some of the low order (small m) resonances are shown in
Figure 31. For an orbiting test particle, the resonances
are locations where the planet can be a strong perturba-
tion to the motion. For a gas disk, angular momentum
exchange between the planet and the gas disk occurs at
resonant locations. As we noted for the impulse approx-
imation, the sense of the interaction is that the planet
gains angular momentum from interacting with the
gas disk at the interior Lindblad resonances (r; < rp).
This tends to drive the planet outward. The gas loses
angular momentum, and moves inward. Conversely, the
planet loses angular momentum from interacting with
the gas disk at exterior Lindblad resonances (rp > rp).
This tends to drive the planet toward the star. The gas
gains angular momentum, and moves outward. Notice
that the gravitational interaction of a planet with a gas
disk tends — somewhat counter-intuitively — to repel
gas from the vicinity of the planet’s orbit.

The flux of angular momentum exchanged at each
Lindblad resonance can be written as,

TLR(m) 08 EMgfc(g)

(256)

(257)

where ¥ is the gas density and M,, the planet mass. That
the torque should scale with the square of the planet mass
is intuitively reasonable — the perturbation to the disk



FIG. 31 Nominal locations of the corotation (red) and Lind-
blad resonances (blue) for a planet on a circular orbit. Only
the low order Lindblad resonances are depicted — there are
many more closer to the planet.

surface density scales as the planet mass in the linear
regime so the torque scales as M7. The factor f.(¢) is
the torque cutoff function (Artymowicz, 1993), which en-
codes the fact that resonances very close to the planet
contribute little to the net torque. The torque cutoff
function peaks at,

Cs

§£m<r—9>p21

i.e. at a radial location r ~ r, = h, where h is the disk
scale height (this result immediately implies that a three-
dimensional treatment is necessary for the dominant res-
onances if the planet is completely embedded within a gas
disk, as is the case for low mass planets). The strength of
the torque exerted at each resonance is essentially inde-
pendent of properties of the disk such as the disk viscos-
ity, though of course the viscosity still matters inasmuch
as it controls the value of the unperturbed disk surface
density X.

Figure 32 illustrates the differential torque exerted on
the disk by the planet, after smoothing over the Lind-
blad resonances (Ward, 1997). The flux of angular mo-
mentum is initially deposited in the disk as waves, which
propagate radially before dissipating. The details of this
dissipation matter little for the net rate of angular mo-
mentum exchange.

Angular momentum transfer at corotation requires ad-
ditional consideration, and as we will see later thinking
of these torques in terms of resonances is not as prof-
itable as for the Lindblad torques. Formally though, in
a two-dimensional disk the rate of angular momentum

(258)
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FIG. 32 Schematic illustration of the smoothed torque den-
sity due to angular momentum exchange between a planet
and a gas disk at the location of Lindblad resonances, after
Ward (1997). The peak torque occurs at r & r, + h. The disk
gains angular momentum from the planet as a result of the in-
teraction for r > r,, and loses angular momentum for r < r,.
The interaction is almost invariably asymmetric, such that
when integrated over the entire disk the planet loses angular
momentum and migrates inward.

deposition at corotation is proportional to (Goldreich &
Tremaine, 1979; Tanaka, Takeuchi & Ward, 2002),

d /X
where B is the Oort parameter,
7 dQ2
B(r)=Q4+ -—. 260
(r)=Q+5+ (260)

This implies that in a two-dimensional disk, the reso-
nant corotation torque vanishes identically in the mod-
erately interesting case of a disk with a surface density
profile ¥ o r~3/2. This result does not apply to three-
dimensional disks (Tanaka, Takeuchi & Ward, 2002).

3. Type | migration

For low mass planets (generically M, ~ Mg, though
the exact mass depends upon the disk properties) the
angular momentum flux injected into the disk as a con-
sequence of the planet-disk interaction is negligible when
compared to the viscous transport of angular momentum.
As a result, the gas surface density profile 3(r) remains
approximately unperturbed, gas is present at the loca-
tion of each of the resonances, and the net torque on the
planet is obtained by summing up the torque exerted at
each resonance. Schematically,

Totanet = »_ Ter+ Y Tor+Tor
ILR OLR

(261)



where the planet gains angular momentum from the inner
Lindblad resonances (ILR) and loses angular momentum
to the outer Lindblad resonances (OLR). There is also a
potentially important co-orbital torque Tor. Changes to
the planet’s orbit as a result of this net torque are called
Type I migration (Ward, 1997).

As noted above (equation 257) the torque exerted at
each resonance scales as the planet mass squared. If the
azimuthally averaged surface density profile of the gas
disk remains unperturbed, it follows that the total torque
will also scale as Mg and the migration time scale,

T X P och_l.
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Type I migration is therefore most rapid for the largest
body for which the assumption that the gas disk remains
unaffected by the planet remains valid.

Actually evaluating the sum sketched out in equation
(261) is not easy, and there is no simple physical argu-
ment that I am aware of that gives even the sign of the net
torque on the planet. However invariably it is found that
the Lindblad resonances exterior to the planet are more
powerful than those interior, so that the net torque due
to Lindblad resonances leads to inward migration. Note
that one might think (for example by looking at the sur-
face density dependence of the torque in equation 257)
that the sense of migration ought to depend upon the
surface density gradient — i.e. that a steep surface den-
sity profile should strengthen the inner resonances rela-
tive to the outer ones and hence drive outward migration.
This is not true. Pressure gradients (which depend upon
the radial dependence of the surface density and tem-
perature) alter the angular velocity in the disk from its
Keplerian value (equation 131), and thereby shift the ra-
dial location of resonances from their nominal positions.
A steep surface density profile implies a large pressure
gradient, so that all the resonances move slightly inward.
This weakens the inner Lindblad resonance relative to
the outer ones, in such a way that the final dependence
on the surface density profile is surprisingly weak (Ward,
1997).

Tanaka, Takeuchi & Ward (2002) compute the net
torque on a planet in a three-dimensional but isothermal
gas disk. For a disk in which,

X(r) xr™? (263)

they obtain a net torque due to Lindblad resonances only
of,

2
T = —(2.34 - 0.107) (M”T”Qp> $,ri02 (264)
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This torque would result in migration on a time scale,
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where ¥, c; and €, are respectively the gas surface den-
sity, gas sound speed, and angular velocity at the loca-
tion of a planet orbiting at distance r, from a star of
mass M,. As expected based on the simple considera-
tions discussed previously, the migration rate (o< 7, 1)
scales linearly with both the planet mass and the local
disk mass. The time scale becomes shorter for cooler,
thinner disks — provided that the interaction remains in
the Type I regime — since for such disks more resonances
close to the planet contribute to the net torque.

The most important thing to notice from this formula
is that the predicted migration time scale is very short.
If we consider a 5 Mg, core growing at 5 AU in a disk
with typical parameters (¥ = 10> g cm~2, h/r = 0.05,
a =1) we find,

71.Lr ~ 0.5 Myr. (266)
One concludes that there is a strong argument that
Type I migration ought to play an important role in the
formation of giant planet cores.

The Lindblad torque is only part of the total torque
exerted on the planet. What about the co-orbital torque?
The physics behind the origin of torques from gas that is
almost co-orbiting with the planet is illustrated in Fig-
ure 33. The key point is that gas that is almost, but not
quite, co-orbital executes horseshoe orbits when viewed
in a frame co-rotating with the motion of the planet.
As the gas executes the U-shaped turns at the ends of
the horseshoe, changes in the gas density occur that are
not symmetric between the disk trailing and leading the
planet. The density variations source a torque that, be-
cause it arises from quite close to the planet, can be as
large or larger than the torque from the Lindblad reso-
nances.

Ward (1991) discussed how to calculate corotation
torques from the physical perspective of gas on horseshoe
orbits, but this way of thinking about the torque did not
become widely known until simulations by Paardekooper
& Mellema (2006) uncovered a dependence of the Type I
migration rate on the thermal properties of the disk.
Subsequently, many authors have studied the co-orbital
Type I torque in both isothermal (Casoli & Masset, 2009;
Paardekooper & Papaloizou, 2009) and non-isothermal
(radiative or adiabatic) disks (Kley, Bitsch & Klahr,
2009; Kley & Crida, 2008; Masset & Casoli, 2009;
Paardekooper et al., 2010; Paardekooper, Baruteau &
Kley, 2011). The review by Baruteau et al. (2014) sum-
marizes the results of these and other calculations.

The total torque on planets embedded in gaseous disks,
and the corresponding Type I migration rate, is given
by the sum of the Lindblad and corotation torques. In
addition to the planet mass, several properties of the disk
enter into the result:

e The surface density and temperature profiles. We
have already noted the dependence of the Lindblad
torque (in isothermal disks) on the surface density
profile (equation 264), and the importance of the
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FIG. 33 A low mass planet embedded in a gas disk—shown in
the upper panel in a global view and below in a local view—
generically feels a torque from nearly co-orbital gas on close
horseshoe orbits. In the example shown here we consider a
disk with a negative entropy gradient and a cooling time scale
that is comparable to the time scale for parcels of gas to exe-
cute horseshoe orbits. Changes in density as the gas executes
the horseshoe turns results in an azimuthal asymmetry in the
disk near the planet, creating a torque.

radial entropy profile for the horseshoe drag (Fig-
ure 33).

e The cooling time of parcels of gas in the horseshoe
region (due to radiative diffusion in the optically
thick limit or explicit heating / cooling processes
otherwise). This matter because part of the coro-
tation torque depends upon the presence of ther-
mal gradients as gas moves around horseshoe or-
bits. The strength of those gradients depends upon
how quickly the gas heats and cools relative to the
time scale needed to execute a horseshoe orbit.

e The efficiency of angular momentum transport in
the co-orbital region. The region of the disk that
admits horseshoe orbits is closed and relatively
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small. It cannot absorb or give an arbitrary amount
of angular momentum to a planet, unless it is “con-
nected” to the rest of the disk via viscous stresses.
Large and persistent co-orbital torques are possi-
ble provided that the disk is viscous enough that
the torque remains unsaturated; very low viscosity
leads to saturation and vanishing torques.

With all these factors to consider the calculation of the
Type I migration rate is necessarily rather involved. One
should remember, however, that both the Lindblad and
corotation torques are large and would individually drive
rapid migration. They may happen to sum to zero at
special locations within the disk, but absent such happy
coincidences migration of planets of roughly an Earth
mass and higher will be significant. Type I migration can
rarely be ignored in any circumstance where substantial
gas disks co-exist with planets.

Bitsch et al. (2013) provide an example of how the
Type I migration rate as a function of planet mass can be
calculated given a specific disk model. They find that for
sufficiently low mass planets (M, < 7 Mg in their fiducial
example) the Lindblad torque dominates, and migration
is inward at all radii. For more massive planets there are
radial zones of outward migration interspersed with radii
where migration is inward. The boundaries where (as we
move out) migration switches from outward to inward
define convergence zones where planets might tend to
accumulate.

4. Type Il migration

For sufficiently large planet masses, the angular mo-
mentum flux from the planet locally dominates the vis-
cous flux. As a consequence, gas is repelled from high-
m resonances. The surface density drops near r = ry,
forming a gap — an annular region in which the surface
density is smaller than its unperturbed value.

Two conditions are necessary for gap formation. First,
the Hill sphere (or Roche radius) of the planet needs to
be comparable to the thickness of the gas disk,

M\ L3
Ty = <3]\/Z> r>h (267)
which requires a mass ratio ¢ = M, /M.,
3
q23 (i) . (268)
P

This condition is satisfied for typical protoplanetary disk
parameters for ¢ ~ 4 x 107% — i.e. for planet masses
somewhere between that of Saturn and Jupiter.

A second condition for gap opening arises due to the
viscous considerations depicted in Figure 34. To open a
gap, we require that the tidal torques must be able to
remove gas from the gap region faster than viscosity can
fill the gap back in (Goldreich & Tremaine, 1980; Lin &



tidal viscous
torque diffusion
E—

I

w

|
I
I
|
2 m=1

m=2

3

m

FIG. 34 Illustration of the viscous condition for gap opening.
A gap can open when the time scale for opening a gap of
width Ar due to tidal torques becomes shorter than the time
scale on which viscous diffusion can refill the gap.

FIG. 35 Simulation of the planet-disk interaction in the
Type II regime in which the planet is sufficiently mas-
sive to open a gap in the gas disk. Note the presence of

streams of gas that penetrate the gap region. A movie
showing the interaction as a function of mass is available at
http://jilawww.colorado.edu/~pja/planet_migration.html.

Papaloizou, 1980; Papaloizou & Lin, 1984). There are
various ways to estimate the critical mass above which
this condition is satisfied. Following Takeuchi, Miyama
& Lin (1996), we note that the time scale for viscous
diffusion to close a gap of width Ar is just,

(Ar)?

v

tclose ~ (269)
where v = acgh is the disk viscosity. The time scale to
open a gap as a result of the tidal torque at an m-th
order Lindblad resonance is,
1 Ar\?
~— (=) . (270)
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Setting topen = felose, and taking m = 7,8, /c, (since, as
noted above, this value of m is where the torque cutoff
function peaks), we obtain,

2
C
> s 1/2'
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For typical disk parameters (h/r = 0.05, a = 1072),
the viscous condition for gap opening is satisfied for ¢
modestly larger than 10~*. Combined with the ther-
mal condition outlined above, we conclude that Jupiter
mass planets ought to be massive enough to open a gap
within the disk, whereas Saturn mass planets are close
to the critical mass required for gap opening. Figure 35
from Armitage & Rice (2005), shows results from a two-
dimensional simulation of the planet-disk interaction in
the Type II regime. Both the gap, and the presence of
a prominent spiral wave excited within the gas disk, are
obvious.

(271)

5. The Type Il migration rate

Once a planet becomes massive enough to open a gap,
the orbital evolution becomes coupled to the viscous evo-
lution of the gas within the disk. At small orbital radii
the sense of gas motion will invariably be inward, and
the planet will very probably follow suit (by similar argu-
ments, the planet can migrate outward in regions where
the gas disk is expanding, Veras & Armitage, 2004). The
radial velocity of gas in the disk is,

M
2rry’

which for a steady disk away from the boundaries can be
written as,

(272)

Vp =

3v
U=y (273)
If the planet enforces a rigid tidal barrier at the outer
edge of the gap (i.e. no gas is accreted by the planet,
and no gas crosses the gap), then evolution of the disk
will force the orbit to shrink at a rate 7, ~ v,, provided
that the local disk mass exceeds the planet mass, i.e. that
m"ZE 2 M,. This implies a nominal Type II migration
time scale, valid for disk dominated migration only,
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For h/r = 0.05 and a = 1072, the migration time scale
at 5 AU is of the order of 0.5 Myr.

In practice, the assumption that the local disk mass
exceeds that of the planet often fails. For example, a
plausible model of the protoplanetary disk with a mass
of 0.01 Mg, within 30 AU has a surface density profile,

(274)
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The condition that mr2% = M, gives an estimate of the
radius within which disk domination ceases of,

M,
= — ] AU.
r 6<MJ> U

(276)

Interior to this radius, the planet acts as a slowly moving
barrier which impedes the inflow of disk gas. If the bar-
rier was assumed (unrealistically, as we will see) to be im-
permeable then gas would pile up outside it. This pile-up
would increase the torque but would not continue with-
out limit because the interaction also deposits angular
momentum into the disk, causing it to expand (Pringle,
1991). The end result would be slower migration com-
pared to the nominal rate quoted above. Syer & Clarke
(1995) and Ivanov, Papaloizou & Polnarev (1999) provide
explicit formulae for calculating the extent of the sup-
pression given the assumption of an impermeable tidal
barrier.

These simple estimates of the Type II migration rate
follow from the assumption that once a gap has been
opened, the planet maintains an impermeable tidal bar-
rier to gas inflow. In fact, simulations show that plan-
ets are able to accrete gas via tidal streams that bridge
the gap (Lubow, Siebert & Artymowicz, 1999), and this
breaks the link between the viscous evolution of the disk
and migration. Duffell et al. (2014), Diirmann & Kley
(2015) and Diirmann & Kley (2017) use numerical sim-
ulations to derive improved estimates of the Type II mi-
gration rate. The Type II migration rate can also be
qualitatively altered—and even reversed—if two planets
approach each other in the disk such that their gaps start
to overlap or such that resonant interactions between the
planets become important (Masset & Snellgrove, 2001).
Two planet migration may have played a role in the mi-
gration history of Jupiter and Saturn in the Solar System
(Morbidelli & Crida, 2007), and is central to the “Grand
Tack” model in which an early intrusion of Jupiter into
the inner Solar System reduces the inventory of solids in
the region of Mars and the current asteroid belt (Walsh
et al., 2011).

6. Stochastic migration

In a turbulent disk migration (especially of low mass
bodies) will not be perfectly smooth. Turbulence is ac-
companied by a spatially and temporally varying pattern
of density fluctuations, which exert random torques on
planets of any mass embedded within the disk. (Analo-
gously, transient spiral features in the Galactic disk in-
crease the velocity dispersion of stellar populations; Carl-
berg & Sellwood, 1985). If we assume that the random
torques are uncorrelated with the presence of a planet,
then the random torques’ linear scaling with planet mass
will dominate over the usual Type I torque (scaling as
M?) for sufficiently low masses. The turbulence will then
act to increase the velocity dispersion of collisionless bod-
ies, or, in the presence of damping, to drive a random
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walk in the semi-major axis of low mass planets.

To go beyond such generalities, and in particular to es-
timate the crossover mass between stochastic and Type I
migration, we need to specify the source of turbulence
in the protoplanetary disk. MHD disk turbulence driven
by the magnetorotational instability has been used as a
model system for studying stochastic migration by sev-
eral authors (Laughlin, Steinacker & Adams, 2004; Nel-
son, 2005; Nelson & Papaloizou, 2004; Yang, Mac Low
& Menou, 2009). Density fluctuations in MHD disk tur-
bulence have a typical coherence time of approximately
half an orbital period, and as a consequence are able to
exchange angular momentum with an embedded planet
across a range of disk radii (not only at narrow res-
onances). The study by Nelson & Papaloizou (2004)
was based on both global ideal MHD disk simulations,
with an aspect ratio of h/r = 0.07, and local shear-
ing box calculations. For all masses considered in the
range 3 Mg < M, < 30 Mg, the instantaneous torque
on the planet from the MHD turbulent disk exhibited
large fluctuations in both magnitude and sign. Averag-
ing over ~ 20 orbital periods, the mean torque showed
signs of converging to the Type I rate, although the
rate of convergence was slow, especially for the lowest
mass planets in the global runs. Very roughly, the Nel-
son & Papaloizou (2004) simulations suggest that up to
M, ~ 10 Mg the random walk component dominates
steady Type I drift over time scales that substantially
exceed the orbital period.

How important stochastic (or diffusive) migration is
for planet formation depends, first and foremost, on the
strength and nature of the disk turbulence. Many exist-
ing studies are based on the properties of turbulence sim-
ulated under ideal MHD conditions, which as we noted
earlier do not apply to protoplanetary disks. Nonethe-
less, turbulence even in more realistic disk model may
be strong enough to pump the mean eccentricity (and
perhaps inclination) of planetesimals, reducing the mag-
nitude of gravitational focusing and leading to a greater
likelihood of disruptive collisions (Ida, Guillot & Mor-
bidelli, 2008; Ormel & Okuzumi, 2013). A second sit-
uation in which fluctuating torques may play a critical
role is in the breaking of mean-motion resonances be-
tween planets undergoing differential migration (Batygin
& Adams, 2017).

7. Eccentricity evolution during migration

Most massive extrasolar planets are observed to be on
significantly eccentric orbits. Since orbital migration due
to planet-disk interactions is likely to have occurred in
these systems, it is of interest to ask whether the same
process—gravitational interactions between the gas disk
and an orbiting planet in the Type II regime—also leads
to excitation of eccentricity. It seems likely that small
eccentricities can be excited (or, at least, sustained) dur-
ing migration, but that this is not the dominant process



for most extrasolar planets.

The considerations relevant to this problem were set
out in Goldreich & Tremaine (1980). As with the Type I
torque, the basic idea is to sum the contributions to é over
resonances. The number of potentially important reso-
nances is, however, much larger for an eccentric planet,
and hence the calculation is harder. Eccentricity growth
(or decay) depends upon the relative strength of:

e External Lindblad resonances, which act to excite
eccentricity.

e Non-co-orbital corotation resonances, which act to
damp eccentricity. As noted above, the only coro-
tation resonance that exists for a planet on a cir-
cular orbit is co-orbital, so a finite eccentricity is
necessary for these resonances to be present.

Unfortunately, the effects leading to damping and exci-
tation of eccentricity are finely balanced, making robust
analytic assessment of the sign of the eccentricity evo-
lution difficult. The simplest estimates favor damping,
but only modest saturation of the corotation resonances
would be needed to tilt the balance in favor of excita-
tion (Goldreich & Sari, 2003; Masset & Ogilvie, 2004;
Ogilvie & Lubow, 2003). Numerically, there is general
agreement that substellar objects of brown dwarf mass
and above suffer substantial eccentricity growth when
embedded within a gas disk (Artymowicz et al., 1991;
Dunhill, Alexander & Armitage, 2013; Papaloizou, Nel-
son & Masset, 2001). For Jovian mass planets the situa-
tion is more subtle, and the results of D’Angelo, Lubow
& Bate (2006) and Duffell & Chiang (2015) suggest that
these planets are subject to a finite amplitude instabil-
ity that can boost initially non-zero eccentricities up to
e ~ (h/r). Effects associated with the entropy gradi-
ent in the disk near gap edges may modify these results
(Tsang, Turner & Cumming, 2014).

8. Transition disks

Gas giants must form while the protoplanetary disk
remains gas-rich, and it is of considerable interest to
try and identify candidate disk that may harbor newly
formed (and presumably migrating) planets. There are a
number of T Tauri stars whose spectral energy distribu-
tions (SEDs) and sub-mm images exhibit characteristics
broadly consistent with theoretical predictions for em-
bedded planets. The SEDs show robust excesses in the
mid-IR (indicative of gas and dust disks at AU scales)
without matching excesses in the near-IR (Sicilia-Aguilar
et al., 2006). Well-known examples of such transition
disk sources include GM Aur (Calvet et al., 2005) and
TW Hya (Eisner, Chiang & Hillenbrand, 2006), but many
more such disks have now been identified via Spitzer
observations (Muzerolle et al., 2010). By one common
definition, these sources lack optically thick inner disks,
from which one deduces that small grains are absent close
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to the star, though disks are unquestionably present at
larger radii. Espaillat et al. (2014) review the observa-
tional properties of these sources.

What is going on in transition disks? Some may be
stars caught in the act of dispersing their disks—perhaps
as a result of the photoevaporative mechanism discussed
earlier in these notes. Others, however, may be “nor-
mal” Classical T Tauri stars around which an orbiting
planet has created a tidal barrier to the inflow of gas and
dust, thereby creating an inner hole. Theoretical models
that invoke the presence of planets have the right ba-
sic morphology to explain the observed SEDs (Quillen
et al., 2004; Rice et al., 2003d), though when the prob-
lem is examined in more detail additional processes, such
as dust “filtering” at the pressure maximum at the gap
edge (Rice et al., 2006), and dust growth interior to the
planet’s orbit (Zhu et al., 2012), are needed to match ob-
servations. Planets can also (depending upon the disk
model) induce strongly non-axisymmetric dust distribu-
tions similar to those seen in some recent A LMA observa-
tions (van der Marel et al., 2013). Despite these encour-
aging signs, however, there is little or no direct evidence
for the existence of planets in transition disks, some of
which exhibit very large cavities that would need sur-
prisingly massive planets at surprisingly large radius to
explain. It is quite possible that the observed transition
sources arise from a combination of physical mechanisms,
including planets, photoevaporation, and possibly other
processes (Alexander & Armitage, 2009).

B. Planetesimal disk migration

It is unlikely that the formation of gas and ice giant
planets consumes the entire inventory of planetesimals in
their vicinity. The interaction of remnant planetesimals
with planets, after the dispersal of the gas disk, can result
in orbital migration of the planets.

Here, we follow the simple discussion of Malhotra
(1995)19. If we consider a single planetesimal of mass
dm interacting with a planet of mass M, at orbital ra-
dius a there are two possible outcomes,

e The planetesimal may be scattered outward—
possibly sufficiently to be ejected—in which case
the planet moves in by angular momentum conser-
vation. Up to numerical factors,

da  om

~— 277

a M, (277)

e The scattering is inward, in which case da/a =~
+ém/ M,

19 The treatment here is deliberately over-simplified. The reader in-
terested in exploring more realistic analytic and numerical mod-
els is advised to consult Ida et al. (2000) and Kirsh et al. (2009),
and references therein.



Evidently for significant migration to occur we require
that the total mass in planetesimals be comparable to
the planet mass,

> om o~ M, (278)
This is a similar result to that obtained in the case of gas
disk migration, though for planetesimals the restriction
is more severe since while a low mass gas disk can still
drive migration—albeit at a slower pace—ejected plan-
etesimals are permanently removed from the system and
cannot influence the planet further. We also note that for
a single massive planet embedded within a sea of plan-
etesimals, inward and outward scatterings will at least
partially balance, leading to little net change in orbital
radius.

The foregoing discussion suggests that planetesimal
migration might be a negligible effect. However, Fer-
nandez & Ip (1984) showed that the architecture of the
outer Solar System introduces an asymmetry in scatter-
ing that favors substantial outward migration of the ice
giants. The key point is that Jupiter is able to eject
planetesimals from the Solar System more easily that the
other giant planets. Jupiter itself therefore tends to move
inward by a relatively small amount due to the ejection
of debris at initially larger orbital radii. The other outer
planets scatter bodies inward, to locations from which
they are removed by Jupiter. This depletion reduces the
number of outward scatterings, and as a consequence the
outer planets (minus Jupiter) migrate outward.

1. Solar System evidence

Malhotra (1993) and Malhotra (1995) considered the
effect of the outward migration of Neptune on the ori-
gin of Pluto and dynamically similar Kuiper Belt Ob-
jects. When external forcing causes the semi-major axes
of two bodies on Keplerian orbits to slowly converge, it
is possible (and in some cases guaranteed) that they will
be captured into mean motion resonance (Batygin, 2015;
Goldreich, 1965; Mustill & Wyatt, 2011). Applying this
concept to the Solar System, as Neptune migrated out-
ward due to planetesimal scattering Pluto and smaller
KBOs could have been captured into mean motion res-
onances. The eccentricities of captured bodies then in-
crease as Neptune continues to move out. For a particle
locked into a j : 7+ 1 resonance, the eccentricity is (Mal-

hotra, 1995)
: 1 11’1( GNeptune >
J+ 1 ANeptune,init

where e is the eccentricity on capture into the resonance,
(Neptune,init 15 the semi-major axis of Neptune when the
particle was captured, and aneptune is the final semi-
major axis. For example, if Pluto, then at 33 AU, was
captured into 3:2 resonance with Neptune when the lat-
ter was at 25 AU, then migration within the resonance

2 2
e =ey+

(279)
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FIG. 36 The semimajor axes and eccentricities of known (as
of 2008) transneptunian bodies. The vertical lines shows the
location of the 3:2 and 2:1 resonances with Neptune, the
dashed line shows the minimum eccentricity needed for a body
to cross Neptune’s orbit.

out to Neptune’s current location at 30.2 AU matches
Pluto’s current eccentricity of e ~ 0.25.

This explanation for the origin of Pluto’s peculiar orbit
is attractive, but even more persuasive evidence for Nep-
tune’s migration comes from the existence of a large pop-
ulation of KBOs in 3:2 resonance (and smaller numbers
in other major resonances) with Neptune. This popula-
tion stands out in even the raw plot of a vs e for KBOs
shown in Figure 36. In more detail, Murray-Clay & Chi-
ang (2005) and Hahn & Malhotra (2005) have shown
that the distribution of KBOs in resonance with Neptune
(not just the 3:2 resonance) is broadly consistent with,
and constrains the time scale of, outward migration of
Neptune. Solar System evidence thus supports the hy-
pothesis that substantial migration of Neptune captured
a substantial disk of planetesimals and swept them into
resonant configurations akin to that of Pluto.

2. The Nice model

The Nice model refers to any of several dynamical sce-
narios in which the Solar System’s outer planets started
in a more compact configuration, became unstable, and
evolved into their current orbits with concomitant scat-
tering of smaller bodies. An early model with this gen-
eral flavor was proposed by Thommes, Duncan & Levison
(1999), and the basic idea is clearly a natural general-
ization of earlier models for Neptune’s migration. Tsi-
ganis et al. (2005) introduced the first version of what is



now called the Nice model (named after the French city),
which attracted immediate attention with the claim that
the scattering of small bodies during a giant planet rear-
rangement could explain multiple puzzling features of the
Solar System. The model has subsequently been revised
and studied in great detail.

A variety of dynamical histories for the outer planets
fall under the umbrella of the Nice model (Batygin &
Brown, 2010; Deienno et al., 2017; Levison et al., 2011;
Morbidelli et al., 2007; Tsiganis et al., 2005). The ingre-
dients we have to play with include:

e The initial (at the time of gas disk dispersal) or-
bital configuration of the giant planets. It is typ-
ically assumed that the initial configuration was
more compact than it is today, and probably fea-
tured most or all of the giant planets in a resonant
chain. There may have been an additional ice giant
present. From a broader planet formation perspec-
tive this class of initial configuration is quite plausi-
ble, giant planet cores may converge to roughly the
Jupiter / Saturn region under Type I migration,
and become trapped in resonance due to Type II
migration.

e The initial configuration becomes destabilized
through interaction with a disk of remnant plan-
etesimals beyond Neptune (or beyond whatever
planet occupies the most distant spot early on).
The interaction could be direct planetesimal scat-
tering, though it could also be scattering of dust
produced collisionally in a belt slightly further out.
The required planetesimal belt is massive, perhaps
35 — 50 Mg, but this is not an unreasonable mass
of solid material at these radii.

e After the resonant chain is broken (or when res-
onances are crossed) there is some combination of
(a) fast orbital evolution driven by close encounters
between giant planets leading to scattering (or ejec-
tion, if there were initially more giant planets) and
(b) slower orbital evolution driven by planetesimal
scattering.

e Eventually the mass in the Kuiper Belt is reduced
to a low enough level that planetesimal-driven mi-
gration becomes negligible, and the planets settle
into their current orbits.

Assembling a single plausible history for the outer So-
lar System from this buffet of options is not easy, though
there are a number of powerful constraints. Deienno et al.
(2017) provide a summary. In general, constraints from
the inner Solar System favor rapid evolution of the orbits
of the Jupiter-Saturn subsystem after the onset of insta-
bility. This is because slow evolution would cause sec-
ular resonances—associated with the precession of these
planets’ orbits—to destabilize Mercury and the asteroid
belt, contrary to observations (Kaib & Chambers, 2016;
Minton & Malhotra, 2013; Roig & Nesvorny, 2015). The
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structure of the Kuiper Belt, on the other hand, is repro-
duced if Neptune undergoes a substantial stretch of rela-
tively smooth planetesimal-driven migration (Nesvorny,
2015). The evidence thus suggests that a combination of
planet-planet scattering and planetesimal-driven migra-
tion may have taken place.

The timing of the instability is uncertain. As part of
the original Nice model, Gomes et al. (2005) associated
the instability with the origin of the Late Heavy Bom-
bardment on the Moon. The Late Heavy Bombardment
(LHB, for a review see Strom et al., 2015) refers to cra-
tering evidence for a spike in the rate of impacts on to the
Moon (and other planets, including Mercury), nominally
dated from an analysis of lunar samples to 600-700 Myr
after the formation of the Solar System (Tera, Papanas-
tassiou & Wasserburg, 1974). Associating the LHB with
the Nice model instability is highly constraining, as it is
quite hard to find ultimately unstable configurations that
survive that long. Both the chronology of the LHB (Nor-
man & Nemchin, 2014) and its association with the Nice
model instability are, however, subject to debate, and an
earlier timing of the instability remains a possibility.

A number of other Solar System properties have been
suggested to result from Nice model dynamics. These
include the capture of Jupiter’s Trojan asteroids (Mor-
bidelli et al., 2005) and the capture of the giant planets’
irregular satellites (Nesvorny, Vokrouhlicky & Deienno,
2014), among others.

C. Planet-planet scattering

While the gas disk is present, gas damping can pro-
tect a multiple planet system against the development of
crossing orbits from planet-planet gravitational interac-
tions (at least if interactions with the gas disk actually
damp eccentricity, which as noted above is somewhat un-
certain). Once the gas is gone, gravity can go to work on
what may be an unstable planetary system and change
the orbital radii and eccentricities of the planets. This
process— gravitational scattering—is widely invoked as
a mechanism to explain the large eccentricities of many
extrasolar giant planets.

1. Hill stability

Let us begin with some analytic considerations. The
general N-body problem of the motion of N point masses
interacting under Newtonian gravity is analytically insol-
uble for N > 2. Here, we start by considering a special
case of N = 3 in which two bodies of arbitrary mass
have a circular orbit, while a third body of negligible
mass orbits in the known gravitational field of the mas-
sive objects. This problem—called the circular restricted
3-body problem—still defies analytic solution, but it is
possible to place useful limits on the motion of the third
body (often described as a “test particle”). The circu-
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FIG. 37 Co-ordinate system for the restricted three body
problem. We work in a co-rotating Cartesian co-ordinate sys-
tem centered on the center of mass in which the star and
planet are located at (—x1,0) and (x2,0) respectively. The
test particle is at position r.

lar restricted 3-body problem is a reasonable approxima-
tion to several situations of practical interest, including
the motion of asteroids in the vicinity of Jupiter, and
the evolution of planetesimals near a growing planet. A
good description of the problem can be found in Murray
& Dermott (1999), whose treatment we largely mirror
here. The more general 3-body problem is discussed (in
both the planetary and multiple star contexts) in a book
by Valtonen & Karttunen (2006).

As shown in Figure 37, we consider a binary system
in which the massive bodies have mass m; and msy re-
spectively. We work in a corotating co-ordinate system
centered on the center of mass. The orbital plane is (z,y)
in Cartesian co-ordinates, and the test particle is located
at position r.

If the angular velocity of the binary is 2, the equations
of motion for the test particle are,

F=-Vo-2(Qxr)—Q2x(2xr), (280)
o — _Gm_ Gmz (281)
T1 T2

Expressed in components, we have,
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The acceleration due to the centrifugal force can be sub-
sumed into a pseudo-potential. Defining,

(22 +y?) + STy
1 T2

U= Gma

Q2
— 2
5 (283)
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we obtain,
ou
i o0y — 22
v Y ox
ou
P00 = 29
y + 200z By
ou
Z = —. 284
z P (284)

Digressing briefly, we note that U is (up to an arbitrary
minus sign) the “Roche potential”. Two stars, or a star
plus a planet, that rotate synchronously while on circu-
lar orbits occupy Roche equipotentials. If their size is
comparable to the size of the Roche lobe—defined by the
critical figure-of-eight shaped equipotential that passes
through the inner Lagrange point L;—then the bodies
suffer significant tidal distortion. A useful approximation
for the radius Rgy, of a sphere with the same volume as
the Roche lobe was provided by Eggleton (1983). For a
binary with mass ratio ¢ = mg/m; and separation a,

Rpr 0.49¢2/3
a  0.6¢%3 +1In(1+¢'/3)

(285)

This equation can be used to assess, for example, how
close hot Jupiters are to overflowing their Roche lobes.
For a Jupiter mass planet with ¢ = 1073,

RRr1, =~ 0.048a. (286

)
A planet with the same radius as Jupiter (7.14 x 10% cm)
would then overflow its Roche lobe interior to a =
0.01 AU. A very short period hot Jupiter, such as OGLE-
TR-56b (Torres et al., 2004) with a period of 1.2 days,
has a semi-major axis that is about 0.0225 AU. So this
planet, and more securely other hot Jupiters that or-
bit modestly further out, is safe against mass transfer,
though not by a large margin.
Returning to the general equations (284), we eliminate
the Coriolis terms by multiplying through by &, ¢ and 2
and adding. We then obtain,

oUu . oU . o0U

d (1., 1., 1,) dU
dt<2$ TV ) T W
PPt =200y
C; = 2U —v? (287)

where v is the velocity and C', called the Jacobi constant,
is the arbitrary constant of integration. C'; is an energy-
like quantity that is a conserved quantity in the circular
restricted 3-body problem.

The existence of this integral of motion is important
because it places limits on the range of motion possible
for the test particle. For a particle with a given initial po-
sition and velocity, we can use equation (287) to compute
Cy, and hence to specify zero-velocity surfaces, defined
via,

2U = O, (288)



FIG. 38 Forbidden zones (dark regions) in an example of the
restricted 3-body problem. For this particular choice of the
Jacobi constant C'y, particles can orbit (a) the star at small
radii, (b) the planet in a tight orbit, or (c) the star-planet
binary as a whole. The existence of zero-velocity surfaces,
however, means that particles cannot be exchanged between
these regions.

which the particle can never cross. If the volume enclosed
by one of the zero-velocity surface is finite, then a particle
initially within that region is guaranteed to remain there
for all time. This concept is known as Hill stability.

The topology of the zero-velocity surfaces in the re-
stricted three-body problem varies according to the value
of C'y. An example is shown in Figure 38. In this instance
the zero-velocity surfaces define three disjoint regions in
the (z,y) plane, one corresponding to orbits around the
star, one corresponding to orbits around the planet, and
one corresponding to orbits around the star-planet bi-
nary. A particle in any one of these states is stuck there
— it cannot cross the forbidden zone between the different
regions to move into a different state.

2. Scattering and exoplanet eccentricities

Somewhat surprisingly, the result of the test particle
analysis discussed above also applies in modified form to
the much tougher problem of the stability of two planets
orbiting a star. Consider the situation shown in Fig-
ure 39, in which planets of mass ms and mg orbit a star
of mass my in circular orbits with semi-major axes as
and ag respectively. The stability of the system evidently
must depend upon the relative, rather than the absolute,
spacing between the orbits. Accordingly we write,

az = CLQ(l + A) (289)
with A being a dimensionless measure of the orbital sep-
aration between the planets. We further define u, =
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FIG. 39 Setup for the stability calculation of a two planet
system in which both of the planets are on circular orbits.
Unlike in the case of the Hill problem, here we strictly require
that m2 < my and m3 < my.

ma/my and pz = ms/my. Then for po,us < 1, Glad-
man (1993), drawing on earlier results derived by Mar-
chal & Bozis (1982) and others, showed that the system
is guaranteed to be stable provided that the separation
A exceeds a critical separation A, given by,

A, ~ 2.40 (g + ps)'/? . (290)
Note that analytic results leave open the question of
whether systems with A < A, are actually unstable, all
we know is that A > A, is sufficient for stability. This
condition reduces to the test particle result if us — 0,
as of course it should??. As an example, if we compute
the critical separation for planets of the mass of Jupiter
and Saturn, we obtain A, ~ 0.26. The actual separation
of Jupiter and Saturn in these units is A ~ 0.83, so an
isolated planetary system in which Jupiter and Saturn
were on circular orbits would assuredly be stable for all
time.

What about more complex systems? It is possible to
include non-zero eccentricities into this analysis, but not
more planets. For a multiple planet system one might
plausibly reason that the system will be unstable if any
pair substantially violates the critical two-planet separa-
tion for Hill stability. It is also true that the system will
generally become more stable as the separations increase
(Chambers, Wetherill & Boss, 1996). However, no abso-
lute stability bound is known for any planetary system
with N > 3.

If a two-planet system is unstable, the possible out-
comes of the instability can be divided into four classes:

20 Note, however, that the analysis for the restricted three-body
problem applies for an arbitrary mass ratio of the massive bodies,
whereas the result for two planets requires that both be much less
massive than the star.



1. The separation evolves (increases) until the system
achieves a state that is stable over the long term.

2. One planet is ejected, while the other remains
bound, generally with e # 0.

3. The planets physically collide.

4. One planet impacts the star, or is scattered into a
short-period orbit for which tidal effects are impor-
tant.

The last two channels are not possible in a model 3-body
problem, in which the planets are represented by point
masses, but can occur (especially planet-planet collisions,
which become frequent at small radii) in real systems.

The idea that gravitational scattering and planetary
ejections might account for the eccentricity of extraso-
lar planets was proposed as soon as it became clear that
extrasolar planets were not typically on circular orbits
(Lin & Ida, 1997; Rasio & Ford, 1996; Weidenschilling &
Marzari, 1996). Quantitative study of such models re-
quires large-scale N-body integrations, first to derive the
statistical distribution of outcomes of any given scenario
(since the systems are typically chaotic, nothing can be
said about any single run), and second to map out the
large parameter space that results when one considers
different numbers of planets with different initial separa-
tions, masses and so forth.

Ford, Havlickova & Rasio (2001) presented a compre-
hensive study of the dynamics of equal mass two planet
systems. The planets were set up on circular orbits close
to the stability boundary, and allowed to evolve under
purely N-body forces until the system relaxed to a stable
state. They found that the predicted fraction of collisions
increases sharply for small orbital radii and / or larger
planetary radii. For pairs of Jupiter mass and Jupiter
radius planets initially located at 5 AU, the most com-
mon outcome is two planets (65%), followed by ejections
(35%), with collisions (10%) a distant third. If the same
pair of planets starts at 1 AU, however, collisions occur
roughly 30% of the time. This conclusion is important
for studies of extrasolar planet eccentricity, because col-
lisions yield relatively low eccentricities for the merged
planet.

There is only a rather small range of orbital separa-
tions which allows a two planet system to be unstable
over the long term (greater than around 10° yr, which
is roughly the dispersal time for the gas disk), while not
being violently unstable. This observation means that it
is easier to set up an internally self-consistent scattering
model with three or more planets, since a wider range
of such systems eventually lead to interesting dynamics.
Models starting with three or more planets have also been
studied in some detail (Adams & Laughlin, 2003; Marzari
& Weidenschilling, 2002; Terquem & Papaloizou, 2002).
Comprehensive studies, such as those by Chatterjee et al.
(2008) and Juri¢ & Tremaine (2008), find that scattering
models yield a good quantitative match to the observed
distribution of extrasolar planet eccentricities. Just how
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FIG. 40 The differential (upper panel) and cumulative (lower
panel) eccentricity distribution of known extrasolar plan-
ets (grey curves) is compared to the predicted distribution
that results from scattering in three planet systems (shown
in green). The simulation results were derived by numer-
ically evolving an ensemble of unstable planetary systems
made up of three planets whose masses were drawn from the
observed mass function for extrasolar planets in the range
0.3 My < M, < 5 M;. The inner planet was initially at
a = 4.5 AU. Based on simulations by Raymond et al. (2008),
compared against data available in spring 2010.

good this agreement is is illustrated in Figure 40, which
shows how the final simulated eccentricities compare to
the data (Raymond et al., 2008). Although these results
were derived from purely N-body calculations, hydrody-
namic scattering simulations show that the persistence
of modest amounts of disk gas does not ruin the agree-
ment (Moeckel & Armitage, 2012). Altogether, there is
substantial but circumstantial evidence for a major role
for scattering in establishing the broad distribution of
exoplanet eccentricity.

D. Predictions of migration theories

In summary, there is persuasive circumstantial evi-
dence for the action of at least three separate processes
that lead to the early evolution of planetary systems:

e Gas disk migration in the Type II regime ap-
pears to inevitable, since at least some gas must
necessarily be present at the epoch when giant
planets form. The presence of a reasonably high
resonant fraction among systems with multiple gi-
ant planets also points to the existence of an early
dissipative process in orbital evolution.



e Planetesimal disk migration provides a persua-
sive explanation for the origin of Pluto’s odd orbit
together with some of the more detailed proper-
ties of the Kuiper Belt. One can make a case that
this process too ought to be common in the outer
reaches of planetary systems. Gas giant formation
almost certainly becomes more difficult further out
in the disk, so it is quite plausible that the zone
where gas and ice giants manage to form is often
surrounded by a disk of planetesimal debris that
has been unable to grow to large sizes.

e Planet-planet scattering works well as an ex-
planation for the eccentricity distribution of giant
extrasolar planets. There is no straightforward in-
dependent argument that the unstable initial con-
ditions needed for such models to work are generi-
cally realized in nature, but the empirical evidence
seems to suggest that they are.

The presence of a large fraction of hot Jupiters on orbits
inclined with respect to the stellar equator also yields
constraints, though these are not unambiguous. Planet-
planet scattering (Nagasawa, Ida & Bessho, 2008) or
Kozai-Lidov excitation of eccentricity (Naoz, 2016; Wu &
Murray, 2003) are the mechanisms most obviously com-
patible with this observation, but it has also been sug-
gested that the gas disk could be torqued out of the stellar
equatorial plane (Bate, Lodato & Pringle, 2010; Batygin,
2012). If this process is common, some or all of the mis-
aligned hot Jupiters could have arrived to their current
orbits via Type II migration.

Additional qualitatively different tests of these theo-
retical ideas are possible. Planet-planet scattering, for
example, predicts the existence of a (small) population
of very weakly bound, typically eccentric planets, with
semi-major axes of 10> AU and more (Scharf & Menou,
2009; Veras, Crepp & Ford, 2009). Direct imaging sur-
veys of young stars have the potential to detect this dis-
tinctive population.

The combined action of multiple evolutionary mecha-
nisms may also give rise to new classes of planetary sys-
tems. At larger orbital radii (than those currently probed
by observations of exoplanets) it seems likely that we
ought to see planetary systems whose dynamics has been
affected by both planet-planet scattering and planetesi-
mal disk migration. N-body simulations suggest that the
signature of this combination is a transition from gener-
ally eccentric to nearly circular planetary orbits as the
mass of the planetary system is reduced (Raymond, Ar-
mitage & Gorelick, 2009, 2010). If true, the near-circular
orbits of the giant planets in the Solar System might in
fact be typical of the architecture of relatively low-mass
systems at large orbital radii. For higher mass systems
the same simulations predict a high abundance of reso-
nant configurations, including resonant chains that would
be planetary analogs of the Laplace resonance in the Jo-
vian satellite system.
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E. Tidal evolution

Two bodies in a tight orbit experience tidal forces as
a consequence of the gradient in the gravitational force
across their finite radius. The tidal forces raise tidal
bulges on the surface of the bodies, whose shape is ap-
proximately defined by the condition of hydrostatic equi-
librium in the asymmetric gravitational potential. If the
axis of the tidal bulge is offset with respect to the line
joining the centers of the two bodies, the result is a tidal
torque which modifies the semi-major axis and eccentric-
ity of the system.

Tides are dynamically important in the Solar System.
Energy dissipation associated with oceanic tides, raised
on the Earth by the Moon, is responsible for a slow
but measureable increase in the Earth-Moon separation
(Dickey et al., 1994). The basic framework for under-
standing these phenomena dates back to work by George
Darwin (Charles’ son) more than a century ago (Dar-
win, 1879), but even this classical theory involves many
subtleties, while a general first-principles theory of tides
remains elusive. Ogilvie (2014) gives an excellent review
of the state of theoretical knowledge of tidal phenomena.

1. The tidal bulge and tidal torque

Even the elementary theory of tides is quite intricate.
We can gain considerable physical insight, however, from
a simple “back of the envelope” calculation that ignores
order unity numerical factors and effects. Consider the
tide raised on a fluid body of mass M and radius R by
a companion, of mass m, orbiting in a circular orbit at
distance a. The geometry is shown in Figure 41. We
seek to determine, first, the height of the tide £, and,
second, the torque that results if the tidal bulge is mis-
alinged by some angle ¢ with respect to the line joining
the centers of the two bodies. We will assume, through-
out, that the tidal deformation corresponds closely to the
hydrostatic response of the body in the gravitational field
defined by both bodies (the “static” tide). This is a rea-
sonable approximation. Applying the virial theorem to
the body on which the tide is raised, we find that the
central sound speed ought to be comparable to the or-
bital velocity around the body at radius R. For a > R,
it follows that one orbit of the companion corresponds to
many sound crossing times of the fluid, and hydrostatic
equilibrium has time to be established.

To estimate the height of the tidal bulge, £, we note
that the gravitational force (per unit mass) exerted by
the companion on the near side of the body differs from
that exerted at the center by an amount,

Gm Gm Gm

This tidal force allows us to raise a tidal bulge up to a
height where the self-gravity of the fluid body is reduced
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FIG. 41 Upper panel: illustration of the hydrostatic tidal re-
sponse of a body (a star or a planet) of mass M and radius R
to a point mass companion of mass m orbiting at distance a.
A tidal bulge of amplitude ¢ is raised on the surface, aligned
with the separation vector between the two bodies. Lower
panel: in the presence of dissipation, the tidal bulge lags (or
leads, depending upon the spin) the motion of the compan-
ion by an angle ¢. As a consequence, the tidal bulge — now
idealized as two point masses of mass AM — exerts a torque
which modifies the orbit of the secondary.

by the same amount,

% (Cj%]}f) £~ —%R (292)
@) e

The height of the bulge falls off rapidly for a > R. If
we assume that the fluid body has a uniform density
p (and thereby ignore important structural factors) the
mass associated with the bulge is given by,

AM = 47 R%*¢p, (294)
which simplifies to yield,
3
AM ~ (R> m. (295)
a

The work required to raise the bulge against the self-
gravity of the fluid body is,

GMAM
Eq ~ Tf (296)
Gm? [ R\°
~ (a) . (207)
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This is the amount of energy associated with the tidal
deformation of the body.

Let us now backtrack to revisit the assumption that the
tidal response of the fluid is hydrostatic. If this were ex-
actly true, the tidal bulge would line up precisely along
the line joining the centers of the two bodies, and, by
symmetry, there would be no tidal torque (as shown in
the upper panel of Figure 41). In reality, however, the
tide represents the response of the fluid to forcing at some
non-zero frequency €, given (for a companion on a circu-
lar orbit around a non-rotating primary) simply by the
orbital frequency. If the central body is non-rotating (or
rotating slower than the orbital frequency), then the de-
parture from hydrostatic equilibrium occasioned by the
finite response time will cause the bulge to lag by some
angle ¢. The bulge will lead if the spin of the central
body is faster than the orbital frequency. A lagging or
leading bulge will exert a torque on the companion that
causes the orbit to decay or expand in radius, respectively
(e.g. the Moon’s orbital period exceeds the Earth’s spin
period, so the torque for the Earth-Moon system results
in recession of the lunar orbit away from the Earth).

We now assume that the torque due to the tide can be
represented as that due to two point masses AM offset
from the line of centers by a small angle ¢ (Figure 41,
lower diagram). The tidal force is then, roughly,

GAMm R GAMm R
Fiiqar ~ mg¢’— mg(ﬁ (298)
~ GA@#R%, (299)

and the work done by the tidal force per orbit of the
companion is,

GAMm

AE ~ ==

R*¢. (300)
If we knew ¢, this equation (with the missing numerical
factors restored) would yield the rate of decay or rate of
expansion of the orbit due to the tides.

Calculating ¢ from first principles is a hard task. We
can, however, at least gain a more transparent under-
standing of the physical problem of what determines ¢.
To do so we define the tidal @ as the ratio of the en-
ergy stored in the tidal deformation to the energy that is
dissipated in one cycle,

27TEO

Using our estimates, we have that,
E _
~ A—?E ~ ¢l (302)

This is an important result. We see that the magnitude of
the tidal lag, and hence the strength of the tidal torque,
is directly linked to the amount of dissipation within the
tidally distorted body.



Finally we can estimate the rate of decay of the orbital
separation due to the (lagging) tidal bulge. For m <« M
we have that,

dEorbit
dt a?

GMm da AFE
TR =SSR (303)

where P = 2m\/a3/(GM) is the orbital period. Substi-
tuting for the various quantities, we obtain,

(304)

1da  (G\'*m R°
M

ca~\ar) qumm

Up to factors of the order of unity, this expression agrees
with the standard tidal formula quoted, for example, by
Jackson, Greenberg & Barnes (2008), who also give the
corresponding expressions for the change in orbital eccen-
tricity. Standard references for the astrophysical theory
of tides include Goldreich & Soter (1966) and Hut (1981).

2. Determining the tidal @

The above analysis suffices to illustrate two important
points,

e Tidal forces decline extremely rapidly with increas-
ing orbital separation.

e The rate of tidal evolution depends upon the
amount of dissipation present within the two bodies
that are interacting tidally.

The attentive reader may also have noticed the astro-
physical sleight of hand by which all manner of in-
tractable physics has been swept into a single unknown
parameter, (). Approaches to estimating ) can be di-
vided into those that rely on extrapolations from mea-
sured values in well-observed systems, and those that at-
tempt to compute @ by identifying dissipative processes
within stars or planets.

For giant planets, the primary observational constraint
on ) comes from direct measurements of the tidal evo-
lution in the orbits of the Galilean satellites (Lainey et
al., 2009; Yoder & Peale, 1981)2!. These empirical es-
timates suggest that @ ~ 10°, and based on this many
workers adopt values for the tidal @ of extrasolar planets
that are similar (typically in the range @ = 10° — 10°).
Considerable caution as to the validity of this extrapo-
lation from Jupiter to extrasolar planets is, however, in
order. As noted already, the @ of a star or planet is not
some fixed and immutable property of a body akin, say,
to its mass. Rather, () describes the response of a body

21 Historically, estimates of Jupiter’s Q have primarily been derived
indirectly, by assuming that the excess heat flux from Io derives
from tidal effects. Greenberg (2010) gives a good review of these
estimates.
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to forcing at one or more specific frequencies (in the case
of the Jovian estimate, the frequency of relevance is the
difference between the spin frequency of Jupiter and the
orbital frequency of Io). To extrapolate correctly to ex-
trasolar planets, we need to make some assumption as to
how @ varies as a function of frequency. One simple as-
sumption is to postulate that the tidal lag angle remains
constant—in which case @ is indeed a constant—but one
might equally assume that the tidal bulge has a constant
time lag, in which case @ = Q(€). If one is interested in
tidal eccentricity evolution, moreover, the forcing is not
monochromatic but rather has a spread across a range
of frequencies. As a result of these complications, em-
pirical models of extrasolar tidal evolution are subject to
substantial but unquantifiable uncertainties.

Given the uncertainties in the empirical approach, a
theoretical determination of () would evidently be ex-
tremely valuable. Achieving this goal requires first iden-
tifying, and then calculating, the primary source of dissi-
pation that acts on the tide. Molecular viscosity is insuf-
ficient, so we are left with a variety of hard-to-calculate
candidates that include non-linear dissipation of waves
and interactions between the tide and turbulent processes
within the body. Recent theoretical work (Goodman &
Lackner, 2009; Ogilvie & Lin, 2004) in this area, although
it still falls short of being able to predict @ from first-
principles, has nonetheless proven influential in identify-
ing additional properties of planets that may influence
the Q. The presence of a rigid, solid core, for example,
can substantially alter the tidal response of a planet as
compared to an observationally almost indistinguishable
body lacking a core. Given the rapidly improving obser-
vations of extrasolar planets that are surely vulnerable
to tidal evolution, one may hope that this is an area ripe
for further theoretical and observational progress.
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