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Chapter 15

Bifurcations

15.1 Types of Bifurcations

15.1.1 Saddle-node bifurcation

We remarked above how f ′(u) is in general nonzero when f(u) itself vanishes, since two equations in a
single unknown is an overdetermined set. However, consider the function F (x, α), where α is a control
parameter. If we demand F (x, α) = 0 and ∂xF (x, α) = 0, we have two equations in two unknowns,
and in general there will be a zero-dimensional solution set consisting of points (xc, αc). The situation is
depicted in Fig. 15.1.

Let’s expand F (x, α) in the vicinity of such a point (xc, αc):

F (x, α) = F (xc, αc) +
∂F

∂x

∣

∣

∣

∣

(xc,αc)

(x− xc) +
∂F

∂α

∣

∣

∣

∣

(xc,αc)

(α− αc) +
1

2

∂2F

∂x2

∣

∣

∣

∣

(xc,αc)

(x− xc)
2

+
∂2F

∂x∂α

∣

∣

∣

∣

(xc,αc)

(x− xc) (α− αc) +
1

2

∂2F

∂α2

∣

∣

∣

∣

(xc,αc)

(α− αc)
2 + . . . (15.1)

= A (α− αc) +B (x− xc)
2 + . . . , (15.2)

where we keep terms of lowest order in the deviations δx and δα. Note that we can separately change
the signs of A and B by redefining α → −α and/or x → −x, so without loss of generality we may
assume both A and B are positive. If we now rescale u ≡

√

B/A (x − xc), r ≡ α − αc, and τ =
√
AB t,

we have, neglecting the higher order terms, we obtain the ‘normal form’ of the saddle-node bifurcation,

du

dτ
= r + u2 . (15.3)

The evolution of the flow is depicted in Fig. 15.2. For r < 0 there are two fixed points – one stable
(u∗ = −

√
−r) and one unstable (u = +

√
−r). At r = 0 these two nodes coalesce and annihilate each

other. (The point u∗ = 0 is half-stable precisely at r = 0.) For r > 0 there are no longer any fixed points

1
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Figure 15.1: Evolution of F (x, α) as a function of the control parameter α.

in the vicinity of u = 0. In the left panel of Fig. 15.3 we show the flow in the extended (r, u) plane. The
unstable and stable nodes annihilate at r = 0.

15.1.2 Transcritical bifurcation

Another situation which arises frequently is the transcritical bifurcation. Consider the equation ẋ = f(x)
in the vicinity of a fixed point x∗.

dx

dt
= f ′(x∗) (x− x∗) + 1

2
f ′′(x∗)(x− x∗)2 + . . . . (15.4)

We rescale u ≡ β (x− x∗) with β = −1

2
f ′′(x∗) and define r ≡ f ′(x∗) as the control parameter, to obtain,

to order u2,
du

dt
= ru− u2 . (15.5)

Note that the sign of the u2 term can be reversed relative to the others by sending u → −u.

Consider a crude model of a laser threshold. Let n be the number of photons in the laser cavity, and N
the number of excited atoms in the cavity. The dynamics of the laser are approximated by the equations

ṅ = GNn− kn

N = N0 − αn .
(15.6)

Here G is the gain coefficient and k the photon decay rate. N0 is the pump strength, and α is a numerical
factor. The first equation tells us that the number of photons in the cavity grows with a rate GN−k; gain
is proportional to the number of excited atoms, and the loss rate is a constant cavity-dependent quantity
(typically through the ends, which are semi-transparent). The second equation says that the number of
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Figure 15.2: Flow diagrams for the saddle-node bifurcation u̇ = r + u2 (top) and the transcritical bifur-
cation u̇ = ru− u2 (bottom).

excited atoms is equal to the pump strength minus a term proportional to the number of photons (since
the presence of a photon means an excited atom has decayed). Putting them together,

ṅ = (GN0 − k)n− αGn2 , (15.7)

which exhibits a transcritical bifurcation at pump strength N0 = k/G. For N0 < k/G the system acts as
a lamp; for N0 > k/G the system acts as a laser.

Figure 15.3: Extended phase space (r, u) flow diagrams for the saddle-node bifurcation u̇ = r+ u2 (left)
and the transcritical bifurcation u̇ = ru− u2 (right).
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Figure 15.4: Top: supercritical pitchfork bifurcation u̇ = ru− u3. Bottom: subcritical pitchfork bifurca-
tion u̇ = ru+ u3.

What happens in the transcritical bifurcation is an exchange of stability of the fixed points at u∗ = 0 and
u∗ = r as r passes through zero. This is depicted graphically in the bottom panel of Fig. 15.2.

15.1.3 Pitchfork bifurcation

The pitchfork bifurcation is commonly encountered in systems in which there is an overall parity sym-
metry (u → −u). There are two classes of pitchfork: supercritical and subcritical. The normal form of
the supercritical bifurcation is

u̇ = ru− u3 , (15.8)

which has fixed points at u∗ = 0 and u∗ = ±√
r. Thus, the situation is as depicted in fig. 15.4 (top panel).

For r < 0 there is a single stable fixed point at u∗ = 0. For r > 0, u∗ = 0 is unstable, and flanked by two
stable fixed points at u∗ = ±√

r.

If we send u → −u, r → −r, and t → −t, we obtain the subcritical pitchfork, depicted in the bottom panel
of fig. 15.4. The normal form of the subcritical pitchfork bifurcation is

u̇ = ru+ u3 . (15.9)

The fixed point structure in both supercritical and subcritical cases is shown in Fig. 15.5.
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Figure 15.5: Extended phase space (r, u) flow diagrams for the supercritical pitchfork bifurcation u̇ =
ru− u3 (left), and subcritical pitchfork bifurcation u̇ = ru+ u3 (right).

15.1.4 Imperfect bifurcation

The imperfect bifurcation occurs when a symmetry-breaking term is added to the pitchfork. The normal
form contains two control parameters:

u̇ = h+ ru− u3 . (15.10)

Here, the constant h breaks the parity symmetry if u → −u.

This equation arises from a crude model of magnetization dynamics. Let M be the magnetization of a
sample, and F (M) the free energy. Assuming M is small, we can expand F (M) as

F (M) = −HM + 1

2
aM2 + 1

4
bM4 + . . . , (15.11)

where H is the external magnetic field, and a and b are temperature-dependent constants. This is called
the Landau expansion of the free energy. We assume b > 0 in order that the minimum of F (M) not lie at
infinity. The dynamics of M(t) are modeled by

dM

dt
= −Γ

∂F

∂M
, (15.12)

with Γ > 0. Thus, the magnetization evolves toward a local minimum in the free energy. Note that the
free energy is a decreasing function of time:

dF

dt
=

∂F

∂M

dM

dt
= −Γ

(

∂F

∂M

)2

. (15.13)

By rescaling M ≡ uM0 with M0 = (bΓ)−1/2 and defining r ≡ −aΓ and h ≡ (Γ3 b)1/2 H , we obtain the
normal form

u̇ = h+ ru− u3 = −∂f

∂u

f(u) = −1

2
ru2 + 1

4
u4 − hu .

(15.14)
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Figure 15.6: Left: scaled free energy f(u) = −1

2
ru2 + 1

4
u4 − hu, with h = 0 (blue), h = hc (green), and

h = 2hc (red), where hc = 2

3
√
3
r3/2. Right: phase diagram for the imperfect bifurcation u̇ = −f ′(u) =

h+ ru− u3 in the (r, h) plane.

Here, f(u) is a scaled version of the free energy.

Fixed points satisfy the equation

u3 − ru− h = 0 , (15.15)

and correspond to extrema in f(u). By the fundamental theorem of algebra, this cubic polynomial may
be uniquely factorized over the complex plane. Since the coefficients are real, the complex conjugate ū
satisfies the same equation as u, hence there are two possibilities for the roots: either (i) all three roots
are real, or (ii) one root is real and the other two are a complex conjugate pair. Clearly for r < 0 we are
in situation (ii) since u3 − ru is then monotonically increasing for u ∈ R, and therefore takes the value h
precisely once for u real. For r > 0, there is a region h ∈

[

− hc(r), hc(r)
]

over which there are three real
roots. To find hc(r), we demand f ′′(u) = 0 as well as f ′(u) = 0, which says that two roots have merged,
forming an inflection point. One easily finds hc(r) =

2

3
√
3
r3/2.

Examples of the function f(u) for r > 0 are shown in the left panel of Fig. 15.6 for three different
values of h. For |h| < hc(r) there are three extrema satisfying f ′(u∗) = 0: u∗1 < u∗2 < 0 < u∗3, assuming
(without loss of generality) that h > 0. Clearly u∗1 is a local minimum, u∗2 a local maximum, and u∗3 the
global minimum of the function f(u). The ‘phase diagram’ for this system, plotted in the (r, h) control
parameter space, is shown in the right panel of Fig. 15.6.

In Fig. 15.7 we plot the fixed points u∗(r) for fixed h. A saddle-node bifurcation occurs at r = rc(h) =
3

22/3
|h|2/3. For h = 0 this reduces to the supercritical pitchfork; for finite h the pitchfork is deformed and

even changed topologically. Finally, in Fig. 15.7 we show the behavior of u∗(h) for fixed r. When r < 0
the curve retraces itself as h is ramped up and down, but for r > 0 the system exhibits the phenomenon
of hysteresis, i.e. there is an irreversible aspect to the behavior. Fig, 15.7 shows a hysteresis loop when
r > 0.
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Figure 15.7: Top: extended phase space (r, u) flow diagram for the imperfect pitchfork bifurcation
u̇ = h+ ru− u3 for h = 1. This is in a sense a deformed supercritical pitchfork. Bottom: extended phase
space (h, u) flow diagram for the imperfect pitchfork bifurcation r = −0.2 (left panel) and r = 1 (right
panel). For r < 0 the behavior is completely reversible. For r > 0, a regime of irreversibility sets in
between −hc and +hc, where hc = 2(r/3)3/2. The system then exhibits the phenomenon of hysteresis.
The dotted vertical lines show the boundaries of the hysteresis loop.

15.2 Examples

15.2.1 Population dynamics

Consider the dynamics of a harvested population,

Ṅ = rN

(

1− N

K

)

−H(N) , (15.16)

where r,K > 0, and where H(N) is the harvesting rate.

(a) Suppose H(N) = H
0

is a constant. Sketch the phase flow, and identify and classify all fixed points.

Solution : We examing Ṅ = f(N) with

f(N) = rN − r

K
N2 −H

0
. (15.17)
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Figure 15.8: Phase flow for the constantly harvested population, ν̇ = ν(1 − ν) − h, for h = 0.30 (left),
h = 0.25 (center), and h = 0.20 (right). The critical harvesting rate is hc =

1

4
.

Setting f ′(N) = 0 yields N = 1

2
K . f(N) is a downward-opening parabola whose maximum value is

f
(

1

2
K
)

= 1

4
rK − H

0
. Thus, if H

0
> 1

4
rK , the harvesting rate is too large and the population always

shrinks. A saddle-node bifurcation occurs at this value of H
0
, and for larger harvesting rates, there are

fixed points at

N± = 1

2
K ± 1

2
K

√

1− 4H0

rK
, (15.18)

with N− unstable and N+ stable. By rescaling the population ν = N/K , time τ = rt and harvesting rate
h = H0/rK , we arrive at the equation

ν̇ = ν(1− ν)− h . (15.19)

The critical harvesting rate is then hc =
1

4
. See fig. 15.8.

(b) One defect of the constant harvesting rate model is that N = 0 is not a fixed point. To remedy this,
consider the following model for H(N)1:

H(N) =
BN2

N2 +A2
, (15.20)

where A and B are (positive) constants. Show that one can rescale (N, t) to (n, τ), such that

dn

dτ
= γ n

(

1− n

c

)

− n2

n2 + 1
, (15.21)

where γ and c are positive constants. Provide expressions for n, τ , γ, and c.

Solution : Examining the denominator of H(N), we must take N = An. Dividing both sides of Ṅ =
f(N) by B, we obtain

A

B

dN

dt
=

rA

B
n
(

1− A

K
n
)

− n2

n2 + 1
,

from which we glean τ = Bt/A, γ = rA/B, and c = K/A.

1This is a model for the dynamics of the spruce budworm population, taken from ch. 1 of J. D. Murray, Mathematical
Biology (2nd edition, Springer, 1993).
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Figure 15.9: Plot of h(n) = n/(n2+1) (thick black curve). Straight lines show the function y(n) = γ
(

1−n
c

)

for different values of c and γ. The red line is tangent to the inflection point of h(n) and determines the
minimum value c∗ = 3

√
3 for a bifurcation. The blue lines show the construction for determining the

location of the two bifurcations for c > c∗ (in this case, c = 9). See the analysis in the text.

(c) Show that for c sufficiently small that there is a unique asymptotic (τ → ∞) value for the (scaled)
population n, for any given value of γ. Thus, there are no bifurcations as a function of the control
parameter γ for c fixed and c < c∗.

(d) Show that for c > c∗, there are two bifurcations as a function of γ, and that for γ∗1 < γ < γ∗2 the
asymptotic solution is bistable, i.e. there are two stable values for n(τ → ∞). Sketch the solution set
‘phase diagram’ in the (c, γ) plane. Hint: Sketch the functions γ(1−n/c) and n/(n2+1). The n 6= 0 fixed
points are given by the intersections of these two curves. Determine the boundary of the bistable region
in the (c, γ) plane parametrically in terms of n. Find c∗ and γ∗1(c) = γ∗2(c).

Solution (c) and (d) : We examine

dn

dτ
= g(n) =

{

γ
(

1− n

c

)

− n

n2 + 1

}

n . (15.22)

There is an unstable fixed point at n = 0, where g′(0) = γ > 0. The other fixed points occur when the
term in the curvy brackets vanishes. In fig. 15.9 we plot the function h(n) ≡ n/(n2+1) versus n. We seek
the intersection of this function with a two-parameter family of straight lines, given by y(n) = γ (1−n/c).
The n-intercept is c and the y-intercept is γ. Provided c > c∗ is large enough, there are two bifurcations

as a function of γ, which we call γ±(c). These are shown as the dashed blue lines in figure 15.9 for c = 9.

Both bifurcations are of the saddle-node type. We determine the curves γ±(c) by requiring that h(n) is
tangent to y(n), which gives two equations:

h(n) =
n

n2 + 1
= γ

(

1− n

c

)

= y(n)

h′(n) =
1− n2

(n2 + 1)2
= −γ

c
= y′(n) .

(15.23)
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Figure 15.10: Phase diagram for the equation ṅ = γ(1−n/c)n−n2/(n2+1), labeling n 6= 0 fixed points.
(The point n = 0 is always unstable.)

Together, these give γ(c) parametrically, i.e. as γ(n) and c(n):

γ(n) =
2n3

(n2 + 1)2
, c(n) =

2n3

(n2 − 1)
. (15.24)

Since h(n) is maximized for n = 1, where h(1) = 1

2
, there is no bifurcation occurring at values n < 1.

If we plot γ(n) versus c(n) over the allowed range of n, we obtain the phase diagram in fig. 15.10. The
cusp occurs at (c∗, γ∗), and is determined by the requirement that the two bifurcations coincide. This
supplies a third condition, namely that h′′(n) = 0, where

h′′(n) =
2n (n2 − 3)

(n2 + 1)3
. (15.25)

Thus n =
√
3, whence c∗ = 3

√
3 and γ∗ = 3

√
3

8
. For c < c∗, there are no bifurcations at any value of γ.

15.2.2 The Bletch

Problem: The bletch is a disgusting animal native to the Forest of Jkroo on the planet Barney. The bletch
population obeys the equation

dN

dt
= aN2 − bN3 , (15.26)

where N is the number of bletches, and a and b are constants. (Bletches reproduce asexually, but only
when another bletch is watching. However, when there are three bletches around, they beat the @!!*$&*
out of each other.)

(a) Sketch the phase flow for N . (Strange as the bletch is, you can still rule out N < 0.) Identify and
classify all fixed points.
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Figure 15.11: Phase flow for the scaled bletch population, ṅ = n2 − n3.

(b) The bletch population is now harvested (they make nice shoes). To model this, we add an extra
term to the dynamics:

dN

dt
= −hN + aN2 − bN3 , (15.27)

where h is the harvesting rate. Show that the phase flow now depends crucially on h, in that there

are two qualitatively different flows, depending on whether h < hc(a, b) or h > hc(a, b). Find the

critical harvesting rate hc(a, b) and sketch the phase flows for the two different regimes.

(c) In equilibrium, the rate at which bletches are harvested is R = hN∗, where N∗ is the equilibrium
bletch population. Suppose we start with h = 0, in which case N∗ is given by the value of N at
the stable fixed point you found in part (a). Now let h be increased very slowly from zero. As h
is increased, the equilibrium population changes. Sketch R versus h. What value of h achieves the

biggest bletch harvest? What is the corresponding value of Rmax?

Solution:

(a) Setting the RHS of eqn. 15.26 to zero suggests the rescaling

N =
a

b
n , t =

b

a2
τ . (15.28)

This results in
dn

dτ
= n2 − n3 . (15.29)

The point n = 0 is a (nonlinearly) repulsive fixed point, and n = 1, corresponding to N = a/b, is
attractive. The flow is shown in fig. 15.11.

By the way, the dynamics can be integrated, using the method of partial fractions, to yield

1

n
0

− 1

n
+ ln

(

n

n
0

· 1− n0

1− n

)

= τ . (15.30)

(b) Upon rescaling, the harvested bletch dynamics obeys the equation

dn

dτ
= −νn+ n2 − n3 , (15.31)

where ν = bh/a2 is the dimensionless harvesting rate. Setting the RHS to zero yields n(n2−n+ν) =
0, with solutions n∗ = 0 and

n∗
± = 1

2
±

√

1

4
− ν . (15.32)

At ν = 1

4
there is a saddle-node bifurcation, and for ν > 1

4
the only fixed point (for real n) is at

n∗ = 0 (stable) – the bletch population is then overharvested. For ν > 1

4
, there are three solutions: a
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Figure 15.12: Phase flow for the harvested bletch population, ṅ = −νn+ n2 − n3.

stable fixed point at n∗ = 0, an unstable fixed point at n∗ = 1

2
−
√

1

4
− ν, and a stable fixed point at

n∗ = 1

2
+

√

1

4
− ν. The critical harvesting rate is νc =

1

4
, which means hc = a2/4b.

(c) The scaled bletch harvest is given by r = ν n∗
+(ν). Note R = hN∗

+ = a3

b2
r. The optimal harvest

occurs when ν n∗ is a maximum, which means we set

d

dν

{

1

2
ν + ν

√

1

4
− ν

}

= 0 =⇒ νopt =
2

9
. (15.33)

Thus, n∗
+(νopt) =

2

3
and ropt =

4

27
, meaning R = 4a3/27 b2. Note that at ν = νc =

1

4
that n∗

+(νc) =
1

2
,

hence r(νc) =
1

8
, which is smaller than (νopt) =

2

3
. The harvest r(ν) discontinuously drops to zero

at ν = νc, since for ν > νc the flow is to the only stable fixed point at n∗ = 0.

Figure 15.13: Scaled bletch harvest r versus scaled harvesting rate ν. Optimal harvesting occurs for
νopt =

2

9
. The critical harvesting rate is νc =

1

4
, at which point the harvest discontinuously drops to zero.

15.3 Appendix : Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic
system in terms of an order parameter, which is nonzero in an ordered phase and zero in a disordered
phase. For example, the magnetization M of a ferromagnet in zero external field but at finite temperature

typically vanishes for temperatures T > Tc, where Tc is the critical temperature, also called the Curie
temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate
sufficiently close to Tc, i.e. at temperatures such that the order parameter, if nonzero, is still small.

The simplest example is the quartic free energy,

f(m) = f0 +
1

2
am2 + 1

4
bm4 , (15.34)
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where m is a dimensionless measure of the magnetization density, and where f0, a, and b are all functions
of the dimensionless temperature θ, which in a ferromagnet is the ratio θ = kBT/J , where J =

∑

j Jij
is a sum over the couplings. Let us assume b > 0, which is necessary if the free energy is to be bounded
from below2. The equation of state ,

∂f

∂m
= 0 = am+ bm3 , (15.35)

has three solutions in the complex m plane: (i) m = 0, (ii) m =
√

−a/b , and (iii) m = −
√

−a/b . The
latter two solutions lie along the (physical) real axis if a < 0. We assume that a(θ is monotonically
increasing, and that there exists a unique temperature θc where a(θc) = 0. Minimizing f , we find

θ < θc : f = f0 −
a2

4b
θ > θc : f = f0 .

(15.36)

The free energy is continuous at θc since a(θc) = 0. The specific heat, however, is discontinuous across
the transition, with

c
(

θ+c
)

− c
(

θ−c
)

= −θc
∂2

∂θ2

∣

∣

∣

∣

θ=θc

(

a2

4b

)

= −θc
[

a′(θc)
]2

2b(θc)
. (15.37)

The presence of a magnetic field h breaks the Z2 symmetry of m → −m. The free energy becomes

f(m) = f0 +
1

2
am2 + 1

4
bm4 − hm , (15.38)

and the mean field equation is
bm3 + am− h = 0 . (15.39)

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions
or one real solution and two complex solutions related by complex conjugation. Clearly we must have
a < 0 in order to have three real roots, since bm3 + am is monotonically increasing otherwise. The
boundary between these two classes of solution sets occurs when two roots coincide, which means
f ′′(m) = 0 as well as f ′(m) = 0. Simultaneously solving these two equations, we find

h∗(a) = ± 2

33/2
(−a)3/2

b1/2
, (15.40)

or, equivalently,

a∗(h) = − 3

22/3
b1/3 |h|2/3. (15.41)

If, for fixed h, we have a < a∗(h), then there will be three real solutions to the mean field equation
f ′(m) = 0, one of which is a global minimum (the one for which m · h > 0). For a > a∗(h) there is only
a single global minimum, at which m also has the same sign as h. If we solve the mean field equation
perturbatively in h/a, we find

m(a, h) =
h

a
− b h3

a4
+O(h5) (a > 0)

=
h

2 |a| −
3 b1/2 h2

8 |a|5/2 +O(h3) (a < 0) .

(15.42)

2It is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider higher
order terms in the Landau expansion.
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Figure 15.14: Phase diagram for the quartic mean field theory f = f0 +
1

2
am2 + 1

4
bm4 − hm, with b > 0.

There is a first order line at h = 0 extending from a = −∞ and terminating in a critical point at a = 0.
For |h| < h∗(a) (dashed red line) there are three solutions to the mean field equation, corresponding to
one global minimum, one local minimum, and one local maximum. Insets show behavior of the free
energy f(m).

15.3.1 Landau coefficients from mean field theory

A simple variational density matrix for the Ising ferromagnet yields the dimensionless free energy den-
sity

f(m,h, θ) = −1

2
m2 − hm+ θ

{

(1 +m

2

)

ln
(1 +m

2

)

+
(1−m

2

)

ln
(1−m

2

)

}

. (15.43)

When m is small, it is appropriate to expand f(m,h, θ), obtaining

f(m,h, θ) = −θ ln 2− hm+ 1

2
(θ − 1)m2 + θ

12
m4 + θ

30
m6 + θ

56
m8 + . . . . (15.44)

Thus, we identify
a(θ) = θ − 1 , b(θ) = 1

3
θ . (15.45)

We see that a(θ) = 0 at a critical temperature θc = 1.

The free energy of eqn. 15.43 behaves qualitatively just like it does for the simple Landau expansion,
where one stops at order m4. Consider without loss of generality the case h > 0. The minimum of the
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Mean field free energy f(m) at h = 0.1.

Figure 15.15: Mean field free energy f(m) at h = 0.1. Temperatures shown: θ = 1.2 (red), θ = 1.0 (dark
green), and θ = 0.7 (blue).

free energy f(m,h, θ) then lies at m > 0 for any θ. At low temperatures, the double well structure we
found in the h = 0 case is tilted so that the right well lies lower in energy than the left well. This is
depicted in fig. 15.15. As the temperature is raised, the local minimum at m < 0 vanishes, annihilating
with the local maximum in a saddle-node bifurcation. To find where this happens, one sets ∂f

∂m = 0 and
∂2f
∂m2 = 0 simultaneously, resulting in

h∗(θ) =
√
1− θ − θ

2
ln

(

1 +
√
1− θ

1−
√
1− θ

)

. (15.46)

The solutions lie at h = ±h∗(θ). For θ < θc = 1 and h ∈
[

−h∗(θ) , +h∗(θ)
]

, there are three solutions to the
mean field equation. Equivalently we could in principle invert the above expression to obtain θ∗(h). For
θ > θ∗(h), there is only a single global minimum in the free energy f(m) and there is no local minimum.
Note θ∗(h = 0) = 1.

15.3.2 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the
dissipative dynamics of a magnet by writing the phenomenological equation

dm

dt
= −Γ

∂f

∂m
. (15.47)
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Figure 15.16: Dissipative magnetization dynamics ṁ = −f ′(m). Bottom panel shows h∗(θ) from eqn.
15.46. For (θ, h) within the blue shaded region, the free energy f(m) has a global minimum plus a
local minimum and a local maximum. Otherwise f(m) has only a single global maximum. Top panels
show an imperfect bifurcation in the magnetization dynamics at h = 0.0215 , for which θ∗ = 0.90
Temperatures shown: θ = 0.80 (blue), θ = θ∗(h) = 0.90 (green), and θ = 1.2. The rightmost stable fixed
point corresponds to the global minimum of the free energy. The bottom of the middle two upper panels
shows h = 0, where both of the attractive fixed points and the repulsive fixed point coalesce into a single
attractive fixed point (supercritical pitchfork bifurcation).

This drives the free energy f to smaller and smaller values:

df

dt
=

∂f

∂m

dm

dt
= −Γ

(

∂f

∂m

)2

≤ 0 . (15.48)

Clearly the fixed point of these dynamics, where ṁ = 0, is a solution to the mean field equation ∂f
∂m = 0.

At the solution to the mean field equation, one has

∂f

∂m
= 0 ⇒ m = tanh

(

m+ h

θ

)

. (15.49)

The phase flow for the equation ṁ = −Γf ′(m) is shown in fig. 15.16. As we have seen, for any value
of h there is a temperature θ∗ below which the free energy f(m) has two local minima and one local
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Figure 15.17: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at
θ = 0.40. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h.
Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of h. Bottom
panel : solution set for m(θ, h) as a function of h at temperatures θ = 0.40 (blue), θ = θc = 1.0 (dark
green), and t = 1.25 (red).

maximum. When h = 0 the minima are degenerate, but at finite h one of the minima is a global min-
imum. Thus, for θ < θ∗(h) there are three solutions to the mean field equations. In the language of
dynamical systems, under the dynamics of eqn. 15.47, minima of f(m) correspond to attractive fixed
points and maxima to repulsive fixed points. If h > 0, the rightmost of these fixed points corresponds to
the global minimum of the free energy. As θ is increased, this fixed point evolves smoothly. At θ = θ∗,
the (metastable) local minimum and the local maximum coalesce and annihilate in a saddle-note bifur-
cation. However at h = 0 all three fixed points coalesce at θ = θc and the bifurcation is a supercritical
pitchfork. As a function of t at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is
a deformed supercritical pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain
h(θ,m). One readily finds

h(θ,m) =
θ

2
ln

(

1 +m

1−m

)

−m . (15.50)

As we see in the bottom panel of fig. 15.17, m(h) becomes multivalued for field values h ∈
[

−
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h∗(θ) , +h∗(θ)
]

, where h∗(θ) is given in eqn. 15.46. Now imagine that θ < θc and we slowly ramp
the field h from a large negative value to a large positive value, and then slowly back down to its orig-
inal value. On the time scale of the magnetization dynamics, we can regard h(t) as a constant. Thus,
m(t) will flow to the nearest stable fixed point. Initially the system starts with m = −1 and h large and
negative, and there is only one fixed point, at m∗ ≈ −1. As h slowly increases, the fixed point value m∗

also slowly increases. As h exceeds −h∗(θ), a saddle-node bifurcation occurs, and two new fixed points
are created at positive m, one stable and one unstable. The global minimum of the free energy still lies
at the fixed point with m∗ < 0. However, when h crosses h = 0, the global minimum of the free energy
lies at the most positive fixed point m∗. The dynamics, however, keep the system stuck in what is a
metastable phase. This persists until h = +h∗(θ), at which point another saddle-note bifurcation occurs,
and the attractive fixed point at m∗ < 0 annihilates with the repulsive fixed point. The dynamics then
act quickly to drive m to the only remaining fixed point. This process is depicted in the top panel of fig.
15.17. As one can see from the figure, the the system follows a stable fixed point until the fixed point
disappears, even though that fixed point may not always correspond to a global minimum of the free
energy. The resulting m(h) curve is then not reversible as a function of time, and it possesses a char-
acteristic shape known as a hysteresis loop. Etymologically, the word hysteresis derives from the Greek
υστερησις , which means ‘lagging behind’. Systems which are hysteretic exhibit a history-dependence to
their status, which is not uniquely determined by external conditions. Hysteresis may be exhibited with
respect to changes in applied magnetic field, changes in temperature, or changes in other externally
determined parameters.

15.3.3 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,

f = f0 +
1

2
am2 − 1

3
ym3 + 1

4
bm4 , (15.51)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m → −m). Note that

we no longer have m → −m (i.e. Z
2
) symmetry. The cubic term favors positive m. What is the phase

diagram in the (a, y) plane?

Extremizing the free energy with respect to m, we obtain

∂f

∂m
= 0 = am− ym2 + bm3 . (15.52)

This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The
three solutions are m = 0 and

m = m± ≡ y

2b
±

√

( y

2b

)2

− a

b
. (15.53)

We now see that for y2 < 4ab there is only one real solution, at m = 0, while for y2 > 4ab there are three
real solutions. Which solution has lowest free energy? To find out, we compare the energy f(0) with
f(m+)

3. Thus, we set
f(m) = f(0) =⇒ 1

2
am2 − 1

3
ym3 + 1

4
bm4 = 0 , (15.54)

3We needn’t waste our time considering the m = m
−

solution, since the cubic term prefers positive m.



15.3. APPENDIX : LANDAU THEORY OF PHASE TRANSITIONS 19

Figure 15.18: Behavior of the quartic free energy f(m) = 1

2
am2 − 1

3
ym3 + 1

4
bm4. A: y2 < 4ab ; B:

4ab < y2 < 9

2
ab ; C and D: y2 > 9

2
ab. The thick black line denotes a line of first order transitions, where

the order parameter is discontinuous across the transition.

and we now have two quadratic equations to solve simultaneously:

0 = a− ym+ bm2

0 = 1

2
a− 1

3
ym+ 1

4
bm2 = 0 .

(15.55)

Eliminating the quadratic term gives m = 3a/y. Finally, substitutingm = m+ gives us a relation between
a, b, and y:

y2 = 9

2
ab . (15.56)

Thus, we have the following:

a >
y2

4b
: 1 real root m = 0

y2

4b
> a >

2y2

9b
: 3 real roots; minimum at m = 0

2y2

9b
> a : 3 real roots; minimum at m =

y

2b
+

√

( y

2b

)2

− a

b

The solution m = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum for a < 0.

Over the range y2

4b > a > 2y2

9b , then, there is a global minimum at m = 0, a local minimum at m = m+,

and a local maximum at m = m−, with m+ > m− > 0. For 2y2

9b > a > 0, there is a local minimum at
a = 0, a global minimum at m = m+, and a local maximum at m = m−, again with m+ > m− > 0.
For a < 0, there is a local maximum at m = 0, a local minimum at m = m−, and a global minimum at
m = m+, with m+ > 0 > m−. See fig. 15.18.
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15.3.4 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

dm

dt
= −Γ

∂f

∂m
, (15.57)

where Γ is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient to
adimensionalize by writing

m ≡ y

b
· u , a ≡ y2

b
· r̄ , t ≡ b

Γy2
· s . (15.58)

Then we obtain
∂u

∂s
= −∂ϕ

∂u
, (15.59)

where the dimensionless free energy function is

ϕ(u) = 1

2
r̄u2 − 1

3
u3 + 1

4
u4 . (15.60)

We see that there is a single control parameter, r̄. The fixed points of the dynamics are then the stationary
points of ϕ(u), where ϕ′(u) = 0, with

ϕ′(u) = u (r̄ − u+ u2) . (15.61)

The solutions to ϕ′(u) = 0 are then given by

u∗ = 0 , u∗ = 1

2
±

√

1

4
− r̄ . (15.62)

For r > 1

4
there is one fixed point at u = 0, which is attractive under the dynamics u̇ = −ϕ′(u) since

ϕ′′(0) = r̄. At r̄ = 1

4
there occurs a saddle-node bifurcation and a pair of fixed points is generated, one

stable and one unstable. As we see from fig. 15.14, the interior fixed point is always unstable and the
two exterior fixed points are always stable. At r = 0 there is a transcritical bifurcation where two fixed
points of opposite stability collide and bounce off one another (metaphorically speaking).

At the saddle-node bifurcation, r̄ = 1

4
and u = 1

2
, and we find ϕ(u = 1

2
; r̄ = 1

4
) = 1

192
, which is positive.

Thus, the thermodynamic state of the system remains at u = 0 until the value of ϕ(u+) crosses zero. This
occurs when ϕ(u) = 0 and ϕ′(u) = 0, the simultaneous solution of which yields r̄ = 2

9
and u = 2

3
.

Suppose we slowly ramp the control parameter r̄ up and down as a function of the dimensionless time s.
Under the dynamics of eqn. 15.59, u(s) flows to the first stable fixed point encountered – this is always
the case for a dynamical system with a one-dimensional phase space. Then as r̄ is further varied, u
follows the position of whatever locally stable fixed point it initially encountered. Thus, u

(

r̄(s)
)

evolves
smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 15.19. The
equilibrium thermodynamic value for u(r̄) is discontinuous; there is a first order phase transition at
r̄ = 2

9
, as we’ve already seen. As r is increased, u(r̄) follows a trajectory indicated by the magenta

arrows. For an negative initial value of u, the evolution as a function of r̄ will be reversible. However,
if u(0) is initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive
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Figure 15.19: Fixed points for ϕ(u) = 1

2
r̄u2 − 1

3
u3 + 1

4
u4 and flow under the dynamics u̇ = −ϕ′(u).

Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows
show behavior under slowly increasing control parameter r̄ and dark blue arrows show behavior under
slowly decreasing r̄. For u > 0 there is a hysteresis loop. The thick black curve shows the equilibrium
thermodynamic value of u(r̄), i.e. that value which minimizes the free energy ϕ(u). There is a first order
phase transition at r̄ = 2

9
, where the thermodynamic value of u jumps from u = 0 to u = 2

3
.

value of r̄, u(s) quickly evolves to u = 0+, which means a positive infinitesimal value. Then as r is
decreased, the system remains at u = 0+ even through the first order transition, because u = 0 is an
attractive fixed point. However, once r begins to go negative, the u = 0 fixed point becomes repulsive,

and u(s) quickly flows to the stable fixed point u+ = 1

2
+

√

1

4
− r̄. Further decreasing r, the system

remains on this branch. If r̄ is later increased, then u(s) remains on the upper branch past r = 0, until

the u+ fixed point annihilates with the unstable fixed point at u− = 1

2
−

√

1

4
− r̄, at which time u(s)

quickly flows down to u = 0+ again.

15.3.5 Sixth order Landau theory : tricritical point

Finally, consider a model with Z
2

symmetry, with the Landau free energy

f = f0 +
1

2
am2 + 1

4
bm4 + 1

6
cm6 , (15.63)

with c > 0 for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with respect to m,
we obtain

∂f

∂m
= 0 = m (a+ bm2 + cm4) , (15.64)
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Figure 15.20: Behavior of the sextic free energy f(m) = 1

2
am2 + 1

4
bm4 + 1

6
cm6. A: a > 0 and b > 0 ; B:

a < 0 and b > 0 ; C: a < 0 and b < 0 ; D: a > 0 and b < − 4√
3

√
ac ; E: a > 0 and − 4√

3

√
ac < b < −2

√
ac ;

F: a > 0 and −2
√
ac < b < 0. The thick dashed line is a line of second order transitions, which meets the

thick solid line of first order transitions at the tricritical point, (a, b) = (0, 0).

which is a quintic with five solutions over the complex m plane. One solution is obviously m = 0. The
other four are

m = ±

√

√

√

√− b

2c
±

√

(

b

2c

)2

− a

c
. (15.65)

For each ± symbol in the above equation, there are two options, hence four roots in all.

If a > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at m = 0.

For a < 0, there are only three solutions to f ′(m) = 0 for real m, since the − choice for the ± sign under
the radical leads to imaginary roots. One of the solutions is m = 0. The other two are

m = ±

√

− b

2c
+

√

( b

2c

)2

− a

c
. (15.66)
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Figure 15.21: Free energy ϕ(u) = 1

2
r̄u2 − 1

4
u4 + 1

6
u6 for several different values of the control parameter

r̄.

The most interesting situation is a > 0 and b < 0. If a > 0 and b < −2
√
ac, all five roots are real. There

must be three minima, separated by two local maxima. Clearly if m∗ is a solution, then so is −m∗. Thus,
the only question is whether the outer minima are of lower energy than the minimum at m = 0. We
assess this by demanding f(m∗) = f(0), where m∗ is the position of the largest root (i.e. the rightmost
minimum). This gives a second quadratic equation,

0 = 1

2
a+ 1

4
bm2 + 1

6
cm4 , (15.67)

which together with equation 15.64 gives

b = − 4√
3

√
ac . (15.68)

Thus, we have the following, for fixed a > 0:

b > −2
√
ac : 1 real root m = 0

−2
√
ac > b > − 4√

3

√
ac : 5 real roots; minimum at m = 0

− 4√
3

√
ac > b : 5 real roots; minima at m = ±

√

− b

2c
+

√

( b

2c

)2

− a

c

The point (a, b) = (0, 0), which lies at the confluence of a first order line and a second order line, is
known as a tricritical point.
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15.3.6 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics ṁ = −Γ f ′(m). We adimensionalize by writing

m ≡
√

|b|
c

· u , a ≡ b2

c
· r̄ , t ≡ c

Γ b2
· s . (15.69)

Then we obtain once again the dimensionless equation

∂u

∂s
= −∂ϕ

∂u
, (15.70)

where
ϕ(u) = 1

2
r̄u2 ± 1

4
u4 + 1

6
u6 . (15.71)

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if b < 0. That
is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently small u, and we
recover the quartic free energy studied earlier. There is then a second order transition at r = 0. .

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained by setting
ϕ′(u) = 0. We have

ϕ(u) = 1

2
r̄u2 − 1

4
u4 + 1

6
u6

ϕ′(u) = u (r̄ − u2 + u4) .
(15.72)

Thus, the equation ϕ′(u) = 0 factorizes into a linear factor u and a quartic factor u4 − u2 + r̄ which is
quadratic in u2. Thus, we can easily obtain the roots:

r̄ < 0 : u∗ = 0 , u∗ = ±
√

1

2
+

√

1

4
− r̄

0 < r̄ < 1

4
: u∗ = 0 , u∗ = ±

√

1

2
+

√

1

4
− r̄ , u∗ = ±

√

1

2
−

√

1

4
− r̄

r̄ > 1

4
: u∗ = 0 .

(15.73)

In fig. 15.22, we plot the fixed points and the hysteresis loops for this system. At r̄ = 1

4
, there are two

symmetrically located saddle-node bifurcations at u = ± 1√
2

. We find ϕ(u = ± 1√
2
, r̄ = 1

4
) = 1

48
, which is

positive, indicating that the stable fixed point u∗ = 0 remains the thermodynamic minimum for the free
energy ϕ(u) as r̄ is decreased through r̄ = 1

4
. Setting ϕ(u) = 0 and ϕ′(u) = 0 simultaneously, we obtain

r̄ = 3

16
and u = ±

√
3

2
. The thermodynamic value for u therefore jumps discontinuously from u = 0 to

u = ±
√
3

2
(either branch) at r̄ = 3

16
; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the fig-
ure, where the arrows show the evolution of u(s) for very slowly varying r̄(s). When the control param-
eter r̄ is large and positive, the flow is toward the sole fixed point at u∗ = 0. At r̄ = 1

4
, two simultaneous

saddle-node bifurcations take place at u∗ = ± 1√
2
; the outer branch is stable and the inner branch un-

stable in both cases. At r = 0 there is a subcritical pitchfork bifurcation, and the fixed point at u∗ = 0
becomes unstable.
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Figure 15.22: Fixed points ϕ′(u∗) = 0 for the sextic potential ϕ(u) = 1

2
r̄u2− 1

4
u4+ 1

6
u6, and corresponding

dynamical flow (arrows) under u̇ = −ϕ′(u). Solid curves show stable fixed points and dashed curves
show unstable fixed points. The thick solid black and solid grey curves indicate the equilibrium thermo-
dynamic values for u; note the overall u → −u symmetry. Within the region r̄ ∈ [0, 1

4
] the dynamics are

irreversible and the system exhibits the phenomenon of hysteresis. There is a first order phase transition
at r̄ = 3

16
.

Suppose one starts off with r̄ ≫ 1

4
with some value u > 0. The flow u̇ = −ϕ′(u) then rapidly results

in u → 0+. This is the ‘high temperature phase’ in which there is no magnetization. Now let r increase
slowly, using s as the dimensionless time variable. The scaled magnetization u(s) = u∗

(

r̄(s)
)

will remain
pinned at the fixed point u∗ = 0+. As r̄ passes through r̄ = 1

4
, two new stable values of u∗ appear, but

our system remains at u = 0+, since u∗ = 0 is a stable fixed point. But after the subcritical pitchfork,
u∗ = 0 becomes unstable. The magnetization u(s) then flows rapidly to the stable fixed point at u∗ = 1√

2
,

and follows the curve u∗(r̄) =
(

1

2
+ (1

4
− r̄)1/2

)1/2
for all r < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable

fixed point u∗(r̄) =
(

1

2
+(1

4
− r̄)1/2

)1/2
past r̄ = 0, beyond the first order phase transition point at r̄ = 3

16
,

and all the way up to r̄ = 1

4
, at which point this fixed point is annihilated at a saddle-node bifurcation.

The flow then rapidly takes u → u∗ = 0+, where it remains as r continues to be increased further.

Within the region r̄ ∈
[

0, 1
4

]

of control parameter space, the dynamics are said to be irreversible and the
behavior of u(s) is said to be hysteretic.


	Contents
	List of Figures
	Bifurcations
	Types of Bifurcations
	Saddle-node bifurcation
	Transcritical bifurcation
	Pitchfork bifurcation
	Imperfect bifurcation

	Examples
	Population dynamics
	The Bletch

	Appendix : Landau Theory of Phase Transitions
	Landau coefficients from mean field theory
	Magnetization dynamics
	Cubic terms in Landau theory : first order transitions
	Magnetization dynamics
	Sixth order Landau theory : tricritical point
	Hysteresis for the sextic potential



