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Chapter 14

Dynamical Systems

14.1 Introduction

14.1.1 Phase space and phase curves

Dynamics is the study of motion through phase space. The phase space of a given dynamical system is
described as an N -dimensional manifold, M. A (differentiable) manifold M is a topological space that
is locally diffeomorphic to R

N .1 Typically in this course M will RN itself, but other common examples
include the circle S

1, the torus T2, the sphere S
2, etc.

Let gt : M → M be a one-parameter family of transformations from M to itself, with gt=0 = 1, the

identity. We call gt the t-advance mapping. It satisfies the composition rule

gt gs = gt+s . (14.1)

Let us choose a point ϕ0 ∈ M. Then we write ϕ(t) = gt ϕ0, which also is in M. The set
{
gtϕ0

∣∣ t ∈
R , ϕ0 ∈ M

}
is called a phase curve. A graph of the motion ϕ(t) in the product space R×M is called an

integral curve.

14.1.2 Vector fields

The velocity vector V (ϕ) is given by the derivative

V (ϕ) =
d

dt

∣∣∣∣
t=0

gtϕ . (14.2)

The velocityV (ϕ) is an element of the tangent space to M atϕ, abbreviated TMϕ. IfM isN -dimensional,

then so is each TMϕ (for all p). However, M and TMϕ may differ topologically. For example, if
M = S

1, the circle, the tangent space at any point is isomorphic to R.

1A diffeomorphism F : M → N is a differentiable map with a differentiable inverse. This is a special type of homeomorphism,
which is a continuous map with a continuous inverse.

1
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Figure 14.1: An example of a phase curve.

For our purposes, we will take ϕ = (ϕ1, . . . , ϕN ) to be an N -tuple, i.e. a point in R
N . The equation of

motion is then
d

dt
ϕ(t) = V

(
ϕ(t)

)
. (14.3)

Note that any N th order ODE, of the general form

dNx

dtN
= F

(
x,
dx

dt
, . . . ,

dN−1x

dtN−1

)
, (14.4)

may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with

k = 1, . . . , N . Thus, for j < N we have ϕ̇j = ϕj+1, and ϕ̇N = f . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕN−1

ϕN



=

V (ϕ)︷ ︸︸ ︷


ϕ2
...

ϕN

F
(
ϕ1, . . . , ϕN

)




. (14.5)

14.1.3 Autonomous vs. non-autonomous ODEs

A dynamical system of the form ϕ̇j = Vj(ϕ1, . . . , ϕN ) is autonomous provided the N functions Vj(ϕ) do
not depend explicitly on the independent variable t. In the non-autonomous case, we have the coupled
system ϕ̇j = Vj(ϕ1, . . . , ϕN , t), which is equivalent to the (N + 1)-dimensional dynamical system

d

dt




ϕ1
...
ϕN

ϕN+1


 =




V1(ϕ1, . . . , ϕN+1)
...

VN (ϕ1, . . . , ϕN+1)
1


 . (14.6)

Note that one can integrate the last of these equations to get ϕN+1(t) = t , starting from ϕN+1(0) = 0.
Thus, we once again have ϕ̇ = V (ϕ) , now in (N + 1) dimensions, and with VN+1(ϕ) = 1.
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14.1.4 Existence / uniqueness / extension theorems

Theorem : Given ϕ̇ = V (ϕ) and ϕ(0), if each V (ϕ) is a smooth vector field over some open set D ∈ M,
then for ϕ(0) ∈ D the initial value problem has a solution on some finite time interval (−τ,+τ) and
the solution is unique. Furthermore, the solution has a unique extension forward or backward in time,
either indefinitely or until ϕ(t) reaches the boundary of D.

Corollary : Different trajectories never intersect!

14.1.5 Linear differential equations

A homogeneous linear N th order ODE,

dNx

dtN
+ cN−1

dN−1x

dtN−1
+ . . . + c1

dx

dt
+ c0 x = 0 (14.7)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...

ϕN




=

M︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cN−1







ϕ1

ϕ2
...

ϕN



. (14.8)

Thus,

ϕ̇ =Mϕ , (14.9)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous, the solution is obtained by
exponentiating the constant matrix Q:

ϕ(t) = exp(Mt)ϕ(0) ; (14.10)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not
autonomous, then M = M(t) is time-dependent, and the solution is given by the path-ordered expo-
nential,

ϕ(t) = P exp

{ t∫

0

dt′M(t′)

}
ϕ(0) , (14.11)

As defined, the equation ϕ̇ = V (ϕ) is autonomous, since gt depends only on t and on no other time
variable. However, by extending the phase space from M to R×M, which is of dimension (N +1), one
can describe arbitrary time-dependent ODEs.

Exercise: Write the formal solution to the inhomogeneous linear system ϕ̇ = Mϕ + b, where b is a
constant N -component vector.
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14.1.6 Lyapunov functions

For a general dynamical system ϕ̇ = V (ϕ), a Lyapunov function L(ϕ) is a function which satisfies

∇L(ϕ) · V (ϕ) ≤ 0 . (14.12)

There is no simple way to determine whether a Lyapunov function exists for a given dynamical system,
or, if it does exist, what the Lyapunov function is. However, if a Lyapunov function can be found, then
this severely limits the possible behavior of the system. This is because L

(
ϕ(t)

)
must be a monotonic

function of time:
d

dt
L
(
ϕ(t)

)
= ∇L · dϕ

dt
= ∇L(ϕ) · V (ϕ) ≤ 0 . (14.13)

Thus, the system evolves toward a local minimum of the Lyapunov function. In general this means that
oscillations are impossible in systems for which a Lyapunov function exists. For example, the relax-
ational dynamics of the magnetization M of a system are sometimes modeled by the equation

dM

dt
= −Γ ∂F

∂M
, (14.14)

where F (M,T ) is the free energy of the system. In this model, assuming constant temperature T , Ḟ =

F ′(M) Ṁ = −Γ
[
F ′(M)

]2 ≤ 0. So the free energy F (M) itself is a Lyapunov function, and it monotoni-
cally decreases during the evolution of the system. We shall meet up with this example again in the next
chapter when we discuss imperfect bifurcations.

14.2 N = 1 Systems

We now study phase flows in a one-dimensional phase space, governed by the equation

du

dt
= f(u) . (14.15)

Again, the equation u̇ = h(u, t) is first order, but not autonomous, and it corresponds to the N = 2
system,

d

dt

(
u
t

)
=

(
h(u, t)

1

)
. (14.16)

The equation 14.15 is easily integrated:

du

f(u)
= dt =⇒ t− t0 =

u∫

u0

du′

f(u′)
. (14.17)

This gives t(u); we must then invert this relationship to obtain u(t).

Example : Suppose f(u) = a− bu, with a and b constant. Then

dt =
du

a− bu
= −b−1 d ln(a− bu) (14.18)
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Figure 14.2: Phase flow for an N = 1 system.

whence

t =
1

b
ln

(
a− b u(0)

a− b u(t)

)
=⇒ u(t) =

a

b
+
(
u(0)− a

b

)
exp(−bt) . (14.19)

Even if one cannot analytically obtain u(t), the behavior is very simple, and easily obtained by graphical
analysis. Sketch the function f(u). Then note that

u̇ = f(u) =⇒





f(u) > 0 u̇ > 0 ⇒ move to right

f(u) < 0 u̇ < 0 ⇒ move to left

f(u) = 0 u̇ = 0 ⇒ fixed point

(14.20)

The behavior of N = 1 systems is particularly simple: u(t) flows to the first stable fixed point encoun-
tered, where it then (after a logarithmically infinite time) stops. The motion is monotonic – the velocity
u̇ never changes sign. Thus, oscillations never occur for N = 1 phase flows.2

14.2.1 Classification of fixed points (N = 1)

A fixed point u∗ satisfies f(u∗) = 0. Generically, f ′(u∗) 6= 0 at a fixed point.3 Suppose f ′(u∗) < 0. Then
to the left of the fixed point, the function f(u < u∗) is positive, and the flow is to the right, i.e. toward
u∗. To the right of the fixed point, the function f(u > u∗) is negative, and the flow is to the left, i.e. again
toward u∗. Thus, when f ′(u∗) < 0 the fixed point is said to be stable, since the flow in the vicinity of u∗

is to u∗. Conversely, when f ′(u∗) > 0, the flow is always away from u∗, and the fixed point is then said
to be unstable. Indeed, if we linearize about the fixed point, and let ǫ ≡ u− u∗, then

ǫ̇ = f ′(u∗) ǫ+ 1
2 f

′′(u∗) ǫ2 +O(ǫ3) , (14.21)

and dropping all terms past the first on the RHS gives

ǫ(t) = exp
[
f ′(u∗) t

]
ǫ(0) . (14.22)

2When I say ‘never’ I mean ‘sometimes’ – see the section 14.3.
3The system f(u∗) = 0 and f ′(u∗) = 0 is overdetermined, with two equations for the single variable u∗.
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The deviation decreases exponentially for f ′(u∗) < 0 and increases exponentially for f(u∗) > 0. Note
that

t(ǫ) =
1

f ′(u∗)
ln

(
ǫ

ǫ(0)

)
, (14.23)

so the approach to a stable fixed point takes a logarithmically infinite time. For the unstable case, the
deviation grows exponentially, until eventually the linearization itself fails.

14.2.2 Logistic equation

This model for population growth was first proposed by Verhulst in 1838. Let N denote the population
in question. The dynamics are modeled by the first order ODE,

dN

dt
= rN

(
1− N

K

)
, (14.24)

where N , r, and K are all positive. For N ≪ K the growth rate is r, but as N increases a quadratic
nonlinearity kicks in and the rate vanishes for N = K and is negative for N > K . The nonlinearity
models the effects of competition between the organisms for food, shelter, or other resources. Or maybe
they crap all over each other and get sick. Whatever.

There are two fixed points, one at N∗ = 0, which is unstable (f ′(0) = r > 0). The other, at N∗ = K , is
stable (f ′(K) = −r). The equation is adimensionalized by defining ν = N/K and s = rt, whence

ν̇ = ν(1− ν) . (14.25)

Integrating,

dν

ν(1− ν)
= d ln

( ν

1− ν

)
= ds =⇒ ν(s) =

ν0

ν0 +
(
1− ν0

)
exp(−s)

. (14.26)

As s→ ∞, ν(s) = 1−
(
ν−1
0 − 1

)
e−s +O(e−2s), and the relaxation to equilibrium (ν∗ = 1) is exponential,

as usual.

Another application of this model is to a simple autocatalytic reaction, such as

A+X ⇋ 2X , (14.27)

i.e. X catalyses the reaction A −→ X. Assuming a fixed concentration of A, we have

ẋ = κ+ a x− κ− x
2 , (14.28)

where x is the concentration of X, and κ± are the forward and backward reaction rates.
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Figure 14.3: Flow diagram for the logistic equation.

14.2.3 Recommended exercises

It is instructive to sketch the phase flows for the following examples:

v̇ = −g u̇ = A sin(u)

mv̇ = −mg − γv u̇ = A (u− a)(u− b)(u− c)

mv̇ = −mg − cv2 sgn(v) u̇ = au2 − bu3 .

In each case, identify all the fixed points and assess their stability. Assume all constants A, a, b, c, γ, etc.
are positive.

14.2.4 Nongeneric cases with singular f(u)

Suppose that in the vicinity of a fixed point we have f(u) = A
∣∣u − u∗

∣∣α, with A > 0. We now analyze
both sides of the fixed point.

u < u∗ : Let ǫ = u∗ − u. Then

ǫ̇ = −Aǫα =⇒ ǫ1−α

1− α
=

ǫ1−α
0

1− α
−At , (14.29)

hence

ǫ(t) =
[
ǫ1−α
0 + (α− 1)At

] 1

1−α

. (14.30)

This, for α < 1 the fixed point ǫ = 0 is reached in a finite time: ǫ(tc) = 0, with

tc =
ǫ1−α
0

(1− α)A
. (14.31)

For α > 1, we have limt→∞ ǫ(t) = 0, but ǫ(t) > 0 ∀ t <∞.
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Figure 14.4: f(u) = A
∣∣u− u∗

∣∣α, for α > 1 and α < 1.

Figure 14.5: Solutions to ǫ̇ = ∓Aǫα. Left panel: ǫ = u∗ − u, with α = 1.5 (solid red) and α = 0.5 (dot-
dashed blue); A = 1 in both cases. Right panel: ǫ = u− u∗, α = 1.5 (solid red) and α = 0.5 (dot-dashed
blue); A = 4 in both cases

The fixed point u = u∗ is now half-stable – the flow from the left is toward u∗ but from the right is away
from u∗. Let’s analyze the flow on either side of u∗.

u > u∗ : Let ǫ = u− u∗. Then ǫ̇ = Aǫα, and

ǫ(t) =
[
ǫ1−α
0 + (1− α)At

] 1

1−α

. (14.32)

For α < 1, ǫ(t) escapes to ǫ = ∞ only after an infinite time. For α > 1, the escape to infinity takes a finite
time: ǫ(tc) = ∞, with

tc =
ǫ1−α
0

(α− 1)A
. (14.33)

In both cases, higher order terms in the (nonanalytic) expansion of f(u) about u = u∗ will eventually
come into play.
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14.2.5 Non-autonomous ODEs

Non-autonomous ODEs of the form u̇ = h(u, t) are in general impossible to solve by quadratures. One
can always go to the computer, but it is worth noting that in the separable case, h(u, t) = f(u) g(t), one
can obtain the solution

du

f(u)
= g(t) dt =⇒

u∫

u0

du′

f(u′)
=

t∫

0

dt′ g(t′) , (14.34)

which implicitly gives u(t). Note that u̇ may now change sign, and u(t) may even oscillate. For an
explicit example, consider the equation

u̇ = A (u+ 1) sin(βt) , (14.35)

the solution of which is

u(t) = −1 +
(
u0 + 1

)
exp

{
A

β

[
1− cos(βt)

]}
. (14.36)

In general, the non-autonomous case defies analytic solution. Many have been studied, such as the
Riccati equation,

du

dt
= P (t)u2 +Q(t)u+R(t) . (14.37)

Riccati equations have the special and remarkable property that one can generate all solutions (i.e. with

arbitrary boundary condition u(0) = u0) from any given solution (i.e. with any boundary condition).

14.3 Flows on the Circle

We had remarked that oscillations are impossible for the equation u̇ = f(u) because the flow is to the
first stable fixed point encountered. If there are no stable fixed points, the flow is unbounded. However,
suppose phase space itself is bounded, e.g. a circle S

1 rather than the real line R. Thus,

θ̇ = f(θ) , (14.38)

with f(θ + 2π) = f(θ). Now if there are no fixed points, θ(t) endlessly winds around the circle, and in
this sense we can have oscillations.

14.3.1 Nonuniform oscillator

A particularly common example is that of the nonuniform oscillator,

θ̇ = ω − sin θ , (14.39)
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which has applications to electronics, biology, classical mechanics, and condensed matter physics. Note
that the general equation θ̇ = ω − A sin θ may be rescaled to the above form. A simple application is to
the dynamics of a driven, overdamped pendulum. The equation of motion is

Iθ̈ + b θ̇ + Iω2
0 sin θ = N , (14.40)

where I is the moment of inertia, b is the damping parameter, N is the external torque (presumed con-

stant), and ω0 is the frequency of small oscillations when b = N = 0. When b is large, the inertial term
Iθ̈ may be neglected, and after rescaling we arrive at eqn. 14.39.

The book by Strogatz provides a biological example of the nonuniform oscillator: fireflies. An individual
firefly will on its own flash at some frequency f . This can be modeled by the equation φ̇ = β, where
β = 2πf is the angular frequency. A flash occurs when φ = 2πn for n ∈ Z. When subjected to a
periodic stimulus, fireflies will attempt to synchronize their flash to the flash of the stimulus. Suppose
the stimulus is periodic with angular frequency Ω. The firefly synchronization is then modeled by the
equation

φ̇ = β −A sin(φ−Ωt) . (14.41)

Here, A is a measure of the firefly’s ability to modify its natural frequency in response to the stimulus.
Note that when 0 < φ−Ωt < π , i.e. when the firefly is leading the stimulus, the dynamics tell the firefly
to slow down. Conversely, when −π < φ− Ωt < 0, the firefly is lagging the stimulus, the the dynamics
tell it to speed up. Now focus on the difference θ ≡ φ−Ωt. We have

θ̇ = β −Ω −A sin θ , (14.42)

which is the nonuniform oscillator. We can adimensionalize by defining

s ≡ At , ω ≡ β −Ω

A
, (14.43)

yielding dθ
ds = f(θ) = ω − sin θ.

Fixed points θ∗ occur only for |ω| < 1, at sin θ∗ = ω, in which case f ′(θ) = − cos θ∗. As we have seen
above, stability requires f ′(θ∗) < 0, which means θ∗ ∈

(
− π

2 ,
π
2

)
, i.e. θ∗ must lie on the right half of

the circle. For |ω| > 1, the angular velocity never vanishes anywhere along the circle, and there are no
fixed points. In this case the motion is eternally clockwise (ω < −1) or counterclockwise (ω > +1). The
situation is depicted in Fig. 14.6.

To integrate, set z = exp(iθ), in which case

dz

ds
= −1

2(z
2 − 2iωz − 1) = −1

2(z − z−)(z − z+) , (14.44)

where z± = iω ±
√
1− ω2 ≡ ±e±iα, with eiα =

√
1− ω2 + iω. This yields

d ln

(
z − eiα

z + e−iα

)
= − cosα ds , (14.45)

which integrates to

eiθ(s) − eiα

eiθ(s) + e−iα
=

(
eiθ(0) − eiα

eiθ(0) + e−iα

)
exp(−s cosα) . (14.46)
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Figure 14.6: Flow for the nonuniform oscillator θ̇ = ω − sin θ for three characteristic values of ω.

Note that eiθ(±∞) = ±e±iα, which lie on the appropriate halves of the circle.

For |ω| > 1, the motion is periodic, with period

T =

2π∫

0

dθ

|ω| − sin θ
=

2π√
ω2 − 1

. (14.47)

14.4 Appendix I : Evolution of Phase Space Volumes

Recall the general form of a dynamical system, ϕ̇ = V (ϕ). Usually we are interested in finding integral
curvesϕ(t). However, consider for the moment a collection of points in phase space comprising a region
R. As the dynamical system evolves, this region will also evolve, so that R = R(t). We now ask: how
does the volume of R(t),

vol
[
R(t)

]
=

∫

R(t)

dµ , (14.48)

where dµ = dϕ1dϕ2 · · · dϕN is the phase space measure, change with time. We have, explicitly,

vol
[
R(t+ dt)

]
=

∫

R(t+dt)

dµ =

∫

R(t)

dµ

∥∥∥∥
∂ϕi(t+ dt)

∂ϕj(t)

∥∥∥∥

=

∫

R(t)

dµ
{
1 +∇·V dt+O

(
(dt)2

)}
,

(14.49)

since
∂ϕi(t+ dt)

∂ϕj(t)
= δij +

∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

dt+O
(
(dt)2

)
, (14.50)

and, using ln detM = Tr lnM ,
det(1 + ǫA) = 1 + ǫTrA+O(ǫ2) . (14.51)
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Thus,
d

dt
vol
[
R(t)

]
=

∫

R(t)

dµ∇·V =

∫

∂R(t)

dΣ n̂ · V , (14.52)

where in the last line we have used Stokes’ theorem to convert the volume integral over R to a surface
integral over its boundary ∂R.

14.5 Appendix II : Lyapunov Characteristic Exponents

Suppose ϕ(t) is an integral curve – i.e. a solution of ϕ̇ = V (ϕ). We now ask: how do nearby trajectories
behave? Do they always remain close to ϕ(t) for all t? To answer this, we write ϕ̃(t) ≡ ϕ(t) + η(t), in
which case

d

dt
ηi(t) =Mij(t) ηj(t) +O

(
η2
)
, (14.53)

where

Mij(t) =
∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

. (14.54)

The solution, valid to first order in δϕ, is

ηi(t) = Qij(t, t0) ηj(t0) , (14.55)

where the matrix Q(t, t0) is given by the path ordered exponential,

Q(t, t0) = P exp

{ t∫

t0

dt′M(t′)

}

≡ lim
N→∞

(
1 +

∆t

N
M(tN−1)

)
· · ·
(
1 +

∆t

N
M(t1)

)(
1 +

∆t

N
M(t0)

)
,

(14.56)

with ∆t = t− t0 and tj = t0 + (j/N)∆t. P is the path ordering operator, which places earlier times to the
right:

PA(t)B(t′) =





A(t)B(t′) if t > t′

B(t′)A(t) if t < t′ .

(14.57)

The distinction is important if
[
A(t), B(t′)

]
6= 0. Note that Q satisfies the composition property,

Q(t, t0) = Q(t, t1)Q(t1, t0) (14.58)

for any t1 ∈ [t0, t]. When M is time-independent, as in the case of a fixed point where V (ϕ∗) = 0, the
path ordered exponential reduces to the ordinary exponential, and Q(t, t0) = exp

(
M(t− t0)

)
.

Generally it is impossible to analytically compute path-ordered exponentials. However, the following
example may be instructive. Suppose

M(t) =





M1 if t/T ∈
[
2j, 2j + 1

]

M2 if t/T ∈
[
2j + 1, 2j + 2

]
,

(14.59)
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for all integer j. M(t) is a ‘matrix-valued square wave’, with period 2T . Then, integrating over one
period, from t = 0 to t = 2T , we have

A ≡ exp

{ 2T∫

0

dtM(t)

}
= e(M1

+M
2
)T

A
P
≡ P exp

{ 2T∫

0

dtM(t)

}
= eM2

T eM1
T .

(14.60)

In general, A 6= A
P

, so the path ordering has a nontrivial effect4.

The Lyapunov exponents are defined in the following manner. Let ê be an N -dimensional unit vector.
Define

Λ(ϕ0, ê) ≡ lim
t→∞

lim
b→0

1

t− t0
ln

( ∥∥η(t)
∥∥

∥∥η(t0)
∥∥

)

η(t0)=b ê

, (14.61)

where ‖ · ‖ denotes the Euclidean norm of a vector, and where ϕ0 = ϕ
(
t0
)
. A theorem due to Oseledec

guarantees that there areN such valuesΛi(ϕ0), depending on the choice of ê, for a givenϕ0. Specifically,
the theorem guarantees that the matrix

W ≡
(
QtQ

)1/(t−t0) (14.62)

converges in the limit t→ ∞ for almost allϕ0. The eigenvaluesΛi correspond to the different eigenspaces
ofW . Oseledec’s theorem (also called the ‘multiplicative ergodic theorem’) guarantees that the eigenspaces
of W either grow (Λi > 1) or shrink (Λi < 1) exponentially fast. That is, the norm any vector lying in the
ith eigenspace of W will behave as Λt

i = exp(t lnΛi) as t→ ∞.

Note that while W =W t is symmetric by construction, Q is simply a general real-valued N ×N matrix.
The left and right eigenvectors of a matrix M ∈ GL(N,R) will in general be different. The set of eigen-
values λα is, however, common to both sets of eigenvectors. Let {ψα} be the right eigenvectors and {χ∗

α}
the left eigenvectors, such that

Mij ψα,j = λα ψα,i

χ∗
α,iMij = λα χ

∗
α,j .

(14.63)

We can always choose the left and right eigenvectors to be orthonormal, viz.
〈
χ
α

∣∣ψβ

〉
= χ∗

α,i ψβ,j = δαβ . (14.64)

Indeed, we can define the matrix Siα = ψα,i, in which case S−1
αj = χ∗

α,j , and

S−1M S = diag
(
λ1, . . . , λN

)
. (14.65)

The matrix M can always be decomposed into its eigenvectors, as

Mij =
∑

α

λα ψα,i
χ∗
α,j . (14.66)

4If
[

M
1
,M

2

]

= 0 then A = A
P

.
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If we expand u in terms of the right eigenvectors,

η(t) =
∑

β

Cβ(t)ψβ(t) , (14.67)

then upon taking the inner product with χα, we find that Cα obeys

Ċα +
〈
χα

∣∣ ψ̇β

〉
Cβ = λαCα . (14.68)

If ψ̇β = 0, e.g. if M is time-independent, then Cα(t) = Cα(0) e
λ
α
t, and

ηi(t) =
∑

α

C
α
(0)︷ ︸︸ ︷∑

j

ηj(0)χ
∗
α,j e

λ
α
t ψα,i . (14.69)

Thus, the component of η(t) along ψα increases exponentially with time if Re(λα) > 0, and decreases
exponentially if Re(λα) < 0.


	Contents
	List of Figures
	Dynamical Systems
	Introduction
	Phase space and phase curves
	Vector fields
	Autonomous vs. non-autonomous ODEs
	Existence / uniqueness / extension theorems
	Linear differential equations
	Lyapunov functions

	N=1 Systems
	Classification of fixed points (N=1)
	Logistic equation
	Recommended exercises
	Nongeneric cases with singular f(u)
	Non-autonomous ODEs

	Flows on the Circle
	Nonuniform oscillator

	Appendix I : Evolution of Phase Space Volumes
	Appendix II : Lyapunov Characteristic Exponents


