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Chapter 12

Noninertial Reference Frames

12.1 Accelerated Coordinate Systems

A reference frame which is fixed with respect to a rotating rigid body is not inertial. The parade example
of this is an observer fixed on the surface of the earth. Due to the rotation of the earth, such an observer
is in a noninertial frame, and there are corresponding corrections to Newton’s laws of motion which must
be accounted for in order to correctly describe mechanical motion in the observer’s frame. As is well
known, these corrections involve fictitious centrifugal and Coriolis forces.

Consider an inertial frame with a fixed set of coordinate axes êµ , where µ runs from 1 to d, the dimension
of space, and a noninertial frame with axes ê′µ. Any vector A may be written in either basis:

A =
∑

µ

Aµ êµ =
∑

µ

A′
µ ê

′
µ , (12.1)

where Aµ = A · êµ and A′
µ = A · ê′µ are projections onto the different coordinate axes. We may now write

(
dA

dt

)

inertial

=
∑

µ

dAµ
dt

êµ

=
∑

i

dA′
µ

dt
ê′µ +

∑

µ

A′
µ

dê′µ
dt

.

The first term on the RHS is (dA/dt)body, the time derivative of A along body-fixed axes, i.e. as seen by

an observer rotating with the body. But what is dê′i/dt? Well, we can always expand it in the {ê′i} basis:

dê′µ =
∑

ν

dΩµν ê
′
ν ⇐⇒ dΩµν ≡ dê′µ · ê′ν . (12.2)

Note that dΩµν = −dΩνµ is antisymmetric, because

0 = d
(
ê′µ · ê′ν

)
= dΩνµ + dΩµν , (12.3)

1
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Figure 12.1: Reference frames related by both translation and rotation. Note êµ = ê0µ.

because ê′µ · ê′ν = δµν is a constant. Now we may define dΩ12 ≡ dΩ3, et cyc., so that

dΩµν =
∑

σ

ǫµνσ dΩσ , ωσ ≡
dΩσ
dt

, (12.4)

which yields
dê′µ
dt

= ω × ê′µ . (12.5)

Finally, we obtain the important result

(
dA

dt

)

inertial

=

(
dA

dt

)

body

+ ω ×A (12.6)

which is valid for any vector A.

Applying this result to the position vector r, we have
(
dr

dt

)

inertial

=

(
dr

dt

)

body

+ ω × r . (12.7)

Applying it twice,
(
d2r

dt2

)

inertial

=

(
d

dt

∣∣∣∣
body

+ ω ×
)(

d

dt

∣∣∣∣
body

+ ω ×
)
r

=

(
d2r

dt2

)

body

+
dω

dt
× r + 2ω ×

(
dr

dt

)

body

+ω × (ω × r) .

Note that dω/dt appears with no “inertial” or “body” label. This is because, upon invoking eq. 12.6,
(
dω

dt

)

inertial

=

(
dω

dt

)

body

+ ω × ω , (12.8)

and since ω × ω = 0, inertial and body-fixed observers will agree on the value of ω̇inertial = ω̇body ≡ ω̇.
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12.1.1 Translations

Suppose that frame K moves with respect to an inertial frame K0, such that the origin of K lies at R(t).
Suppose further that frame K ′ rotates with respect to K, but shares the same origin (see Fig. 12.1).
Consider the motion of an object lying at position ρ relative to the origin of K0, and r relative to the
origin of K/K ′. Thus,

ρ = R+ r , (12.9)

and
(
dρ

dt

)

inertial

=

(
dR

dt

)

inertial

+

(
dr

dt

)

body

+ ω × r
(
d2ρ

dt2

)

inertial

=

(
d2R

dt2

)

inertial

+

(
d2r

dt2

)

body

+
dω

dt
× r + 2ω ×

(
dr

dt

)

body

+ ω × (ω × r) .
(12.10)

Here, ω is the angular velocity in the frame K or K ′.

12.1.2 Motion on the surface of the earth

The earth both rotates about its axis and orbits the Sun. If we add the infinitesimal effects of the two
rotations,

dr1 = ω1 × r dt
dr2 = ω2 × (r + dr1) dt

dr = dr1 + dr2 = (ω1 + ω2) dt× r +O
(
(dt)2

)
.

(12.11)

Thus, infinitesimal rotations add. Dividing by dt, this means that

ω =
∑

i

ωi , (12.12)

where the sum is over all the rotations. For the earth, ω = ωrot + ωorb.

• The rotation about earth’s axis, ωrot has magnitude ωrot = 2π/(1 day) = 7.29 × 10−5 s−1. The
radius of the earth is Re = 6.37× 103 km.

• The orbital rotation about the Sun, ωorb has magnitude ωorb = 2π/(1 yr) = 1.99 × 10−7 s−1. The
radius of the earth’s orbit is ae = 1.50 × 108 km.

Thus, ωrot/ωorb = Torb/Trot = 365.25, which is of course the number of days (i.e. rotational periods) in a
year (i.e. orbital period). There is also a very slow precession of the earth’s axis of rotation, the period
of which is about 25,000 years, which we will ignore. Note ω̇ = 0 for the earth. Thus, applying Newton’s
second law and then invoking eq. 12.10, we arrive at

m

(
d2r

dt2

)

earth

= F (tot) −m
(
d2R

dt2

)

Sun

− 2mω ×
(
dr

dt

)

earth

− mω × (ω × r) , (12.13)
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Figure 12.2: The locally orthonormal triad {r̂, θ̂, φ̂}.

where ω = ωrot + ωorb, and where R̈Sun is the acceleration of the center of the earth around the Sun,
assuming the Sun-fixed frame to be inertial. The force F (tot) is the total force on the object, and arises
from three parts: (i) gravitational pull of the Sun, (ii) gravitational pull of the earth, and (iii) other
earthly forces, such as springs, rods, surfaces, electric fields, etc.

On the earth’s surface, the ratio of the Sun’s gravity to the earth’s is

F⊙
Fe

=
GM⊙m
a2e

/
GMem

R2
e

=
M⊙
Me

(
Re

ae

)2
≈ 6.02× 10−4 . (12.14)

In fact, it is clear that the Sun’s field precisely cancels with the term m R̈Sun at the earth’s center, leaving
only gradient contributions of even lower order, i.e. multiplied by another factor of Re/ae ≈ 4.25× 10−5.
Thus, to an excellent approximation, we may neglect the Sun entirely and write

d2r

dt2
=
F ′

m
+ g − 2ω × dr

dt
−ω × (ω × r) (12.15)

Note that we’ve dropped the ‘earth’ label here and henceforth. We define g = −GMe r̂/r
2, the accelera-

tion due to gravity; F ′ is the sum of all earthly forces other than the earth’s gravity. The last two terms
on the RHS are corrections to mr̈ = F due to the noninertial frame of the earth, and are recognized as
the Coriolis and centrifugal acceleration terms, respectively.
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12.2 Spherical Polar Coordinates

The locally orthonormal triad {r̂, θ̂, φ̂} varies with position. In terms of the body-fixed triad {x̂, ŷ, ẑ},
we have

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

φ̂ = − sinφ x̂+ cosφ ŷ

(12.16)

where θ = π
2 − λ is the colatitude (i.e. λ ∈

[
− π

2 ,+
π
2

]
is the latitude). Inverting the relation between the

triads {r̂, θ̂, φ̂} and {x̂, ŷ, ẑ}, we obtain

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂

ŷ = sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂

ẑ = cos θ r̂ − sin θ θ̂ .

(12.17)

The differentials of these unit vectors are

dr̂ = θ̂ dθ + sin θ φ̂ dφ

dθ̂ = −r̂ dθ + cos θ φ̂ dφ

dφ̂ = − sin θ r̂ dφ− cos θ θ̂ dφ .

(12.18)

Thus,

ṙ =
d

dt

(
r r̂
)
= ṙ r̂ + r ˙̂r

= ṙ r̂ + rθ̇ θ̂ + r sin θ φ̇ φ̂ .
(12.19)

If we differentiate a second time, we find, after some tedious accounting,

r̈ =
(
r̈ − r θ̇2 − r sin2θ φ̇2

)
r̂ +

(
2 ṙ θ̇ + r θ̈ − r sin θ cos θ φ̇2

)
θ̂

+
(
2 ṙ φ̇ sin θ + 2 r θ̇ φ̇ cos θ + r sin θ φ̈

)
φ̂ .

(12.20)

12.3 Centrifugal Force

One major distinction between the Coriolis and centrifugal forces is that the Coriolis force acts only
on moving particles, whereas the centrifugal force is present even when ṙ = 0. Thus, the equation for
stationary equilibrium on the earth’s surface is

mg + F ′ −mω × (ω × r) = 0 , (12.21)

involves the centrifugal term. We can write this as F ′ +mg̃ = 0, where

g̃ = −GMe r̂

r2
− ω × (ω × r)

= −
(
g0 − ω2Re sin2 θ

)
r̂ + ω2 Re sin θ cos θ θ̂ ,

(12.22)
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where g0 = GMe/R
2
e = 980 cm/s2. Thus, on the equator, where θ = π

2 , we have g̃ = −
(
g0−ω2Re

)
r̂, with

ω2Re ≈ 3.39 cm/s2, a small but significant correction. You therefore weigh less on the equator. Note also
that g̃ has a component along θ̂. This means that a plumb bob suspended from a general point above the
earth’s surface won’t point exactly toward the earth’s center. Moreover, if the earth were replaced by an
equivalent mass of fluid, the fluid would rearrange itself so as to make its surface locally perpendicular to
g̃. Indeed, the earth (and Sun) do exhibit quadrupolar distortions in their mass distributions – both are
oblate spheroids. In fact, the observed difference g̃(θ = 0) − g̃(θ = π

2 ) ≈ 5.2 cm/s2, which is 53% greater
than the näıvely expected value of 3.39 cm/s2. The earth’s oblateness enhances the effect.

12.3.1 Rotating tube of fluid

Consider a cylinder filled with a liquid, rotating with angular frequency ω about its symmetry axis ẑ.
In steady state, the fluid is stationary in the rotating frame, and we may write, for any given element of
fluid

0 = f ′ + g − ω2 ẑ × (ẑ × r) , (12.23)

where f ′ is the force per unit mass on the fluid element. Now consider a fluid element on the surface.
Since there is no static friction to the fluid, any component of f ′ parallel to the fluid’s surface will cause
the fluid to flow in that direction. This contradicts the steady state assumption. Therefore, we must
have f ′ = f ′ n̂, where n̂ is the local unit normal to the fluid surface. We write the equation for the fluid’s
surface as z = z(ρ). Thus, with r = ρ ρ̂+ z(ρ) ẑ, Newton’s second law yields

f ′ n̂ = g ẑ − ω2 ρ ρ̂ , (12.24)

where g = −g ẑ is assumed. From this, we conclude that the unit normal to the fluid surface and the
force per unit mass are given by

n̂(ρ) =
g ẑ − ω2 ρ ρ̂√
g2 + ω4 ρ2

, f ′(ρ) =
√
g2 + ω4ρ2 . (12.25)

Now suppose r(ρ, φ) = ρ ρ̂+ z(ρ) ẑ is a point on the surface of the fluid. We have that

dr = ρ̂ dρ+ z′(ρ) ẑ dρ+ ρ φ̂ dφ , (12.26)

where z′ = dz/dρ, and where we have used dρ̂ = φ̂ dφ, which follows from the first of eqn. 12.18 after
setting θ = π

2 . Now dr must lie along the surface, therefore n̂ · dr = 0, which says

g
dz

dρ
= ω2 ρ . (12.27)

Integrating this equation, we obtain the shape of the surface:

z(ρ) = z0 +
ω2ρ2

2g
. (12.28)
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Figure 12.3: A rotating cylinder of fluid.

12.4 The Coriolis Force

12.4.1 Projectile motion

The Coriolis force is given by FCor = −2mω× ṙ. According to (12.15), the acceleration of a free particle
(F ′ = 0) isn’t along g̃ – an orthogonal component is generated by the Coriolis force. To actually solve the
coupled equations of motion is difficult because the unit vectors {r̂, θ̂, φ̂} change with position, and hence
with time. The following standard problem highlights some of the effects of the Coriolis and centrifugal
forces.

PROBLEM: A cannonball is dropped from the top of a tower of height h located at a northerly latitude of
λ. Assuming the cannonball is initially at rest with respect to the tower, and neglecting air resistance,
calculate its deflection (magnitude and direction) due to (a) centrifugal and (b) Coriolis forces by the time
it hits the ground. Evaluate for the case h = 100 m, λ = 45◦. The radius of the earth is Re = 6.4×106 m.

SOLUTION: The equation of motion for a particle near the earth’s surface is

r̈ = −2ω × ṙ − g0 r̂ − ω × (ω × r) , (12.29)

where ω = ω ẑ, with ω = 2π/(24 hrs) = 7.3 × 10−5 rad/s. Here, g0 = GMe/R
2
e = 980 cm/s2. We use a

locally orthonormal coordinate system {r̂, θ̂, φ̂} and write

r = x θ̂ + y φ̂+ (Re + z) r̂ , (12.30)

where Re = 6.4×106 m is the radius of the earth. Expressing ẑ in terms of our chosen orthonormal triad,

ẑ = cos θ r̂ − sin θ θ̂ , (12.31)

where θ = π
2 − λ is the polar angle, or ‘colatitude’. Since the height of the tower and the deflections are

all very small on the scale of Re, we may regard the orthonormal triad as fixed and time-independent,
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although, in general, these unit vectors change as a function of r. Thus, we have ṙ ≃ ẋ θ̂+ ẏ φ̂+ ż r̂, and
we find

ẑ × ṙ = (cos θ r̂ − sin θ θ̂)× (ẋ θ̂ + ẏ φ̂+ ż r̂)

= −ẏ cos θ θ̂ + (ẋ cos θ + ż sin θ) φ̂− ẏ sin θ r̂
(12.32)

and

ω × (ω × r) = ω2(cos θ r̂ − sin θ θ̂)×
(
(cos θ r̂ − sin θ θ̂)× (Re r̂+

negligible︷ ︸︸ ︷
x θ̂ + y φ̂+ z r̂)

)

≈ ω2(cos θ r̂ − sin θ θ̂)×Re sin θ φ̂

= −ω2Re sin θ cos θ θ̂ − ω2Re sin
2θ r̂ .

(12.33)

Note that the distances x, y, and z are all extremely small in magnitude compared with Re.

The equations of motion, written in components, are then

v̇x = g1 sin θ cos θ + 2ω cos θ vy

v̇y = −2ω cos θ vx − 2ω sin θ vz

v̇z = −g0 + g1 sin
2θ + 2ω sin θ vy ,

(12.34)

with g1 ≡ ω2Re . While these (inhomogeneous) equations are linear, they also are coupled, so an exact
analytical solution is not trivial to obtain (but see below). Fortunately, the deflections are small, so we
can solve this perturbatively. To do so, let us write v(t) as a power series in t. For each component, we
write

vα(t) =

∞∑

n=0

vα,n t
n , (12.35)

with vα,0 = vα(t = 0) ≡ v0α . Eqns. 12.34 then may be written as the coupled hierarchy

nvx,n = g1 sin θ cos θ δn,1 + 2ω cos θ vy,n−1

nvy,n = −2ω cos θ vx,n−1 − 2ω sin θ vz,n−1

nvz,n = −(g0 − g1 sin2θ) δn,1 + 2ω sin θ vy,n−1 .

(12.36)

Integrating v(t), we obtain the displacements,

xα(t) = x0α +

∞∑

n=0

vα,n
n+ 1

tn+1 . (12.37)

Now let’s roll up our sleeves and solve for the coefficients vα,n for n = 0, 1, 2. This will give us the
displacements up to terms of order t3. For n = 0 we already have vα,0 = v0α . For n = 1, we use Eqns.
12.36 with n = 1 to obtain

vx,1 = 2ω cos θ v0y + g1 sin θ cos θ

vy,1 = −2ω cos θ v0x − 2ω sin θ v0z

vz,1 = 2ω sin θ v0y − g0 + g1 sin
2θ .

(12.38)
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Finally, at level n = 2, we have

vx,2 = ω cos θ vy,1 = −2ω2 cos θ (cos θ v0x + sin θ v0z)

vy,2 = −2ω cos θ vx,1 − 2ω sin θ vz,1 = −2ω2v0y + ω sin θ (g0 − g1)
vz,2 = ω sin θ vy,1 = −2ω2 sin θ (cos θ v0x + sin θ v0z) .

(12.39)

Thus, the displacements are given by

x(t) = x(0) + v0x t+
1
2

(
2ω cos θ v0y + g1 sin θ cos θ

)
t2 − 2

3 ω
2 cos θ (cos θ v0x + sin θ v0z) t

3 +O(t4)
y(t) = y(0) + v0y t− ω (cos θ v0x + sin θ v0z) t

2 − 2
3 ω

2v0y t
3 + 1

3 ω sin θ (g0 − g1) t3 +O(t4)
z(t) = z(0) + v0z t+

1
2

(
2ω sin θ v0y − g0 + g1 sin

2θ
)
t2 − 2

3 ω
2 sin θ (cos θ v0x + sin θ v0z) t

3 +O(t4) .

(12.40)

When dropped from rest, with x(0) = y(0) = 0 and z(0) = h0, we have

x(t) = 1
2g1 sin θ cos θ t

2 +O(t4)
y(t) = 1

3 ω sin θ (g0 − g1) t3 +O(t4)
z(t) = h0 − 1

2 (g0 − g1 sin2θ) t2 +O(t4) .

(12.41)

Recall g1 = ω2Re, so if we neglect the rotation of the earth and set ω = 0, we have ω = g1 = 0, and
z(t) = h0 − 1

2g0t
2 with x(t) = y(t) = 0. This is the familiar high school physics result. As we see, in

the noninertial reference frame of the rotating earth, there are deflections along θ̂ given by x(t), along
φ̂ given by y(t), and also a correction ∆z(t) = 1

2g1 sin
2 θ t2 + O(t4) to the motion along r̂. To find the

deflection of an object dropped from a height h0, solve z(t
∗) = 0 to obtain t∗ =

√
2h/(g0 − g1 sin2θ) for

the drop time, and substitute. For h0 = 100m and λ = π
2 , find δx(t

∗) = 17 cm south (centrifugal) and
δy(t∗) = 1.6 cm east (Coriolis). Note that the centrifugal term dominates the deflection in this example.
Why is the Coriolis deflection always to the east? The earth rotates eastward, and an object starting
from rest in the earth’s frame has initial angular velocity equal to that of the earth. To conserve angular
momentum, the object must speed up as it falls.

Exact solution for velocities

In fact, an exact solution to (12.34) is readily obtained, via the following analysis. The equations of
motion may be written v̇ = 2iωJ v + b, or



v̇x
v̇y
v̇x


 = 2i ω

J︷ ︸︸ ︷


0 −i cos θ 0
i cos θ 0 i sin θ

0 −i sin θ 0






vx
vy
vx


+

b︷ ︸︸ ︷


g1 sin θ cos θ
0

−g0 + g1 sin
2θ


 . (12.42)

Note that J † = J , i.e. J is a Hermitian matrix. The formal solution is

v(t) = e2iωJ t v(0) +

(
e2iωJ t − 1

2iω

)
J−1 b . (12.43)
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When working with matrices, it is convenient to work in an eigenbasis. The characteristic polynomial for
J is P (λ) = det (λ · 1− J ) = λ (λ2 − 1), hence the eigenvalues are λ1 = 0, λ2 = +1, and λ3 = −1. The
corresponding eigenvectors are easily found to be

ψ1 =




sin θ
0

− cos θ


 , ψ2 =

1√
2



cos θ
i

sin θ


 , ψ3 =

1√
2



cos θ
−i
sin θ


 . (12.44)

Note that ψ†
a · ψa′ = δaa′ .

Expanding v and b in this eigenbasis, we have u̇a = 2iωλaua + ba , where ua = ψ∗
ia vi and ba = ψ∗

ia bi .
The solution is

ua(t) = ua(0) e
2iλaωt +

(
e2iλaωt − 1

2iλaω

)
ba . (12.45)

Since the eigenvectors of J are orthonormal, ua = ψ∗
ia vi entails vi = ψiaua , hence

vi(t) =
∑

j

(
∑

a

ψia e
2iλaωt ψ∗

ja

)
vj(0) +

∑

j

(
∑

a

ψia

(
e2iλaωt − 1

2iλaω

)
ψ∗
ja

)
bj . (12.46)

Doing the requisite matrix multiplications, and assuming v(0) = 0, we obtain



vx(t)

vy(t)

vz(t)


 =




t sin2θ + sin 2ωt
2ω cos2θ sin2ωt

ω cos θ −1
2t sin 2θ +

sin 2ωt
4ω sin 2θ

− sin2ωt
ω cos θ sin 2ωt

2ω − sin2ωt
ω sin θ

−1
2t sin 2θ +

sin 2ωt
4ω sin 2θ sin2ωt

ω sin θ t cos2θ + sin 2ωt
2ω sin2θ







g1 sin θ cos θ
0

−g0 + g1 sin
2θ


 ,

(12.47)
which says

vx(t) =
(
sin 2ωt
2ωt − 1

)
g0t sin θ cos θ +

sin 2ωt
2ωt g1t sin θ cos θ

vy(t) =
sin2ωt
ωt (g0 − g1) t sin θ

vz(t) = −
(
cos2θ + sin 2ωt

2ωt sin2θ
)
g0t+

sin2ωt
2ωt g1t sin

2θ .

(12.48)

One can check that by expanding in a power series in t we recover the results of the previous section.

12.4.2 Foucault’s pendulum

A pendulum swinging over one of the poles moves in a fixed inertial plane while the earth rotates
underneath. Relative to the earth, the plane of motion of the pendulum makes one revolution every day.
What happens at a general latitude? Assume the pendulum is located at colatitude θ and longitude
φ. Assuming the length scale of the pendulum is small compared to Re, we can regard the local triad
{θ̂, φ̂, r̂} as fixed. The situation is depicted in Fig. 12.4. We write

r = x θ̂ + y φ̂+ z r̂ , (12.49)

with
x = ℓ sinψ cosα , y = ℓ sinψ sinα , z = ℓ (1− cosψ) . (12.50)
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In our analysis we will ignore centrifugal effects, which are of higher order in ω, and we take g = −g r̂.
We also idealize the pendulum, and consider the suspension rod to be of negligible mass.

The total force on the mass m is due to gravity and tension:

F = mg + T

=
(
− T sinψ cosα, −T sinψ sinα, T cosψ −mg

)

=
(
− Tx/ℓ, −Ty/ℓ, T −Mg − Tz/ℓ

)
.

(12.51)

The Coriolis term is

FCor = −2mω × ṙ
= −2mω

(
cos θ r̂ − sin θ θ̂

)
×
(
ẋ θ̂ + ẏ φ̂+ ż r̂

)

= 2mω
(
ẏ cos θ, −ẋ cos θ − ż sin θ, ẏ sin θ

)
.

(12.52)

The equations of motion are mr̈ = F + FCor:

mẍ = −Tx/ℓ+ 2mω cos θ ẏ

mÿ = −Ty/ℓ− 2mω cos θ ẋ− 2mω sin θ ż

mz̈ = T −mg − Tz/ℓ+ 2mω sin θ ẏ .

(12.53)

These three equations are to be solved for the three unknowns x, y, and T . Note that

x2 + y2 + (ℓ− z)2 = ℓ2 , (12.54)

so z = z(x, y) is not an independent degree of freedom. This equation may be recast in the form
z = (x2 + y2 + z2)/2ℓ which shows that if x and y are both small, then z is at least of second order
in smallness. Therefore, we will approximate z ≃ 0, in which case ż may be neglected from the second
equation of motion. The third equation is used to solve for T :

T ≃ mg − 2mω sin θ ẏ . (12.55)

Adding the first plus i times the second then gives the complexified equation

ξ̈ = − T

mℓ
ξ − 2iω cos θ ξ̇

≈ −ω2
0 ξ − 2iω cos θ ξ̇

(12.56)

where ξ ≡ x+ iy, and where ω0 =
√
g/ℓ. Note that we have approximated T ≈ mg in deriving the second

line.

It is now a trivial matter to solve the homogeneous linear ODE of eq. 12.56. Writing

ξ = ξ0 e
−iΩt (12.57)

and plugging in to find Ω, we obtain

Ω2 − 2ω⊥Ω − ω2
0 = 0 , (12.58)
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Figure 12.4: Foucault’s pendulum.

with ω⊥ ≡ ω cos θ. The roots are

Ω± = ω⊥ ±
√
ω2
0 + ω2

⊥ , (12.59)

hence the most general solution is

ξ(t) = A+ e
−iΩ+t +A− e

−iΩ−t . (12.60)

Finally, if we take as initial conditions x(0) = a, y(0) = 0, ẋ(0) = 0, and ẏ(0) = 0, we obtain

x(t) =
(a
ν

)
·
{
ω⊥ sin(ω⊥t) sin(νt) + ν cos(ω⊥t) cos(νt)

}

y(t) =
(a
ν

)
·
{
ω⊥ cos(ω⊥t) sin(νt)− ν sin(ω⊥t) cos(νt)

}
,

(12.61)

with ν =
√
ω2
0 + ω2

⊥. Typically ω0 ≫ ω⊥, since ω = 7.3 × 10−5 s−1. In the limit ω⊥ ≪ ω0, then, we have

ν ≈ ω0 and

x(t) ≃ a cos(ω⊥t) cos(ω0t) , y(t) ≃ −a sin(ω⊥t) cos(ω0t) , (12.62)

and the plane of motion rotates with angular frequency −ω⊥, i.e. the period is | sec θ | days. Viewed from
above, the rotation is clockwise in the northern hemisphere, where cos θ > 0 and counterclockwise in the
southern hemisphere, where cos θ < 0.



Chapter 13

Rigid Body Motion and Rotational
Dynamics

13.1 Rigid Bodies

A rigid body consists of a group of particles whose separations are all fixed in magnitude. Six independent
coordinates are required to completely specify the position and orientation of a rigid body. For example,
the location of the first particle is specified by three coordinates. A second particle requires only two
coordinates since the distance to the first is fixed. Finally, a third particle requires only one coordinate,
since its distance to the first two particles is fixed (think about the intersection of two spheres). The
positions of all the remaining particles are then determined by their distances from the first three. Usually,
one takes these six coordinates to be the center-of-mass positionR = (X,Y,Z) and three angles specifying
the orientation of the body (e.g. the Euler angles).

As derived previously, the equations of motion are

P =
∑

i

mi ṙi , Ṗ = F (ext)

L =
∑

i

mi ri × ṙi , L̇ =N (ext) .
(13.1)

These equations determine the motion of a rigid body.

13.1.1 Examples of rigid bodies

Our first example of a rigid body is of a wheel rolling with constant angular velocity φ̇ = ω, and without
slipping, This is shown in Fig. 13.1. The no-slip condition is dx = Rdφ, so ẋ = VCM = Rω. The velocity
of a point within the wheel is

v = VCM + ω × r , (13.2)

where r is measured from the center of the disk. The velocity of a point on the surface is then given by
v = ωR

(
x̂+ ω̂ × r̂).

13
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Figure 13.1: A wheel rolling to the right without slipping.

As a second example, consider a bicycle wheel of mass M and radius R affixed to a light, firm rod of
length d, as shown in Fig. 13.2. Assuming L lies in the (x, y) plane, one computes the gravitational
torque N = r × (Mg) =Mgd φ̂. The angular momentum vector then rotates with angular frequency φ̇.
Thus,

dφ =
dL

L
=⇒ φ̇ =

Mgd

L
. (13.3)

But L =MR2ω, so the precession frequency is

ωp = φ̇ =
gd

ωR2
. (13.4)

For R = d = 30 cm and ω/2π = 200 rpm, find ωp/2π ≈ 15 rpm. Note that we have here ignored the
contribution to L from the precession itself, which lies along ẑ, resulting in the nutation of the wheel.
This is justified if Lp/L = (d2/R2) · (ωp/ω)≪ 1.

13.2 The Inertia Tensor

Suppose first that a point within the body itself is fixed. This eliminates the translational degrees of
freedom from consideration. We now have

(
dr

dt

)

inertial

= ω × r , (13.5)

since ṙbody = 0. The kinetic energy is then

T = 1
2

∑

i

mi

(
dri
dt

)2

inertial

= 1
2

∑

i

mi (ω × ri) · (ω × ri)

= 1
2

∑

i

mi

[
ω2 r2i − (ω · ri)2

]
≡ 1

2Iαβ ωα ωβ ,

(13.6)
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Figure 13.2: Precession of a spinning bicycle wheel.

where ωα is the component of ω along the body-fixed axis eα. The quantity Iαβ is the inertia tensor,

Iαβ =
∑

i

mi

(
r2i δαβ − ri,α ri,β

)

=

∫
ddr ̺(r)

(
r2 δαβ − rα rβ

)
(continuous media) .

(13.7)

The angular momentum is

L =
∑

i

mi ri ×
(
dri
dt

)

inertial

=
∑

i

mi ri × (ω × ri) = Iαβ ωβ .
(13.8)

The diagonal elements of Iαβ are called the moments of inertia, while the off-diagonal elements are called
the products of inertia.

13.2.1 Coordinate transformations

Consider the basis transformation
ê′α = Rαβ êβ . (13.9)

We demand ê′α · ê′β = δαβ, which means R ∈ O(d) is an orthogonal matrix, i.e. Rt = R−1. Thus the

inverse transformation is eα = Rt
αβe

′
β . Consider next a general vector A = Aβ êβ. Expressed in terms of

the new basis {ê′α}, we have

A = Aβ

êβ︷ ︸︸ ︷
Rt
βα ê

′
α =

A′
α︷ ︸︸ ︷

RαβAβ ê′α (13.10)
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Thus, the components of A transform as A′
α = Rαβ Aβ . This is true for any vector.

Under a rotation, the density ρ(r) must satisfy ρ′(r′) = ρ(r). This is the transformation rule for scalars.
The inertia tensor therefore obeys

I ′αβ =

∫
d3r′ ρ′(r′)

[
r′2 δαβ − r′α r′β

]

=

∫
d3r ρ(r)

[
r2 δαβ −

(
Rαµrµ

)(
Rβνrν

)]

= Rαµ Iµν Rt
νβ .

(13.11)

I.e. I ′ = RIRt, the transformation rule for tensors. The angular frequency ω is a vector, so ω′
α = Rαµ ωµ.

The angular momentum L also transforms as a vector. The kinetic energy is T = 1
2 ω

t · I · ω, which
transforms as a scalar.

13.2.2 The case of no fixed point

If there is no fixed point, we can let r′ denote the distance from the center-of-mass (CM), which will
serve as the instantaneous origin in the body-fixed frame. We then adopt the notation where R is the
CM position of the rotating body, as observed in an inertial frame, and is computed from the expression

R =
1

M

∑

i

mi ρi =
1

M

∫
d3r ρ(r) r , (13.12)

where the total mass is of course

M =
∑

i

mi =

∫
d3r ρ(r) . (13.13)

The kinetic energy and angular momentum are then

T = 1
2MṘ

2 + 1
2Iαβ ωα ωβ

Lα = ǫαβγMRβṘγ + Iαβ ωβ ,
(13.14)

where Iαβ is given in eqs. 13.7, where the origin is the CM.

13.3 Parallel Axis Theorem

Suppose Iαβ is given in a body-fixed frame. If we displace the origin in the body-fixed frame by d, then

let Iαβ(d) be the inertial tensor with respect to the new origin. If, relative to the origin at 0 a mass
element lies at position r, then relative to an origin at d it will lie at r − d. We then have

Iαβ(d) =
∑

i

mi

{
(r2i − 2d · ri + d2) δαβ − (ri,α − dα)(ri,β − dβ)

}
. (13.15)
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Figure 13.3: Application of the parallel axis theorem to a cylindrically symmetric mass distribution.

If ri is measured with respect to the CM, then
∑

i

mi ri = 0 (13.16)

and
Iαβ(d) = Iαβ(0) +M

(
d2δαβ − dαdβ

)
, (13.17)

a result known as the parallel axis theorem.

As an example of the theorem, consider the situation depicted in Fig. 13.3, where a cylindrically sym-
metric mass distribution is rotated about is symmetry axis, and about an axis tangent to its side. The
component Izz of the inertia tensor is easily computed when the origin lies along the symmetry axis:

Izz =

∫
d3r ρ(r) (r2 − z2) = ρL · 2π

a∫

0

dr⊥ r
3
⊥

= π
2ρLa

4 = 1
2Ma2 ,

(13.18)

where M = πa2Lρ is the total mass. If we compute Izz about a vertical axis which is tangent to the
cylinder, the parallel axis theorem tells us that

I ′zz = Izz +Ma2 = 3
2Ma2 . (13.19)

Doing this calculation by explicit integration of
∫
dmr2⊥ would be tedious!

13.3.1 Example

Problem: Compute the CM and the inertia tensor for the planar right triangle of Fig. 13.4, assuming
it to be of uniform two-dimensional mass density ρ.
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Solution: The total mass is M = 1
2ρ ab. The x-coordinate of the CM is then

X =
1

M

a∫

0

dx

b(1−x
a
)∫

0

dy ρ x =
ρ

M

a∫

0

dx b
(
1− x

a

)
x

=
ρ a2b

M

1∫

0

duu(1− u) = ρ a2b

6M
= 1

3 a .

(13.20)

Clearly we must then have Y = 1
3 b, which may be verified by explicit integration.

We now compute the inertia tensor, with the origin at (0, 0, 0). Since the figure is planar, z = 0 every-
where, hence Ixz = Izx = 0, Iyz = Izy = 0, and also Izz = Ixx + Iyy. We now compute the remaining
independent elements:

Ixx = ρ

a∫

0

dx

b(1−x
a
)∫

0

dy y2 = ρ

a∫

0

dx 1
3 b

3
(
1− x

a

)3

= 1
3ρ ab

3

1∫

0

du (1− u)3 = 1
12ρ ab

3 = 1
6Mb2

(13.21)

and

Ixy = −ρ
a∫

0

dx

b(1−x
a
)∫

0

dy x y = −1
2ρ b

2

a∫

0

dxx
(
1− x

a

)2

= −1
2ρ a

2b2
1∫

0

duu (1− u)2 = − 1
24ρ a

2b2 = − 1
12Mab .

(13.22)

Thus,

I =
M

6




b2 −1
2ab 0

−1
2ab a2 0
0 0 a2 + b2


 . (13.23)

Suppose we wanted the inertia tensor relative in a coordinate system where the CM lies at the origin.
What we computed in eqn. 13.23 is I(d), with d = − a

3 x̂− b
3 ŷ. Thus,

d2δαβ − dα dβ =
1

9




b2 −ab 0
−ab a2 0
0 0 a2 + b2


 . (13.24)

Since

I(d) = ICM +M
(
d2δαβ − dα dβ

)
, (13.25)
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Figure 13.4: A planar mass distribution in the shape of a triangle.

we have that

ICM = I(d)−M
(
d2δαβ − dα dβ

)

=
M

18



b2 1

2ab 0
1
2ab a2 0
0 0 a2 + b2


 .

(13.26)

13.3.2 General planar mass distribution

For a general planar mass distribution,

ρ(x, y, z) = σ(x, y) δ(z) , (13.27)

which is confined to the plane z = 0, we have Ixz = Iyz = 0, and

Ixx =

∫
dx

∫
dy σ(x, y) y2

Iyy =

∫
dx

∫
dy σ(x, y)x2

Ixy = −
∫
dx

∫
dy σ(x, y)xy .

(13.28)

Furthermore, Izz = Ixx + Iyy, regardless of the two-dimensional mass distribution σ(x, y).

13.4 Principal Axes of Inertia

We found that an orthogonal transformation to a new set of axes ê′α = Rαβ êβ entails I ′ = RIRt for the

inertia tensor. Since I = It is manifestly a symmetric matrix, it can be brought to diagonal form by such
an orthogonal transformation. To find R, follow this recipe:
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1. Find the diagonal elements of I ′ by setting P (λ) = 0, where

P (λ) = det
(
λ · 1− I

)
, (13.29)

is the characteristic polynomial for I, and 1 is the unit matrix.

2. For each eigenvalue λa, solve the d equations
∑

ν

Iµν ψ
a
ν = λa ψ

a
µ . (13.30)

Here, ψaµ is the µth component of the ath eigenvector. Since (λ · 1− I) is degenerate, these equations
are linearly dependent, which means that the first d − 1 components may be determined in terms
of the dth component.

3. Because I = It, eigenvectors corresponding to different eigenvalues are orthogonal. In cases of
degeneracy, the eigenvectors may be chosen to be orthogonal, e.g. via the Gram-Schmidt procedure.

4. Due to the underdetermined aspect to step 2, we may choose an arbitrary normalization for each
eigenvector. It is conventional to choose the eigenvectors to be orthonormal:

∑
µ ψ

a
µ ψ

b
µ = δab.

5. The matrix R is explicitly given by Raµ = ψaµ , the matrix whose row vectors are the eigenvectors
ψa. Of course Rt is then the corresponding matrix of column vectors.

6. The eigenvectors form a complete basis. The resolution of unity may be expressed as
∑

a

ψaµ ψ
a
ν = δµν . (13.31)

As an example, consider the inertia tensor for a general planar mass distribution, which is of the form

I =



Ixx Ixy 0
Iyx Iyy 0
0 0 Izz


 , (13.32)

where Iyx = Ixy and Izz = Ixx + Iyy. Define

A = 1
2

(
Ixx + Iyy

)

B =

√
1
4

(
Ixx − Iyy

)2
+ I2xy

ϑ = tan−1

(
2Ixy

Ixx − Iyy

)
,

(13.33)

so that

I =



A+B cos ϑ B sinϑ 0
B sinϑ A−B cos ϑ 0

0 0 2A


 , (13.34)

The characteristic polynomial is found to be

P (λ) = (λ− 2A)
[
(λ−A)2 −B2

]
, (13.35)
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which gives λ1 = A+B, λ2 = A−B, and λ3 = 2A. The corresponding normalized eigenvectors are

ψ1 =



cos 1

2ϑ
sin 1

2ϑ
0


 , ψ2 =



− sin 1

2ϑ
cos 1

2ϑ
0


 , ψ3 =



0
0
1


 (13.36)

and therefore

R =




cos 1
2ϑ sin 1

2ϑ 0
− sin 1

2ϑ cos 1
2ϑ 0

0 0 1


 . (13.37)

We then have

I ′ = RIRt =



A+B 0 0

0 A−B 0
0 0 2A


 . (13.38)

13.5 Euler’s Equations

Let us now choose our coordinate axes to be the principal axes of inertia, with the CM at the origin. We
may then write

ω =



ω1

ω2

ω3


 , I =



I1 0 0
0 I2 0
0 0 I3


 =⇒ L =



I1 ω1

I2 ω2

I3 ω3


 . (13.39)

The equations of motion are

N ext =

(
dL

dt

)

inertial

=

(
dL

dt

)

body

+ ω ×L

= I ω̇ +ω × (I ω) .

Thus, we arrive at Euler’s equations:

I1 ω̇1 = (I2 − I3)ω2 ω3 +N ext
1

I2 ω̇2 = (I3 − I1)ω3 ω1 +N ext
2

I3 ω̇3 = (I1 − I2)ω1 ω2 +N ext
3 .

(13.40)

These are coupled and nonlinear. Also note the fact that the external torque must be evaluated along
body-fixed principal axes. We can however make progress in the case where N ext = 0, i.e. when there
are no external torques. This is true for a body in free space, or in a uniform gravitational field. In the
latter case,

N ext =
∑

i

ri × (mi g) =
(∑

i

miri

)
× g , (13.41)

where g is the uniform gravitational acceleration. In a body-fixed frame whose origin is the CM, we have∑
imiri = 0, and the external torque vanishes!
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Figure 13.5: Wobbling of a torque-free symmetric top.

Precession of torque-free symmetric tops: Consider a body which has a symmetry axis ê3. This
guarantees I1 = I2, but in general we still have I1 6= I3. In the absence of external torques, the last of
Euler’s equations says ω̇3 = 0, so ω3 is a constant. The remaining two equations are then

ω̇1 =

(
I1 − I3
I1

)
ω3 ω2 , ω̇2 =

(
I3 − I1
I1

)
ω3 ω1 . (13.42)

I.e.ω̇1 = −Ωω2 and ω̇2 = +Ωω1, with

Ω =

(
I3 − I1
I1

)
ω3 , (13.43)

which are the equations of a harmonic oscillator. The solution is easily obtained:

ω1(t) = ω⊥ cos
(
Ωt+ δ

)
, ω2(t) = ω⊥ sin

(
Ωt+ δ

)
, ω3(t) = ω3 , (13.44)

where ω⊥ and δ are constants of integration, and where |ω| = (ω2
⊥ + ω2

3)
1/2. This motion is sketched in

Fig. 13.5. Note that the perpendicular components of ω oscillate harmonically, and that the angle ω
makes with respect to ê3 is λ = tan−1(ω⊥/ω3).

For the earth, (I3− I1)/I1 ≈ 1
305 , so ω3 ≈ ω, and Ω ≈ ω/305, yielding a precession period of 305 days, or

roughly 10 months. Astronomical observations reveal such a precession, known as the Chandler wobble.

For the earth, the precession angle is λChandler ≃ 6× 10−7 rad, which means that the North Pole moves by
about 4 meters during the wobble. The Chandler wobble has a period of about 14 months, so the näıve
prediction of 305 days is off by a substantial amount. This discrepancy is attributed to the mechanical
properties of the earth: elasticity and fluidity. The earth is not solid!1

Asymmetric tops: Next, consider the torque-free motion of an asymmetric top, where I1 6= I2 6= I3 6=
I1. Unlike the symmetric case, there is no conserved component of ω. True, we can invoke conservation

1The earth is a layered like a Mozartkugel, with a solid outer shell, an inner fluid shell, and a solid (iron) core.
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of energy and angular momentum,

E = 1
2I1 ω

2
1 +

1
2I2 ω

2
2 +

1
2I3 ω

2
3

L2 = I21 ω
2
1 + I22 ω

2
2 + I23 ω

2
3 ,

(13.45)

and, in principle, solve for ω1 and ω2 in terms of ω3, and then invoke Euler’s equations (which must
honor these conservation laws). However, the nonlinearity greatly complicates matters and in general
this approach is a dead end.

We can, however, find a particular solution quite easily – one in which the rotation is about a single axis.
Thus, ω1 = ω2 = 0 and ω3 = ω0 is indeed a solution for all time, according to Euler’s equations. Let us
now perturb about this solution, to explore its stability. We write

ω = ω0 ê3 + δω , (13.46)

and we invoke Euler’s equations, linearizing by dropping terms quadratic in δω. This yield

I1 δω̇1 = (I2 − I3)ω0 δω2 +O(δω2 δω3)

I2 δω̇2 = (I3 − I1)ω0 δω1 +O(δω3 δω1)

I3 δω̇3 = 0 +O(δω1 δω2) .

(13.47)

Taking the time derivative of the first equation and invoking the second, and vice versa, yields

δω̈1 = −Ω2 δω1 , δω̈2 = −Ω2 δω2 , (13.48)

with

Ω2 =
(I3 − I2)(I3 − I1)

I1 I2
· ω2

0 . (13.49)

The solution is then δω1(t) = C cos(Ωt+ δ).

If Ω2 > 0, then Ω is real, and the deviation results in a harmonic precession. This occurs if I3 is either
the largest or the smallest of the moments of inertia. If, however, I3 is the middle moment, then Ω2 < 0,
and Ω is purely imaginary. The perturbation will in general increase exponentially with time, which
means that the initial solution to Euler’s equations is unstable with respect to small perturbations. This
result can be vividly realized using a tennis racket, and sometimes goes by the name of the “tennis racket
theorem.”

13.5.1 Example

PROBLEM: A unsuspecting solid spherical planet of mass M0 rotates with angular velocity ω0. Suddenly,
a giant asteroid of mass αM0 smashes into and sticks to the planet at a location which is at polar angle θ
relative to the initial rotational axis. The new mass distribution is no longer spherically symmetric, and
the rotational axis will precess. Recall Euler’s equation

dL

dt
+ ω ×L =N ext (13.50)
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for rotations in a body-fixed frame.

(a) What is the new inertia tensor Iαβ along principal center-of-mass frame axes? Don’t forget that the

CM is no longer at the center of the sphere! Recall I = 2
5MR2 for a solid sphere.

(b) What is the period of precession of the rotational axis in terms of the original length of the day
2π/ω0?

SOLUTION: Let’s choose body-fixed axes with ẑ pointing from the center of the planet to the smoldering
asteroid. The CM lies a distance

d =
αM0 · R+M0 · 0

(1 + α)M0
=

α

1 + α
R (13.51)

from the center of the sphere. Thus, relative to the center of the sphere, we have

I = 2
5M0R

2



1 0 0
0 1 0
0 0 1


+ αM0R

2



1 0 0
0 1 0
0 0 0


 . (13.52)

Now we shift to a frame with the CM at the origin, using the parallel axis theorem,

Iαβ(d) = ICM
αβ +M

(
d2 δαβ − dαdβ

)
. (13.53)

Thus, with d = dẑ,

ICM
αβ = 2

5M0R
2



1 0 0
0 1 0
0 0 1


+ αM0R

2



1 0 0
0 1 0
0 0 0


− (1 + α)M0d

2



1 0 0
0 1 0
0 0 0




=M0R
2




2
5 +

α
1+α 0 0

0 2
5 +

α
1+α 0

0 0 2
5


 .

(13.54)

In the absence of external torques, Euler’s equations along principal axes read

I1
dω1

dt
= (I2 − I3)ω2 ω3

I2
dω2

dt
= (I3 − I1)ω3 ω1

I3
dω3

dt
= (I1 − I2)ω1 ω2

(13.55)

Since I1 = I2, ω3(t) = ω3(0) = ω0 cos θ is a constant. We then obtain ω̇1 = Ωω2, and ω̇2 = −Ωω1, with

Ω =
I2 − I3
I1

ω3 =
5α

7α + 2
ω3 . (13.56)

The period of precession τ in units of the pre-cataclysmic day is

τ

T
=
ω

Ω
=

7α + 2

5α cos θ
. (13.57)
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13.6 Euler’s Angles

In d dimensions, an orthogonal matrix R ∈ O(d) has 1
2d(d − 1) independent parameters. To see this,

consider the constraintRtR = 1. The matrixRtR is manifestly symmetric, so it has 1
2d(d+1) independent

entries (e.g. on the diagonal and above the diagonal). This amounts to 1
2d(d + 1) constraints on the d2

components of R, resulting in 1
2d(d − 1) freedoms. Thus, in d = 3 rotations are specified by three

parameters. The Euler angles {φ, θ, ψ} provide one such convenient parameterization.

A general rotation R(φ, θ, ψ) is built up in three steps. We start with an orthonormal triad ê0
µ of body-

fixed axes. The first step is a rotation by an angle φ about ê0
3:

ê′µ = Rµν
(
ê0
3, φ
)
ê0
ν , R

(
ê0
3, φ
)
=




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 (13.58)

This step is shown in panel (a) of Fig. 13.6. The second step is a rotation by θ about the new axis ê′1:

ê′′µ = Rµν
(
ê′1, θ

)
ê′ν , R

(
ê′1, θ

)
=



1 0 0
0 cos θ sin θ
0 − sin θ cos θ


 (13.59)

This step is shown in panel (b) of Fig. 13.6. The third and final step is a rotation by ψ about the new
axis ê′′3:

ê′′′µ = Rµν
(
ê′′3, ψ

)
ê′′ν , R

(
ê′′3, ψ

)
=




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 (13.60)

This step is shown in panel (c) of Fig. 13.6. Putting this all together,

R(φ, θ, ψ) = R
(
ê′′3, ψ

)
R
(
ê′1, θ

)
R
(
ê0
3, φ
)

(13.61)

=




cosψ sinψ 0
− sinψ cosψ 0

0 0 1





1 0 0
0 cos θ sin θ
0 − sin θ cos θ






cosφ sinφ 0
− sinφ cosφ 0

0 0 1




=




cosψ cosφ− sinψ cos θ sinφ cosψ sinφ+ sinψ cos θ cosφ sinψ sin θ
− sinψ cosφ− cosψ cos θ sinφ − sinψ sinφ+ cosψ cos θ cosφ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ


 .

Next, we’d like to relate the components ωµ = ω · êµ (with êµ ≡ ê′′′µ ) of the rotation in the body-fixed

frame to the derivatives φ̇, θ̇, and ψ̇. To do this, we write

ω = φ̇ êφ + θ̇ êθ + ψ̇ êψ , (13.62)

where

ê0
3 = êφ = sin θ sinψ ê1 + sin θ cosψ ê2 + cos θ ê3

êθ = cosψ ê1 − sinψ ê2 (“line of nodes”)

êψ = ê3 .

(13.63)
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Figure 13.6: A general rotation, defined in terms of the Euler angles {φ, θ, ψ}. Three successive steps of
the transformation are shown.

The first of these follows from the relation êµ = Rµν(φ, θ, ψ) ê0ν , whose inverse is ê0µ = Rt
µν(φ, θ, ψ) êν ,

since R−1 = Rt. Thus the coefficients of ê1,2,3 in ê03 are the elements of the rightmost (ν = 3) column of
R(φ, θ, ψ). We may now read off

ω1 = ω · ê1 = φ̇ sin θ sinψ + θ̇ cosψ

ω2 = ω · ê2 = φ̇ sin θ cosψ − θ̇ sinψ

ω3 = ω · ê3 = φ̇ cos θ + ψ̇ .

(13.64)

Note that

φ̇↔ precession , θ̇ ↔ nutation , ψ̇ ↔ axial rotation . (13.65)

The general form of the kinetic energy is then

T = 1
2I1
(
φ̇ sin θ sinψ + θ̇ cosψ

)2

+ 1
2I2
(
φ̇ sin θ cosψ − θ̇ sinψ

)2
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
.

Note that

L = pφ êφ + pθ êθ + pψ êψ , (13.66)

which may be verified by explicit computation.
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13.6.1 Torque-free symmetric top

A body falling in a gravitational field experiences no net torque about its CM:

N ext =
∑

i

ri × (−mi g) = g ×
∑

i

mi ri = 0 . (13.67)

For a symmetric top with I1 = I2, we have

T = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2
. (13.68)

The potential is cyclic in the Euler angles, hence the equations of motion are

d

dt

∂T

∂(φ̇, θ̇, ψ̇)
=

∂T

∂(φ, θ, ψ)
. (13.69)

Since φ and ψ are cyclic in T , their conjugate momenta are conserved:

pφ =
∂L

∂φ̇
= I1 φ̇ sin2θ + I3 (φ̇ cos θ + ψ̇) cos θ

pψ =
∂L

∂ψ̇
= I3 (φ̇ cos θ + ψ̇) .

(13.70)

Note that pψ = I3 ω3, hence ω3 is constant, as we have already seen.

To solve for the motion, we first note that L is conserved in the inertial frame. We are therefore permitted
to define L̂ = ê0

3 = êφ. Thus, pφ = L. Since êφ · êψ = cos θ, we have that pψ = L · êψ = L cos θ. Finally,
êφ · êθ = 0, which means pθ = L · êθ = 0. From the equations of motion,

ṗθ = I1 θ̈ =
(
I1 φ̇ cos θ − pψ

)
φ̇ sin θ , (13.71)

hence we must have

θ̇ = 0 , φ̇ =
pψ

I1 cos θ
. (13.72)

Note that θ̇ = 0 follows from conservation of pψ = L cos θ. From the equation for pψ, we may now
conclude

ψ̇ =
pψ
I3
−
pψ
I1

=

(
I3 − I1
I3

)
ω3 , (13.73)

which recapitulates (13.43), with ψ̇ = Ω.

13.6.2 Symmetric top with one point fixed

Consider the case of a symmetric top with one point fixed, as depicted in Fig. 13.7. The Lagrangian is

L = 1
2I1
(
θ̇2 + φ̇2 sin2θ

)
+ 1

2I3
(
φ̇ cos θ + ψ̇

)2 −Mgℓ cos θ . (13.74)
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Figure 13.7: A dreidl is a symmetric top. The four-fold symmetry axis guarantees I1 = I2. The blue
diamond represents the center-of-mass.

Here, ℓ is the distance from the fixed point to the CM, and the inertia tensor is defined along principal
axes whose origin lies at the fixed point (not the CM!). Gravity now supplies a torque, but as in the
torque-free case, the Lagrangian is still cyclic in φ and ψ, so

pφ = (I1 sin
2θ + I3 cos

2θ) φ̇+ I3 cos θ ψ̇

pψ = I3 cos θ φ̇+ I3 ψ̇
(13.75)

are each conserved. We can invert these relations to obtain φ̇ and ψ̇ in terms of {pφ, pψ, θ}:

φ̇ =
pφ − pψ cos θ

I1 sin2θ
, ψ̇ =

pψ
I3
− (pφ − pψ cos θ) cos θ

I1 sin2θ
. (13.76)

In addition, since ∂L/∂t = 0, the total energy is conserved:

E = T + U = 1
2I1 θ̇

2+

Ueff (θ)︷ ︸︸ ︷
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2ψ
2I3

+Mgℓ cos θ , (13.77)

where the term under the brace is the effective potential Ueff(θ).

The problem thus reduces to the one-dimensional dynamics of θ(t), i.e.

I1 θ̈ = −
∂Ueff

∂θ
, (13.78)
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Figure 13.8: The effective potential of eq. 13.82.

with

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2ψ
2I3

+Mgℓ cos θ . (13.79)

Using energy conservation, we may write

dt = ±
√
I1
2

dθ√
E − Ueff(θ)

. (13.80)

and thus the problem is reduced to quadratures:

t(θ) = t(θ0)±
√
I1
2

θ∫

θ0

dϑ
1√

E − Ueff(ϑ)
. (13.81)

We can gain physical insight into the motion by examining the shape of the effective potential,

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+Mgℓ cos θ +

p2ψ
2I3

, (13.82)

over the interval θ ∈ [0, π]. Clearly Ueff(0) = Ueff(π) = ∞, so the motion must be bounded. What is
not yet clear, but what is nonetheless revealed by some additional analysis, is that Ueff(θ) has a single
minimum on this interval, at θ = θ0. The turning points for the θ motion are at θ = θa and θ = θb,
where Ueff(θa) = Ueff(θb) = E. Clearly if we expand about θ0 and write θ = θ0 + η, the η motion will be
harmonic, with

η(t) = η0 cos(Ωt+ δ) , Ω =

√
U ′′
eff(θ0)

I1
. (13.83)
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Figure 13.9: Precession and nutation of the symmetry axis of a symmetric top.

To prove that Ueff(θ) has these features, let us define u ≡ cos θ. Then u̇ = − θ̇ sin θ, and from E =
1
2I1 θ̇

2 + Ueff(θ) we derive

u̇2 =

(
2E

I1
−

p2ψ
I1I3

)
(1− u2)− 2Mgℓ

I1
(1− u2)u−

(
pφ − pψ u

I1

)2
≡ f(u) . (13.84)

The turning points occur at f(u) = 0. The function f(u) is cubic, and the coefficient of the cubic term

is 2Mgℓ/I1, which is positive. Clearly f(u = ±1) = −(pφ∓ pψ)2/I21 is negative, so there must be at least
one solution to f(u) = 0 on the interval u ∈ (1,∞). Clearly there can be at most three real roots for f(u),
since the function is cubic in u, hence there are at most two turning points on the interval u ∈ [−1, 1].
Thus, Ueff(θ) has the form depicted in fig. 13.8.

To apprehend the full motion of the top in an inertial frame, let us follow the symmetry axis ê3:

ê3 = sin θ sinφ ê0
1 − sin θ cosφ ê0

2 + cos θ ê0
3 . (13.85)

Once we know θ(t) and φ(t) we’re done. The motion θ(t) is described above: θ oscillates between turning
points at θa and θb. As for φ(t), we have already derived the result

φ̇ =
pφ − pψ cos θ

I1 sin2θ
. (13.86)

Thus, if pφ > pψ cos θa, then φ̇ will remain positive throughout the motion. If, on the other hand, we
have

pψ cos θb < pφ < pψ cos θa , (13.87)

then φ̇ changes sign at an angle θ∗ = cos−1
(
pφ/pψ

)
. The motion is depicted in Fig. 13.9. An extensive

discussion of this problem is given in H. Goldstein, Classical Mechanics.

13.7 Rolling and Skidding Motion of Real Tops

The material in this section is based on the corresponding sections from V. Barger and M. Olsson,
Classical Mechanics: A Modern Perspective. This is an excellent book which contains many interesting
applications and examples.
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Figure 13.10: A top with a peg end. The frictional forces f and fskid are shown. When the top rolls
without skidding, fskid = 0.

13.7.1 Rolling tops

In most tops, the point of contact rolls or skids along the surface. Consider the peg end top of Fig.
13.10, executing a circular rolling motion, as sketched in Fig. 13.11. There are three components to the
force acting on the top: gravity, the normal force from the surface, and friction. The frictional force is
perpendicular to the CM velocity, and results in centripetal acceleration of the top:

f =MΩ2ρ ≤ µMg , (13.88)

where Ω is the frequency of the CM motion and µ is the coefficient of friction. If the above inequality is
violated, the top starts to slip.

The frictional and normal forces combine to produce a torque N = Mgℓ sin θ − fℓ cos θ about the CM2.
This torque is tangent to the circular path of the CM, and causes L to precess. We assume that the top
is spinning rapidly, so that L very nearly points along the symmetry axis of the top itself. (As we’ll see,
this is true for slow precession but not for fast precession, where the precession frequency is proportional
to ω3.) The precession is then governed by the equation

N =Mgℓ sin θ − fℓ cos θ
=
∣∣L̇
∣∣ =

∣∣Ω ×L
∣∣ ≈ Ω I3 ω3 sin θ ,

(13.89)

where ê3 is the instantaneous symmetry axis of the top. Substituting f =MΩ2ρ,

Mgℓ

I3 ω3

(
1− Ω2ρ

g
ctn θ

)
= Ω , (13.90)

which is a quadratic equation for Ω. We supplement this with the ‘no slip’ condition,

ω3 δ = Ω
(
ρ+ ℓ sin θ

)
, (13.91)

2Gravity of course produces no net torque about the CM.
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Figure 13.11: Circular rolling motion of the peg top.

resulting in two equations for the two unknowns Ω and ρ.

Substituting for ρ(Ω) and solving for Ω, we obtain

Ω =
I3 ω3

2Mℓ2 cos θ

{
1 +

Mgℓδ

I3
ctn θ ±

√(
1 +

Mgℓδ

I3
ctn θ

)2
− 4Mℓ2

I3
· Mgℓ

I3 ω
2
3

}
. (13.92)

This in order to have a real solution we must have

ω3 ≥
2Mℓ2 sin θ

I3 sin θ +Mgℓδ cos θ

√
g

ℓ
. (13.93)

If the inequality is satisfied, there are two possible solutions for Ω, corresponding to fast and slow
precession. Usually one observes slow precession. Note that it is possible that ρ < 0, in which case the
CM and the peg end lie on opposite sides of a circle from each other.

13.7.2 Skidding tops

A skidding top experiences a frictional force which opposes the skidding velocity, until vskid = 0 and a
pure rolling motion sets in. This force provides a torque which makes the top rise:

θ̇ = −Nskid

L
= −µMgℓ

I3 ω3
. (13.94)

Suppose δ ≈ 0, in which case ρ + ℓ sin θ = 0, from eqn. 13.91, and the point of contact remains fixed.
Now recall the effective potential for a symmetric top with one point fixed:

Ueff(θ) =
(pφ − pψ cos θ)2

2I1 sin2θ
+
p2ψ
2I3

+Mgℓ cos θ . (13.95)
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We demand U ′
eff(θ0) = 0, which yields

cos θ0 · β2 − pψ sin2θ0 · β +MgℓI1 sin
4θ0 = 0 , (13.96)

where
β ≡ pφ − pψ cos θ0 = I1 sin

2θ0 φ̇ . (13.97)

Solving the quadratic equation for β, we find

φ̇ =
I3 ω3

2I1 cos θ0

(
1±

√

1− 4MgℓI1 cos θ0
I23 ω

2
3

)
. (13.98)

This is simply a recapitulation of eqn. 13.92, with δ = 0 and with Mℓ2 replaced by I1. Note I1 = Mℓ2

by the parallel axis theorem if ICM
1 = 0. But to the extent that ICM

1 6= 0, our treatment of the peg top

was incorrect. It turns out to be OK, however, if the precession is slow, i.e. if Ω/ω3 ≪ 1.

On a level surface, cos θ0 > 0, and therefore we must have

ω3 ≥
2

I3

√
MgℓI1 cos θ0 . (13.99)

Thus, if the top spins too slowly, it cannot maintain precession. Eqn. 13.98 says that there are two
possible precession frequencies. When ω3 is large, we have

φ̇slow =
Mgℓ

I3 ω3
+O(ω−1

3 ) , φ̇fast =
I3 ω3

I1 cos θ0
+O(ω−3

3 ) . (13.100)

Again, one usually observes slow precession.

A top with ω3 >
2
I3

√
MgℓI1 may ‘sleep’ in the vertical position with θ0 = 0. Due to the constant action

of frictional forces, ω3 will eventually drop below this value, at which time the vertical position is no
longer stable. The top continues to slow down and eventually falls.

13.7.3 Tippie-top

A particularly nice example from the Barger and Olsson book is that of the tippie-top, a truncated sphere
with a peg end, sketched in Fig. 13.12 The CM is close to the center of curvature, which means that
there is almost no gravitational torque acting on the top. The frictional force f opposes slipping, but as
the top spins f rotates with it, and hence the time-averaged frictional force 〈f〉 ≈ 0 has almost no effect
on the motion of the CM. A similar argument shows that the frictional torque, which is nearly horizontal,
also time averages to zero: 〈

dL

dt

〉

inertial

≈ 0 . (13.101)

In the body-fixed frame, however, N is roughly constant, with magnitude N ≈ µMgR, where R is the
radius of curvature and µ the coefficient of sliding friction. Now we invoke

N =
dL

dt

∣∣∣∣
body

+ ω ×L . (13.102)
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Figure 13.12: The tippie-top behaves in a counterintuitive way. Once started spinning with the peg
end up, the peg axis rotates downward. Eventually the peg scrapes the surface and the top rises to the
vertical in an inverted orientation.

The second term on the RHS is very small, because the tippie-top is almost spherical, hence inertia tensor
is very nearly diagonal, and this means

ω ×L ≈ ω × Iω = 0 . (13.103)

Thus, L̇body ≈N , and taking the dot product of this equation with the unit vector k̂, we obtain

−N sin θ = k̂ ·N =
d

dt

(
k̂ · Lbody

)
= −L sin θ θ̇ . (13.104)

Thus,

θ̇ =
N

L
≈ µMgR

Iω
. (13.105)

Once the stem scrapes the table, the tippie-top rises to the vertical just like any other rising top.



Chapter 14

Dynamical Systems

14.1 Introduction

14.1.1 Phase space and phase curves

Dynamics is the study of motion through phase space. The phase space of a given dynamical system is
described as an N -dimensional manifold, M. A (differentiable) manifoldM is a topological space that
is locally diffeomorphic to RN .1 Typically in this courseM will RN itself, but other common examples
include the circle S1, the torus T2, the sphere S2, etc.

Let gt : M → M be a one-parameter family of transformations from M to itself, with gt=0 = 1, the

identity. We call gt the t-advance mapping. It satisfies the composition rule

gt gs = gt+s . (14.1)

Let us choose a point ϕ0 ∈ M. Then we write ϕ(t) = gtϕ0, which also is in M. The set
{
gtϕ0

∣∣ t ∈
R , ϕ0 ∈ M

}
is called a phase curve. A graph of the motion ϕ(t) in the product space R×M is called

an integral curve.

14.1.2 Vector fields

The velocity vector V (ϕ) is given by the derivative

V (ϕ) =
d

dt

∣∣∣∣
t=0

gtϕ . (14.2)

The velocity V (ϕ) is an element of the tangent space to M at ϕ, abbreviated TMϕ. If M is N -

dimensional, then so is each TMϕ (for all p). However, M and TMϕ may differ topologically. For
example, ifM = S1, the circle, the tangent space at any point is isomorphic to R.

1A diffeomorphism F : M → N is a differentiable map with a differentiable inverse. This is a special type of homeomorphism,
which is a continuous map with a continuous inverse.

35
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Figure 14.1: An example of a phase curve.

For our purposes, we will take ϕ = (ϕ1, . . . , ϕN ) to be an N -tuple, i.e. a point in RN . The equation of
motion is then

d

dt
ϕ(t) = V

(
ϕ(t)

)
. (14.3)

Note that any N th order ODE, of the general form

dNx

dtN
= F

(
x,
dx

dt
, . . . ,

dN−1x

dtN−1

)
, (14.4)

may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with

k = 1, . . . , N . Thus, for j < N we have ϕ̇j = ϕj+1, and ϕ̇N = f . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕN−1

ϕN



=

V (ϕ)︷ ︸︸ ︷


ϕ2
...

ϕN
F
(
ϕ1, . . . , ϕN

)




. (14.5)

14.1.3 Autonomous vs. non-autonomous ODEs

A dynamical system of the form ϕ̇j = Vj(ϕ1, . . . , ϕN ) is autonomous provided the N functions Vj(ϕ) do
not depend explicitly on the independent variable t. In the non-autonomous case, we have the coupled
system ϕ̇j = Vj(ϕ1, . . . , ϕN , t), which is equivalent to the (N + 1)-dimensional dynamical system

d

dt




ϕ1
...
ϕN
ϕN+1


 =




V1(ϕ1, . . . , ϕN+1)
...

VN (ϕ1, . . . , ϕN+1)
1


 . (14.6)

Note that one can integrate the last of these equations to get ϕN+1(t) = t , starting from ϕN+1(0) = 0.
Thus, we once again have ϕ̇ = V (ϕ) , now in (N + 1) dimensions, and with VN+1(ϕ) = 1.
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14.1.4 Existence / uniqueness / extension theorems

Theorem : Given ϕ̇ = V (ϕ) and ϕ(0), if each V (ϕ) is a smooth vector field over some open set D ∈M,
then for ϕ(0) ∈ D the initial value problem has a solution on some finite time interval (−τ,+τ) and the
solution is unique. Furthermore, the solution has a unique extension forward or backward in time, either
indefinitely or until ϕ(t) reaches the boundary of D.

Corollary : Different trajectories never intersect!

14.1.5 Linear differential equations

A homogeneous linear N th order ODE,

dNx

dtN
+ cN−1

dN−1x

dtN−1
+ . . . + c1

dx

dt
+ c0 x = 0 (14.7)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...

ϕN




=

M︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cN−1







ϕ1

ϕ2
...

ϕN




. (14.8)

Thus,

ϕ̇ =Mϕ , (14.9)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous, the solution is obtained by
exponentiating the constant matrix Q:

ϕ(t) = exp(Mt)ϕ(0) ; (14.10)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not au-
tonomous, then M =M(t) is time-dependent, and the solution is given by the path-ordered exponential,

ϕ(t) = P exp

{ t∫

0

dt′M(t′)

}
ϕ(0) , (14.11)

As defined, the equation ϕ̇ = V (ϕ) is autonomous, since gt depends only on t and on no other time
variable. However, by extending the phase space fromM to R×M, which is of dimension (N + 1), one
can describe arbitrary time-dependent ODEs.

Exercise: Write the formal solution to the inhomogeneous linear system ϕ̇ = Mϕ + b, where b is a
constant N -component vector.



38 CHAPTER 14. DYNAMICAL SYSTEMS

14.1.6 Lyapunov functions

For a general dynamical system ϕ̇ = V (ϕ), a Lyapunov function L(ϕ) is a function which satisfies

∇L(ϕ) · V (ϕ) ≤ 0 . (14.12)

There is no simple way to determine whether a Lyapunov function exists for a given dynamical system,
or, if it does exist, what the Lyapunov function is. However, if a Lyapunov function can be found, then
this severely limits the possible behavior of the system. This is because L

(
ϕ(t)

)
must be a monotonic

function of time:
d

dt
L
(
ϕ(t)

)
= ∇L · dϕ

dt
= ∇L(ϕ) · V (ϕ) ≤ 0 . (14.13)

Thus, the system evolves toward a local minimum of the Lyapunov function. In general this means that
oscillations are impossible in systems for which a Lyapunov function exists. For example, the relaxational
dynamics of the magnetization M of a system are sometimes modeled by the equation

dM

dt
= −Γ ∂F

∂M
, (14.14)

where F (M,T ) is the free energy of the system. In this model, assuming constant temperature T ,

Ḟ = F ′(M) Ṁ = −Γ
[
F ′(M)

]2 ≤ 0. So the free energy F (M) itself is a Lyapunov function, and it
monotonically decreases during the evolution of the system. We shall meet up with this example again
in the next chapter when we discuss imperfect bifurcations.

14.2 N = 1 Systems

We now study phase flows in a one-dimensional phase space, governed by the equation

du

dt
= f(u) . (14.15)

Again, the equation u̇ = h(u, t) is first order, but not autonomous, and it corresponds to the N = 2
system,

d

dt

(
u
t

)
=

(
h(u, t)

1

)
. (14.16)

The equation 14.15 is easily integrated:

du

f(u)
= dt =⇒ t− t0 =

u∫

u0

du′

f(u′)
. (14.17)

This gives t(u); we must then invert this relationship to obtain u(t).

Example : Suppose f(u) = a− bu, with a and b constant. Then

dt =
du

a− bu = −b−1 d ln(a− bu) (14.18)
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Figure 14.2: Phase flow for an N = 1 system.

whence

t =
1

b
ln

(
a− b u(0)
a− b u(t)

)
=⇒ u(t) =

a

b
+
(
u(0) − a

b

)
exp(−bt) . (14.19)

Even if one cannot analytically obtain u(t), the behavior is very simple, and easily obtained by graphical
analysis. Sketch the function f(u). Then note that

u̇ = f(u) =⇒





f(u) > 0 u̇ > 0 ⇒ move to right

f(u) < 0 u̇ < 0 ⇒ move to left

f(u) = 0 u̇ = 0 ⇒ fixed point

(14.20)

The behavior of N = 1 systems is particularly simple: u(t) flows to the first stable fixed point encountered,
where it then (after a logarithmically infinite time) stops. The motion is monotonic – the velocity u̇ never
changes sign. Thus, oscillations never occur for N = 1 phase flows.2

14.2.1 Classification of fixed points (N = 1)

A fixed point u∗ satisfies f(u∗) = 0. Generically, f ′(u∗) 6= 0 at a fixed point.3 Suppose f ′(u∗) < 0. Then
to the left of the fixed point, the function f(u < u∗) is positive, and the flow is to the right, i.e. toward
u∗. To the right of the fixed point, the function f(u > u∗) is negative, and the flow is to the left, i.e.
again toward u∗. Thus, when f ′(u∗) < 0 the fixed point is said to be stable, since the flow in the vicinity
of u∗ is to u∗. Conversely, when f ′(u∗) > 0, the flow is always away from u∗, and the fixed point is then
said to be unstable. Indeed, if we linearize about the fixed point, and let ǫ ≡ u− u∗, then

ǫ̇ = f ′(u∗) ǫ+ 1
2 f

′′(u∗) ǫ2 +O(ǫ3) , (14.21)

and dropping all terms past the first on the RHS gives

ǫ(t) = exp
[
f ′(u∗) t

]
ǫ(0) . (14.22)

2When I say ‘never’ I mean ‘sometimes’ – see the section 14.3.
3The system f(u∗) = 0 and f ′(u∗) = 0 is overdetermined, with two equations for the single variable u∗.
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The deviation decreases exponentially for f ′(u∗) < 0 and increases exponentially for f(u∗) > 0. Note
that

t(ǫ) =
1

f ′(u∗)
ln

(
ǫ

ǫ(0)

)
, (14.23)

so the approach to a stable fixed point takes a logarithmically infinite time. For the unstable case, the
deviation grows exponentially, until eventually the linearization itself fails.

14.2.2 Logistic equation

This model for population growth was first proposed by Verhulst in 1838. Let N denote the population
in question. The dynamics are modeled by the first order ODE,

dN

dt
= rN

(
1− N

K

)
, (14.24)

where N , r, and K are all positive. For N ≪ K the growth rate is r, but as N increases a quadratic
nonlinearity kicks in and the rate vanishes for N = K and is negative for N > K. The nonlinearity
models the effects of competition between the organisms for food, shelter, or other resources. Or maybe
they crap all over each other and get sick. Whatever.

There are two fixed points, one at N∗ = 0, which is unstable (f ′(0) = r > 0). The other, at N∗ = K, is
stable (f ′(K) = −r). The equation is adimensionalized by defining ν = N/K and s = rt, whence

ν̇ = ν(1− ν) . (14.25)

Integrating,

dν

ν(1− ν) = d ln
( ν

1− ν
)
= ds =⇒ ν(s) =

ν0

ν0 +
(
1− ν0

)
exp(−s)

. (14.26)

As s→∞, ν(s) = 1−
(
ν−1
0 − 1

)
e−s+O(e−2s), and the relaxation to equilibrium (ν∗ = 1) is exponential,

as usual.

Another application of this model is to a simple autocatalytic reaction, such as

A+X ⇋ 2X , (14.27)

i.e. X catalyses the reaction A −→ X. Assuming a fixed concentration of A, we have

ẋ = κ+ a x− κ− x2 , (14.28)

where x is the concentration of X, and κ± are the forward and backward reaction rates.
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Figure 14.3: Flow diagram for the logistic equation.

14.2.3 Recommended exercises

It is instructive to sketch the phase flows for the following examples:

v̇ = −g u̇ = A sin(u)

mv̇ = −mg − γv u̇ = A (u− a)(u− b)(u− c)
mv̇ = −mg − cv2 sgn(v) u̇ = au2 − bu3 .

In each case, identify all the fixed points and assess their stability. Assume all constants A, a, b, c, γ,
etc. are positive.

14.2.4 Nongeneric cases with singular f(u)

Suppose that in the vicinity of a fixed point we have f(u) = A
∣∣u − u∗

∣∣α, with A > 0. We now analyze
both sides of the fixed point.

u < u∗ : Let ǫ = u∗ − u. Then

ǫ̇ = −Aǫα =⇒ ǫ1−α

1− α =
ǫ1−α0

1− α −At , (14.29)

hence

ǫ(t) =
[
ǫ1−α0 + (α− 1)At

] 1
1−α

. (14.30)

This, for α < 1 the fixed point ǫ = 0 is reached in a finite time: ǫ(tc) = 0, with

tc =
ǫ1−α0

(1− α)A . (14.31)

For α > 1, we have limt→∞ ǫ(t) = 0, but ǫ(t) > 0 ∀ t <∞.

The fixed point u = u∗ is now half-stable – the flow from the left is toward u∗ but from the right is away
from u∗. Let’s analyze the flow on either side of u∗.
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Figure 14.4: f(u) = A
∣∣u− u∗

∣∣α, for α > 1 and α < 1.

Figure 14.5: Solutions to ǫ̇ = ∓Aǫα. Left panel: ǫ = u∗ − u, with α = 1.5 (solid red) and α = 0.5
(dot-dashed blue); A = 1 in both cases. Right panel: ǫ = u − u∗, α = 1.5 (solid red) and α = 0.5
(dot-dashed blue); A = 4 in both cases

u > u∗ : Let ǫ = u− u∗. Then ǫ̇ = Aǫα, and

ǫ(t) =
[
ǫ1−α0 + (1− α)At

] 1
1−α

. (14.32)

For α < 1, ǫ(t) escapes to ǫ = ∞ only after an infinite time. For α > 1, the escape to infinity takes a
finite time: ǫ(tc) =∞, with

tc =
ǫ1−α0

(α− 1)A
. (14.33)

In both cases, higher order terms in the (nonanalytic) expansion of f(u) about u = u∗ will eventually
come into play.

14.2.5 Non-autonomous ODEs

Non-autonomous ODEs of the form u̇ = h(u, t) are in general impossible to solve by quadratures. One
can always go to the computer, but it is worth noting that in the separable case, h(u, t) = f(u) g(t), one
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can obtain the solution

du

f(u)
= g(t) dt =⇒

u∫

u0

du′

f(u′)
=

t∫

0

dt′ g(t′) , (14.34)

which implicitly gives u(t). Note that u̇ may now change sign, and u(t) may even oscillate. For an explicit
example, consider the equation

u̇ = A (u+ 1) sin(βt) , (14.35)

the solution of which is

u(t) = −1 +
(
u0 + 1

)
exp

{
A

β

[
1− cos(βt)

]}
. (14.36)

In general, the non-autonomous case defies analytic solution. Many have been studied, such as the Riccati
equation,

du

dt
= P (t)u2 +Q(t)u+R(t) . (14.37)

Riccati equations have the special and remarkable property that one can generate all solutions (i.e. with

arbitrary boundary condition u(0) = u0) from any given solution (i.e. with any boundary condition).

14.3 Flows on the Circle

We had remarked that oscillations are impossible for the equation u̇ = f(u) because the flow is to the
first stable fixed point encountered. If there are no stable fixed points, the flow is unbounded. However,
suppose phase space itself is bounded, e.g. a circle S1 rather than the real line R. Thus,

θ̇ = f(θ) , (14.38)

with f(θ + 2π) = f(θ). Now if there are no fixed points, θ(t) endlessly winds around the circle, and in
this sense we can have oscillations.

14.3.1 Nonuniform oscillator

A particularly common example is that of the nonuniform oscillator,

θ̇ = ω − sin θ , (14.39)

which has applications to electronics, biology, classical mechanics, and condensed matter physics. Note
that the general equation θ̇ = ω −A sin θ may be rescaled to the above form. A simple application is to
the dynamics of a driven, overdamped pendulum. The equation of motion is

Iθ̈ + b θ̇ + Iω2
0 sin θ = N , (14.40)
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Figure 14.6: Flow for the nonuniform oscillator θ̇ = ω − sin θ for three characteristic values of ω.

where I is the moment of inertia, b is the damping parameter, N is the external torque (presumed

constant), and ω0 is the frequency of small oscillations when b = N = 0. When b is large, the inertial
term Iθ̈ may be neglected, and after rescaling we arrive at eqn. 14.39.

The book by Strogatz provides a biological example of the nonuniform oscillator: fireflies. An individual
firefly will on its own flash at some frequency f . This can be modeled by the equation φ̇ = β, where
β = 2πf is the angular frequency. A flash occurs when φ = 2πn for n ∈ Z. When subjected to a periodic
stimulus, fireflies will attempt to synchronize their flash to the flash of the stimulus. Suppose the stimulus
is periodic with angular frequency Ω. The firefly synchronization is then modeled by the equation

φ̇ = β −A sin(φ−Ωt) . (14.41)

Here, A is a measure of the firefly’s ability to modify its natural frequency in response to the stimulus.
Note that when 0 < φ−Ωt < π , i.e. when the firefly is leading the stimulus, the dynamics tell the firefly
to slow down. Conversely, when −π < φ− Ωt < 0, the firefly is lagging the stimulus, the the dynamics
tell it to speed up. Now focus on the difference θ ≡ φ−Ωt. We have

θ̇ = β −Ω −A sin θ , (14.42)

which is the nonuniform oscillator. We can adimensionalize by defining

s ≡ At , ω ≡ β −Ω
A

, (14.43)

yielding dθ
ds = f(θ) = ω − sin θ.

Fixed points θ∗ occur only for |ω| < 1, at sin θ∗ = ω, in which case f ′(θ) = − cos θ∗. As we have seen
above, stability requires f ′(θ∗) < 0, which means θ∗ ∈

(
− π

2 ,
π
2

)
, i.e. θ∗ must lie on the right half of

the circle. For |ω| > 1, the angular velocity never vanishes anywhere along the circle, and there are no
fixed points. In this case the motion is eternally clockwise (ω < −1) or counterclockwise (ω > +1). The
situation is depicted in Fig. 14.6.

To integrate, set z = exp(iθ), in which case

dz

ds
= −1

2(z
2 − 2iωz − 1) = −1

2(z − z−)(z − z+) , (14.44)
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where z± = iω ±
√
1− ω2 ≡ ±e±iα, with eiα =

√
1− ω2 + iω. This yields

d ln

(
z − eiα
z + e−iα

)
= − cosα ds , (14.45)

which integrates to
eiθ(s) − eiα
eiθ(s) + e−iα

=

(
eiθ(0) − eiα
eiθ(0) + e−iα

)
exp(−s cosα) . (14.46)

Note that eiθ(±∞) = ±e±iα, which lie on the appropriate halves of the circle.

For |ω| > 1, the motion is periodic, with period

T =

2π∫

0

dθ

|ω| − sin θ
=

2π√
ω2 − 1

. (14.47)

14.4 Appendix I : Evolution of Phase Space Volumes

Recall the general form of a dynamical system, ϕ̇ = V (ϕ). Usually we are interested in finding integral
curves ϕ(t). However, consider for the moment a collection of points in phase space comprising a region
R. As the dynamical system evolves, this region will also evolve, so that R = R(t). We now ask: how
does the volume of R(t),

vol
[
R(t)

]
=

∫

R(t)

dµ , (14.48)

where dµ = dϕ1dϕ2 · · · dϕN is the phase space measure, change with time. We have, explicitly,

vol
[
R(t+ dt)

]
=

∫

R(t+dt)

dµ =

∫

R(t)

dµ

∥∥∥∥
∂ϕi(t+ dt)

∂ϕj(t)

∥∥∥∥

=

∫

R(t)

dµ
{
1 +∇·V dt+O

(
(dt)2

)}
,

(14.49)

since
∂ϕi(t+ dt)

∂ϕj(t)
= δij +

∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

dt+O
(
(dt)2

)
, (14.50)

and, using ln detM = Tr lnM ,
det(1 + ǫA) = 1 + ǫTrA+O(ǫ2) . (14.51)

Thus,
d

dt
vol
[
R(t)

]
=

∫

R(t)

dµ∇·V =

∫

∂R(t)

dΣ n̂ · V , (14.52)

where in the last line we have used Stokes’ theorem to convert the volume integral over R to a surface
integral over its boundary ∂R.
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14.5 Appendix II : Lyapunov Characteristic Exponents

Suppose ϕ(t) is an integral curve – i.e. a solution of ϕ̇ = V (ϕ). We now ask: how do nearby trajectories
behave? Do they always remain close to ϕ(t) for all t? To answer this, we write ϕ̃(t) ≡ ϕ(t) + η(t), in
which case

d

dt
ηi(t) =Mij(t) ηj(t) +O

(
η2
)
, (14.53)

where

Mij(t) =
∂Vi
∂ϕj

∣∣∣∣
ϕ(t)

. (14.54)

The solution, valid to first order in δϕ, is

ηi(t) = Qij(t, t0) ηj(t0) , (14.55)

where the matrix Q(t, t0) is given by the path ordered exponential,

Q(t, t0) = P exp

{ t∫

t0

dt′M(t′)

}

≡ lim
N→∞

(
1 +

∆t

N
M(tN−1)

)
· · ·
(
1 +

∆t

N
M(t1)

)(
1 +

∆t

N
M(t0)

)
,

(14.56)

with ∆t = t − t0 and tj = t0 + (j/N)∆t. P is the path ordering operator , which places earlier times to
the right:

PA(t)B(t′) =





A(t)B(t′) if t > t′

B(t′)A(t) if t < t′ .

(14.57)

The distinction is important if
[
A(t), B(t′)

]
6= 0. Note that Q satisfies the composition property,

Q(t, t0) = Q(t, t1)Q(t1, t0) (14.58)

for any t1 ∈ [t0, t]. When M is time-independent, as in the case of a fixed point where V (ϕ∗) = 0, the
path ordered exponential reduces to the ordinary exponential, and Q(t, t0) = exp

(
M(t− t0)

)
.

Generally it is impossible to analytically compute path-ordered exponentials. However, the following
example may be instructive. Suppose

M(t) =





M1 if t/T ∈
[
2j, 2j + 1

]

M2 if t/T ∈
[
2j + 1, 2j + 2

]
,

(14.59)

for all integer j. M(t) is a ‘matrix-valued square wave’, with period 2T . Then, integrating over one
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period, from t = 0 to t = 2T , we have

A ≡ exp

{ 2T∫

0

dtM(t)

}
= e(M1+M2) T

AP ≡ P exp

{ 2T∫

0

dtM(t)

}
= eM2 T eM1 T .

(14.60)

In general, A 6= AP , so the path ordering has a nontrivial effect4.

The Lyapunov exponents are defined in the following manner. Let ê be an N -dimensional unit vector.
Define

Λ(ϕ0, ê) ≡ lim
t→∞

lim
b→0

1

t− t0
ln

( ∥∥η(t)
∥∥

∥∥η(t0)
∥∥

)

η(t0)=b ê

, (14.61)

where ‖ · ‖ denotes the Euclidean norm of a vector, and where ϕ0 = ϕ
(
t0
)
. A theorem due to Oseledec

guarantees that there are N such values Λi(ϕ0), depending on the choice of ê, for a given ϕ0. Specifically,
the theorem guarantees that the matrix

W ≡
(
QtQ

)1/(t−t0) (14.62)

converges in the limit t → ∞ for almost all ϕ0. The eigenvalues Λi correspond to the different
eigenspaces of W . Oseledec’s theorem (also called the ‘multiplicative ergodic theorem’) guarantees that
the eigenspaces of W either grow (Λi > 1) or shrink (Λi < 1) exponentially fast. That is, the norm any
vector lying in the ith eigenspace of W will behave as Λti = exp(t lnΛi) as t→∞.

Note that while W =W t is symmetric by construction, Q is simply a general real-valued N ×N matrix.
The left and right eigenvectors of a matrix M ∈ GL(N,R) will in general be different. The set of
eigenvalues λα is, however, common to both sets of eigenvectors. Let {ψα} be the right eigenvectors and
{χ∗

α} the left eigenvectors, such that

Mij ψα,j = λα ψα,i
χ∗
α,iMij = λα χ

∗
α,j .

(14.63)

We can always choose the left and right eigenvectors to be orthonormal, viz.

〈
χ
α

∣∣ψβ
〉
= χ∗

α,i ψβ,j = δαβ . (14.64)

Indeed, we can define the matrix Siα = ψα,i, in which case S−1
αj = χ∗

α,j, and

S−1M S = diag
(
λ1, . . . , λN

)
. (14.65)

The matrix M can always be decomposed into its eigenvectors, as

Mij =
∑

α

λα ψα,i χ
∗
α,j . (14.66)

4If
[

M1,M2

]

= 0 then A = AP .
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If we expand u in terms of the right eigenvectors,

η(t) =
∑

β

Cβ(t)ψβ(t) , (14.67)

then upon taking the inner product with χα, we find that Cα obeys

Ċα +
〈
χα
∣∣ ψ̇β

〉
Cβ = λα Cα . (14.68)

If ψ̇β = 0, e.g. if M is time-independent, then Cα(t) = Cα(0) e
λαt, and

ηi(t) =
∑

α

Cα(0)︷ ︸︸ ︷∑

j

ηj(0)χ
∗
α,j e

λαt ψα,i . (14.69)

Thus, the component of η(t) along ψα increases exponentially with time if Re(λα) > 0, and decreases
exponentially if Re(λα) < 0.



Chapter 15

Bifurcations

15.1 Types of Bifurcations

15.1.1 Saddle-node bifurcation

We remarked above how f ′(u) is in general nonzero when f(u) itself vanishes, since two equations in a
single unknown is an overdetermined set. However, consider the function F (x, α), where α is a control
parameter. If we demand F (x, α) = 0 and ∂xF (x, α) = 0, we have two equations in two unknowns, and
in general there will be a zero-dimensional solution set consisting of points (xc, αc). The situation is
depicted in Fig. 15.1.

Let’s expand F (x, α) in the vicinity of such a point (xc, αc):

F (x, α) = F (xc, αc) +
∂F

∂x

∣∣∣∣
(xc,αc)

(x− xc) +
∂F

∂α

∣∣∣∣
(xc,αc)

(α− αc) +
1

2

∂2F

∂x2

∣∣∣∣
(xc,αc)

(x− xc)2

+
∂2F

∂x∂α

∣∣∣∣
(xc,αc)

(x− xc) (α− αc) +
1

2

∂2F

∂α2

∣∣∣∣
(xc,αc)

(α− αc)
2 + . . . (15.1)

= A (α− αc) +B (x− xc)2 + . . . , (15.2)

where we keep terms of lowest order in the deviations δx and δα. Note that we can separately change
the signs of A and B by redefining α→ −α and/or x→ −x, so without loss of generality we may assume
both A and B are positive. If we now rescale u ≡

√
B/A (x− xc), r ≡ α−αc, and τ =

√
AB t, we have,

neglecting the higher order terms, we obtain the ‘normal form’ of the saddle-node bifurcation,

du

dτ
= r + u2 . (15.3)

The evolution of the flow is depicted in Fig. 15.2. For r < 0 there are two fixed points – one stable
(u∗ = −√−r) and one unstable (u = +

√−r). At r = 0 these two nodes coalesce and annihilate each
other. (The point u∗ = 0 is half-stable precisely at r = 0.) For r > 0 there are no longer any fixed points
in the vicinity of u = 0. In the left panel of Fig. 15.3 we show the flow in the extended (r, u) plane. The
unstable and stable nodes annihilate at r = 0.

49



50 CHAPTER 15. BIFURCATIONS

Figure 15.1: Evolution of F (x, α) as a function of the control parameter α.

15.1.2 Transcritical bifurcation

Another situation which arises frequently is the transcritical bifurcation. Consider the equation ẋ = f(x)
in the vicinity of a fixed point x∗.

dx

dt
= f ′(x∗) (x− x∗) + 1

2 f
′′(x∗)(x− x∗)2 + . . . . (15.4)

We rescale u ≡ β (x− x∗) with β = −1
2 f

′′(x∗) and define r ≡ f ′(x∗) as the control parameter, to obtain,
to order u2,

du

dt
= ru− u2 . (15.5)

Note that the sign of the u2 term can be reversed relative to the others by sending u→ −u.

Consider a crude model of a laser threshold. Let n be the number of photons in the laser cavity, and N
the number of excited atoms in the cavity. The dynamics of the laser are approximated by the equations

ṅ = GNn− kn
N = N0 − αn .

(15.6)

Here G is the gain coefficient and k the photon decay rate. N0 is the pump strength, and α is a numerical
factor. The first equation tells us that the number of photons in the cavity grows with a rate GN−k; gain
is proportional to the number of excited atoms, and the loss rate is a constant cavity-dependent quantity
(typically through the ends, which are semi-transparent). The second equation says that the number of
excited atoms is equal to the pump strength minus a term proportional to the number of photons (since
the presence of a photon means an excited atom has decayed). Putting them together,

ṅ = (GN0 − k)n − αGn2 , (15.7)

which exhibits a transcritical bifurcation at pump strength N0 = k/G. For N0 < k/G the system acts as
a lamp; for N0 > k/G the system acts as a laser.
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Figure 15.2: Flow diagrams for the saddle-node bifurcation u̇ = r + u2 (top) and the transcritical
bifurcation u̇ = ru− u2 (bottom).

What happens in the transcritical bifurcation is an exchange of stability of the fixed points at u∗ = 0
and u∗ = r as r passes through zero. This is depicted graphically in the bottom panel of Fig. 15.2.

Figure 15.3: Extended phase space (r, u) flow diagrams for the saddle-node bifurcation u̇ = r+ u2 (left)
and the transcritical bifurcation u̇ = ru− u2 (right).
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Figure 15.4: Top: supercritical pitchfork bifurcation u̇ = ru−u3. Bottom: subcritical pitchfork bifurca-
tion u̇ = ru+ u3.

15.1.3 Pitchfork bifurcation

The pitchfork bifurcation is commonly encountered in systems in which there is an overall parity symmetry
(u → −u). There are two classes of pitchfork: supercritical and subcritical. The normal form of the
supercritical bifurcation is

u̇ = ru− u3 , (15.8)

which has fixed points at u∗ = 0 and u∗ = ±√r. Thus, the situation is as depicted in fig. 15.4 (top
panel). For r < 0 there is a single stable fixed point at u∗ = 0. For r > 0, u∗ = 0 is unstable, and flanked
by two stable fixed points at u∗ = ±√r.

If we send u → −u, r → −r, and t → −t, we obtain the subcritical pitchfork , depicted in the bottom
panel of fig. 15.4. The normal form of the subcritical pitchfork bifurcation is

u̇ = ru+ u3 . (15.9)

The fixed point structure in both supercritical and subcritical cases is shown in Fig. 15.5.
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Figure 15.5: Extended phase space (r, u) flow diagrams for the supercritical pitchfork bifurcation u̇ =
ru− u3 (left), and subcritical pitchfork bifurcation u̇ = ru+ u3 (right).

15.1.4 Imperfect bifurcation

The imperfect bifurcation occurs when a symmetry-breaking term is added to the pitchfork. The normal
form contains two control parameters:

u̇ = h+ ru− u3 . (15.10)

Here, the constant h breaks the parity symmetry if u→ −u.

This equation arises from a crude model of magnetization dynamics. Let M be the magnetization of a
sample, and F (M) the free energy. Assuming M is small, we can expand F (M) as

F (M) = −HM + 1
2aM

2 + 1
4bM

4 + . . . , (15.11)

where H is the external magnetic field, and a and b are temperature-dependent constants. This is called
the Landau expansion of the free energy. We assume b > 0 in order that the minimum of F (M) not lie
at infinity. The dynamics of M(t) are modeled by

dM

dt
= −Γ ∂F

∂M
, (15.12)

with Γ > 0. Thus, the magnetization evolves toward a local minimum in the free energy. Note that the
free energy is a decreasing function of time:

dF

dt
=

∂F

∂M

dM

dt
= −Γ

(
∂F

∂M

)2
. (15.13)

By rescaling M ≡ uM0 with M0 = (bΓ)−1/2 and defining r ≡ −aΓ and h ≡ (Γ3 b)1/2H, we obtain the
normal form

u̇ = h+ ru− u3 = −∂f
∂u

f(u) = −1
2ru

2 + 1
4u

4 − hu .
(15.14)
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Figure 15.6: Left: scaled free energy f(u) = −1
2ru

2 + 1
4u

4 − hu, with h = 0 (blue), h = hc (green), and

h = 2hc (red), where hc = 2
3
√
3
r3/2. Right: phase diagram for the imperfect bifurcation u̇ = −f ′(u) =

h+ ru− u3 in the (r, h) plane.

Here, f(u) is a scaled version of the free energy.

Fixed points satisfy the equation

u3 − ru− h = 0 , (15.15)

and correspond to extrema in f(u). By the fundamental theorem of algebra, this cubic polynomial may
be uniquely factorized over the complex plane. Since the coefficients are real, the complex conjugate ū
satisfies the same equation as u, hence there are two possibilities for the roots: either (i) all three roots
are real, or (ii) one root is real and the other two are a complex conjugate pair. Clearly for r < 0 we are
in situation (ii) since u3 − ru is then monotonically increasing for u ∈ R, and therefore takes the value h
precisely once for u real. For r > 0, there is a region h ∈

[
− hc(r), hc(r)

]
over which there are three real

roots. To find hc(r), we demand f ′′(u) = 0 as well as f ′(u) = 0, which says that two roots have merged,
forming an inflection point. One easily finds hc(r) =

2
3
√
3
r3/2.

Examples of the function f(u) for r > 0 are shown in the left panel of Fig. 15.6 for three different
values of h. For |h| < hc(r) there are three extrema satisfying f ′(u∗) = 0: u∗1 < u∗2 < 0 < u∗3, assuming
(without loss of generality) that h > 0. Clearly u∗1 is a local minimum, u∗2 a local maximum, and u∗3 the
global minimum of the function f(u). The ‘phase diagram’ for this system, plotted in the (r, h) control
parameter space, is shown in the right panel of Fig. 15.6.

In Fig. 15.7 we plot the fixed points u∗(r) for fixed h. A saddle-node bifurcation occurs at r = rc(h) =
3

22/3
|h|2/3. For h = 0 this reduces to the supercritical pitchfork; for finite h the pitchfork is deformed and

even changed topologically. Finally, in Fig. 15.7 we show the behavior of u∗(h) for fixed r. When r < 0
the curve retraces itself as h is ramped up and down, but for r > 0 the system exhibits the phenomenon
of hysteresis, i.e. there is an irreversible aspect to the behavior. Fig, 15.7 shows a hysteresis loop when
r > 0.
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Figure 15.7: Top: extended phase space (r, u) flow diagram for the imperfect pitchfork bifurcation
u̇ = h + ru − u3 for h = 1. This is in a sense a deformed supercritical pitchfork. Bottom: extended
phase space (h, u) flow diagram for the imperfect pitchfork bifurcation r = −0.2 (left panel) and r = 1
(right panel). For r < 0 the behavior is completely reversible. For r > 0, a regime of irreversibility sets
in between −hc and +hc, where hc = 2(r/3)3/2. The system then exhibits the phenomenon of hysteresis.
The dotted vertical lines show the boundaries of the hysteresis loop.

15.2 Examples

15.2.1 Population dynamics

Consider the dynamics of a harvested population,

Ṅ = rN

(
1− N

K

)
−H(N) , (15.16)

where r,K > 0, and where H(N) is the harvesting rate.

(a) Suppose H(N) = H0 is a constant. Sketch the phase flow, and identify and classify all fixed points.

Solution : We examing Ṅ = f(N) with

f(N) = rN − r

K
N2 −H0 . (15.17)
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Figure 15.8: Phase flow for the constantly harvested population, ν̇ = ν(1 − ν) − h, for h = 0.30 (left),
h = 0.25 (center), and h = 0.20 (right). The critical harvesting rate is hc =

1
4 .

Setting f ′(N) = 0 yields N = 1
2K. f(N) is a downward-opening parabola whose maximum value is

f
(
1
2K
)
= 1

4rK − H0. Thus, if H0 >
1
4rK, the harvesting rate is too large and the population always

shrinks. A saddle-node bifurcation occurs at this value of H0, and for larger harvesting rates, there are
fixed points at

N± = 1
2K ± 1

2K

√
1− 4H0

rK
, (15.18)

with N− unstable and N+ stable. By rescaling the population ν = N/K, time τ = rt and harvesting rate
h = H0/rK, we arrive at the equation

ν̇ = ν(1− ν)− h . (15.19)

The critical harvesting rate is then hc =
1
4 . See fig. 15.8.

(b) One defect of the constant harvesting rate model is that N = 0 is not a fixed point. To remedy this,
consider the following model for H(N)1:

H(N) =
BN2

N2 +A2
, (15.20)

where A and B are (positive) constants. Show that one can rescale (N, t) to (n, τ), such that

dn

dτ
= γ n

(
1− n

c

)
− n2

n2 + 1
, (15.21)

where γ and c are positive constants. Provide expressions for n, τ , γ, and c.

Solution : Examining the denominator of H(N), we must take N = An. Dividing both sides of Ṅ = f(N)
by B, we obtain

A

B

dN

dt
=
rA

B
n
(
1− A

K
n
)
− n2

n2 + 1
,

from which we glean τ = Bt/A, γ = rA/B, and c = K/A.

1This is a model for the dynamics of the spruce budworm population, taken from ch. 1 of J. D. Murray, Mathematical

Biology (2nd edition, Springer, 1993).
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Figure 15.9: Plot of h(n) = n/(n2 + 1) (thick black curve). Straight lines show the function y(n) =
γ
(
1 − n

c

)
for different values of c and γ. The red line is tangent to the inflection point of h(n) and

determines the minimum value c∗ = 3
√
3 for a bifurcation. The blue lines show the construction for

determining the location of the two bifurcations for c > c∗ (in this case, c = 9). See the analysis in the
text.

(c) Show that for c sufficiently small that there is a unique asymptotic (τ → ∞) value for the (scaled)
population n, for any given value of γ. Thus, there are no bifurcations as a function of the control
parameter γ for c fixed and c < c∗.

(d) Show that for c > c∗, there are two bifurcations as a function of γ, and that for γ∗1 < γ < γ∗2 the
asymptotic solution is bistable, i.e. there are two stable values for n(τ → ∞). Sketch the solution set
‘phase diagram’ in the (c, γ) plane. Hint: Sketch the functions γ(1 − n/c) and n/(n2 + 1). The n 6= 0
fixed points are given by the intersections of these two curves. Determine the boundary of the bistable

region in the (c, γ) plane parametrically in terms of n. Find c∗ and γ∗1(c) = γ∗2(c).

Solution (c) and (d) : We examine

dn

dτ
= g(n) =

{
γ
(
1− n

c

)
− n

n2 + 1

}
n . (15.22)

There is an unstable fixed point at n = 0, where g′(0) = γ > 0. The other fixed points occur when the
term in the curvy brackets vanishes. In fig. 15.9 we plot the function h(n) ≡ n/(n2+1) versus n. We seek
the intersection of this function with a two-parameter family of straight lines, given by y(n) = γ (1−n/c).
The n-intercept is c and the y-intercept is γ. Provided c > c∗ is large enough, there are two bifurcations
as a function of γ, which we call γ±(c). These are shown as the dashed blue lines in figure 15.9 for c = 9.

Both bifurcations are of the saddle-node type. We determine the curves γ±(c) by requiring that h(n) is
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Figure 15.10: Phase diagram for the equation ṅ = γ(1−n/c)n−n2/(n2+1), labeling n 6= 0 fixed points.
(The point n = 0 is always unstable.)

tangent to y(n), which gives two equations:

h(n) =
n

n2 + 1
= γ

(
1− n

c

)
= y(n)

h′(n) =
1− n2

(n2 + 1)2
= −γ

c
= y′(n) .

(15.23)

Together, these give γ(c) parametrically, i.e. as γ(n) and c(n):

γ(n) =
2n3

(n2 + 1)2
, c(n) =

2n3

(n2 − 1)
. (15.24)

Since h(n) is maximized for n = 1, where h(1) = 1
2 , there is no bifurcation occurring at values n < 1.

If we plot γ(n) versus c(n) over the allowed range of n, we obtain the phase diagram in fig. 15.10. The
cusp occurs at (c∗, γ∗), and is determined by the requirement that the two bifurcations coincide. This
supplies a third condition, namely that h′′(n) = 0, where

h′′(n) =
2n (n2 − 3)

(n2 + 1)3
. (15.25)

Thus n =
√
3, whence c∗ = 3

√
3 and γ∗ = 3

√
3

8 . For c < c∗, there are no bifurcations at any value of γ.

15.2.2 The Bletch

Problem: The bletch is a disgusting animal native to the Forest of Jkroo on the planet Barney. The
bletch population obeys the equation

dN

dt
= aN2 − bN3 , (15.26)
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Figure 15.11: Phase flow for the scaled bletch population, ṅ = n2 − n3.

where N is the number of bletches, and a and b are constants. (Bletches reproduce asexually, but only
when another bletch is watching. However, when there are three bletches around, they beat the @!!*$&*
out of each other.)

(a) Sketch the phase flow for N . (Strange as the bletch is, you can still rule out N < 0.) Identify and
classify all fixed points.

(b) The bletch population is now harvested (they make nice shoes). To model this, we add an extra
term to the dynamics:

dN

dt
= −hN + aN2 − bN3 , (15.27)

where h is the harvesting rate. Show that the phase flow now depends crucially on h, in that there
are two qualitatively different flows, depending on whether h < hc(a, b) or h > hc(a, b). Find the

critical harvesting rate hc(a, b) and sketch the phase flows for the two different regimes.

(c) In equilibrium, the rate at which bletches are harvested is R = hN∗, where N∗ is the equilibrium
bletch population. Suppose we start with h = 0, in which case N∗ is given by the value of N at
the stable fixed point you found in part (a). Now let h be increased very slowly from zero. As h
is increased, the equilibrium population changes. Sketch R versus h. What value of h achieves the
biggest bletch harvest? What is the corresponding value of Rmax?

Solution:

(a) Setting the RHS of eqn. 15.26 to zero suggests the rescaling

N =
a

b
n , t =

b

a2
τ . (15.28)

This results in
dn

dτ
= n2 − n3 . (15.29)

The point n = 0 is a (nonlinearly) repulsive fixed point, and n = 1, corresponding to N = a/b, is
attractive. The flow is shown in fig. 15.11.

By the way, the dynamics can be integrated, using the method of partial fractions, to yield

1

n0
− 1

n
+ ln

(
n

n0
· 1− n0
1− n

)
= τ . (15.30)
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(b) Upon rescaling, the harvested bletch dynamics obeys the equation

dn

dτ
= −νn+ n2 − n3 , (15.31)

where ν = bh/a2 is the dimensionless harvesting rate. Setting the RHS to zero yields n(n2−n+ν) =
0, with solutions n∗ = 0 and

n∗± = 1
2 ±

√
1
4 − ν . (15.32)

At ν = 1
4 there is a saddle-node bifurcation, and for ν > 1

4 the only fixed point (for real n) is at
n∗ = 0 (stable) – the bletch population is then overharvested . For ν > 1

4 , there are three solutions:

a stable fixed point at n∗ = 0, an unstable fixed point at n∗ = 1
2 −

√
1
4 − ν, and a stable fixed point

at n∗ = 1
2 +

√
1
4 − ν. The critical harvesting rate is νc =

1
4 , which means hc = a2/4b.

Figure 15.12: Phase flow for the harvested bletch population, ṅ = −νn+ n2 − n3.

(c) The scaled bletch harvest is given by r = ν n∗+(ν). Note R = hN∗
+ = a3

b2
r. The optimal harvest

occurs when ν n∗ is a maximum, which means we set

d

dν

{
1
2ν + ν

√
1
4 − ν

}
= 0 =⇒ νopt =

2
9 . (15.33)

Thus, n∗+(νopt) =
2
3 and ropt =

4
27 , meaning R = 4a3/27 b2. Note that at ν = νc =

1
4 that n∗+(νc) =

1
2 ,

hence r(νc) =
1
8 , which is smaller than (νopt) =

2
3 . The harvest r(ν) discontinuously drops to zero

at ν = νc, since for ν > νc the flow is to the only stable fixed point at n∗ = 0.

Figure 15.13: Scaled bletch harvest r versus scaled harvesting rate ν. Optimal harvesting occurs for
νopt =

2
9 . The critical harvesting rate is νc =

1
4 , at which point the harvest discontinuously drops to zero.
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15.3 Appendix : Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic
system in terms of an order parameter , which is nonzero in an ordered phase and zero in a disordered
phase. For example, the magnetization M of a ferromagnet in zero external field but at finite temperature
typically vanishes for temperatures T > Tc, where Tc is the critical temperature, also called the Curie

temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate
sufficiently close to Tc, i.e. at temperatures such that the order parameter, if nonzero, is still small.

The simplest example is the quartic free energy,

f(m) = f0 +
1
2am

2 + 1
4bm

4 , (15.34)

where m is a dimensionless measure of the magnetization density, and where f0, a, and b are all functions
of the dimensionless temperature θ, which in a ferromagnet is the ratio θ = kBT/J , where J =

∑
j Jij

is a sum over the couplings. Let us assume b > 0, which is necessary if the free energy is to be bounded
from below2. The equation of state ,

∂f

∂m
= 0 = am+ bm3 , (15.35)

has three solutions in the complex m plane: (i) m = 0, (ii) m =
√
−a/b , and (iii) m = −

√
−a/b . The

latter two solutions lie along the (physical) real axis if a < 0. We assume that a(θ is monotonically
increasing, and that there exists a unique temperature θc where a(θc) = 0. Minimizing f , we find

θ < θc : f = f0 −
a2

4b
θ > θc : f = f0 .

(15.36)

The free energy is continuous at θc since a(θc) = 0. The specific heat, however, is discontinuous across
the transition, with

c
(
θ+c
)
− c
(
θ−c
)
= −θc

∂2

∂θ2

∣∣∣∣
θ=θc

(
a2

4b

)
= −θc

[
a′(θc)

]2

2b(θc)
. (15.37)

The presence of a magnetic field h breaks the Z2 symmetry of m→ −m. The free energy becomes

f(m) = f0 +
1
2am

2 + 1
4bm

4 − hm , (15.38)

and the mean field equation is

bm3 + am− h = 0 . (15.39)

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions or
one real solution and two complex solutions related by complex conjugation. Clearly we must have a < 0
in order to have three real roots, since bm3 + am is monotonically increasing otherwise. The boundary

2It is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to consider higher
order terms in the Landau expansion.
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between these two classes of solution sets occurs when two roots coincide, which means f ′′(m) = 0 as
well as f ′(m) = 0. Simultaneously solving these two equations, we find

h∗(a) = ± 2

33/2
(−a)3/2
b1/2

, (15.40)

or, equivalently,

a∗(h) = − 3

22/3
b1/3 |h|2/3. (15.41)

If, for fixed h, we have a < a∗(h), then there will be three real solutions to the mean field equation
f ′(m) = 0, one of which is a global minimum (the one for which m · h > 0). For a > a∗(h) there is only
a single global minimum, at which m also has the same sign as h. If we solve the mean field equation
perturbatively in h/a, we find

m(a, h) =
h

a
− b h3

a4
+O(h5) (a > 0)

=
h

2 |a| −
3 b1/2 h2

8 |a|5/2 +O(h3) (a < 0) .

(15.42)

15.3.1 Landau coefficients from mean field theory

A simple variational density matrix for the Ising ferromagnet yields the dimensionless free energy density

f(m,h, θ) = −1
2 m

2 − hm+ θ

{(1 +m

2

)
ln
(1 +m

2

)
+
(1−m

2

)
ln
(1−m

2

)}
. (15.43)

When m is small, it is appropriate to expand f(m,h, θ), obtaining

f(m,h, θ) = −θ ln 2− hm+ 1
2(θ − 1)m2 + θ

12 m
4 + θ

30 m
6 + θ

56 m
8 + . . . . (15.44)

Thus, we identify
a(θ) = θ − 1 , b(θ) = 1

3θ . (15.45)

We see that a(θ) = 0 at a critical temperature θc = 1.

The free energy of eqn. 15.43 behaves qualitatively just like it does for the simple Landau expansion,
where one stops at order m4. Consider without loss of generality the case h > 0. The minimum of the
free energy f(m,h, θ) then lies at m > 0 for any θ. At low temperatures, the double well structure we
found in the h = 0 case is tilted so that the right well lies lower in energy than the left well. This is
depicted in fig. 15.15. As the temperature is raised, the local minimum at m < 0 vanishes, annihilating
with the local maximum in a saddle-node bifurcation. To find where this happens, one sets ∂f

∂m = 0 and
∂2f
∂m2 = 0 simultaneously, resulting in

h∗(θ) =
√
1− θ − θ

2
ln

(
1 +
√
1− θ

1−
√
1− θ

)
. (15.46)

The solutions lie at h = ±h∗(θ). For θ < θc = 1 and h ∈
[
−h∗(θ) , +h∗(θ)

]
, there are three solutions

to the mean field equation. Equivalently we could in principle invert the above expression to obtain
θ∗(h). For θ > θ∗(h), there is only a single global minimum in the free energy f(m) and there is no local
minimum. Note θ∗(h = 0) = 1.
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Figure 15.14: Phase diagram for the quartic mean field theory f = f0+
1
2am

2 + 1
4bm

4−hm, with b > 0.
There is a first order line at h = 0 extending from a = −∞ and terminating in a critical point at a = 0.
For |h| < h∗(a) (dashed red line) there are three solutions to the mean field equation, corresponding
to one global minimum, one local minimum, and one local maximum. Insets show behavior of the free
energy f(m).

15.3.2 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the
dissipative dynamics of a magnet by writing the phenomenological equation

dm

dt
= −Γ ∂f

∂m
. (15.47)

This drives the free energy f to smaller and smaller values:

df

dt
=

∂f

∂m

dm

dt
= −Γ

(
∂f

∂m

)2
≤ 0 . (15.48)

Clearly the fixed point of these dynamics, where ṁ = 0, is a solution to the mean field equation ∂f
∂m = 0.

At the solution to the mean field equation, one has

∂f

∂m
= 0 ⇒ m = tanh

(
m+ h

θ

)
. (15.49)
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Mean field free energy f(m) at h = 0.1.

Figure 15.15: Mean field free energy f(m) at h = 0.1. Temperatures shown: θ = 1.2 (red), θ = 1.0 (dark
green), and θ = 0.7 (blue).

The phase flow for the equation ṁ = −Γf ′(m) is shown in fig. 15.16. As we have seen, for any value of h
there is a temperature θ∗ below which the free energy f(m) has two local minima and one local maximum.
When h = 0 the minima are degenerate, but at finite h one of the minima is a global minimum. Thus, for
θ < θ∗(h) there are three solutions to the mean field equations. In the language of dynamical systems,
under the dynamics of eqn. 15.47, minima of f(m) correspond to attractive fixed points and maxima to
repulsive fixed points. If h > 0, the rightmost of these fixed points corresponds to the global minimum
of the free energy. As θ is increased, this fixed point evolves smoothly. At θ = θ∗, the (metastable) local
minimum and the local maximum coalesce and annihilate in a saddle-note bifurcation. However at h = 0
all three fixed points coalesce at θ = θc and the bifurcation is a supercritical pitchfork. As a function of
t at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is a deformed supercritical
pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain
h(θ,m). One readily finds

h(θ,m) =
θ

2
ln

(
1 +m

1−m

)
−m . (15.50)

As we see in the bottom panel of fig. 15.17, m(h) becomes multivalued for field values h ∈
[
−

h∗(θ) , +h∗(θ)
]
, where h∗(θ) is given in eqn. 15.46. Now imagine that θ < θc and we slowly ramp

the field h from a large negative value to a large positive value, and then slowly back down to its original
value. On the time scale of the magnetization dynamics, we can regard h(t) as a constant. Thus,m(t) will
flow to the nearest stable fixed point. Initially the system starts with m = −1 and h large and negative,
and there is only one fixed point, at m∗ ≈ −1. As h slowly increases, the fixed point value m∗ also slowly
increases. As h exceeds −h∗(θ), a saddle-node bifurcation occurs, and two new fixed points are created
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Figure 15.16: Dissipative magnetization dynamics ṁ = −f ′(m). Bottom panel shows h∗(θ) from eqn.
15.46. For (θ, h) within the blue shaded region, the free energy f(m) has a global minimum plus a local
minimum and a local maximum. Otherwise f(m) has only a single global maximum. Top panels show an
imperfect bifurcation in the magnetization dynamics at h = 0.0215 , for which θ∗ = 0.90 Temperatures
shown: θ = 0.80 (blue), θ = θ∗(h) = 0.90 (green), and θ = 1.2. The rightmost stable fixed point
corresponds to the global minimum of the free energy. The bottom of the middle two upper panels
shows h = 0, where both of the attractive fixed points and the repulsive fixed point coalesce into a single
attractive fixed point (supercritical pitchfork bifurcation).

at positive m, one stable and one unstable. The global minimum of the free energy still lies at the fixed
point with m∗ < 0. However, when h crosses h = 0, the global minimum of the free energy lies at the
most positive fixed point m∗. The dynamics, however, keep the system stuck in what is a metastable
phase. This persists until h = +h∗(θ), at which point another saddle-note bifurcation occurs, and the
attractive fixed point at m∗ < 0 annihilates with the repulsive fixed point. The dynamics then act quickly
to drive m to the only remaining fixed point. This process is depicted in the top panel of fig. 15.17. As
one can see from the figure, the the system follows a stable fixed point until the fixed point disappears,
even though that fixed point may not always correspond to a global minimum of the free energy. The
resulting m(h) curve is then not reversible as a function of time, and it possesses a characteristic shape
known as a hysteresis loop. Etymologically, the word hysteresis derives from the Greek υστερησις, which
means ‘lagging behind’. Systems which are hysteretic exhibit a history-dependence to their status, which
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Figure 15.17: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at
θ = 0.40. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h.
Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of h. Bottom
panel : solution set for m(θ, h) as a function of h at temperatures θ = 0.40 (blue), θ = θc = 1.0 (dark
green), and t = 1.25 (red).

is not uniquely determined by external conditions. Hysteresis may be exhibited with respect to changes
in applied magnetic field, changes in temperature, or changes in other externally determined parameters.

15.3.3 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,

f = f0 +
1
2am

2 − 1
3ym

3 + 1
4bm

4 , (15.51)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m → −m). Note

that we no longer have m → −m (i.e. Z2) symmetry. The cubic term favors positive m. What is the
phase diagram in the (a, y) plane?

Extremizing the free energy with respect to m, we obtain

∂f

∂m
= 0 = am− ym2 + bm3 . (15.52)
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Figure 15.18: Behavior of the quartic free energy f(m) = 1
2am

2 − 1
3ym

3 + 1
4bm

4. A: y2 < 4ab ; B:
4ab < y2 < 9

2ab ; C and D: y2 > 9
2ab. The thick black line denotes a line of first order transitions, where

the order parameter is discontinuous across the transition.

This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The
three solutions are m = 0 and

m = m± ≡
y

2b
±
√( y

2b

)2
− a

b
. (15.53)

We now see that for y2 < 4ab there is only one real solution, at m = 0, while for y2 > 4ab there are three
real solutions. Which solution has lowest free energy? To find out, we compare the energy f(0) with
f(m+)

3. Thus, we set

f(m) = f(0) =⇒ 1
2am

2 − 1
3ym

3 + 1
4bm

4 = 0 , (15.54)

and we now have two quadratic equations to solve simultaneously:

0 = a− ym+ bm2

0 = 1
2a− 1

3ym+ 1
4bm

2 = 0 .
(15.55)

Eliminating the quadratic term gives m = 3a/y. Finally, substitutingm = m+ gives us a relation between
a, b, and y:

y2 = 9
2 ab . (15.56)

3We needn’t waste our time considering the m = m− solution, since the cubic term prefers positive m.
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Thus, we have the following:

a >
y2

4b
: 1 real root m = 0

y2

4b
> a >

2y2

9b
: 3 real roots; minimum at m = 0

2y2

9b
> a : 3 real roots; minimum at m =

y

2b
+

√( y
2b

)2
− a

b

The solution m = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum for a < 0.

Over the range y2

4b > a > 2y2

9b , then, there is a global minimum at m = 0, a local minimum at m = m+,

and a local maximum at m = m−, with m+ > m− > 0. For 2y2

9b > a > 0, there is a local minimum at
a = 0, a global minimum at m = m+, and a local maximum at m = m−, again with m+ > m− > 0.
For a < 0, there is a local maximum at m = 0, a local minimum at m = m−, and a global minimum at
m = m+, with m+ > 0 > m−. See fig. 15.18.

15.3.4 Magnetization dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

dm

dt
= −Γ ∂f

∂m
, (15.57)

where Γ is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient to
adimensionalize by writing

m ≡ y

b
· u , a ≡ y2

b
· r̄ , t ≡ b

Γy2
· s . (15.58)

Then we obtain
∂u

∂s
= −∂ϕ

∂u
, (15.59)

where the dimensionless free energy function is

ϕ(u) = 1
2 r̄u

2 − 1
3u

3 + 1
4u

4 . (15.60)

We see that there is a single control parameter, r̄. The fixed points of the dynamics are then the stationary
points of ϕ(u), where ϕ′(u) = 0, with

ϕ′(u) = u (r̄ − u+ u2) . (15.61)

The solutions to ϕ′(u) = 0 are then given by

u∗ = 0 , u∗ = 1
2 ±

√
1
4 − r̄ . (15.62)

For r > 1
4 there is one fixed point at u = 0, which is attractive under the dynamics u̇ = −ϕ′(u) since

ϕ′′(0) = r̄. At r̄ = 1
4 there occurs a saddle-node bifurcation and a pair of fixed points is generated, one
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Figure 15.19: Fixed points for ϕ(u) = 1
2 r̄u

2 − 1
3u

3 + 1
4u

4 and flow under the dynamics u̇ = −ϕ′(u).
Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows
show behavior under slowly increasing control parameter r̄ and dark blue arrows show behavior under
slowly decreasing r̄. For u > 0 there is a hysteresis loop. The thick black curve shows the equilibrium
thermodynamic value of u(r̄), i.e. that value which minimizes the free energy ϕ(u). There is a first order
phase transition at r̄ = 2

9 , where the thermodynamic value of u jumps from u = 0 to u = 2
3 .

stable and one unstable. As we see from fig. 15.14, the interior fixed point is always unstable and the
two exterior fixed points are always stable. At r = 0 there is a transcritical bifurcation where two fixed
points of opposite stability collide and bounce off one another (metaphorically speaking).

At the saddle-node bifurcation, r̄ = 1
4 and u = 1

2 , and we find ϕ(u = 1
2 ; r̄ = 1

4 ) =
1

192 , which is positive.
Thus, the thermodynamic state of the system remains at u = 0 until the value of ϕ(u+) crosses zero.
This occurs when ϕ(u) = 0 and ϕ′(u) = 0, the simultaneous solution of which yields r̄ = 2

9 and u = 2
3 .

Suppose we slowly ramp the control parameter r̄ up and down as a function of the dimensionless time s.
Under the dynamics of eqn. 15.59, u(s) flows to the first stable fixed point encountered – this is always
the case for a dynamical system with a one-dimensional phase space. Then as r̄ is further varied, u
follows the position of whatever locally stable fixed point it initially encountered. Thus, u

(
r̄(s)

)
evolves

smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 15.19. The
equilibrium thermodynamic value for u(r̄) is discontinuous; there is a first order phase transition at r̄ = 2

9 ,
as we’ve already seen. As r is increased, u(r̄) follows a trajectory indicated by the magenta arrows. For
an negative initial value of u, the evolution as a function of r̄ will be reversible. However, if u(0) is
initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive value of
r̄, u(s) quickly evolves to u = 0+, which means a positive infinitesimal value. Then as r is decreased,
the system remains at u = 0+ even through the first order transition, because u = 0 is an attractive
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Figure 15.20: Behavior of the sextic free energy f(m) = 1
2am

2 + 1
4bm

4 + 1
6cm

6. A: a > 0 and b > 0 ; B:
a < 0 and b > 0 ; C: a < 0 and b < 0 ; D: a > 0 and b < − 4√

3

√
ac ; E: a > 0 and − 4√

3

√
ac < b < −2√ac

; F: a > 0 and −2√ac < b < 0. The thick dashed line is a line of second order transitions, which meets
the thick solid line of first order transitions at the tricritical point, (a, b) = (0, 0).

fixed point. However, once r begins to go negative, the u = 0 fixed point becomes repulsive, and u(s)

quickly flows to the stable fixed point u+ = 1
2 +

√
1
4 − r̄. Further decreasing r, the system remains on

this branch. If r̄ is later increased, then u(s) remains on the upper branch past r = 0, until the u+ fixed

point annihilates with the unstable fixed point at u− = 1
2 −

√
1
4 − r̄, at which time u(s) quickly flows

down to u = 0+ again.

15.3.5 Sixth order Landau theory : tricritical point

Finally, consider a model with Z2 symmetry, with the Landau free energy

f = f0 +
1
2am

2 + 1
4bm

4 + 1
6cm

6 , (15.63)
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with c > 0 for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with respect to m,
we obtain

∂f

∂m
= 0 = m (a+ bm2 + cm4) , (15.64)

which is a quintic with five solutions over the complex m plane. One solution is obviously m = 0. The
other four are

m = ±

√√√√− b

2c
±
√(

b

2c

)2

− a

c
. (15.65)

For each ± symbol in the above equation, there are two options, hence four roots in all.

If a > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at m = 0.

For a < 0, there are only three solutions to f ′(m) = 0 for real m, since the − choice for the ± sign under
the radical leads to imaginary roots. One of the solutions is m = 0. The other two are

m = ±

√

− b

2c
+

√( b
2c

)2
− a

c
. (15.66)

The most interesting situation is a > 0 and b < 0. If a > 0 and b < −2√ac, all five roots are real. There
must be three minima, separated by two local maxima. Clearly if m∗ is a solution, then so is −m∗. Thus,
the only question is whether the outer minima are of lower energy than the minimum at m = 0. We
assess this by demanding f(m∗) = f(0), where m∗ is the position of the largest root (i.e. the rightmost
minimum). This gives a second quadratic equation,

0 = 1
2a+

1
4bm

2 + 1
6cm

4 , (15.67)

which together with equation 15.64 gives

b = − 4√
3

√
ac . (15.68)

Thus, we have the following, for fixed a > 0:

b > −2√ac : 1 real root m = 0

−2√ac > b > − 4√
3

√
ac : 5 real roots; minimum at m = 0

− 4√
3

√
ac > b : 5 real roots; minima at m = ±

√

− b

2c
+

√( b
2c

)2
− a

c

The point (a, b) = (0, 0), which lies at the confluence of a first order line and a second order line, is known
as a tricritical point .

15.3.6 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics ṁ = −Γ f ′(m). We adimensionalize by writing

m ≡
√
|b|
c
· u , a ≡ b2

c
· r̄ , t ≡ c

Γ b2
· s . (15.69)
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Figure 15.21: Free energy ϕ(u) = 1
2 r̄u

2 − 1
4u

4 + 1
6u

6 for several different values of the control parameter
r̄.

Then we obtain once again the dimensionless equation

∂u

∂s
= −∂ϕ

∂u
, (15.70)

where
ϕ(u) = 1

2 r̄u
2 ± 1

4u
4 + 1

6u
6 . (15.71)

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if b < 0. That
is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently small u, and we
recover the quartic free energy studied earlier. There is then a second order transition at r = 0. .

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained by setting
ϕ′(u) = 0. We have

ϕ(u) = 1
2 r̄u

2 − 1
4u

4 + 1
6u

6

ϕ′(u) = u (r̄ − u2 + u4) .
(15.72)

Thus, the equation ϕ′(u) = 0 factorizes into a linear factor u and a quartic factor u4 − u2 + r̄ which is
quadratic in u2. Thus, we can easily obtain the roots:

r̄ < 0 : u∗ = 0 , u∗ = ±
√

1
2 +

√
1
4 − r̄

0 < r̄ < 1
4 : u∗ = 0 , u∗ = ±

√
1
2 +

√
1
4 − r̄ , u∗ = ±

√
1
2 −

√
1
4 − r̄

r̄ > 1
4 : u∗ = 0 .

(15.73)
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Figure 15.22: Fixed points ϕ′(u∗) = 0 for the sextic potential ϕ(u) = 1
2 r̄u

2− 1
4u

4+ 1
6u

6, and corresponding
dynamical flow (arrows) under u̇ = −ϕ′(u). Solid curves show stable fixed points and dashed curves show
unstable fixed points. The thick solid black and solid grey curves indicate the equilibrium thermodynamic
values for u; note the overall u→ −u symmetry. Within the region r̄ ∈ [0, 14 ] the dynamics are irreversible
and the system exhibits the phenomenon of hysteresis. There is a first order phase transition at r̄ = 3

16 .

In fig. 15.22, we plot the fixed points and the hysteresis loops for this system. At r̄ = 1
4 , there are two

symmetrically located saddle-node bifurcations at u = ± 1√
2
. We find ϕ(u = ± 1√

2
, r̄ = 1

4) =
1
48 , which is

positive, indicating that the stable fixed point u∗ = 0 remains the thermodynamic minimum for the free
energy ϕ(u) as r̄ is decreased through r̄ = 1

4 . Setting ϕ(u) = 0 and ϕ′(u) = 0 simultaneously, we obtain

r̄ = 3
16 and u = ±

√
3
2 . The thermodynamic value for u therefore jumps discontinuously from u = 0 to

u = ±
√
3
2 (either branch) at r̄ = 3

16 ; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the figure,
where the arrows show the evolution of u(s) for very slowly varying r̄(s). When the control parameter
r̄ is large and positive, the flow is toward the sole fixed point at u∗ = 0. At r̄ = 1

4 , two simultaneous
saddle-node bifurcations take place at u∗ = ± 1√

2
; the outer branch is stable and the inner branch unstable

in both cases. At r = 0 there is a subcritical pitchfork bifurcation, and the fixed point at u∗ = 0 becomes
unstable.

Suppose one starts off with r̄ ≫ 1
4 with some value u > 0. The flow u̇ = −ϕ′(u) then rapidly results in

u → 0+. This is the ‘high temperature phase’ in which there is no magnetization. Now let r increase
slowly, using s as the dimensionless time variable. The scaled magnetization u(s) = u∗

(
r̄(s)

)
will remain

pinned at the fixed point u∗ = 0+. As r̄ passes through r̄ = 1
4 , two new stable values of u∗ appear, but

our system remains at u = 0+, since u∗ = 0 is a stable fixed point. But after the subcritical pitchfork,
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u∗ = 0 becomes unstable. The magnetization u(s) then flows rapidly to the stable fixed point at u∗ = 1√
2
,

and follows the curve u∗(r̄) =
(
1
2 + (14 − r̄)1/2

)1/2
for all r < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable

fixed point u∗(r̄) =
(
1
2 +(14 − r̄)1/2

)1/2
past r̄ = 0, beyond the first order phase transition point at r̄ = 3

16 ,
and all the way up to r̄ = 1

4 , at which point this fixed point is annihilated at a saddle-node bifurcation.
The flow then rapidly takes u→ u∗ = 0+, where it remains as r continues to be increased further.

Within the region r̄ ∈
[
0, 14
]
of control parameter space, the dynamics are said to be irreversible and the

behavior of u(s) is said to be hysteretic.



Chapter 16

Two-Dimensional Phase Flows

We’ve seen how, for one-dimensional dynamical systems u̇ = f(u), the possibilities in terms of the behavior
of the system are in fact quite limited. Starting from an arbitrary initial condition u(0), the phase flow
is monotonically toward the first stable fixed point encountered. (That point may lie at infinity.) No
oscillations are possible1. For N = 2 phase flows, a richer set of possibilities arises, as we shall now see.

16.1 Harmonic Oscillator and Pendulum

16.1.1 Simple harmonic oscillator

A one-dimensional harmonic oscillator obeys the equation of motion,

m
d2x

dt2
= −kx , (16.1)

where m is the mass and k the force constant (of a spring). If we define v = ẋ, this may be written as
the N = 2 system,

d

dt

(
x
v

)
=

(
0 1
−Ω2 0

)(
x
v

)
=

(
v

−Ω2 x

)
, (16.2)

where Ω =
√
k/m has the dimensions of frequency (inverse time). The solution is well known:

x(t) = x0 cos(Ωt) +
v0
Ω

sin(Ωt)

v(t) = v0 cos(Ωt)−Ω x0 sin(Ωt) .
(16.3)

The phase curves are ellipses:
Ω x2(t) +Ω−1 v2(t) = C , (16.4)

where the constant C = Ω x20 + Ω−1 v20 . A sketch of the phase curves and of the phase flow is shown
in Fig. 16.1. Note that the x and v axes have different dimensions. Note also that the origin is a fixed

1If phase space itself is multiply connected, e.g. a circle, then the system can oscillate by moving around the circle.
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Figure 16.1: Phase curves for the harmonic oscillator.

point, however, unlike the N = 1 systems studied in the first lecture, here the phase flow can avoid the
fixed points, and oscillations can occur.

Incidentally, eqn. 16.2 is linear, and may be solved by the following method. Write the equation as
ϕ̇ =Mϕ, with

ϕ =

(
x
ẋ

)
and M =

(
0 1
−Ω2 0

)
(16.5)

The formal solution to ϕ̇ =Mϕ is
ϕ(t) = eMtϕ(0) . (16.6)

What do we mean by the exponential of a matrix? We mean its Taylor series expansion:

eMt = I+Mt+ 1
2! M

2 t2 + 1
3! M

3 t3 + . . . . (16.7)

Note that

M2 =

(
0 1
−Ω2 0

)(
0 1
−Ω2 0

)
=

(
−Ω2 0
0 −Ω2

)
= −Ω2

I , (16.8)

hence
M2k = (−Ω2)k I , M2k+1 = (−Ω2)kM . (16.9)

Thus,

eMt =

∞∑

k=0

1

(2k)!
(−Ω2t2)k · I+

∞∑

k=0

1

(2k + 1)!
(−Ω2t2)k ·Mt

= cos(Ωt) · I+Ω−1 sin(Ωt) ·M =

(
cos(Ωt) Ω−1 sin(Ωt)
−Ω sin(Ωt) cos(Ωt)

)
.

(16.10)

Plugging this into eqn. 16.6, we obtain the desired solution.

For the damped harmonic oscillator, we have

ẍ+ 2βẋ+Ω2x = 0 =⇒ M =

(
0 1
−Ω2 −2β

)
. (16.11)

The phase curves then spiral inward to the fixed point at (0, 0).
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Figure 16.2: Phase curves for the simple pendulum. The separatrix divides phase space into regions of
vibration and libration.

16.1.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of length
ℓ.

mℓ2 θ̈ = −mgℓ sin θ . (16.12)

This is equivalent to

d

dt

(
θ
ω

)
=

(
ω

−Ω2 sin θ

)
, (16.13)

where ω = θ̇ is the angular velocity, and where Ω =
√
g/ℓ is the natural frequency of small oscillations.

The phase curves for the pendulum are shown in Fig. 16.2. The small oscillations of the pendulum are
essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation,
sin θ ≈ θ, and the pendulum equations of motion are exactly those of the harmonic oscillator. These
oscillations are called librations. They involve a back-and-forth motion in real space, and the phase space
motion is contractable to a point, in the topological sense. However, if the initial angular velocity is
large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In
this case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see in a later
lecture, the total energy is sufficiently large. The phase curve which separates these two topologically
distinct motions is called a separatrix .
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16.2 General N = 2 Systems

The general form to be studied is

d

dt

(
x
y

)
=

(
Vx(x, y)

Vy(x, y)

)
. (16.14)

Special cases include autonomous second order ODEs, viz.

ẍ = f(x, ẋ) =⇒ d

dt

(
x
v

)
=

(
v

f(x, v)

)
, (16.15)

of the type which occur in one-dimensional mechanics.

16.2.1 The damped driven pendulum

Another example is that of the damped and driven harmonic oscillator,

d2φ

ds2
+ γ

dφ

ds
+ sinφ = j . (16.16)

This is equivalent to a model of a resistively and capacitively shunted Josephson junction, depicted in fig.
16.3. If φ is the superconducting phase difference across the junction, the current through the junction
is given by IJ = Ic sinφ, where Ic is the critical current . The current carried by the resistor is IR = V/R

from Ohm’s law, and the current from the capacitor is IC = Q̇. Finally, the Josephson relation relates

the voltage V across the junction to the superconducting phase difference φ: V = (~/2e) φ̇. Summing up
the parallel currents, we have that the total current I is given by

I =
~C

2e
φ̈+

~

2eR
φ̇+ Ic sinφ , (16.17)

which, again, is equivalent to a damped, driven pendulum.

This system also has a mechanical analog. Define the ‘potential’

U(φ) = −Ic cosφ− Iφ . (16.18)

The equation of motion is then
~C

2e
φ̈+

~

2eR
φ̇ = −∂U

∂φ
. (16.19)

Thus, the combination ~C/2e plays the role of the inertial term (mass, or moment of inertia), while the
combination ~/2eR plays the role of a damping coefficient. The potential U(φ) is known as the tilted

washboard potential , for obvious reasons. (Though many of you have perhaps never seen a washboard.)

The model is adimensionalized by defining the Josephson plasma frequency ωp and the RC time constant
τ :

ωp ≡
√

2eIc
~C

, τ ≡ RC . (16.20)
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Figure 16.3: . The resistively and capacitively shunted Josephson junction. The Josephson junction is
the X element at the bottom of the figure.

The dimensionless combination ωpτ then enters the adimensionalized equation as the sole control param-
eter:

I

Ic
=
d2φ

ds2
+

1

ωpτ

dφ

ds
+ sinφ , (16.21)

where s = ωpt. In the Josephson junction literature, the quantity β ≡ 2eIcR2C/~ = (ωpτ)2, known
as the McCumber-Stewart parameter, is a dimensionless measure of the damping (large β means small

damping). In terms of eqn. 16.16, we have γ = (ωpτ)−1 and j = I/Ic.

We can write the second order ODE of eqn. 16.16 as two coupled first order ODEs:

d

dt

(
φ
ω

)
=

(
ω

j − sinφ− γ ω

)
, (16.22)

where ω = φ̇. Phase space is a cylinder, S1 × R1.

The quantity ωpτ typically ranges from 10−3 to 103 in Josephson junction applications. If ωpτ is small,
then the system is heavily damped, and the inertial term d2φ/ds2 can be neglected. One then obtains
the N = 1 system

γ
dφ

ds
= j − sinφ . (16.23)

If |j| < 1, then φ(s) evolves to the first stable fixed point encountered, where φ∗ = sin−1(j) and cosφ∗ =√
1− j2. Since φ(s) → φ∗ is asymptotically a constant, the voltage drop V must then vanish, as a

consequence of the Josephson relation V = (~/2e) φ̇. This, there is current flowing with no voltage drop!

If |j| > 1, the RHS never vanishes, in which case φ(s) is monotonic. We then can integrate the differential
equation

dt =
~

2eR
· dφ

I − Ic sinφ
. (16.24)



80 CHAPTER 16. TWO-DIMENSIONAL PHASE FLOWS

Figure 16.4: Phase flows for the equation φ̈+γ−1φ̇+sinφ = j. Left panel: 0 < j < 1; note the separatrix
(in black), which flows into the stable and unstable fixed points. Right panel: j > 1. The red curve
overlying the thick black dot-dash curve is a limit cycle.

Asymptotically the motion is periodic, with the period T obtained by integrating over the interval φ ∈
[0, 2π]. One finds

T =
~

2eR
· 2π√

I2 − I2c
. (16.25)

The time-averaged voltage drop is then

〈V 〉 = ~

2e
〈φ̇〉 = ~

2e
· 2π
T

= R
√
I2 − I2c . (16.26)

This is the physics of the current-biased resistively and capacitively shunted Josephson junction in the
strong damping limit. It is ‘current-biased’ because we are specifying the current I. Note that Ohm’s
law is recovered at large values of I.

For general ωpτ , we can still say quite a bit. At a fixed point, both components of the vector field V (φ, ω)
must vanish. This requires ω = 0 and j = sinφ. Therefore, there are two fixed points for |j| < 1, one a
saddle point and the other a stable spiral. For |j| > 1 there are no fixed points, and asymptotically the

function φ(t) tends to a periodic limit cycle φLC(t). The flow is sketched for two representative values of
j in Fig. 16.4.
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Figure 16.5: Complete classification of fixed points for the N = 2 system.

16.2.2 Classification of N = 2 fixed points

Suppose we have solved the fixed point equations Vx(x
∗, y∗) = 0 and Vy(x

∗, y∗) = 0. Let us now expand
about the fixed point, writing

ẋ =
∂Vx
∂x

∣∣∣∣∣
(x∗,y∗)

(x− x∗) + ∂Vx
∂y

∣∣∣∣∣
(x∗,y∗)

(y − y∗) + . . .

ẏ =
∂Vy
∂x

∣∣∣∣∣
(x∗,y∗)

(x− x∗) + ∂Vy
∂y

∣∣∣∣∣
(x∗,y∗)

(y − y∗) + . . . .

(16.27)

We define
u1 = x− x∗ , u2 = y − y∗ , (16.28)

which, to linear order, satisfy

d

dt



u1

u2


 =

M︷ ︸︸ ︷

a b

c d





u1

u2


+O(u2) . (16.29)

The formal solution to u̇ =Mu is
u(t) = exp(Mt)u(0) , (16.30)

where exp(Mt) =
∑∞

n=0
1
n! (Mt)n is the exponential of the matrix Mt.

The behavior of the system is determined by the eigenvalues of M , which are roots of the characteristic
equation P (λ) = 0, where

P (λ) = det(λI−M)

= λ2 − Tλ+D ,
(16.31)



82 CHAPTER 16. TWO-DIMENSIONAL PHASE FLOWS

Figure 16.6: Fixed point zoo for N = 2 systems. Not shown: unstable versions of node, spiral, and star
(reverse direction of arrows to turn stable into unstable).

with T = a+ d = Tr(M) and D = ad− bc = det(M). The two eigenvalues are therefore

λ± = 1
2

(
T ±

√
T 2 − 4D

)
. (16.32)

To see why the eigenvalues control the behavior, let us expand u(0) in terms of the eigenvectors of M .
Since M is not necessarily symmetric, we should emphasize that we expand u(0) in terms of the right

eigenvectors of M , which satisfy

Mψa = λaψa , (16.33)

where the label a runs over the symbols + and −, as in (16.32). We write

u(t) =
∑

a

Ca(t)ψa . (16.34)

Since (we assume) the eigenvectors are linearly independent , the equation u̇ =Mu becomes

Ċa = λa Ca , (16.35)

with solution

Ca(t) = eλat Ca(0) . (16.36)

Thus, the coefficients of the eigenvectors ψa will grow in magnitude if |λa| > 1, and will shrink if |λa| < 1.
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Figure 16.7: Phase portrait for an N = 2 flow including saddles (A,C), unstable spiral (B), and limit
cycle (D).

16.2.3 The fixed point zoo

• Saddles : When D < 0, both eigenvalues are real; one is positive and one is negative, i.e. λ+ > 0

and λ− < 0. The right eigenvector ψ− is thus the stable direction while ψ+ is the unstable direction.

• Nodes : When 0 < D < 1
4T

2, both eigenvalues are real and of the same sign. Thus, both right
eigenvectors correspond to stable or to unstable directions, depending on whether T < 0 (stable;

λ− < λ+ < 0) or T < 0 (unstable; λ+ > λ− > 0). If λ± are distinct, one can distinguish fast and
slow eigendirections, based on the magnitude of the eigenvalues.

• Spirals : When D > 1
4T

2, the discriminant T 2 − 4D is negative, and the eigenvalues come in a

complex conjugate pair: λ− = λ∗+. The real parts are given by Re(λ±) = 1
2T , so the motion is

stable (i.e. collapsing to the fixed point) if T < 0 and unstable (i.e. diverging from the fixed point)
if T > 0. The motion is easily shown to correspond to a spiral. One can check that the spiral
rotates counterclockwise for a > d and clockwise for a < d.

• Degenerate Cases : When T = 0 we have λ± = ±
√
−D. For D < 0 we have a saddle, but for

D > 0 both eigenvalues are imaginary: λ± = ±i
√
D. The orbits do not collapse to a point, nor do

they diverge to infinity, in the t→∞ limit, as they do in the case of the stable and unstable spiral.
The fixed point is called a center , and it is surrounded by closed trajectories.

When D = 1
4T

2, the discriminant vanishes and the eigenvalues are degenerate. If the rank of M is
two, the fixed point is a stable (T < 0) or unstable (T > 0) star . If M is degenerate and of rank
one, the fixed point is a degenerate node.

When D = 0, one of the eigenvalues vanishes. This indicates a fixed line in phase space, since any
point on that line will not move. The fixed line can be stable or unstable, depending on whether
the remaining eigenvalue is negative (stable, T < 0), or positive (unstable, T > 0).
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16.2.4 Limit cycles

Putting it all together, an example of a phase portrait is shown in Fig. 16.7. Note the presence of an
isolated, closed trajectory , which is called a limit cycle. Many self-sustained physical oscillations, i.e.

oscillations with no external forcing, exhibit limit cycle behavior. Limit cycles, like fixed points, can be
stable or unstable, or partially stable. Limit cycles are inherently nonlinear. While the linear equation
ϕ̇ = M ϕ can have periodic solutions if M has purely imaginary eigenvalues, these periodic trajectories
are not isolated , because λϕ(t) is also a solution. The amplitude of these linear oscillations is fixed by
the initial conditions, whereas for limit cycles, the amplitude is inherent from the dynamics itself, and
the initial conditions are irrelevant (for a stable limit cycle).

In fig. 16.8 we show simple examples of stable, unstable, and half-stable limit cycles. As we shall see
when we study nonlinear oscillations, the Van der Pol oscillator,

ẍ+ µ(x2 − 1) ẋ+ x = 0 , (16.37)

with µ > 0 has a stable limit cycle. The physics is easy to apprehend. The coefficient of the ẋ term in
the equation of motion is positive for |x| > 1 and negative for |x| < 1. Interpreting this as a coefficient
of friction, we see that the friction is positive, i.e. dissipating energy, when |x| > 1 but negative, i.e.
accumulating energy, for |x| < 1. Thus, any small motion with |x| < 1 is amplified due to the negative
friction, and would increase without bound were it not for the fact that the friction term reverses its sign
and becomes dissipative for |x| > 1. The limit cycle for µ≫ 1 is shown in fig. 16.9.

16.2.5 Andronov-Hopf bifurcation

A bifurcation between a spiral and a limit cycle is known as an Andronov-Hopf bifurcation. As a simple
example, consider the N = 2 system,

ẋ = ax− by − C(x2 + y2)x

ẏ = bx+ ay − C(x2 + y2) y ,
(16.38)

Figure 16.8: Stable, unstable, and half-stable limit cycles.
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Figure 16.9: Limit cycle of the Van der Pol oscillator for µ = 1.

where a, b, and C are real. Clearly the origin is a fixed point, at which one finds the eigenvalues λ = a±ib.
Thus, the fixed point is a stable spiral if a < 0 and an unstable spiral if a > 0.

Written in terms of the complex variable z = x+ iy, these two equations collapse to the single equation

ż = (a+ ib) z − C |z|2 z . (16.39)

The dynamics are also simple in polar coordinates r = |z|, θ = arg(z):

ṙ = ar − Cr3

θ̇ = b .
(16.40)

The phase diagram, for fixed b > 0, is depicted in Fig. 16.10. For positive a/C, there is a limit cycle at
r =

√
a/C. In both cases, the limit cycle disappears as a crosses the value a∗ = 0 and is replaced by a

stable (a < 0, C > 0) or unstable (a > 0, C < 0) spiral.

This example also underscores the following interesting point. Adding a small nonlinear term C has no
fundamental effect on the fixed point behavior so long as a 6= 0, when the fixed point is a stable or
unstable spiral. In general, fixed points which are attractors (stable spirals or nodes), repellers (unstable
spirals or nodes), or saddles are robust with respect to the addition of a small nonlinearity. But the
fixed point behavior in the marginal cases – centers, stars, degenerate nodes, and fixed lines – is strongly
affected by the presence of even a small nonlinearity. In this example, the FP is a center when a = 0.
But as the (r, θ) dynamics shows, a small nonlinearity will destroy the center and turn the FP into an
attractor (C > 0) or a repeller (C < 0).

16.2.6 Fixed points for N = 3 systems

For an N = 2 system, there are five generic types of fixed points. They are classified according to the
eigenvalues of the linearized dynamics at the fixed point. For a real 2 × 2 matrix, the eigenvalues must
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Figure 16.10: Hopf bifurcation: for C > 0 the bifurcation is supercritical, between stable spiral and
stable limit cycle. For C < 0 the bifurcation is subcritical, between unstable spiral and unstable limit
cycle. The bifurcation occurs at a = 0 in both cases.

be real or else must be a complex conjugate pair. The five types of fixed points are then

λ1 > 0 , λ2 > 0 : (1) unstable node

λ1 > 0 , λ2 < 0 : (2) saddle point

λ1 < 0 , λ2 < 0 : (3) stable node

Reλ1 > 0 , λ2 = λ∗1 : (4) unstable spiral

Reλ1 < 0 , λ2 = λ∗1 : (5) stable spiral

How many possible generic fixed points are there for an N = 3 system?

For a general real 3×3 matrixM , the characteristic polynomial P (λ) = det(λ−M) satisfies P (λ∗) = P (λ).
Thus, if λ is a root then so is λ∗. This means that the eigenvalues are either real or else come in complex
conjugate pairs. There are then ten generic possibilities for the three eigenvalues:

(1) unstable node : λ1 > λ2 > λ3 > 0

(2) (+ +−) saddle : λ1 > λ2 > 0 > λ3

(3) (+−−) saddle : λ1 > 0 > λ2 > λ3

(4) stable note : 0 > λ1 > λ2 > λ3

(5) unstable spiral-node : λ1 > Reλ2,3 > 0 ; Imλ2 = −Imλ3

(6) unstable spiral-node : Reλ1,2 > λ3 > 0 ; Imλ1 = −Imλ2

(7) stable spiral-node : 0 > λ1 > Reλ2,3 ; Imλ2 = −Imλ3

(8) stable spiral-node : 0 > Reλ1,2 > λ3 ; Imλ1 = −Imλ2

(9) (+−−) spiral-saddle : λ1 > 0 > Reλ2,3 ; Imλ2 = −Imλ3

(10) (+ +−) spiral-saddle : Reλ1,2 > 0 > λ3 ; Imλ1 = −Imλ2 .
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16.3 Population Biology : Lotka-Volterra Models

Consider two species with populations N1 and N2, respectively. We model the evolution of these popu-
lations by the coupled ODEs

dN1

dt
= aN1 + bN1N2 + cN2

1

dN2

dt
= dN2 + eN1N2 + fN2

2 ,

(16.41)

where {a, b, c, d, e, f} are constants. We can eliminate some constants by rescaling N1,2. This results in
the following:

ẋ = x
(
r − µx− ky

)

ẏ = y
(
r′ − µ′y − k′x

)
,

(16.42)

where µ, and µ′ can each take on one of three possible values {0,±1}. By rescaling time, we can eliminate
the scale of either of r or r′ as well. Typically, intra-species competition guarantees µ = µ′ = +1. The
remaining coefficients (r, k, k′) are real may also be of either sign. The values and especially the signs of
the various coefficients have a physical (or biological) significance. For example, if k < 0 it means that
x grows due to the presence of y. The effect of y on x may be of the same sign (kk′ > 0) or of opposite
sign (kk′ < 0).

16.3.1 Rabbits and foxes

As an example, consider the model

ẋ = x− xy
ẏ = −βy + xy .

(16.43)

The quantity x might represent the (scaled) population of rabbits and y the population of foxes in an
ecosystem. There are two fixed points: at (0, 0) and at (β, 1). Linearizing the dynamics about these fixed
points, one finds that (0, 0) is a saddle while (β, 1) is a center. Let’s do this explicitly.

The first step is to find the fixed points (x∗, y∗). To do this, we set ẋ = 0 and ẏ = 0. From ẋ = x(1−y) = 0
we have that x = 0 or y = 1. Suppose x = 0. The second equation, ẏ = (x− β)y then requires y = 0. So
P1 = (0, 0) is a fixed point. The other possibility is that y = 1, which then requires x = β. So P2 = (β, 1)
is the second fixed point. Those are the only possibilities.

We now compute the linearized dynamics at these fixed points. The linearized dynamics are given by
ϕ̇ =Mϕ, with

M =



∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y


 =



1− y −x

y x− β


 . (16.44)
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Evaluating M at P1 and P2, we find

M1 =



1 0

0 −β


 , M2 =



0 −β

1 0


 . (16.45)

The eigenvalues are easily found:

P1 : λ+ = 1 , λ− = −β
P2 : λ+ = i

√
β , λ− = −i

√
β .

(16.46)

Thus P1 is a saddle point and P2 is a center.

As we saw earlier, generally speaking we expect nonlinear terms to transform centers to stable or unstable
spirals, possibly with a limit cycle. However for the Lotka-Volterra system there is a conserved quantity.
Consider the general predator-prey system

ẋ = (a− b y)x
ẏ = −(c− dx) y , (16.47)

where a, b, c, and d are all positive constants. Now consider the function

H ≡ dx+ b y − c lnx− a ln y . (16.48)

Then
∂H

∂x
= d− c

x
,

∂H

∂y
= b− a

y
. (16.49)

Thus, we have ẋ = −xy ∂H
∂y and ẏ = xy ∂H

∂x . If we define p ≡ lnx and q ≡ ln y, then we have

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(16.50)

with
H(q, p) = d ep + b eq − c p − a q . (16.51)

So the system is a Hamiltonian system in disguise, and we know that for Hamiltonian systems the only
possible fixed points are saddles and centers. The phase curves are level sets of the function H.

16.3.2 Rabbits and sheep

In the rabbits and foxes model of eqs. 16.43, the rabbits are the food for the foxes. This means k = 1
but k′ = −1, i.e. the fox population is enhanced by the presence of rabbits, but the rabbit population is
diminished by the presence of foxes. Consider now a model in which the two species (rabbits and sheep,
say) compete for food:

ẋ = x (r − x− ky)
ẏ = y (1− y − k′x) , (16.52)
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Figure 16.11: Phase flow for the rabbits vs. foxes Lotka-Volterra model of eqs. 16.43.

with r, k, and k′ all positive. Note that when either population x or y vanishes, the remaining population
is governed by the logistic equation, i.e. it will flow to a nonzero fixed point.

The matrix of derivatives, which is to be evaluated at each fixed point in order to assess its stability, is

M =



∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y


 =



r − 2x− ky −kx

−k′y 1− 2y − k′x


 . (16.53)

At each fixed point, we must evaluate D = det(M) and T = Tr (M) and apply the classification scheme
of Fig. 16.5.

• P1 = (0, 0) : This is the trivial state with no rabbits (x = 0) and no sheep (y = 0). The linearized

dynamics gives M1 =

(
r 0
0 1

)
, which corresponds to an unstable node.

• P2 = (r, 0) : Here we have rabbits but no sheep. The linearized dynamics givesM2 =

(
−r −rk
0 1− rk′

)
.

For rk′ > 1 this is a stable node; for rk′ < 1 it is a saddle point.

• P3 = (0, 1) : Here we have sheep but no rabbits. The linearized dynamics givesM3 =

(
r − k 0
−k′ −1

)
.

For k > r this is a stable node; for k < r it is a saddle.

• There is one remaining fixed point – a nontrivial one where both x and y are nonzero. To find it,
we set ẋ = ẏ = 0, and divide out by x and y respectively, to get

x+ ky = r

kx′ + y = 1 .
(16.54)
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Figure 16.12: Two possible phase flows for the rabbits vs. sheep model of eqs. 16.52. Left panel:
k > r > k′−1. Right panel: k < r < k′−1.

This is a simple rank 2 inhomogeneous linear system. If the fixed point P4 is to lie in the physical
quadrant (x > 0, y > 0), then either (i) k > r and k′ > r−1 or (ii) k < r and k′ < r−1. The solution
is

P4 =

(
1 k
k′ 1

)−1(
r
1

)
=

1

1− kk′
(
r − k
1− rk′

)
. (16.55)

The linearized dynamics then gives

M4 =
1

1− kk′




k − r k(k − r)

k′(rk′ − 1) rk′ − 1


 , (16.56)

yielding

T =
rk′ − 1 + k − r

1− kk′

D =
(k − r)(rk′ − 1)

1− kk′ .

(16.57)

The classification of this fixed point can vary with parameters. Consider the case r = 1. If k = k′ = 2
then both P2 and P3 are stable nodes. At P4, one finds T = −2

3 and D = −1
3 , corresponding to a saddle

point. In this case it is the fate of one population to die out at the expense of the other, and which
one survives depends on initial conditions. If instead we took k = k′ = 1

2 , then T = −4
3 and D = 1

3 ,
corresponding to a stable node (node D < 1

4T
2 in this case). The situation is depicted in Fig. 16.12.

16.4 Poincaré-Bendixson Theorem

Although N = 2 systems are much richer than N = 1 systems, they are still ultimately rather impov-
erished in terms of their long-time behavior. If an orbit does not flow off to infinity or asymptotically
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Figure 16.13: Two singularities with index +1. The direction field V̂ = V /
∣∣V
∣∣ is shown in both cases.

approach a stable fixed point (node or spiral or nongeneric example), the only remaining possibility is
limit cycle behavior. This is the content of the Poincaré-Bendixson theorem, which states:

• IF Ω is a compact (i.e. closed and bounded) subset of phase space,

• AND ϕ̇ = V (ϕ) is continuously differentiable on Ω,

• AND Ω contains no fixed points (i.e. V (ϕ) never vanishes in Ω),

• AND a phase curve ϕ(t) is always confined to Ω,

⋄ THEN ϕ(t) is either closed or approaches a closed trajectory in the limit t→∞.

Thus, under the conditions of the theorem, Ω must contain a closed orbit.

One way to prove that ϕ(t) is confined to Ω is to establish that V · n̂ ≤ 0 everywhere on the boundary
∂Ω, which means that the phase flow is always directed inward (or tangent) along the boundary. Let’s
analyze an example from the book by Strogatz. Consider the system

ṙ = r(1− r2) + λ r cos θ

θ̇ = 1 ,
(16.58)

with 0 < λ < 1. Then define

a ≡
√
1− λ , b ≡

√
1 + λ (16.59)

and

Ω ≡
{
(r, θ)

∣∣ a < r < b
}
. (16.60)
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On the boundaries of Ω, we have

r = a : ṙ = λa
(
1 + cos θ

)

r = b : ṙ = −λ b
(
1− cos θ

)
.

(16.61)

We see that the radial component of the flow is inward along both r = a and r = b. Thus, any trajectory
which starts inside Ω can never escape. The Poincaré-Bendixson theorem tells us that the trajectory will
approach a stable limit cycle in the limit t→∞.

It is only with N ≥ 3 systems that the interesting possibility of chaotic behavior emerges.

16.5 Index Theory

Consider a smooth two-dimensional vector field V (ϕ). The angle that the vector V makes with respect

to the ϕ̂1 and ϕ̂2 axes is a scalar field,

Θ(ϕ) = tan−1

(
V2(ϕ)

V1(ϕ)

)
. (16.62)

So long as V has finite length, the angle Θ is well-defined. In particular, we expect that we can integrate
∇Θ over a closed curve C in phase space to get

∮

C

dϕ ·∇Θ = 0 . (16.63)

However, this can fail if V (ϕ) vanishes (or diverges) at one or more points in the interior of C. In general,
if we define

WC(V ) =
1

2π

∮

C

dϕ ·∇Θ , (16.64)

then WC(V ) ∈ Z is an integer valued function of C, which is the change in Θ around the curve C. This
must be an integer, because Θ is well-defined only up to multiples of 2π. Note that differential changes
of Θ are in general well-defined.

Thus, if V (ϕ) is finite, meaning neither infinite nor infinitesimal, i.e. V neither diverges nor vanishes

anywhere in int(C), then WC(V ) = 0. Assuming that V never diverges, any singularities in Θ must arise
from points where V = 0, which in general occurs at isolated points, since it entails two equations in the
two variables (ϕ1 , ϕ2).

The index of a two-dimensional vector field V (ϕ) at a point ϕ is the integer-valued winding of V about
that point:

ind
ϕ0

(V ) = lim
a→0

1

2π

∮

Ca(ϕ0)

dϕ ·∇Θ

= lim
a→0

1

2π

∮

Ca(ϕ0)

dϕ · V1∇V2 − V2∇V1
V 2
1 + V 2

2

,

(16.65)
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Figure 16.14: Two singularities with index −1.

where Ca(ϕ0) is a circle of radius a surrounding the point ϕ0. The index of a closed curve C is given by
the sum of the indices at all the singularities enclosed by the curve:2

WC(V ) =
∑

ϕi ∈ int(C)

ind
ϕi

(V ) . (16.66)

As an example, consider the vector fields plotted in fig. 16.13. We have:

V = (x , −y) =⇒ Θ = −θ
V = (−y , x) =⇒ Θ = θ + 1

2π .
(16.67)

The index is the same, +1, in both cases, even though the first corresponds to an unstable node and the
second to a center. Any N = 2 fixed point with detM > 0 has index +1.

Fig. 16.14 shows two vector fields, each with index −1:

V = (x , y) =⇒ Θ = θ

V = (y , x) =⇒ Θ = −θ + 1
2π

.

(16.68)

In both cases, the fixed point is a saddle.

As an example of the content of eqn. 16.66, consider the vector fields in eqn. 16.15. The left panel shows
the vector field V = (x2− y2 , 2xy), which has a single fixed point, at the origin (0 , 0), of index +2. The

2Technically, we should weight the index at each enclosed singularity by the signed number of times the curve C encloses
that singularity. For simplicity and clarity, we assume that the curve C is homeomorphic to the circle S

1.
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Figure 16.15: Left panel: a singularity with index +2. Right panel: two singularities each with index
+1. Note that the long distance behavior of V is the same in both cases.

right panel shows the vector field V = (1 + x2 − y2 , x+ 2xy), which has fixed points (x∗ , y∗) at (0 , 1)
and (0 , −1). The linearized dynamics is given by the matrix

M =




∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y


 =




2x −2y

1 + 2y 2x


 . (16.69)

Thus,

M(0,1) =

(
0 −2
2 0

)
, M(0,−1) =

(
0 2
−2 0

)
. (16.70)

At each of these fixed points, we have T = 0 and D = 4, corresponding to a center, with index +1. If
we consider a square-ish curve Caround the periphery of each figure, the vector field is almost the same
along such a curve for both the left and right panels, and the winding number is WC(V ) = +2.

Finally, consider the vector field shown in fig. 16.16, with V = (x2 − y2 , −2xy). Clearly Θ = −2θ, and
the index of the singularity at (0 , 0) is −2.

To recapitulate some properties of the index / winding number:

• The index ind
ϕ0
(V ) of an N = 2 vector field V at a point ϕ0 is the winding number of V about

that point.

• The winding number WC(V ) of a curve C is the sum of the indices of the singularities enclosed by
that curve.

• Smooth deformations of C do not change its winding number. One must instead “stretch” C over a
fixed point singularity in order to change WC(V ).
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Figure 16.16: A vector field with index −2.

• Uniformly rotating each vector in the vector field by an angle β has the effect of sending Θ → Θ+β;
this leaves all indices and winding numbers invariant.

• Nodes and spirals, whether stable or unstable, have index +1 (ss do the special cases of centers,
stars, and degenerate nodes). Saddle points have index −1.

• Clearly any closed orbit must lie on a curve C of index +1.

16.5.1 Gauss-Bonnet Theorem

There is a deep result in mathematics, the Gauss-Bonnet theorem, which connects the local geometry of
a two-dimensional manifold to its global topological structure. The content of the theorem is as follows:

∫

M

dAK = 2π χ(M) = 2π
∑

i

ind
ϕi

(V ) , (16.71)

where M is a 2-manifold (a topological space locally homeomorphic to R2), κ is the local Gaussian

curvature of M, which is given by K = (R1R2)
−1, where R1,2 are the principal radii of curvature at a

given point, and dA is the differential area element. The quantity χ(M) is called the Euler characteristic
of M and is given by χ(M) = 2 − 2g, where g is the genus of M, which is the number of holes (or

handles) ofM. Furthermore, V (ϕ) is any smooth vector field onM, and ϕi are the singularity points
of that vector field, which are fixed points of the dynamics ϕ̇ = V (ϕ).

To apprehend the content of the Gauss-Bonnet theorem, it is helpful to consider an example. LetM = S2

be the unit 2-sphere, as depicted in fig. 16.17. At any point on the unit 2-sphere, the radii of curvature
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Figure 16.17: Two smooth vector fields on the sphere S2, which has genus g = 0. Left panel: two index
+1 singularities. Right panel: one index +2 singularity.

are degenerate and both equal to R = 1, hence K = 1. If we integrate the Gaussian curvature over the
sphere, we thus get 4π = 2π χ

(
S2
)
, which says χ(S2) = 2 − 2g = 2, which agrees with g = 0 for the

sphere. Furthermore, the Gauss-Bonnet theorem says that any smooth vector field on S2 must have a
singularity or singularities, with the total index summed over the singularities equal to +2. The vector
field sketched in the left panel of fig. 16.17 has two index +1 singularities, which could be taken at the
north and south poles, but which could be anywhere. Another possibility, depicted in the right panel of
fig. 16.17, is that there is a one singularity with index +2.

In fig. 16.18 we show examples of manifolds with genii g = 1 and g = 2. The case g = 1 is the familiar
2-torus, which is topologically equivalent to a product of circles: T2 ≃ S1 × S1, and is thus coordinatized
by two angles θ1 and θ2. A smooth vector field pointing in the direction of increasing θ1 never vanishes,
and thus has no singularities, consistent with g = 1 and χ

(
T2
)
= 0. Topologically, one can define a torus

as the quotient space R2/Z2, or as a square with opposite sides identified. This is what mathematicians
call a ‘flat torus’ – one with curvature K = 0 everywhere. Of course, such a torus cannot be embedded in
three-dimensional Euclidean space; a two-dimensional figure embedded in a three-dimensional Euclidean
space inherits a metric due to the embedding, and for a physical torus, like the surface of a bagel, the
Gaussian curvature is only zero on average.

The g = 2 surface M shown in the right panel of fig. 16.18 has Euler characteristic χ(M) = −2,
which means that any smooth vector field onM must have singularities with indices totalling −2. One
possibility, depicted in the figure, is to have two saddle points with index −1; one of these singularities
is shown in the figure (the other would be on the opposite side).
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Figure 16.18: Smooth vector fields on the torus T2 (g = 1), and on a 2-manifoldM of genus g = 2.

16.5.2 Singularities and topology

For any N = 1 system ẋ = f(x), we can identify a ‘charge’ Q with any generic fixed point x∗ by setting

Q = sgn
[
f ′(x∗)

]
, (16.72)

where f(x∗) = 0. The total charge contained in a region
[
x1, x2

]
is then

Q12 =
1
2 sgn

[
f(x2)

]
− 1

2 sgn
[
f(x1)

]
. (16.73)

It is easy to see that Q12 is the sum of the charges of all the fixed points lying within the interval
[
x1, x2

]
.

In higher dimensions, we have the following general construction. Consider an N -dimensional dynamical
system ẋ = V (x), and let n̂(x) be the unit vector field defined by

n̂(x) =
V (x)

|V (x)| . (16.74)

Consider now a unit sphere in n̂ space, which is of dimension (N − 1). If we integrate over this surface,
we obtain

ΩN =

∮
dσa n

a =
2π(N−1)/2

Γ
(
N−1
2

) , (16.75)

which is the surface area of the unit sphere SN−1. Thus, Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, etc.

Now consider a change of variables over the surface of the sphere, to the set (ξ1, . . . , ξN−1). We then have

ΩN =

∮

SN−1

dσa n
a =

∮
dN−1ξ ǫa1···aN n

a1
∂na2

∂ξ1
· · · ∂n

aN

∂ξN−1

(16.76)
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Figure 16.19: Composition of two circles. The same general construction applies to the merging of
n-spheres Sn, called the wedge sum.

The topological charge is then

Q =
1

ΩN

∮
dN−1ξ ǫa1···aN n

a1
∂na2

∂ξ1
· · · ∂n

aN

∂ξN−1

(16.77)

The quantityQ is an integer topological invariant which characterizes the map from the surface (ξ1, . . . , ξN−1)
to the unit sphere |n̂| = 1. In mathematical parlance, Q is known as the Pontrjagin index of this map.

This analytical development recapitulates some basic topology. LetM be a topological space and consider
a map from the circle S1 toM. We can compose two such maps by merging the two circles, as shown in
fig. 16.19. Two maps are said to be homotopic if they can be smoothly deformed into each other. Any
two homotopic maps are said to belong to the same equivalence class or homotopy class. For generalM,
the homotopy classes may be multiplied using the composition law, resulting in a group structure. The
group is called the fundamental group of the manifold M, and is abbreviated π1(M). If M = S2, then
any such map can be smoothly contracted to a point on the 2-sphere, which is to say a trivial map. We
then have π1(M) = 0. IfM = S1, the maps can wind nontrivially, and the homotopy classes are labeled
by a single integer winding number: π1(S

1) = Z. The winding number of the composition of two such
maps is the sum of their individual winding numbers. IfM = T2, the maps can wind nontrivially around
either of the two cycles of the 2-torus. We then have π1(T

2) = Z2, and in general π1(T
n) = Zn. This

makes good sense, since an n-torus is topologically equivalent to a product of n circles. In some cases,
π1(M) can be nonabelian, as is the case whenM is the genus g = 2 structure shown in the right hand
panel of fig. 16.18.

In general we define the nth homotopy group πn(M) as the group under composition of maps from Sn to
M. For n ≥ 2, πn(M) is abelian. If dim(M) < n, then πn(M) = 0. In general, πn(S

n) = Z. These nth

homotopy classes of the n-sphere are labeled by their Pontrjagin index Q.

Finally, we ask what is Q in terms of the eigenvalues and eigenvectors of the linearized map

Mij =
∂Vi
∂xj

∣∣∣∣
x∗

. (16.78)
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For simple cases where all the λi are nonzero, we have

Q = sgn

(
N∏

i=1

λi

)
. (16.79)

16.6 Appendix : Example Problem

Consider the two-dimensional phase flow,

ẋ = 1
2x+ xy − 2x3

ẏ = 5
2y + xy − y2 .

(16.80)

(a) Find and classify all fixed points.

Solution : We have

ẋ = x
(
1
2 + y − 2x2

)

ẏ = y
(
5
2 + x− y

)
.

(16.81)

The matrix of first derivatives is

M =




∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y


 =




1
2 + y − 6x2 x

y 5
2 + x− 2y


 . (16.82)

There are six fixed points.

(x, y) = (0, 0) : The derivative matrix is

M =

(
1
2 0
0 5

2

)
. (16.83)

The determinant is D = 5
4 and the trace is T = 3. Since D < 1

4T
2 and T > 0, this is an unstable node.

(Duh! One can read off both eigenvalues are real and positive.) Eigenvalues: λ1 =
1
2 , λ2 =

5
2 .

(x, y) = (0, 52 ) : The derivative matrix is

M =

(
3 0
5
2 −5

2

)
, (16.84)

for which D = −15
2 and T = 1

2 . The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −5
2 ,

λ2 = 3.

(x, y) = (−1
2 , 0) : The derivative matrix is

M =

(
−1 −1

2
0 2

)
, (16.85)
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Figure 16.20: Sketch of phase flow for ẋ = 1
2x+ xy − 2x3, ẏ = 5

2y + xy − y2. Fixed point classifications
are in the text.

for which D = −2 and T = +1. The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −1,
λ2 = 2.

(x, y) = (12 , 0) : The derivative matrix is

M =

(
−1 1

2
0 3

)
, (16.86)

for which D = −3 and T = +2. The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −1,
λ2 = 3.

(x, y) = (32 , 4) : This is one root obtained by setting y = x+ 5
2 and the solving 1

2+y−2x2 = 3+x−2x2 = 0,
giving x = −1 and x = +3

2 . The derivative matrix is

M =

(
−9 3

2
4 −4

)
, (16.87)

for which D = 30 and T = −13. Since D < 1
4 T

2 and T < 0, this corresponds to a stable node.
Eigenvalues: λ1 = −10, λ2 = −3.

(x, y) = (−1, 32) : This is the second root obtained by setting y = x + 5
2 and the solving 1

2 + y − 2x2 =
3 + x− 2x2 = 0, giving x = −1 and x = +3

2 . The derivative matrix is

M =

(
−4 −1
3
2 −3

2

)
, (16.88)

for which D = 15
2 and T = −11

2 . Since D < 1
4 T

2 and T < 0, this corresponds to a stable node.
Eigenvalues: λ1 = −3, λ2 = −5

2 .
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(b) Sketch the phase flow.

Solution : The flow is sketched in fig. 16.20. Thanks to Evan Bierman for providing the Mathematica

code.
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Chapter 17

Maps, Strange Attractors, and Chaos

17.1 One-dimensional Maps

Consider the simple case of a one-dimensional map,

xn+1 = f(xn) . (17.1)

A fixed point of the map satisfies x = f(x). Writing the solution as x∗ and expanding about the fixed
point, we write x = x∗ + u and obtain

un+1 = f ′(x∗)un +O(u2) . (17.2)

Thus, the fixed point is stable if
∣∣f ′(x∗)

∣∣ < 1, since successive iterates of u then get smaller and smaller.
The fixed point is unstable if

∣∣f ′(x∗)
∣∣ > 1.

Perhaps the most important and most studied of the one-dimensional maps is the logistic map, where
f(x) = rx(1− x), defined on the interval x ∈ [0, 1]. This has a fixed point at x∗ = 1− r−1 if r > 1. We
then have f ′(x∗) = 2 − r, so the fixed point is stable if r ∈ (1, 3). What happens for r > 3? We can
explore the behavior of the iterated map by drawing a cobweb diagram, shown in fig. 17.1. We sketch,
on the same graph, the curves y = x (in blue) and y = f(x) (in black). Starting with a point x on the
line y = x, we move vertically until we reach the curve y = f(x). To iterate, we then move horizontally
to the line y = x and repeat the process. We see that for r = 3.4 the fixed point x∗ is unstable, but there
is a stable two-cycle, defined by the equations

x2 = rx1(1− x1)
x1 = rx2(1− x2) .

(17.3)

The second iterate of f(x) is then

f (2)(x) = f
(
f(x)

)
= r2x(1− x)

(
1− rx+ rx2

)
. (17.4)

Setting x = f (2)(x), we obtain a cubic equation. Since x− x∗ must be a factor, we can divide out by this
monomial and obtain a quadratic equation for x1 and x2. We find

x1,2 =
1 + r ±

√
(r + 1)(r − 3)

2r
. (17.5)

103
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Figure 17.1: Cobweb diagram showing iterations of the logistic map f(x) = rx(1−x) for r = 2.8 (upper
left), r = 3.4 (upper right), r = 3.5 (lower left), and r = 3.8 (lower right). Note the single stable fixed
point for r = 2.8, the stable two-cycle for r = 3.4, the stable four-cycle for r = 3.5, and the chaotic
behavior for r = 3.8.

How stable is this 2-cycle? We find

d

dx
f (2)(x) = r2(1− 2x1)(1 − 2x2) = −r2 + 2r + 4 . (17.6)

The condition that the 2-cycle be stable is then

− 1 < r2 − 2r − 4 < 1 =⇒ r ∈
[
3 , 1 +

√
6
]
. (17.7)

At r = 1 +
√
6 = 3.4494897 . . . there is a bifurcation to a 4-cycle, as can be seen in fig. 17.2.



17.1. ONE-DIMENSIONAL MAPS 105

Figure 17.2: Iterates of the logistic map f(x) = rx(1− x).

17.1.1 Lyapunov Exponents

The Lyapunov exponent λ(x) of the iterated map f(x) at point x is defined to be

λ(x) = lim
n→∞

1

n
ln

∣∣∣∣
df (n)(x)

dx

∣∣∣∣ = lim
n→∞

1

n

n∑

j=1

ln
∣∣f ′(xj)

∣∣ , (17.8)

where xj+1 ≡ f(xj). The significance of the Lyapunov exponent is the following. If Re
(
λ(x)

)
> 0 then

two initial conditions near x will exponentially separate under the iterated map. For the tent map,

f(x) =

{
2rx if x < 1

2

2r(1− x) if x ≥ 1
2 ,

(17.9)

one easily finds λ(x) = ln(2r) independent of x. Thus, if r > 1
2 the Lyapunov exponent is positive,

meaning that every neighboring pair of initial conditions will eventually separate exponentially under
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Figure 17.3: Lyapunov exponent (in red) for the logistic map.

repeated application of the map. The Lyapunov exponent for the logistic map is depicted in fig. 17.3.

17.1.2 Chaos in the logistic map

What happens in the logistic map for r > 1 +
√
6 ? At this point, the 2-cycle becomes unstable and a

stable 4-cycle develops. However, this soon goes unstable and is replaced by a stable 8-cycle, as the right
hand panel of fig. 17.2 shows. The first eight values of r where bifurcations occur are given by

r1 = 3 , r2 = 1 +
√
6 = 3.4494897 , r3 = 3.544096 , r4 = 3.564407 ,

r5 = 3.568759 , r6 = 3.569692 , r7 = 3.569891 , r8 = 3.569934 , . . .
(17.10)

Feigenbaum noticed that these numbers seemed to be converging exponentially. With the Ansatz

r∞ − rk =
c

δk
, (17.11)

one finds

δ =
rk − rk−1

rk+1 − rk
, (17.12)

and taking the limit k →∞ from the above data one finds

δ = 4.669202 , c = 2.637 , r∞ = 3.5699456 . (17.13)

There’s a very nifty way of thinking about the chaos in the logistic map at the special value r = 4. If we
define xn ≡ sin2θn, then we find

θn+1 = 2θn . (17.14)
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Figure 17.4: Iterates of the sine map f(x) = r sin(πx).

Now let us write

θ0 = π
∞∑

k=1

bk
2k

, (17.15)

where each bk is either 0 or 1. In other words, the {bk} are the digits in the binary decimal expansion of
θ0/π. Now θn = 2nθ0, hence

θn = π
∞∑

k=1

bn+k
2k

. (17.16)

We now see that the logistic map has the effect of shifting to the left the binary digits of θn/π to yield
θn+1/π. With each such shift, leftmost digit falls off the edge of the world, as it were, since it results in an
overall contribution to θn+1 which is zero modulo π. This very emphatically demonstrates the sensitive
dependence on initial conditions which is the hallmark of chaotic behavior, for eventually two very close
initial conditions, differing by ∆θ ∼ 2−m, will, after m iterations of the logistic map, come to differ by
O(1).

17.1.3 Intermittency

Successive period doubling is one route to chaos, as we’ve just seen. Another route is intermittency .
Intermittency works like this. At a particular value of our control parameter r, the map exhibits a stable
periodic cycle, such as the stable 3-cycle at r = 3.829, as shown in the bottom panel of fig. 17.5. If we
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Figure 17.5: Intermittency in the logistic map in the vicinity of the 3-cycle. Top panel: r = 3.828,
showing intermittent behavior. Bottom panel: r = 3.829, showing a stable 3-cycle.

then vary the control parameter slightly in a certain direction, the periodic behavior persists for a finite
number of iterations, followed by a burst , which is an interruption of the regular periodicity, followed
again by periodic behavior, ad infinitum. There are three types of intermittent behavior, depending on
whether the Lyapunov exponent λ goes through Re(λ) = 0 while Im(λ) = 0 (type-I intermittency), or
with Im(λ) = π (type-III intermittency), or, as is possible for two-dimensional maps, with Im(λ) = η, a
general real number.

17.2 Maps from Time-Dependent Hamiltonian Systems

17.2.1 Parametric Oscillator

Consider the equation

ẍ+ ω2
0(t)x = 0 , (17.17)

where the oscillation frequency is a function of time. Equivalently,

d

dt

(
x
ẋ

)
=

M(t)︷ ︸︸ ︷(
0 1

−ω2
0(t) 0

)
ϕ(t)︷︸︸︷(
x
ẋ

)
. (17.18)
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The formal solution is the path-ordered exponential,

ϕ(t) = P exp





t∫

0

dt′M(t′)



 ϕ(0) . (17.19)

Let’s consider an example in which

ω(t) =





(1 + ǫ)ω0 if 2nτ ≤ t ≤ (2n + 1)τ

(1− ǫ)ω0 if (2n+ 1)τ ≤ t ≤ (2n + 2)τ .

(17.20)

Define ϕn ≡ ϕ(2nτ). Then

ϕn+1 = exp(M−τ) exp(M+τ)ϕn ≡ U ϕn , (17.21)

where

M± =

(
0 1
−ω2

± 0

)
, (17.22)

with ω± ≡ (1 ± ǫ)ω0. Note that M2
± = −ω2

± I is a multiple of the identity. Evaluating the Taylor series
for the exponential, one finds

U± ≡ exp(M±t) =

(
cosω±τ ω−1

± sinω±τ
−ω± sinω±τ cosω±τ

)
, (17.23)

from which we derive the evolution matrix

U ≡ U−U+ =

(
cosω−τ ω−1

− sinω−τ
−ω− sinω−τ cosω−τ

)(
cosω+τ ω−1

+ sinω+τ

−ω+ sinω+τ cosω+τ

)
≡
(
a b
c d

)

with

a = cosω−τ cosω+τ −
ω+

ω−
sinω−τ sinω+τ

b =
1

ω+
cosω−τ sinω+τ +

1

ω−
sinω−τ cosω+τ

c = −ω+ cosω−τ sinω+τ − ω− sinω−τ cosω+τ

d = cosω−τ cosω+τ −
ω−
ω+

sinω−τ sinω+τ .

(17.24)

Note that U± are each symplectic, hence det exp(M±τ) = 1, and therefore U is also symplectic with
detU = 1. Also note that

P (λ) = det
(
U − λ · I

)
= λ2 − Tλ+∆ , (17.25)

where T = a+ d = Tr U and ∆ = ad− bc = det U . The eigenvalues of U are

λ± = 1
2T ± 1

2

√
T 2 − 4∆ . (17.26)
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Figure 17.6: Phase diagram for the parametric oscillator in the (θ, ǫ) plane. Thick black lines correspond
to T = ±2. Blue regions: |T | < 2. Red regions: T > 2. Magenta regions: T < −2.

In our case, ∆ = 1. There are two cases to consider:

|T | < 2 : λ+ = λ∗− = eiδ , δ = cos−1 1
2T

|T | > 2 : λ+ = λ−1
− = ±eµ , µ = cosh−1 1

2 |T | .
(17.27)

When |T | < 2, ϕ remains bounded; when |T | > 2, |ϕ| increases exponentially with time. Note that phase
space volumes are preserved by the dynamics.

To investigate more fully, let θ ≡ ω0τ . The period of the frequency oscillations is ∆t = 2τ , i.e. ωpump =
π/τ is the frequency at which the system is ‘pumped’, so

θ

π
=

ω0

ωpump

=
Tpump

T0
, (17.28)

where T0 = 2π/ω0 is the unperturbed natural frequency and Tpump = ∆t = 2τ . One finds T = TrU is
given by

T =
2cos(2θ)− 2ǫ2 cos(2ǫθ)

1− ǫ2 . (17.29)
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We are interested in the boundaries in the (θ, ǫ) plane where |T | = 2. Setting T = +2, we write θ = nπ+δ,
which means Tpump ≈ nT0. Expanding for small δ and ǫ, we obtain the relation

δ2 = ǫ4 θ2 ⇒ ǫ = ±
∣∣∣∣
δ

nπ

∣∣∣∣
1/2

. (17.30)

Setting T = −2, we write θ = (n+ 1
2)π + δ, i.e. Tpump ≈ (n + 1

2 )T0. This gives

δ2 = ǫ2 ⇒ ǫ = ±δ . (17.31)

The full phase diagram in the (θ, ǫ) plane is shown in Fig. 17.6. A physical example is pumping a swing.
By extending your legs periodically, you effectively change the length ℓ(t) of the pendulum, resulting in

a time-dependent ω0(t) =
√
g/ℓ(t).

17.2.2 Kicked dynamics

A related model is described by the kicked dynamics of the Hamiltonian

H(t) = T (p) + V (q)K(t) , (17.32)

where

K(t) = τ
∞∑

n=−∞
δ(t− nτ) (17.33)

is the kicking function. The potential thus winks on and off with period τ . Note that

lim
τ→0

K(t) = 1 . (17.34)

In the τ → 0 limit, the system is continuously kicked, and is equivalent to motion in a time-independent
external potential V (q).

The equations of motion are
q̇ = T ′(p) , ṗ = −V ′(q)K(t) . (17.35)

Integrating these equations, we obtain the map

qn+1 = qn + τ T ′(pn)

pn+1 = pn − τ V ′(qn+1) .
(17.36)

Note that the determinant of Jacobean of the map is unity:

det
∂(qn+1 , pn+1)

∂(qn , pn)
= det

(
1 τ T ′′(pn)

−τ V ′′(qn+1) 1− τ2 T ′′(pn)V
′′(qn+1)

)
= 1 . (17.37)

This means that the map preserves phase space volumes.

Consider, for example, the Hamiltonian H(t) = L2

2I − V cos(φ)K(t), where L is the angular momentum
conjugate to φ. This results in the map

φn+1 = φn + 2πǫ Jn

Jn+1 = Jn − ǫ sinφn+1 ,
(17.38)
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Figure 17.7: Top: the standard map, as defined in the text. Four values of the ǫ parameter are shown:
ǫ = 0.01 (left), ǫ = 0.2 (center), and ǫ = 0.4 (right). Bottom: details of the ǫ = 0.4 map.

where Jn = Ln/
√
2πIV and ǫ = τ

√
V/2πI . This is the standard map1, which we encountered earlier,

albeit in a slightly different form. In the limit ǫ→ 0, we may define φ̇ = (φn+1 − φn)/ǫ and J̇ = (Jn+1 −
Jn)/ǫ, and we recover the continuous time dynamics φ̇ = 2πJ and J̇ = − sinφ. These dynamics preserve
the energy function E = πJ2− cosφ. There is a separatrix at E = 1, given by J(φ) = ± 2

π

∣∣cos(φ/2)
∣∣. We

see from fig. 17.7 that this separatrix is the first structure to be replaced by a chaotic fuzz as ǫ increases
from zero to a small finite value.

Another well-studied system is the kicked Harper model , for which

H(t) = −V1 cos
(
2πp

P

)
− V2 cos

(
2πq

Q

)
K(t) . (17.39)

1The standard map us usually written in the form xn+1 = xn + Jn and Jn+1 = Jn − k sin(2πxn+1). We can recover our
version by rescaling φn = 2πxn, Jn ≡

√
k Jn and defining ǫ ≡

√
k.
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Figure 17.8: The kicked Harper map, with α = 2, and with ǫ = 0.01, 0.125, 0.2, and 5.0 (clockwise from
upper left). The phase space here is the unit torus, T2 = [0, 1] × [0, 1].

With x = q/Q and y = p/P , Hamilton’s equations generate the map

xn+1 = xn + ǫ α sin(2πyn)

yn+1 = yn −
ǫ

α
sin(2πxn+1) ,

(17.40)

where ǫ = 2πτ
√
V1V2/PQ and α =

√
V1/V2 are dimensionless parameters. In this case, the conserved

energy is

E = −α−1 cos(2πx)− α cos(2πy) . (17.41)

There are then two separatrices, at E = ±(α−α−1), with equations α cos(πy) = ± sin(πx) and α sin(πy) =
± cos(πx). Again, as is apparent from fig. 17.8, the separatrix is the first structure to be destroyed at
finite ǫ. This also occurs for the standard map – there is a transition to global stochasticity at a critical
value of ǫ.
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Note that the kicking function may be written as

K(t) = τ
∞∑

n=−∞
δ(t− nτ) =

∞∑

m=−∞
cos

(
2πmt

τ

)
, (17.42)

a particularly handy result known as the Poisson summation formula. This, a kicked Hamiltonian may
be written as

H(J, φ, t) = H0(J) + V (φ)
∞∑

m=−∞
cos

(
2πmt

τ

)
. (17.43)

The m = 0 term generates the continuous time dynamics φ̇ = ω0(J), J̇ = −V ′(φ). For the standard map,
these are the dynamics of a simple pendulum. The m 6= 0 terms are responsible for resonances and the
formation of so-called ‘stochastic layers’.

17.3 Local Stability and Lyapunov Exponents

17.3.1 The fate of nearly separated initial conditions under iteration

Consider a map T̂ acting on a phase space of dimension 2N (i.e. N position degrees of freedom). We ask
what is the fate of two nearby initial conditions, ξ0 and ξ0 + dξ, under the iterated map. Under the first
iteration, we have ξ0 → ξ1 = T̂ξ0 and

ξ0 + dξ −→ ξ1 +M(ξ0) dξ , (17.44)

where M(ξ) is a matrix given by the linearization of T̂ at ξ, viz.

Mij(ξ) =
∂(T̂ ξ)i
∂ξj

. (17.45)

Let’s iterate again. Clearly ξ1 → ξ2 = T̂ 2ξ0 and

ξ1 +M(ξ0) dξ −→ ξ2 +M(ξ1)M(ξ0) dξ . (17.46)

After n iterations, we clearly have T̂ nξ0 = ξn and

T̂ n(ξ0 + dξ) = ξn +M(ξn−1) · · ·M(ξ0) dξ , (17.47)

and we define R(n)(ξ) = M
(
T̂ nξ) · · ·M(T̂ξ)M(ξ), whose matrix elements may be written as R

(n)
ij (ξ) =

∂(T̂ nξ)i/∂ξj .

Since the map T̂ is presumed to be canonical, at each stage M(ξj) ∈ Sp(2N), and since the product of

symplectic matrices is a symplectic matrix, R(n)(ξ) ∈ Sp(2N). It is easy to see that for any real symplectic
matrix R, the eigenvalues come in unimodular conjugate pairs

{
eiδ, e−iδ

}
, in real pairs

{
λ, λ−1

}
with

λ ∈ R, or in quartets
{
λ, λ−1, λ∗, λ∗−1

}
with λ ∈ C, where λ∗ is the complex conjugate of λ. This
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follows from analysis of the characteristic polynomial P (λ) = det(λ−R) given the symplectic condition2

Rt JR = J. Let
{
λ
(n)
j (ξ)

}
be the eigenvalues of R(n)(ξ), with j ∈ {1, . . . , 2N}. One defines the Lyapunov

exponents,

νj(ξ) = lim
n→∞

1

n
ln
∣∣λ(n)j (ξ)

∣∣ . (17.48)

These may be ordered such that ν1 ≤ ν2 ≤ · · · ≤ ν2N . Positive Lyapunov exponents correspond to an
exponential stretching (as a function of the iteration number n), while negative ones correspond to an
exponential squeezing.

As an example, consider the Arnol’d cat map, which is an automorphism of the torus T2 = S1×S1, given
by3

qn+1 = (K + 1) qn + pn

pn+1 = Kqn + pn ,
(17.49)

where K ∈ Z, and where both qn and pn are defined modulo unity, so (qn, pn) ∈ [0, 1]× [0, 1]. Note that K
must be an integer in order for the map to be smooth on the torus, i.e. it is left unchanged by displacing
either coordinate by an integer distance. The map is already linear, hence we can read off

M =
∂(qn+1, pn+1)

∂(qn, pn)
=

(
K + 1 1
K 1

)
, (17.50)

which is independent of (qn, pn). The inverse map also has integer coefficients:

M−1 =

(
1 −1
−K K + 1

)
. (17.51)

Since detM = 1, the cat map is canonical, i.e. it preserves phase space volumes. The eigenvalues of M
are the roots of the characteristic polynomial P (λ) = λ2 − (K + 2)λ −K, and are given by

λ± = 1 + 1
2K ±

√
K + 1

4K
2 . (17.52)

Thus, for K ∈ {−4,−3,−2,−1, 0}, the eigenvalues come in pairs e±iδK , with δ−4 = π, δ−3 = 2
3π,

δ−2 = 1
2π, δ−1 = 1

3π, and δ0 = 0. For K < −4 or K > 0, the eigenvalues are (λ, λ−1) with λ > 1 and
0 < λ−1 < 1, corresponding, respectively, to stretching and squeezing. The Lyapunov exponents are
ν± = ln |λ±|.

17.3.2 Kolmogorov-Sinai entropy

Let Γ < ∞ be our phase space (at constant energy, for a Hamiltonian system), and {∆j} a partition
of disjoint sets whose union is Γ . The simplest arrangement to think of is for each ∆j to correspond to
a little hypercube; stacking up all the hypercube builds the entire phase space. Now apply the inverse

2One has P (λ) = det(λ−R) = det(λ−Rt) = det(λ+ JR−1
J) = det(λ−1 −R) · λ2N/ detR and therefore if λ is a root of the

characteristic polynomial, then so is λ−1. Since R = R∗, one also has P (λ∗) =
[

P (λ)
]∗
, hence if λ is a root, then so is λ∗.

From Pf(Rt
JR) = det(R)Pf(J), where Pf is the Pfaffian, one has detR = 1.

3The map in Eqn. 17.49 is a generalized version of Arnol’d’s original cat map, which had K = 1.
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Figure 17.9: The baker’s transformation involves stretching/squeezing and ‘folding’ (cutting and restack-
ing).

map T̂−1 to each ∆j, and form the intersections ∆jk ≡ ∆j ∩ T̂−1∆k. If
∑

j µ(∆j) = µ(Γ ) ≡ 1, then∑
j,k µ(∆jk) = 1. Iterating further, we obtain ∆jkl = ∆jk ≡ ∆j ∩ T̂−1∆k ∩ T̂−2∆l, etc.

The entropy of a distribution {pa} is defined to be S = −∑a pa ln pa. Accordingly we define

SL(∆) = −
∑

j1

· · ·
∑

jL

µ(∆j1···jL) lnµ(∆j1···jL) . (17.53)

This is a function of both the iteration number L as well as the initial set ∆ = {∆1, . . . ,∆r}, where r is
the number of subregions in our original partition. We then define the Kolmogorov-Sinai entropy to be

hKS ≡ sup
∆

lim
L→∞

1

L
SL(∆) . (17.54)

Here sup stands for supremum, meaning we maximize over all partitions ∆.

Consider, for example, the baker’s transformation (see Fig. 17.9), which stretches, cuts, stacks, and
compresses the torus according to

(q′, p′) = T̂ (q, p) =

{
(2q , 1

2p) if 0 ≤ p < 1
2

(2q − 1, 12p+
1
2) if 1

2 ≤ p < 1
(17.55)

It is not difficult to convince oneself that the KS entropy for the baker’s transformation is hKS = ln 2. On
the other hand, for a simple translation map which takes (q, p) → (q′, p′) = (q + α , p + β), it is easy to
see that hKS = 0. The KS entropy is related to the Lyapunov exponents through the formula

hKS =
∑

j

νj Θ(νj) . (17.56)
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The RHS is the sum over all the positive Lyapunov exponents γj > 0. Actually, this formula presumes
that the γj do not vary in phase space, but in general this is not the case. The more general result is
known as Pesin’s entropy formula,

hKS =

∫

Γ

dµ(ξ)
∑

j

νj(ξ)Θ
(
νj(ξ)

)
. (17.57)

17.4 The Lorenz Model and Chaos

17.4.1 Attractors

An attractor of a dynamical system ϕ̇ = V (ϕ) is the set of ϕ values that the system evolves to after a
sufficiently long time. For N = 1 the only possible attractors are stable fixed points. For N = 2, we have
stable nodes and spirals, but also stable limit cycles. For N > 2 the situation is qualitatively different,
and a fundamentally new type of set, the strange attractor, emerges.

A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there
exists at least one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like
a piece of chewing gum. Now fold the rectangle over, stretch it, and squash it so that it maintains its
original volume. Keep doing this. Two points which started out nearby to each other will eventually,
after a sufficiently large number of folds and stretches, grow far apart. Formally, a strange attractor
is a fractal , and may have noninteger Hausdorff dimension. (We won’t discuss fractals and Hausdorff
dimension here.)

The canonical example of an N = 3 strange attractor is found in the Lorenz model. E. N. Lorenz, in
a seminal paper from the early 1960’s, reduced the essential physics of the coupled partial differential
equations describing Rayleigh-Benard convection (a fluid slab of finite thickness, heated from below –
in Lorenz’s case a model of the atmosphere warmed by the ocean) to a set of twelve coupled nonlinear
ordinary differential equations. Lorenz’s intuition was that his weather model should exhibit recognizable
patterns over time. What he found instead was that in some cases, changing his initial conditions by a
part in a thousand rapidly led to totally different behavior. This sensitive dependence on initial conditions

is a hallmark of chaotic systems.

17.4.2 The Lorenz equations

The essential physics (or mathematics?) of Lorenz’s N = 12 system is elicited by the reduced N = 3
system,

Ẋ = −σX + σY

Ẏ = rX − Y −XZ
Ż = XY − bZ ,

(17.58)

where σ, r, and b are all real and positive. Here t is the familiar time variable (appropriately scaled),
and (X,Y,Z) represent linear combinations of physical fields, such as global wind current and poleward
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Figure 17.10: (a) Evolution of the Lorenz equations for σ = 10, b = 8
3 , and r = 15, with initial conditions

(X,Y,Z) = (0, 1, 0), projected onto the (X,Z) plane. The attractor is a stable spiral. (b) - (d) Chaotic
regime (r = 28) evolution showing sensitive dependence on initial conditions. The magenta and green
curves differ in their initial X coordinate by 10−5. (Source: Wikipedia)

temperature gradient. These equations possess a symmetry under (X,Y,Z)→ (−X,−Y,Z), but what is
most important is the presence of nonlinearities in the second and third equations.

The Lorenz system is dissipative because phase space volumes contract:

∇·V =
∂Ẋ

∂X
+
∂Ẏ

∂Y
+
∂Ż

∂Z
= −(σ + b+ 1) . (17.59)

Thus, volumes contract under the flow. Another property is the following. Let

F (X,Y,Z) = 1
2X

2 + 1
2Y

2 + 1
2(Z − r − σ)2 . (17.60)

Then

Ḟ = XẊ + Y Ẏ + (Z − r − σ)Ż
= −σX2 − Y 2 − b

(
Z − 1

2r − 1
2σ
)2

+ 1
4b(r + σ)2 .

(17.61)

Thus, Ḟ < 0 outside an ellipsoid, which means that all solutions must remain bounded in phase space
for all times.

17.4.3 Fixed point analysis

Setting Ẋ = Ẏ = Ż = 0, we find three solutions. One solution which is always present is X∗ = Y ∗ =
Z∗ = 0. If we linearize about this solution, we obtain

d

dt



δX
δY
δZ


 =



−σ σ 0
r −1 0
0 0 −b





δX
δY
δZ


 . (17.62)

The eigenvalues of the linearized dynamics are found to be

λ1,2 = −1
2(1 + σ)± 1

2

√
(1 + σ)2 + 4σ(r − 1) (17.63)

λ3 = −b ,
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Figure 17.11: Left: Evolution of the Lorenz equations for σ = 10, b = 8
3 , and r = 28, with initial

conditions (X0, Y0, Z0) = (0, 1, 0), showing the ‘strange attractor’. Right: The Lorenz attractor, projected
onto the (X,Z) plane. (Source: Wikipedia)

and thus if 0 < r < 1 all three eigenvalues are negative, and the fixed point is a stable node. If, however,
r > 1, then λ2 > 0 and the fixed point is attractive in two directions but repulsive in a third, corresponding
to a three-dimensional version of a saddle point.

For r > 1, a new pair of solutions emerges, with

X∗ = Y ∗ = ±
√
b(r − 1) , Z∗ = r − 1 . (17.64)

Linearizing about either one of these fixed points, we find

d

dt



δX
δY
δZ


 =



−σ σ 0
1 −1 −X∗

X∗ X∗ −b





δX
δY
δZ


 . (17.65)

The characteristic polynomial of the linearized map is

P (λ) = λ3 + (b+ σ + 1)λ2 + b(σ + r)λ+ 2b(r − 1) . (17.66)

Since b, σ, and r are all positive, P ′(λ) > 0 for all λ ≥ 0. Since P (0) = 2b(r − 1) > 0, we may conclude

that there is always at least one eigenvalue λ1 which is real and negative. The remaining two eigenvalues

are either both real and negative, or else they occur as a complex conjugate pair: λ2,3 = α ± iβ. The
fixed point is stable provided α < 0. The stability boundary lies at α = 0. Thus, we set

P (iβ) =
[
2b(r − 1)− (b+ σ + 1)β2

]
+ i
[
b(σ + r)− β2

]
β = 0 , (17.67)

which results in two equations. Solving these two equations for r(σ, b), we find

rc =
σ(σ + b+ 3)

σ − b− 1
. (17.68)
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Figure 17.12: X(t) for the Lorenz equations with σ = 10, b = 8
3 , r = 28, and initial conditions

(X0, Y0, Z0) = (−2.7,−3.9, 15.8), and initial conditions (X0, Y0, Z0) = (−2.7001,−3.9, 15.8).

The fixed point is stable for r ∈
[
1, rc

]
. These fixed points correspond to steady convection. The approach

to this fixed point is shown in Fig. 17.10.

The Lorenz system has commonly been studied with σ = 10 and b = 8
3 . This means that the volume

collapse is very rapid, since∇·V = −41
3 ≈ −13.67, leading to a volume contraction of e−41/3 ≃ 1.16×10−6

per unit time. For these parameters, one also has rc =
470
19 ≈ 24.74. The capture by the strange attractor

is shown in Fig. 17.11.

In addition to the new pair of fixed points, a strange attractor appears for r > rs ≃ 24.06. In the
narrow interval r ∈ [24.06, 24.74] there are then three stable attractors, two of which correspond to
steady convection and the third to chaos. Over this interval, there is also hysteresis. I.e. starting with
a convective state for r < 24.06, the system remains in the convective state until r = 24.74, when the
convective fixed point becomes unstable. The system is then driven to the strange attractor, corresponding
to chaotic dynamics. Reversing the direction of r, the system remains chaotic until r = 24.06, when the
strange attractor loses its own stability.

17.4.4 Poincaré section

One method used by Lorenz in analyzing his system was to plot its Poincaré section. This entails placing
one constraint on the coordinates (X,Y,Z) to define a two-dimensional surface Σ, and then considering
the intersection of this surface Σ with a given phase curve for the Lorenz system. Lorenz chose to set
Ż = 0, which yields the surface Z = b−1XY . Note that since Ż = 0, Z(t) takes its maximum and
minimum values on this surface; see the left panel of Fig. 17.13. By plotting the values of the maxima
ZN as the integral curve successively passed through this surface, Lorenz obtained results such as those
shown in the right panel of Fig. 17.13, which has the form of a one-dimensional map and may be analyzed
as such. Thus, chaos in the Lorenz attractor can be related to chaos in a particular one-dimensional map,
known as the return map for the Lorenz system.
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Figure 17.13: Left: Lorenz attractor for b = 8
3 , σ = 10, and r = 28. Maxima of Z are depicted by stars.

Right: Relation between successive maxima ZN along the strange attractor.

17.4.5 Rössler System

The strange attractor is one of the hallmarks of the Lorenz system. Another simple dynamical system
which possesses a strange attractor is the Rössler system. This is also described by N = 3 coupled
ordinary differential equations, viz.

Ẋ = −Y − Z
Ẏ = Z + aY

Ż = b+ Z(X − c) ,
(17.69)

typically studied as a function of c for a = b = 1
5 . In Fig. 17.15, we present results from work by

Crutchfield et al. (1980). The transition from simple limit cycle to strange attractor proceeds via a
sequence of period-doubling bifurcations, as shown in the figure. A convenient diagnostic for examining
this period-doubling route to chaos is the power spectral density, or PSD, defined for a function F (t) as

ΦF (ω) =

∣∣∣∣∣

∞∫

−∞

dω

2π
F (t) e−iωt

∣∣∣∣∣

2

=
∣∣F̂ (ω)

∣∣2 . (17.70)

As one sees in Fig. 17.15, as c is increased past each critical value, the PSD exhibits a series of frequency
halvings (i.e. period doublings). All harmonics of the lowest frequency peak are present. In the chaotic

region, where c > c∞ ≈ 4.20, the PSD also includes a noisy broadband background.
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Figure 17.14: Period doubling bifurcations of the Rössler attractor, projected onto the (x, y) plane, for
nine values of c, with a = b = 1

10 .

Figure 17.15: Period doubling bifurcations of the Rössler attractor with a = b = 1
5 , projected onto the

(X,Y) plane, for eight values of c, and corresponding power spectral density for Z(t). (a) c = 2.6; (b)
c = 3.5; (c) c = 4.1; (d) c = 4.18; (e) c = 4.21; (f) c = 4.23; (g) c = 4.30; (h) c = 4.60.



Chapter 18

Continuum Mechanics

18.1 Continuum Mechanics of the String

18.1.1 Lagrangian formulation

Consider a string of linear mass density µ(x) under tension τ(x).1 Let the string move in a plane, such
that its shape is described by a smooth function y(x), the vertical displacement of the string at horizontal
position x, as depicted in fig. 18.1. The action is a functional of the height y(x, t), where the coordinate
along the string, x, and time, t, are the two independent variables. Consider a differential element of the
string extending from x to x+dx. The change in length relative to the unstretched (y = 0) configuration
is

dℓ =
√
dx2 + dy2 − dx =

1

2

(
∂y

∂x

)2
dx+O

(
dx2
)
. (18.1)

The differential potential energy is then

dU = τ(x) dℓ = 1
2 τ(x)

(
∂y

∂x

)2
dx . (18.2)

The differential kinetic energy is simply

dT = 1
2 µ(x)

(
∂y

∂t

)2
dx . (18.3)

We can then write

L =

∫
dxL , (18.4)

where the Lagrangian density L is

L(y, ẏ, y′;x, t) = 1
2 µ(x)

(
∂y

∂t

)2

− 1
2 τ(x)

(
∂y

∂x

)2

. (18.5)

1As an example of a string with a position-dependent tension, consider a string of length ℓ freely suspended from one end
at z = 0 in a gravitational field. The tension is then τ (z) = µg (ℓ− z).

123
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Figure 18.1: A string is described by the vertical displacement field y(x, t).

The action for the string is now a double integral,

S =

tb∫

ta

dt

xb∫

xa

dx L(y, ẏ, y′;x, t) , (18.6)

where y(x, t) is the vertical displacement field. Typically, we have L = 1
2µẏ

2 − 1
2τy

′2. The first variation
of S is

δS =

xb∫

xa

dx

tb∫

ta

dt

[
∂L
∂y
− ∂

∂x

(
∂L
∂y′

)
− ∂

∂t

(
∂L
∂ẏ

)]
δy

+

xb∫

xa

dx

[
∂L
∂ẏ

δy

]t=tb

t=ta

+

tb∫

ta

dt

[
∂L
∂y′

δy

]x=xa

x=xb

,

(18.7)

which simply recapitulates the general result from eqn. 18.181. There are two boundary terms, one of
which is an integral over time and the other an integral over space. The first boundary term vanishes
provided δy(x, ta) = δy(x, tb) = 0. The second boundary term vanishes provided τ(x) y′(x) δy(x) = 0 at
x = xa and x = xb, for all t. Assuming τ(x) does not vanish, this can happen in one of two ways: at each
endpoint either y(x) is fixed or y′(x) vanishes.

Assuming that either y(x) is fixed or y′(x) = 0 at the endpoints x = xa and x = xb, the Euler-Lagrange
equations for the string are obtained by setting δS = 0:

0 =
δS

δy(x, t)
=
∂L
∂y
− ∂

∂t

(
∂L
∂ẏ

)
− ∂

∂x

(
∂L
∂y′

)

=
∂

∂x

[
τ(x)

∂y

∂x

]
− µ(x) ∂

2y

∂t2
,

(18.8)

where y′ = ∂y
∂x and ẏ = ∂y

∂t . When τ(x) = τ and µ(x) = µ are both constants, we obtain the Helmholtz
equation,

1

c2
∂2y

∂t2
− ∂2y

∂x2
= 0 , (18.9)

which is the wave equation for the string, where c =
√
τ/µ has dimensions of velocity. We will now see

that c is the speed of wave propagation on the string.
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18.1.2 d’Alembert’s Solution to the Wave Equation

Let us define two new variables,

u ≡ x− ct , v ≡ x+ ct . (18.10)

We then have

∂

∂x
=

∂u

∂x

∂

∂u
+

∂v

∂x

∂

∂v
=

∂

∂u
+

∂

∂v

1

c

∂

∂t
=

1

c

∂u

∂t

∂

∂u
+

1

c

∂v

∂t

∂

∂v
= − ∂

∂u
+

∂

∂v
.

(18.11)

Thus,
1

c2
∂2

∂t2
− ∂2

∂x2
= −4 ∂2

∂u ∂v
. (18.12)

Thus, the wave equation may be solved:

∂2y

∂u ∂v
= 0 =⇒ y(u, v) = f(u) + g(v) , (18.13)

where f(u) and g(v) are arbitrary functions. For the moment, we work with an infinite string, so we have
no spatial boundary conditions to satisfy. Note that f(u) describes a right-moving disturbance, and g(v)
describes a left-moving disturbance:

y(x, t) = f(x− ct) + g(x+ ct) . (18.14)

We do, however, have boundary conditions in time. At t = 0, the configuration of the string is given by
y(x, 0), and its instantaneous vertical velocity is ẏ(x, 0). We then have

y(x, 0) = f(x) + g(x)

ẏ(x, 0) = −c f ′(x) + c g′(x) ,
(18.15)

hence

f ′(x) = 1
2 y

′(x, 0) − 1
2c ẏ(x, 0)

g′(x) = 1
2 y

′(x, 0) + 1
2c ẏ(x, 0) ,

(18.16)

and integrating we obtain the right and left moving components

f(ξ) = 1
2 y(ξ, 0) − 1

2c

ξ∫

0

dξ′ ẏ(ξ′, 0) − C

g(ξ) = 1
2 y(ξ, 0) +

1
2c

ξ∫

0

dξ′ ẏ(ξ′, 0) + C ,

(18.17)
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where C is an arbitrary constant. Adding these together, we obtain the full solution

y(x, t) = 1
2

[
y(x− ct, 0) + y(x+ ct, 0)

]
+ 1

2c

x+ct∫

x−ct

dξ ẏ(ξ, 0) , (18.18)

valid for all times.

18.1.3 Energy density and energy current

The Hamiltonian density for a string is

H = ℘ ẏ − L , (18.19)

where ℘ = ∂L/∂ẏ = µ ẏ is the momentum density transverse to the string. Thus,

H =
℘2

2µ
+ 1

2τ y
′2 . (18.20)

Expressed in terms of ẏ rather than ℘, this is the energy density E ,

E = 1
2µ ẏ

2 + 1
2τ y

′2 . (18.21)

We now evaluate Ė for a solution to the equations of motion:

∂E
∂t

= µ
∂y

∂t

∂2y

∂t2
+ τ

∂y

∂x

∂2y

∂t ∂x
=
∂y

∂t

∂

∂x

(
τ
∂y

∂x

)
+ τ

∂y

∂x

∂2y

∂t ∂x

=
∂

∂x

[
τ
∂y

∂x

∂y

∂t

]
≡ −∂jE

∂x
,

(18.22)

where the energy current density (or energy flux) along the string is

jE = −τ ∂y
∂x

∂y

∂t
. (18.23)

We therefore have that solutions of the equation of motion also obey the energy continuity equation

∂E
∂t

+
∂jE
∂x

= 0 . (18.24)

Let us integrate the above equation between points x1 and x2. We obtain

∂

∂t

x2∫

x1

dx E(x, t) = −
x2∫

x1

dx
∂jE (x, t)
∂x

= jE(x1, t)− jE(x2, t) , (18.25)

which says that the time rate of change of the energy contained in the interval
[
x1, x2

]
is equal to the

difference between the entering and exiting energy flux.
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When τ(x) = τ and µ(x) = µ, we have

y(x, t) = f(x− ct) + g(x+ ct) (18.26)

and we find

E(x, t) = τ [f ′(x− ct)
]2

+ τ
[
g′(x+ ct)

]2

jE(x, t) = cτ
[
f ′(x− ct)

]2 − cτ
[
g′(x+ ct)

]2
,

(18.27)

which are each sums over right-moving and left-moving contributions.

Another example is the Klein-Gordon system, for which the Lagrangian density is

L = 1
2µẏ

2 − 1
2τy

′2 − 1
2βy

2 . (18.28)

One obtains the equation of motion µÿ = τy′′ − βy and the energy density

E = 1
2µẏ

2 + 1
2τy

′2 + 1
2βy

2 . (18.29)

It is left as an exercise to the student to check that the energy current, jE , is the same as in the Helmholtz
case: jE = −τ ẏ y′. Energy continuity is again given by ∂t E+∂x jE = 0. Note that solutions to the Klein-
Gordon equation of motion are not of the D’Alembert form.

Momentum flux density and stress energy tensor

Let’s now examine the spatial derivative E ′. For the Helmholtz equation, E = 1
2µẏ

2 + 1
2τy

′2. We assume
µ(x) = µ and τ(x) = τ are constant. Then

∂E
∂x

= µ ẏ ẏ′ + τ y′y′′ =
∂

∂t

(
µ ẏ y′

)
, (18.30)

where we have invoked the equation of motion τ y′′ = µ ÿ. Thus, we may write

∂Π

∂t
+
∂jΠ
∂x

= 0 , (18.31)

where

Π = −µ ∂y
∂t

∂y

∂x
=
jE
c2

, jΠ = E . (18.32)

is the momentum flux density along the string . Eqn. 18.31 is thus a continuity equation for momentum,
with the energy density playing the role of the momentum current . Note that Π and ℘ = µẏ have
the same dimensions, but the former is the momentum density along the string while the latter is the
momentum density transverse to the string . We may now write

(
∂
∂t

∂
∂x

)
Tµ

ν︷ ︸︸ ︷(
E −Π
jE −jΠ

)
= 0 , (18.33)
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where Π = jE/c
2 and jΠ = E for the Helmholtz model. In component notation this is neatly expressed

as ∂µ T
µ
ν = 0, where T µν is the stress-energy tensor and ∂µ =

(
∂t , ∂x

)
.

Below in Eqn. 18.184, we will see how the general result for the stress-energy tensor is

T µν =
∂L

∂(∂µ y)
∂ν y − δµν L , (18.34)

where µ, ν ∈ {0, 1}. For L = 1
2µẏ

2 − 1
2τy

′2, we recover the stress-energy tensor for the Helmholtz model

in Eqn. 18.33. For the Klein-Gordon model, L = 1
2µẏ

2 − 1
2τy

′2 − 1
2βy

2, we find once again T 0
1 = −Π

but T 1
1 = −1

2µẏ
2 − 1

2τy
′2 + 1

2βy
2 so T 1

1 6= −E .

Energy and momentum continuity in electrodynamics

A similar energy continuity equation pertains in electrodynamics. Recall E = 1
8π (E

2 +B2) is the energy
density. We then have

∂E
∂t

=
1

4π

(
E · ∂E

∂t
+B · ∂B

∂t

)

=
1

4π
E · (c∇×B − 4πJ) +

1

4π
B · (−c∇×E)

= −E · J −∇·

Poynting vector S︷ ︸︸ ︷( c

4π
E ×B

)
.

(18.35)

Thus,
∂E
∂t

+∇ · S = −J ·E , (18.36)

which resembles a continuity equation, but with a ‘sink’ term on the RHS to account for the local power
dissipated. If J = σE, where σ is the conductivity, then J ·E = σE2, which accounts for Ohmic

dissipation.

The stress-energy tensor for Maxwell theory is given by

T µν =




E −Sx/c −Sy/c −Sz/c
Sx/c σxx σxy σxz
Sy/c σyx σyy σyz
Sz/c σzx σzy σzz


 (18.37)

where E = 1
8π (E

2 +B2) is the energy density, S = c
4πE ×B is the Poynting vector, and

σij =
1

4π

{
−EiEj −BiBj + 1

2δij
(
E2 +B2

)}
(18.38)

is the Maxwell stress tensor . One again has ∂µ T
µ
ν = 0, this time with ∂µ =

(
1
c∂t , ∂x , ∂y , ∂z

)
.
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18.1.4 Reflection at an interface

Consider a semi-infinite string on the interval
[
0,∞

]
, with y(0, t) = 0. We can still invoke d’Alembert’s

solution, y(x, t) = f(x− ct) + g(x + ct), but we must demand

y(0, t) = f(−ct) + g(ct) = 0 ⇒ f(ξ) = −g(−ξ) . (18.39)

Thus,
y(x, t) = g(ct+ x)− g(ct − x) . (18.40)

Now suppose g(ξ) describes a pulse, and is nonzero only within a neighborhood of ξ = 0. For large
negative values of t, the right-moving part, −g(ct − x), is negligible everywhere, since x > 0 means that
the argument ct − x is always large and negative. On the other hand, the left moving part g(ct + x)
is nonzero for x ≈ −ct > 0. Thus, for t < 0 we have a left-moving pulse incident from the right. For
t > 0, the situation is reversed, and the left-moving component is negligible, and we have a right moving
reflected wave. However, the minus sign in eqn. 18.39 means that the reflected wave is inverted.

If instead of fixing the endpoint at x = 0 we attach this end of the string to a massless ring which
frictionlessly slides up and down a vertical post, then we must have y′(0, t) = 0, else there is a finite vertical
force on the massless ring, resulting in infinite acceleration. We again write y(x, t) = f(x−ct)+g(x+ct),
and we invoke

y′(0, t) = f ′(−ct) + g′(ct) ⇒ f ′(ξ) = −g′(−ξ) , (18.41)

which, upon integration, yields f(ξ) = g(−ξ), and therefore

y(x, t) = g(ct+ x) + g(ct − x) . (18.42)

The reflected pulse is now ‘right-side up’, in contrast to the situation with a fixed endpoint.

18.1.5 Mass point on a string

Next, consider the case depicted in Fig. 18.4, where a point mass m is affixed to an infinite string at
x = 0. Let us suppose that at large negative values of t, a right moving wave f(ct− x) is incident from
the left. The full solution may then be written as a sum of incident, reflected, and transmitted waves:

x < 0 : y(x, t) = f(ct− x) + g(ct+ x)

x > 0 : y(x, t) = h(ct− x) .
(18.43)

Figure 18.2: Reflection of a pulse at an interface at x = 0, with y(0, t) = 0.
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Figure 18.3: Reflection of a pulse at an interface at x = 0, with y′(0, t) = 0.

At x = 0, we invoke Newton’s second Law, F = ma:

mÿ(0, t) = τ y′(0+, t)− τ y′(0−, t) . (18.44)

Any discontinuity in the derivative y′(x, t) at x = 0 results in an acceleration of the point mass. Note
that

y′(0−, t) = −f ′(ct) + g′(ct) , y′(0+, t) = −h′(ct) . (18.45)

Further invoking continuity at x = 0, i.e. y(0−, t) = y(0+, t), we have

h(ξ) = f(ξ) + g(ξ) , (18.46)

and eqn. 18.44 becomes

g′′(ξ) +
2τ

mc2
g′(ξ) = −f ′′(ξ) . (18.47)

We solve this equation by Fourier analysis:

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , f̂(k) =

∞∫

−∞

dξ f(ξ) e−ikξ . (18.48)

Defining κ ≡ 2τ/mc2 = 2µ/m, we have

[
− k2 + iκk

]
ĝ(k) = k2 f̂(k) . (18.49)

We may now write ĝ(k) = r(k) f̂(k) and ĥ(k) = t(k) f̂(k), where

r(k) = − k

k − iκ , t(k) = − iκ

k − iκ (18.50)

are the reflection and transmission amplitudes, respectively.

Energy conservation

Note that t(k) = 1+r(k). This relation follows from continuity at x = 0, which entails h(ξ) = f(ξ)+g(ξ),
hence ĥ(k) = f̂(k) + ĝ(k). What is also true – if there is no dissipation – is

∣∣r(k)
∣∣2 +

∣∣t(k)
∣∣2 = 1 , (18.51)
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Figure 18.4: Reflection and transmission at an impurity. A point mass m is affixed to an infinite string
at x = 0.

which is a statement of energy conservation. Integrating the energy density of the string itself, one finds

Estring(t) =

∞∫

−∞

dx
(
1
2µẏ

2 + 1
2τy

′2
)

= τ

∞∫

ct

dξ
[
f ′(ξ)

]2
+ τ

ct∫

−∞

dξ
([
g′(ξ)

]2
+
[
h′(ξ)

]2)
.

(18.52)

What is missing from this expression is the kinetic energy of the mass point. However, as t→ ±∞, the
kinetic energy of the mass point vanishes; it starts from rest, and as t → ∞ it shakes off all its energy
into waves on the string. Therefore

Estring(−∞) = τ

∞∫

−∞

dξ
[
f ′(ξ)

]2
= τ

∞∫

−∞

dk

2π
k2
∣∣f̂(k)

∣∣2

Estring(+∞) = τ

∞∫

−∞

dξ
([
g′(ξ)

]2
+
[
h′(ξ)

]2)
= τ

∞∫

−∞

dk

2π
k2
(∣∣r(k)

∣∣2 +
∣∣t(k)

∣∣2
)∣∣f̂(k)

∣∣2 ,

(18.53)

and since the profile f̂(k) is arbitrary we conclude that Eqn. 18.51 must hold for every value of the

wavevector k. It must be stressed energy conservation holds only if there is no dissipation. Dissipation
could be modeled by adding a friction term −γ ẏ(0, t) to the RHS of Eqn. 18.44. In this case, dEstring(t)/dt
would be negative, corresponding to the energy loss due to friction.
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Real space form of the solution

Getting back to our solution, in real space we have

h(ξ) =

∞∫

−∞

dk

2π
t(k) f̂ (k) eikξ

=

∞∫

−∞

dξ′
[ ∞∫

−∞

dk

2π
t(k) eik(ξ−ξ

′)

]
f(ξ′) ≡

∞∫

−∞

dξ′ T (ξ − ξ′) f(ξ′) ,
(18.54)

where

T (ξ − ξ′) =
∞∫

−∞

dk

2π
t(k) eik(ξ−ξ

′) , (18.55)

is the transmission kernel in real space. For our example with r(k) = −iκ/(k − iκ), the integral is done
easily using the method of contour integration:

T (ξ − ξ′) =
∞∫

−∞

dk

2π

−iκ
k − iκ e

ik(ξ−ξ′) = κ e−κ(ξ−ξ
′)Θ(ξ − ξ′) . (18.56)

Therefore,

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ
′) f(ξ′) , (18.57)

and of course g(ξ) = h(ξ)− f(ξ). Note that m =∞ means κ = 0, in which case r(k) = −1 and t(k) = 0.
Thus we recover the inversion of the pulse shape under reflection found earlier.

For example, let the incident pulse shape be f(ξ) = bΘ
(
a− |ξ|

)
. Then

h(ξ) = κ

ξ∫

−∞

dξ′ e−κ(ξ−ξ
′) bΘ(a− ξ′)Θ(a+ ξ′)

= b e−κξ
[
eκmin(a,ξ) − e−κa

]
Θ(ξ + a) .

(18.58)

Taking cases,

h(ξ) =





0 if ξ < −a
b
(
1− e−κ(a+ξ)

)
if − a < ξ < a

2b e−κξ sinh(κa) if ξ > a .

(18.59)

In Fig. 18.5 we show the reflection and transmission of this square pulse for two different values of κa.
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Figure 18.5: Reflection and transmission of a square wave pulse by a point mass at x = 0. The
configuration of the string is shown for six different times, for κa = 0.5 (left panel) and κa = 5.0
(right panel). Note that the κa = 0.5 case, which corresponds to a large mass m = 2µ/κ, results in
strong reflection with inversion, and weak transmission. For large κ, corresponding to small mass m, the
reflection is weak and the transmission is strong.

18.1.6 Interface between strings of different mass density

Consider the situation in fig. 18.6, where the string for x < 0 is of density µL and for x > 0 is of density
µR. The d’Alembert solution in the two regions, with an incoming wave from the left, is

x < 0: y(x, t) = f(cLt− x) + g(cLt+ x)

x > 0: y(x, t) = h(cRt− x) .
(18.60)

At x = 0 we have

f(cLt) + g(cLt) = h(cRt)

−f ′(cLt) + g′(cLt) = −h′(cRt) ,
(18.61)

where the second equation follows from τ y′(0+, t) = τ y′(0−, t), so there is no finite vertical force on

the infinitesimal interval bounding x = 0, which contains infinitesimal mass. Defining α ≡ cR/cL, we
integrate the second of these equations and have

f(ξ) + g(ξ) = h(α ξ) , f(ξ)− g(ξ) = α−1 h(α ξ) . (18.62)



134 CHAPTER 18. CONTINUUM MECHANICS

Figure 18.6: A string formed from two semi-infinite regions of different densities.

Note that y(±∞, 0) = 0 fixes the constant of integration. The solution is then

g(ξ) =
α− 1

α+ 1
f(ξ) , h(ξ) =

2α

α+ 1
f(ξ/α) . (18.63)

Thus,

x < 0: y(x, t) = f
(
cLt− x

)
+

(
α− 1

α+ 1

)
f
(
cLt+ x

)

x > 0: y(x, t) =
2α

α+ 1
f
(
(cRt− x)/α

)
.

(18.64)

It is instrutive to compute the total energy in the string. For large negative values of the time t, the
entire disturbance is confined to the region x < 0. The energy is

E(−∞) = τ

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (18.65)

For large positive times, the wave consists of the left-moving reflected g(ξ) component in the region x < 0
and the right-moving transmitted component h(ξ) in the region x > 0. The energy in the reflected wave
is

EL(+∞) = τ

(
α− 1

α+ 1

)2 ∞∫

−∞

dξ
[
f ′(ξ)

]2
. (18.66)

For the transmitted portion, we use

y′(x > 0, t) =
2

α+ 1
f ′
(
(cRt− x)/α

)
(18.67)

to obtain

ER(∞) =
4τ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ/α)

]2
=

4ατ

(α+ 1)2

∞∫

−∞

dξ
[
f ′(ξ)

]2
. (18.68)

Thus, EL(∞) + ER(∞) = E(−∞), and energy is conserved.
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18.1.7 Finite Strings : Bernoulli’s Solution

Suppose xa = 0 and xb = L are the boundaries of the string, where y(0, t) = y(L, t) = 0. Again we write

y(x, t) = f(x− ct) + g(x+ ct) . (18.69)

Applying the boundary condition at xa = 0 gives, as earlier,

y(x, t) = g(ct+ x)− g(ct − x) . (18.70)

Next, we apply the boundary condition at xb = L, which results in

g(ct + L)− g(ct− L) = 0 =⇒ g(ξ) = g(ξ + 2L) . (18.71)

Thus, g(ξ) is periodic, with period 2L. Any such function may be written as a Fourier sum,

g(ξ) =

∞∑

n=1

{
An cos

(
nπξ

L

)
+ Bn sin

(
nπξ

L

)}
. (18.72)

The full solution for y(x, t) is then

y(x, t) = g(ct+ x)− g(ct − x)

=

(
2

µL

)1/2 ∞∑

n=1

sin

(
nπx

L

){
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)}
,

(18.73)

where An =
√
2µLBn and Bn = −√2µLAn. This is known as Bernoulli’s solution.

We define the functions

ψn(x) ≡
(

2

µL

)1/2
sin

(
nπx

L

)
. (18.74)

We also write
kn ≡

nπx

L
, ωn ≡

nπc

L
, n = 1, 2, 3, . . . ,∞ . (18.75)

Thus, ψn(x) =
√

2/µL sin(knx) has (n + 1) nodes at x = jL/n, for j ∈ {0, . . . , n}. Note that

〈
ψm
∣∣ψn

〉
≡

L∫

0

dxµψm(x)ψn(x) = δmn . (18.76)

Furthermore, this basis is complete:

µ

∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′) . (18.77)

Our general solution is thus equivalent to

y(x, 0) =

∞∑

n=1

An ψn(x) , ẏ(x, 0) =

∞∑

n=1

nπc

L
Bn ψn(x) . (18.78)
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Figure 18.7: Evolution of a string with fixed ends starting from an isosceles triangle shape.

The Fourier coefficients {An, Bn} may be extracted from the initial data using the orthonormality of the
basis functions and their associated resolution of unity:

An =

L∫

0

dxµψn(x) y(x, 0) , Bn =
L

nπc

L∫

0

dxµψn(x) ẏ(x, 0) . (18.79)

As an example, suppose our initial configuration is a triangle, with

y(x, 0) =





2bx/L if 0 ≤ x ≤ 1
2L

2b(L− x)/L if 1
2L ≤ x ≤ L ,

(18.80)

and ẏ(x, 0) = 0. Then Bn = 0 for all n, while

An =

(
2µ

L

)1/2
· 2b
L

{ L/2∫

0

dxx sin

(
nπx

L

)
+

L∫

L/2

dx (L− x) sin
(
nπx

L

)}

= (2µL)1/2 · 4b

n2π2
sin
(
1
2nπ

)
δn,odd ,

(18.81)

after changing variables to x = Lθ/nπ and using θ sin θ dθ = d
(
sin θ − θ cos θ

)
. Another way to write

this is to separately give the results for even and odd coefficients:

A2k = 0 , A2k+1 =
4b

π2
(2µL)1/2 · (−1)k

(2k + 1)2
. (18.82)

Note that each ψ2k(x) = −ψ2k(L − x) is antisymmetric about the midpoint x = 1
2L, for all k. Since

our initial conditions are that y(x, 0) is symmetric about x = 1
2L, none of the even order eigenfunctions

can enter into the expansion, precisely as we have found. The d’Alembert solution to this problem is
particularly simple and is shown in Fig. 18.7. Note that g(x) = 1

2y(x, 0) must be extended to the entire
real line. We know that g(x) = g(x + 2L) is periodic with spatial period 2L, but how to we extend g(x)
from the interval

[
0, L

]
to the interval

[
− L, 0

]
? To do this, we use y(x, 0) = g(x) − g(−x), which says

that g(x) must be antisymmetric, i.e. g(x) = −g(−x). Equivalently, ẏ(x, 0) = cg′(x) − cg′(−x) = 0,
which integrates to g(x) = −g(−x).
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18.2 Sturm-Liouville Theory

18.2.1 Mathematical formalism

Consider the Lagrangian density

L = 1
2 µ(x) ẏ

2 − 1
2 τ(x) y

′2 − 1
2 v(x) y

2 . (18.83)

The last term is new and has the physical interpretation of a harmonic potential which attracts the string
to the line y = 0. The Euler-Lagrange equations are then

− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = −µ(x) ∂

2y

∂t2
. (18.84)

This equation is invariant under time translation. Thus, if y(x, t) is a solution, then so is y(x, t + t0),

for any t0. This means that the solutions can be chosen to be eigenstates of the operator ∂t, which is to
say y(x, t) = ψ(x) e−iωt. Because the coefficients are real, both y and y∗ are solutions, and taking linear
combinations we have

y(x, t) = ψ(x) cos(ωt+ φ) . (18.85)

Plugging this into eqn. 18.84, we obtain

− d

dx

[
τ(x)ψ′(x)

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) . (18.86)

This is the Sturm-Liouville equation. There are four types of boundary conditions that we shall consider:

1. Fixed endpoint: ψ(x) = 0, where x = xa,b.

2. Natural: τ(x)ψ′(x) = 0, where x = xa,b.

3. Periodic: ψ(x) = ψ(x+ L), where L = xb − xa.

4. Mixed homogeneous: αψ(x) + β ψ′(x) = 0, where x = xa,b.

The Sturm-Liouville equation is an eigenvalue equation. The eigenfunctions {ψn(x)} satisfy

− d

dx

[
τ(x)ψ′

n(x)
]
+ v(x)ψn(x) = ω2

n µ(x)ψn(x) . (18.87)

Now suppose we have a second solution ψm(x), satisfying

− d

dx

[
τ(x)ψ′

m(x)
]
+ v(x)ψm(x) = ω2

m µ(x)ψm(x) . (18.88)

Now multiply (18.87)∗ by ψm(x) and (18.88) by ψ∗
n(x) and subtract, yielding

ψ∗
n

d

dx

[
τ ψ′

m

]
− ψm

d

dx

[
τ ψ′∗

n

]
=
(
ω∗
n
2 − ω2

m

)
µψm ψ

∗
n

=
d

dx

[
τ ψ∗

n ψ
′
m − τ ψm ψ′∗

n

]
.

(18.89)
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We integrate this equation over the length of the string, to get

(
ω∗
n
2 − ω2

m

)
xb∫

xa

dxµ(x)ψ∗
n(x)ψm(x) =

[
τ(x)ψ∗

n(x)ψ
′
m(x)− τ(x)ψm(x)ψ′∗

n(x)
]xb
xa

= 0 . (18.90)

The term in square brackets vanishes for any of the four types of boundary conditions articulated above.
Thus, we have (

ω∗
n
2 − ω2

m

) 〈
ψn
∣∣ψm

〉
= 0 , (18.91)

where the inner product is defined as

〈
ψ
∣∣φ
〉
≡

xb∫

xa

dxµ(x)ψ∗(x)φ(x) . (18.92)

The distribution µ(x) is non-negative definite. Setting m = n, we have
〈
ψn
∣∣ψn

〉
≥ 0, and hence

ω∗
n
2 = ω2

n, which says that ω2
n ∈ R. When ω2

m 6= ω2
n, the eigenfunctions are orthogonal with respect

to the above inner product. In the case of degeneracies, we may invoke the Gram-Schmidt procedure,
which orthogonalizes the eigenfunctions within a given degenerate subspace. Since the Sturm-Liouville
equation is linear, we may normalize the eigenfunctions, taking

〈
ψm
∣∣ψn

〉
= δmn. (18.93)

Finally, since the coefficients in the Sturm-Liouville equation are all real, we can and henceforth do choose
the eigenfunctions themselves to be real.

Another important result, which we will not prove here, is the completeness of the eigenfunction basis.
Completeness means

µ(x)
∑

n

ψ∗
n(x)ψn(x

′) = δ(x− x′) . (18.94)

Thus, any function can be expanded in the eigenbasis, viz.

φ(x) =
∑

n

Cn ψn(x) , Cn =
〈
ψn
∣∣φ
〉
. (18.95)

18.2.2 Variational method

Consider the functional

ω2
[
ψ(x)

]
=

1
2

xb∫
xa

dx
{
τ(x)ψ′2(x) + v(x)ψ2(x)

}

1
2

xb∫
xa

dxµ(x)ψ2(x)

≡ ND . (18.96)

The variation is

δω2 =
δN
D −

N δD
D2

=
δN − ω2 δD

D . (18.97)
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Thus, δω2 = 0 requires δN = ω2 δD, which says

− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) = ω2 µ(x)ψ(x) , (18.98)

which is the Sturm-Lioiuville equation. In obtaining this equation, we have dropped a boundary term,
which is correct provided

[
τ(x)ψ′(x)ψ(x)

]x=xb
x=xa

= 0 . (18.99)

This condition is satisfied for any of the first three classes of boundary conditions: ψ = 0 (fixed endpoint),

τ ψ′ = 0 (natural), or ψ(xa) = ψ(xb), ψ
′(xa) = ψ′(xb) (periodic). For the fourth class of boundary

conditions, αψ + βψ′ = 0 (mixed homogeneous), the Sturm-Liouville equation may still be derived,
provided one uses a slightly different functional,

ω2
[
ψ(x)

]
=
Ñ
D with Ñ = N +

α

2β

[
τ
(
xb
)
ψ2
(
xb
)
− τ
(
xa
)
ψ2
(
xa
)]
, (18.100)

since then

δÑ − Ñ δD =

xb∫

xa

dx

{
− d

dx

[
τ(x)

dψ(x)

dx

]
+ v(x)ψ(x) − ω2µ(x)ψ(x)

}
δψ(x)

+

[
τ(x)

(
ψ′(x) +

α

β
ψ(x)

)
δψ(x)

]x=xb

x=xa

, (18.101)

and the last term vanishes as a result of the boundary conditions.

For all four classes of boundary conditions we may write

ω2
[
ψ(x)

]
=

xb∫
xa

dxψ(x)

K︷ ︸︸ ︷[
− d

dx
τ(x)

d

dx
+ v(x)

]
ψ(x)

xb∫
xa

dxµ(x)ψ2(x)

(18.102)

If we expand ψ(x) in the basis of eigenfunctions of the Sturm-Liouville operator K,

ψ(x) =

∞∑

n=1

Cn ψn(x) , (18.103)

we obtain

ω2
[
ψ(x)

]
= ω2(C1, . . . , C∞) =

∑∞
j=1 |Cj|2 ω2

j∑∞
k=1 |Ck|2

. (18.104)

If ω2
1 ≤ ω2

2 ≤ . . ., then we see that ω2 ≥ ω2
1, so an arbitrary function ψ(x) will always yield an upper

bound to the lowest eigenvalue.
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Figure 18.8: One-parameter variational solution for a string with a point mass m at x = 1
2L.

As an example, consider a violin string (v = 0) with a mass m affixed in the center. We write µ(x) =
µ+mδ(x− 1

2L), hence

ω2
[
ψ(x)

]
=

τ
L∫
0

dxψ′2(x)

mψ2(12L) + µ
L∫
0

dxψ2(x)

(18.105)

Now consider a trial function

ψ(x) =





Axα if 0 ≤ x ≤ 1
2L

A (L− x)α if 1
2L ≤ x ≤ L .

(18.106)

The functional ω2
[
ψ(x)

]
now becomes an ordinary function of the trial parameter α, with

ω2(α) =
2τ
∫ L/2
0 dxα2 x2α−2

m
(
1
2L
)2α

+ 2µ
L/2∫
0

dxx2α

=

(
2c

L

)2
· α2(2α+ 1)

(2α− 1)
[
1 + (2α + 1)mM

] , (18.107)

where M = µL is the mass of the string alone. We minimize ω2(α) to obtain the optimal solution of this
form:

d

dα
ω2(α) = 0 =⇒ 4α2 − 2α− 1 + (2α+ 1)2 (α− 1)

m

M
= 0 . (18.108)
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For m/M → 0, we obtain α = 1
4

(
1 +
√
5
)
≈ 0.809. The variational estimate for the eigenvalue is then

6.00% larger than the exact answer ω0
1 = πc/L. In the opposite limit, m/M → ∞, the inertia of the

string may be neglected. The normal mode is then piecewise linear, in the shape of an isosceles triangle
with base L and height y. The equation of motion is then mÿ = −2τ · (y/12L), assuming |y/L| ≪ 1.

Thus, ω1 = (2c/L)
√
M/m. This is reproduced exactly by the variational solution, for which α → 1 as

m/M →∞.

18.3 Continua in Higher Dimensions

18.3.1 General formalism

In higher dimensions, we generalize the operator K as follows:

K = − ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x) . (18.109)

The eigenvalue equation is again

Kψ(x) = ω2 µ(x)ψ(x) , (18.110)

and the Green’s function (see §18.7) satisfies
[
K − ω2 µ(x)

]
Gω(x,x

′) = δ(x− x′) , (18.111)

and has the eigenfunction expansion,

Gω(x,x
′) =

∞∑

n=1

ψn(x)ψn(x
′)

ω2
n − ω2

. (18.112)

The eigenfunctions form a complete and orthonormal basis:

µ(x)

∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′)

∫

Ω

dxµ(x)ψm(x)ψn(x) = δmn ,

(18.113)

where Ω is the region of space in which the continuous medium exists. For purposes of simplicity, we
consider here fixed boundary conditions u(x, t)

∣∣
∂Ω

= 0, where ∂Ω is the boundary of Ω. The general
solution to the wave equation

[
µ(x)

∂2

∂t2
− ∂

∂xα
ταβ(x)

∂

∂xβ
+ v(x)

]
u(x, t) = 0 (18.114)

is

u(x, t) =

∞∑

n=1

Cn ψn(x) cos(ωn t+ δn) . (18.115)
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The variational approach generalizes as well. We define

N
[
ψ(x)

]
=

∫

Ω

dx

[
ταβ

∂ψ

∂xα
∂ψ

∂xβ
+ v ψ2

]
(18.116)

D
[
ψ(x)

]
=

∫

Ω

dx µψ2 , (18.117)

and

ω2
[
ψ(x)

]
=
N
[
ψ(x)

]

D
[
ψ(x)

] . (18.118)

Setting the variation δω2 = 0 recovers the eigenvalue equation Kψ = ω2µψ.

18.3.2 Membranes

Consider a surface where the height z is a function of the lateral coordinates x and y:

z = u(x, y) . (18.119)

The equation of the surface is then

F (x, y, z) = z − u(x, y) = 0 . (18.120)

Let the differential element of surface area be dS. The projection of this element onto the (x, y) plane is

dA = dx dy = n̂ · ẑ dS . (18.121)

The unit normal n̂ is given by

n̂ =
∇F∣∣∇F

∣∣ =
ẑ −∇u√
1 + (∇u)2

. (18.122)

Thus,

dS =
dx dy

n̂ · ẑ =
√
1 + (∇u)2 dx dy . (18.123)

The potential energy for a deformed surface can take many forms. In the case we shall consider here, we
consider only the effect of surface tension σ, and we write the potential energy functional as

U
[
u(x, y, t)

]
= σ

∫
dS = U0 +

1
2σ

∫
dA (∇u)2 + . . . . (18.124)

The kinetic energy functional is

T
[
u(x, y, t)

]
= 1

2

∫
dAµ(x) (∂tu)

2 . (18.125)

Thus, the action is

S
[
u(x, t)

]
=

∫
d2xL(u,∇u, ∂tu,x) , (18.126)
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where the Lagrangian density is

L = 1
2µ(x) (∂tu)

2 − 1
2σ(x) (∇u)2 , (18.127)

where here we have allowed both µ(x) and σ(x) to depend on the spatial coordinates. The equations of
motion are

0 =
∂

∂t

∂L
∂ (∂tu)

+∇ · ∂L
∂∇u

− ∂L
∂u

= µ(x)
∂2u

∂t2
−∇ ·

{
σ(x)∇u

}
.

(18.128)

18.3.3 Helmholtz equation

When µ and σ are each constant, we obtain the Helmholtz equation:

(
∇2 − 1

c2
∂2

∂t2

)
u(x, t) = 0 , (18.129)

with c =
√
σ/µ. The d’Alembert solution still works – waves of arbitrary shape can propagate in a fixed

direction k̂:

u(x, t) = f(k̂ · x− ct) . (18.130)

This is called a plane wave because the three dimensional generalization of this wave has wavefronts
which are planes. In our case, it might better be called a line wave, but people will look at you funny if
you say that, so we’ll stick with plane wave. Note that the locus of points of constant f satisfies

φ(x, t) = k̂ · x− ct = constant , (18.131)

and setting dφ = 0 gives

k̂ · dx
dt

= c , (18.132)

which means that the velocity along k̂ is c. The component of x perpendicular to k̂ is arbitrary, hence
the regions of constant φ correspond to lines which are orthogonal to k̂.

Owing to the linearity of the wave equation, we can construct arbitrary superpositions of plane waves.
The most general solution is written

u(x, t) =

∫
d2k

(2π)2

[
A(k) ei(k·x−ckt) +B(k) ei(k·x+ckt)

]
. (18.133)

The first term in the bracket on the RHS corresponds to a plane wave moving in the +k̂ direction, and
the second term to a plane wave moving in the −k̂ direction.
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18.3.4 Rectangles

Consider a rectangular membrane where x ∈ [0, a] and y ∈ [0, b], and subject to the boundary conditions
u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0. We try a solution of the form

u(x, y, t) = X(x)Y (y)T (t) . (18.134)

This technique is known as separation of variables. Dividing the Helmholtz equation by u then gives

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
=

1

c2
1

T

∂2T

∂t2
. (18.135)

The first term on the LHS depends only on x. The second term on the LHS depends only on y. The
RHS depends only on t. Therefore, each of these terms must individually be constant. We write

1

X

∂2X

∂x2
= −k2x ,

1

Y

∂2Y

∂y2
= −k2y ,

1

T

∂2T

∂t2
= −ω2 , (18.136)

with

k2x + k2y =
ω2

c2
. (18.137)

Thus, ω = ±c|k|. The most general solution is then

X(x) = A cos(kxx) +B sin(kxx)

Y (y) = C cos(kyy) +D sin(kyy)

T (t) = E cos(ωt) +B sin(ωt) .

(18.138)

The boundary conditions now demand

A = 0 , C = 0 , sin(kxa) = 0 , sin(kyb) = 0 . (18.139)

Thus, the most general solution subject to the boundary conditions is

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn sin
(
mπx

a

)
sin

(
nπy

b

)
cos
(
ωmnt+ δmn

)
, (18.140)

where

ωmn =

√(
mπc

a

)2
+

(
nπc

b

)2
. (18.141)

18.3.5 Circles

For a circular membrane, such as a drumhead, it is convenient to work in two-dimensional polar coordi-
nates (r, ϕ). The Laplacian is then

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
. (18.142)
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We seek a solution to the Helmholtz equation which satisfies the boundary conditions u(r = a, ϕ, t) = 0.
Once again, we invoke the separation of variables method, writing

u(r, ϕ, t) = R(r)Φ(ϕ)T (t) , (18.143)

resulting in
1

R

1

r

∂

∂r

(
r
∂R

∂r

)
+

1

r2
1

Φ

∂2Φ

∂ϕ2
=

1

c2
1

T

∂2T

∂t2
. (18.144)

The azimuthal and temporal functions are

Φ(ϕ) = eimϕ , T (t) = cos(ωt+ δ) , (18.145)

where m is an integer in order that the function u(r, ϕ, t) be single-valued. The radial equation is then

∂2R

∂r2
+

1

r

∂R

∂r
+

(
ω2

c2
− m2

r2

)
R = 0 . (18.146)

This is Bessel’s equation, with solution

R(r) = AJm

(ωr
c

)
+BNm

(ωr
c

)
, (18.147)

where Jm(z) and Nm(z) are the Bessel and Neumann functions of order m, respectively. Since the
Neumann functions diverge at r = 0, we must exclude them, setting B = 0 for each m.

We now invoke the boundary condition u(r = a, ϕ, t) = 0. This requires

Jm

(ωa
c

)
= 0 =⇒ ω = ωmℓ = xmℓ

c

a
, (18.148)

where Jm(xmℓ) = 0, i.e. xmℓ is the ℓ
th zero of Jm(x). The mose general solution is therefore

u(r, ϕ, t) =
∞∑

m=0

∞∑

ℓ=1

Amℓ Jm
(
xmℓ r/a

)
cos
(
mϕ+ βmℓ

)
cos(ωmℓ t+ δmℓ

)
. (18.149)

18.3.6 Sound in fluids

Let ̺(x, t) and v(x, t) be the density and velocity fields in a fluid. Mass conservation requires

∂̺

∂t
+∇ · (̺v) = 0 . (18.150)

This is the continuity equation for mass.

Focus now on a small packet of fluid of infinitesimal volume dV . The total force on this fluid element is
dF =

(
−∇p+ ̺ g

)
dV . By Newton’s Second Law,

dF =
(
̺ dV

) dv
dt

(18.151)
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Note that the chain rule gives
dv

dt
=
∂v

∂t
+
(
v ·∇

)
v . (18.152)

Thus, dividing eqn, 18.151 by dV , we obtain

̺

(
∂v

∂t
+
(
v ·∇

)
v

)
= −∇p+ ̺ g . (18.153)

This is the inviscid (i.e. zero viscosity) form of the Navier-Stokes equation.

Locally the fluid can also be described in terms of thermodynamic variables p(x, t) (pressure) and T (x, t)
(temperature). For a one-component fluid there is necessarily an equation of state of the form p = p(̺, T ).
Thus, we may write

dp =
∂p

∂̺

∣∣∣∣
T

d̺+
∂p

∂T

∣∣∣∣
̺

dT . (18.154)

We now make the following approximations. First, we assume that the fluid is close to equilibrium at
v = 0, meaning we write p = p̄ + δp and ̺ = ¯̺+ δ̺, and assume that δp, δ̺, and v are small. The
smallness of v means we can neglect the nonlinear term (v ·∇)v in eqn. 18.153. Second, we neglect
gravity (more on this later). The continuity equation then takes the form

∂ δ̺

∂t
+ ¯̺∇ · v = 0 , (18.155)

and the Navier-Stokes equation becomes

¯̺
∂v

∂t
= −∇δp . (18.156)

Taking the time derivative of the former, and then invoking the latter of these equations yields

∂2 δ̺

∂t2
= ∇2p =

(
∂p

∂̺

)
∇2 δ̺ ≡ c2∇2δ̺ . (18.157)

The speed of wave propagation, i.e. the speed of sound, is given by

c =

√
∂p

∂̺
. (18.158)

Finally, we must make an assumption regarding the conditions under which the derivative ∂p/∂̺ is
computed. If the fluid is an excellent conductor of heat, then the temperature will equilibrate quickly
and it is a good approximation to take the derivative at fixed temperature. The resulting value of c is
called the isothermal sound speed cT . If, on the other hand, the fluid is a poor conductor of heat, as
is the case for air, then it is more appropriate to take the derivative at constant entropy, yielding the
adiabatic sound speed. Thus,

cT =

√(
∂p

∂̺

)

T

, cS =

√(
∂p

∂̺

)

S

. (18.159)
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In an ideal gas, cS/cT =
√
γ, where γ = cp/cV is the ratio of the specific heat at constant pressure to

that at constant volume. For a (mostly) diatomic gas like air (comprised of N2 and O2 and just a little
Ar), γ = 7

5 . Note that one can write c2 = 1/̺κ, where

κ =
1

̺

(
∂̺

∂p

)
(18.160)

is the compressibility , which is the inverse of the bulk modulus. Again, one must specify whether one
is talking about κT or κS . For reference in air at T = 293K, using M = 28.8 g/mol, one obtains

cT = 290.8m/s and cS = 344.0m/s. In H2O at 293K, c = 1482m/s. In Al at 273K, c = 6420m/s.

If we retain gravity, the wave equation becomes

∂2δ̺

∂t2
= c2∇2δ̺− g ·∇δ̺ . (18.161)

The dispersion relation is then
ω(k) =

√
c2k2 + ig · k . (18.162)

We are permitted to ignore the effects of gravity so long as c2k2 ≫ gk. In terms of the wavelength
λ = 2π/k, this requires

λ≪ 2πc2

g
= 75.9 km (at T = 293K) . (18.163)

18.4 Dispersion

18.4.1 Helmholtz versus Klein-Gordon equations

The one-dimensional Helmholtz equation ÿ = c2 y′′ is solved by a plane wave

y(x, t) = Aeikx e−iωt , (18.164)

provided ω = ±ck. We say that there are two branches to the dispersion relation ω(k) for this equation.
In general, we may add solutions, due to the linearity of the Helmholtz equation. The most general
solution is then

y(x, t) =

∞∫

−∞

dk

2π

[
f̂(k) eik(x−ct) + ĝ(k) eik(x+ct)

]

= f(x− ct) + g(x+ ct) ,

(18.165)

which is consistent with d’Alembert’s solution.

The Klein-Gordon equation, φ̈ = c2 φ′′− γ2 φ , also has a plane wave solution as in Eqn. 18.164, but with
dispersion branches ω = ±W (k) with W (k) = ±(γ2 + c2k2)1/2. The general solution is then

φ(x, t) =

∞∫

−∞

dk

2π

[
Â(k) eikxe−iW (k)t + B̂(k) eikxeiW (k)t

]
, (18.166)

which is not of the D’Alembert form.
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18.4.2 Schrödinger’s equation

Consider now the free particle Schrödinger equation in one space dimension,

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
. (18.167)

The function ψ(x, t) is the quantum mechanical wavefunction for a particle of mass m moving freely along
a one-dimensional line. The probability density for finding the particle at position x at time t is

ρ(x, t) =
∣∣ψ(x, t)

∣∣2 . (18.168)

Conservation of probability therefore requires
∞∫

−∞

dx
∣∣ψ(x, t)

∣∣2 = 1 . (18.169)

This condition must hold at all times t.

As is the case with the Helmholtz and Klein-Gordon equations, the Schrödinger equation is solved by a
plane wave of the form

ψ(x, t) = Aeikx e−iωt , (18.170)

where the dispersion relation now only has one branch, and is given by

ω(k) =
~k2

2m
. (18.171)

The most general solution is then

ψ(x, t) =

∞∫

−∞

dk

2π
ψ̂(k) eikx e−i~k

2t/2m . (18.172)

Let’s suppose we start at time t = 0 with a Gaussian wavepacket,

ψ(x, 0) =
(
πℓ20
)−1/4

e−x
2/2ℓ20 eik0x . (18.173)

To find the amplitude ψ̂(k), we perform the Fourier transform:

ψ̂(k) =

∞∫

−∞

dxψ(x, 0) e−ikx =
√
2
(
πℓ20
)−1/4

e−(k−k0)2ℓ20/2 . (18.174)

We now compute ψ(x, t) valid for all times t:

ψ(x, t) =
√
2
(
πℓ20
)−1/4

∞∫

−∞

dk

2π
eikx e−(k−k0)2ℓ20/2 eikx e−i~k

2t/2m

=
(
πℓ20
)−1/4 (

1 + it/τ
)−1/2

exp

[
−
(
x− ~k0t/m

)2

2 ℓ20
(
1 + t2/τ2

)
]

× exp

[
i
(
2k0 ℓ

2
0 x+ x2 t/τ − k20 ℓ40 t/τ

)

2 ℓ20
(
1 + t2/τ2

)
]
,

(18.175)
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Figure 18.9: Wavepacket spreading for k0 ℓ0 = 2 with t/τ = 0, 2, 4, 6, and 8.

where τ ≡ mℓ20/~. The probability density is then the normalized Gaussian

ρ(x, t) =
1√
π ℓ2(t)

e−(x−v0t)2/ℓ2(t) , (18.176)

where v0 = ~k0/m and

ℓ(t) = ℓ0
√

1 + t2/τ2 . (18.177)

Note that ℓ(t) gives the width of the wavepacket, and that this width increases as a function of time,

with ℓ(t≫ τ) ≃ ℓ0 t/τ .

Unlike the case of the Helmholtz equation, the solution to the Schrödinger equation does not retain its
shape as it moves. This phenomenon is known as the spreading of the wavepacket . In fig. 18.9, we show
the motion and spreading of the wavepacket.

For a given plane wave eikx e−iω(k)t, the wavefronts move at the phase velocity

vp(k) =
ω(k)

k
. (18.178)

The center of the wavepacket, however, travels at the group velocity

vg(k) =
dω

dk

∣∣∣∣
k0

, (18.179)

where k = k0 is the maximum of
∣∣ψ̂(k)

∣∣2.
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18.5 General Field Theoretic Formulation

Continuous systems possess an infinite number of degrees of freedom. They are described by a set of
fields φa(x, t) which depend on space and time. These fields may represent local displacement, pressure,
velocity, etc. The equations of motion of the fields are again determined by extremizing the action, which,
in turn, is an integral of the Lagrangian density over all space and time. Extremization yields a set of
(generally coupled) partial differential equations.

18.5.1 Euler-Lagrange equations for classical field theories

Suppose φa(x) depends on n independent variables, {x1, x2, . . . , xn}. Consider the functional

S
[
{φa(x)

]
=

∫

Ω

dxL(φa ∂µφa,x) , (18.180)

i.e. the Lagrangian density L is a function of the fields φa and their partial derivatives ∂φa/∂xµ. Here Ω
is a region in Rn. Then the first variation of S is

δS =

∫

Ω

dx

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)

∂ δφa
∂xµ

}

=

∮

∂Ω

dΣ nµ
∂L

∂(∂µφa)
δφa +

∫

Ω

dx

{
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)}
δφa ,

(18.181)

where ∂Ω is the (n − 1)-dimensional boundary of Ω, dΣ is the differential surface area, and nµ is the

unit normal. If we demand either ∂L/∂(∂µφa)
∣∣
∂Ω

= 0 or δφa
∣∣
∂Ω

= 0, the surface term vanishes, and we
conclude

δS

δφa(x)
=

[
∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)]

x

, (18.182)

where the subscript means we are to evaluate the term in brackets at x. In a mechanical system, one of the
n independent variables (usually x0), is the time t. However, we may be interested in a time-independent
context in which we wish to extremize the energy functional, for example. In any case, setting the first
variation of S to zero yields the Euler-Lagrange equations,

δS = 0 ⇒ ∂L
∂φa
− ∂

∂xµ

(
∂L

∂(∂µφa)

)
= 0 (18.183)

The stress-energy tensor is defined as

T µν =
∑

a

∂L
∂(∂µφa)

∂νφa − δµν L . (18.184)

When L = L(φa, ∂µφa) is independent of the independent varlables x, one has that the stress-energy
tensor is conserved: ∂µ T

µ
ν = 0. (Students should check this result.)
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Maxwell theory

The Lagrangian density for an electromagnetic field with sources is

L = − 1
16π Fµν F

µν − JµAµ . (18.185)

The equations of motion are then

∂L
∂Aν

− ∂

∂xν

(
∂L

∂(∂µAν)

)
= 0 ⇒ ∂µ F

µν = 4πJν , (18.186)

which are Maxwell’s equations.

18.5.2 Conserved currents in field theory

Recall the result of Noether’s theorem for mechanical systems:

d

dt

(
∂L

∂q̇σ

∂q̃σ
∂ζ

)

ζ=0

= 0 , (18.187)

where q̃σ = q̃σ(q, ζ) is a one-parameter (ζ) family of transformations of the generalized coordinates which
leaves L invariant. We generalize to field theory by replacing

qσ(t) −→ φa(x, t) , (18.188)

where {φa(x, t)} are a set of fields, which are functions of the independent variables {x, y, z, t}. We will
adopt covariant relativistic notation and write for four-vector xµ = (ct, x, y, z). The generalization of
dQ/dt = 0 is

∂

∂xµ

(
∂L

∂ (∂µφa)

∂φ̃a
∂ζ

)

ζ=0

= 0 , (18.189)

where there is an implied sum on both µ and a. We can write this as ∂µ J
µ = 0, where

Jµ ≡ ∂L
∂ (∂µφa)

∂φ̃a
∂ζ

∣∣∣∣∣
ζ=0

. (18.190)

We call Q = J0/c the total charge. If we assume J = 0 at the spatial boundaries of our system, then
integrating the conservation law ∂µ J

µ over the spatial region Ω gives

dQ

dt
=

∫

Ω

d3x ∂0 J
0 = −

∫

Ω

d3x∇ · J = −
∮

∂Ω

dΣ n̂ · J = 0 , (18.191)

assuming J = 0 at the boundary ∂Ω.

As an example, consider the case of a complex scalar field, with Lagrangian density2

L(ψ, , ψ∗, ∂µψ, ∂µψ
∗) = 1

2K (∂µψ
∗)(∂µψ)− U

(
ψ∗ψ

)
. (18.192)

2We raise and lower indices using the Minkowski metric gµν = diag (+,−,−,−).
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This is invariant under the transformation ψ → eiζ ψ, ψ∗ → e−iζ ψ∗. Thus,

∂ψ̃

∂ζ
= i eiζ ψ ,

∂ψ̃∗

∂ζ
= −i e−iζ ψ∗ , (18.193)

and, summing over both ψ and ψ∗ fields, we have

Jµ =
∂L

∂ (∂µψ)
· (iψ) + ∂L

∂ (∂µψ∗)
· (−iψ∗)

=
K

2i

(
ψ∗∂µψ − ψ ∂µψ∗) .

(18.194)

The potential, which depends on |ψ|2, is independent of ζ. Hence, this form of conserved 4-current is
valid for an entire class of potentials.

18.5.3 Gross-Pitaevskii model

As one final example of a field theory, consider the Gross-Pitaevskii model, with

L = i~ψ∗ ∂ψ
∂t
− ~2

2m
∇ψ∗ ·∇ψ − g

(
|ψ|2 − n0

)2
. (18.195)

This describes a Bose fluid with repulsive short-ranged interactions. Here ψ(x, t) is again a complex
scalar field, and ψ∗ is its complex conjugate. Using the Leibniz rule, we have

δS[ψ∗, ψ] = S[ψ∗ + δψ∗, ψ + δψ]

=

∫
dt

∫
ddx

{
i~ψ∗ ∂δψ

∂t
+ i~ δψ∗ ∂ψ

∂t
− ~2

2m
∇ψ∗ ·∇δψ

− ~2

2m
∇δψ∗ ·∇ψ − 2g

(
|ψ|2 − n0

)
(ψ∗δψ + ψδψ∗)

}

=

∫
dt

∫
ddx

{[
− i~ ∂ψ

∗

∂t
+

~2

2m
∇2ψ∗ − 2g

(
|ψ|2 − n0

)
ψ∗
]
δψ

+

[
i~
∂ψ

∂t
+

~2

2m
∇2ψ − 2g

(
|ψ|2 − n0

)
ψ

]
δψ∗

}
,

(18.196)

where we have integrated by parts where necessary and discarded the boundary terms. Extremizing
S[ψ∗, ψ] therefore results in the nonlinear Schrödinger equation (NLSE),

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + 2g

(
|ψ|2 − n0

)
ψ (18.197)

as well as its complex conjugate,

− i~ ∂ψ
∗

∂t
= − ~2

2m
∇2ψ∗ + 2g

(
|ψ|2 − n0

)
ψ∗ . (18.198)
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Note that these equations are indeed the Euler-Lagrange equations:

δS

δψ
=
∂L
∂ψ
− ∂

∂xµ

(
∂L
∂ ∂µψ

)

δS

δψ∗ =
∂L
∂ψ∗ −

∂

∂xµ

(
∂L

∂ ∂µψ∗

)
,

(18.199)

with xµ = (t,x) the space-time four-vector3. Plugging in

∂L
∂ψ

= −2g
(
|ψ|2 − n0

)
ψ∗ ,

∂L
∂ ∂tψ

= i~ψ∗ ,
∂L
∂∇ψ

= − ~2

2m
∇ψ∗ (18.200)

and
∂L
∂ψ∗ = i~ψ − 2g

(
|ψ|2 − n0

)
ψ ,

∂L
∂ ∂tψ∗ = 0 ,

∂L
∂∇ψ∗ = − ~2

2m
∇ψ , (18.201)

we recover the NLSE and its conjugate.

The Gross-Pitaevskii model also possesses a U(1) invariance, under

ψ(x, t)→ ψ̃(x, t) = eiζ ψ(x, t) , ψ∗(x, t)→ ψ̃∗(x, t) = e−iζ ψ∗(x, t) . (18.202)

Thus, the conserved Noether current is then

Jµ =
∂L
∂ ∂µψ

∂ψ̃

∂ζ

∣∣∣∣∣
ζ=0

+
∂L

∂ ∂µψ∗
∂ψ̃∗

∂ζ

∣∣∣∣∣
ζ=0

(18.203)

so that

J0 = −~ |ψ|2 , J = − ~2

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (18.204)

Dividing out by ~, taking J0 ≡ −~ρ and J ≡ −~j, we obtain the continuity equation,

∂ρ

∂t
+∇ · j = 0 , (18.205)

where

ρ = |ψ|2 , j =
~

2im

(
ψ∗

∇ψ − ψ∇ψ∗) . (18.206)

are the particle density and the particle current, respectively.

18.6 Appendix : Three Strings

Problem: Three identical strings are connected to a ring of mass m as shown in fig. 18.10. The linear
mass density of each string is σ and each string is under identical tension τ . In equilibrium, all strings

3In the nonrelativistic case, there is no utility in defining x0 = ct, so we simply define x0 = t.
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are coplanar. All motion on the string is in the ẑ-direction, which is perpendicular to the equilibrium
plane. The ring slides frictionlessly along a vertical pole.

It is convenient to describe each string as a half line [−∞, 0]. We can choose coordinates x1, x2, and x3
for the three strings, respectively. For each string, the ring lies at xi = 0.

A pulse is sent down the first string. After a time, the pulse arrives at the ring. Transmitted waves are
sent down the other two strings, and a reflected wave down the first string. The solution to the wave
equation in the strings can be written as follows. In string #1, we have

z = f(ct− x1) + g(ct + x1) . (18.207)

In the other two strings, we may write z = hA(ct+ x2) and z = hB(ct+ x3), as indicated in the figure.

Figure 18.10: Three identical strings arranged symmetrically in a plane, attached to a common end. All
motion is in the direction perpendicular to this plane. The red ring, whose mass is m, slides frictionlessly
in this direction along a pole.

(a) Write the wave equation in string #1. Define all constants.

(b) Write the equation of motion for the ring.

(c) Solve for the reflected wave g(ξ) in terms of the incident wave f(ξ). You may write this relation in
terms of the Fourier transforms f̂(k) and ĝ(k).

(d) Suppose a very long wavelength pulse of maximum amplitude A is incident on the ring. What is the
maximum amplitude of the reflected pulse? What do we mean by “very long wavelength”?
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Solution:

(a) The wave equation is

∂2z

∂x2
=

1

c2
∂2z

∂t2
, (18.208)

where x is the coordinate along the string, and c =
√
τ/σ is the speed of wave propagation.

(b) Let Z be the vertical coordinate of the ring. Newton’s second law says mZ̈ = F , where the force on
the ring is the sum of the vertical components of the tension in the three strings at x = 0:

F = −τ
[
− f ′(ct) + g′(ct) + h′A(ct) + h′B(ct)

]
, (18.209)

where prime denotes differentiation with respect to argument.

(c) To solve for the reflected wave, we must eliminate the unknown functions hA,B and then obtain g in
terms of f . This is much easier than it might at first seem. We start by demanding continuity at the
ring. This means

Z(t) = f(ct) + g(ct) = hA(ct) = hB(ct) (18.210)

for all t. We can immediately eliminate hA,B:

hA(ξ) = hB(ξ) = f(ξ) + g(ξ) , (18.211)

for all ξ. Newton’s second law from part (b) may now be written as

mc2
[
f ′′(ξ) + g′′(ξ)

]
= −τ

[
f ′(ξ) + 3g′(ξ)

]
. (18.212)

This linear ODE becomes a simple linear algebraic equation for the Fourier transforms,

f(ξ) =

∞∫

−∞

dk

2π
f̂(k) eikξ , (18.213)

etc. We readily obtain

ĝ(k) = −
(
k − iQ
k − 3iQ

)
f̂(k) , (18.214)

where Q ≡ τ/mc2 has dimensions of inverse length. Since hA,B = f + g, we have

ĥA(k) = ĥB(k) = −
(

2iQ

k − 3iQ

)
f̂(k) . (18.215)

(d) For a very long wavelength pulse, composed of plane waves for which |k| ≪ Q, we have ĝ(k) ≈ −1
3 f̂(k).

Thus, the reflected pulse is inverted, and is reduced by a factor 1
3 in amplitude. Note that for a very

short wavelength pulse, for which k ≫ Q, we have perfect reflection with inversion, and no transmission.
This is due to the inertia of the ring.
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It is straightforward to generalize this problem to one with n strings. The transmission into each of the
(n − 1) channels is of course identical (by symmetry). One then finds the reflection and transmission
amplitudes

r(k) = −
(
k − i(n − 2)Q

k − inQ

)
, t(k) = −

(
2iQ

k − inQ

)
. (18.216)

Conservation of energy means that the sum of the squares of the reflection amplitude and all the (n− 1)
transmission amplitudes must be unity:

∣∣r(k)
∣∣2 + (n− 1)

∣∣t(k)
∣∣2 = 1 . (18.217)

18.7 Appendix : Green’s Functions for Strings

18.7.1 Inhomogeneous Sturm-Liouville problem

Suppose we add a forcing term,

µ(x)
∂2y

∂t2
− ∂

∂x

[
τ(x)

∂y

∂x

]
+ v(x) y = Re

[
µ(x) f(x) e−iωt

]
. (18.218)

We write the solution as

y(x, t) = Re
[
y(x) e−iωt

]
, (18.219)

where

− d

dx

[
τ(x)

dy(x)

dx

]
+ v(x) y(x) − ω2 µ(x) y(x) = µ(x) f(x) , (18.220)

or [
K − ω2µ(x)

]
y(x) = µ(x) f(x) , (18.221)

where K is a differential operator,

K ≡ − d

dx
τ(x)

d

dx
+ v(x) . (18.222)

Note that the eigenfunctions of K are the {ψn(x)}:

K ψn(x) = ω2
n µ(x)ψn(x) . (18.223)

The formal solution to equation 18.221 is then

y(x) =
[
K − ω2µ

]−1

x,x′
µ(x′) f(x′) =

xb∫

xa

dx′ µ(x′)Gω(x, x
′) f(x′). (18.224)

What do we mean by the term in brackets? If we define the Green’s function

Gω(x, x
′) ≡

[
K − ω2µ

]−1

x,x′
, (18.225)
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what this means is [
K − ω2µ(x)

]
Gω(x, x

′) = δ(x− x′) . (18.226)

Note that the Green’s function may be expanded in terms of the (real) eigenfunctions, as

Gω(x, x
′) =

∑

n

ψn(x)ψn(x
′)

ω2
n − ω2

, (18.227)

which follows from completeness of the eigenfunctions:

µ(x)
∞∑

n=1

ψn(x)ψn(x
′) = δ(x− x′) . (18.228)

The expansion in eqn. 18.227 is formally exact, but difficult to implement, since it requires summing over
an infinite set of eigenfunctions. It is more practical to construct the Green’s function from solutions to the
homogeneous Sturm Liouville equation, as follows. When x 6= x′, we have that (K − ω2µ)Gω(x, x

′) = 0,
which is a homogeneous ODE of degree two. Consider first the interval x ∈ [xa, x

′]. A second order

homogeneous ODE has two solutions, and further invoking the boundary condition at x = xa, there is
a unique solution, up to a multiplicative constant. Call this solution y1(x). Next, consider the interval

x ∈ [x′, xb]. Once again, there is a unique solution to the homogeneous Sturm-Liouville equation, up to

a multiplicative constant, which satisfies the boundary condition at x = xb. Call this solution y2(x). We
then can write

Gω(x, x
′) =





A(x′) y1(x) if xa ≤ x < x′

B(x′) y2(x) if x′ < x ≤ xb .
(18.229)

Here, A(x′) and B(x′) are undetermined functions. We now invoke the inhomogeneous Sturm-Liouville
equation,

− d

dx

[
τ(x)

dGω(x, x
′)

dx

]
+ v(x)Gω(x, x

′)− ω2µ(x)Gω(x, x
′) = δ(x − x′) . (18.230)

We integrate this from x = x′ − ǫ to x = x′ + ǫ, where ǫ is a positive infinitesimal. This yields

τ(x′)
[
A(x′) y′1(x

′)−B(x′) y′2(x
′)
]
= 1 . (18.231)

Continuity of Gω(x, x′) itself demands

A(x′) y1(x
′) = B(x′) y2(x

′) . (18.232)

Solving these two equations for A(x′) and B(x′), we obtain

A(x′) = − y2(x
′)

τ(x′)Wy1,y2
(x′)

, B(x′) = − y1(x
′)

τ(x′)Wy1,y2
(x′)

, (18.233)
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where Wy1,y2
(x) is the Wronskian

Wy1,y2
(x) = det



y1(x) y2(x)

y′1(x) y′2(x)




= y1(x) y
′
2(x)− y2(x) y′1(x) .

(18.234)

Now it is easy to show that Wy1,y2
(x) τ(x) =W τ is a constant. This follows from

0 = y2K y1 − y2K y1

=
d

dx

{
τ(x)

[
y1 y

′
2 − y2 y′1

]}
. (18.235)

Thus, we have

Gω(x, x
′) =





−y1(x) y2(x′)/W if xa ≤ x < x′

−y1(x′) y2(x)/W if x′ < x ≤ xb ,
(18.236)

or, in compact form,

Gω(x, x
′) = −y1(x<) y2(x>)W τ

, (18.237)

where x< = min(x, x′) and x> = max(x, x′).

As an example, consider a uniform string (i.e. µ and τ constant, v = 0) with fixed endpoints at xa = 0
and xb = L. The normalized eigenfunctions are

ψn(x) =

√
2

µL
sin

(
nπx

L

)
, (18.238)

and the eigenvalues are ωn = nπc/L. The Green’s function is

Gω(x, x
′) =

2

µL

∞∑

n=1

sin(nπx/L) sin(nπx′/L)
(nπc/L)2 − ω2

. (18.239)

Now construct the homogeneous solutions:

(K − ω2µ) y1 = 0 , y1(0) = 0 =⇒ y1(x) = sin

(
ωx

c

)
(18.240)

(K − ω2µ) y2 = 0 , y2(L) = 0 =⇒ y2(x) = sin

(
ω(L− x)

c

)
. (18.241)

The Wronskian is

W = y1 y
′
2 − y2 y′1 = −

ω

c
sin

(
ωL

c

)
. (18.242)

Therefore, the Green’s function is

Gω(x, x
′) =

sin
(
ωx</c

)
sin
(
ω(L− x>)/c

)

(ωτ/c) sin(ωL/c)
. (18.243)



18.7. APPENDIX : GREEN’S FUNCTIONS FOR STRINGS 159

Figure 18.11: Diagrammatic representation of the perturbation expansion in eqn. 18.247.

18.7.2 Perturbation theory

Suppose we have solved for the Green’s function for the linear operator K0 and mass density µ0(x). I.e.
we have (

K0 − ω2µ0(x)
)
G0
ω(x, x

′) = δ(x− x′) . (18.244)

We now imagine perturbing τ0 → τ0 + λτ1, v0 → v0 + λv2, µ0 → µ0 + λµ1. What is the new Green’s
function Gω(x, x

′)? We must solve
(
L0 + λL1

)
Gω(x, x

′) = δ(x− x′) , (18.245)

where
L0
ω ≡ K0 − ω2 µ0 , L1

ω ≡ K1 − ω2 µ1 . (18.246)

Dropping the ω subscript for simplicity, the full Green’s function is then given by

Gω =
[
L0
ω + λL1

ω

]−1
=
[(
G0
ω

)−1
+ λL1

ω

]−1
=
[
1 + λG0

ω L
1
ω

]−1
G0
ω

= G0
ω − λG0

ω L
1
ωG

0
ω + λ2G0

ω L
1
ωG

0
ω L

1
ω G

0
ω + . . . .

(18.247)

The ‘matrix multiplication’ is of course a convolution, i.e.

Gω(x, x
′) = G0

ω(x, x
′)− λ

xb∫

xa

dx1G
0
ω(x, x1)L

1
ω

(
x1,

d
dx1

)
G0
ω(x1, x

′) + . . . . (18.248)

Each term in the perturbation expansion of eqn. 18.247 may be represented by a diagram, as depicted
in Fig. 18.11.

As an example, consider a string with xa = 0 and xb = L with a mass point m affixed at the point x = d.
Thus, µ1(x) = mδ(x− d), and L1

ω = −mω2 δ(x − d), with λ = 1. The perturbation expansion gives

Gω(x, x
′) = G0

ω(x, x
′) +mω2G0

ω(x, d)G
0
ω(d, x

′) +m2ω4G0
ω(x, d)G

0
ω(d, d)G

0
ω(d, x

′) + . . .

= G0
ω(x, x

′) +
mω2G0

ω(x, d)G
0
ω(d, x

′)
1−mω2G0

ω(d, d)
. (18.249)
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Note that the eigenfunction expansion,

Gω(x, x
′) =

∑

n

ψn(x)ψn(x
′)

ω2
n − ω2

, (18.250)

says that the exact eigenfrequencies are poles of Gω(x, x
′), and furthermore the residue at each pole is

Res
ω=ωn

Gω(x, x
′) = − 1

2ωn
ψn(x)ψn(x

′) . (18.251)

According to eqn. 18.249, the poles of Gω(x, x
′) are located at solutions to4

mω2G0
ω(d, d) = 1 . (18.252)

For simplicity let us set d = 1
2L, so the mass point is in the middle of the string. Then according to eqn.

18.243,

G0
ω

(
1
2L,

1
2L
)
=

sin2(ωL/2c)

(ωτ/c) sin(ωL/c)
=

c

2ωτ
tan

(
ωL

2c

)
. (18.253)

The eigenvalue equation is therefore

tan

(
ωL

2c

)
=

2τ

mωc
, (18.254)

which can be manipulated to yield
m

M
λ = ctn λ , (18.255)

where λ = ωL/2c and M = µL is the total mass of the string. When m = 0, the LHS vanishes,
and the roots lie at λ = (n + 1

2 )π, which gives ω = ω2n+1. Why don’t we see the poles at the even
mode eigenfrequencies ω2n? The answer is that these poles are present in the Green’s function. They
do not cancel for d = 1

2L because the perturbation does not couple to the even modes, which all have
ψ2n(

1
2L) = 0. The case of general d may be instructive in this regard. One finds the eigenvalue equation

sin(2λ)

2λ sin
(
2ǫλ
)
sin
(
2(1 − ǫ)λ

) =
m

M
, (18.256)

where ǫ = d/L. Now setting m = 0 we recover 2λ = nπ, which says ω = ωn, and all the modes are
recovered.

18.7.3 Perturbation theory for eigenvalues and eigenfunctions

We wish to solve (
K0 + λK1

)
ψ = ω2

(
µ0 + λµ1

)
ψ , (18.257)

which is equivalent to

L0
ω ψ = −λL1

ω ψ . (18.258)

4Note in particular that there is no longer any divergence at the location of the original poles of G0
ω(x, x

′). These poles are
cancelled.
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Multiplying by
(
L0
ω

)−1
= G0

ω on the left, we have

ψ(x) = −λ
xb∫

xa

dx′Gω(x, x
′)L1

ω ψ(x
′)

= λ
∞∑

m=1

ψm(x)

ω2 − ω2
m

xb∫

xa

dx′ ψm(x
′)L1

ω ψ(x
′) .

(18.259)

We are free to choose any normalization we like for ψ(x). We choose

〈
ψ
∣∣ψn

〉
=

xb∫

xa

dx µ0(x)ψn(x)ψ(x) = 1 , (18.260)

which entails

ω2 − ω2
n = λ

xb∫

xa

dxψn(x)L
1
ω ψ(x) (18.261)

as well as

ψ(x) = ψn(x) + λ
∑

k
(k 6=n)

ψk(x)

ω2 − ω2
k

xb∫

xa

dx′ ψk(x
′)L1

ω ψ(x
′) . (18.262)

By expanding ψ and ω2 in powers of λ, we can develop an order by order perturbation series.

To lowest order, we have

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L
1
ωn
ψn(x) . (18.263)

For the case L1
ω = −mω2 δ(x− d), we have

δωn
ωn

= −1
2m
[
ψn(d)

]2
= −m

M
sin2

(nπd
L

)
. (18.264)

For d = 1
2L, only the odd n modes are affected, as the even n modes have a node at x = 1

2L.

Carried out to second order, one obtains for the eigenvalues,

ω2 = ω2
n + λ

xb∫

xa

dxψn(x)L
1
ωn
ψn(x) + λ2

∑

k
(k 6=n)

∣∣∣
∫ xb
xa
dxψk(x)L

1
ωn
ψn(x)

∣∣∣
2

ω2
n − ω2

k

− λ2
xb∫

xa

dxψn(x)L
1
ωn
ψn(x) ·

xb∫

xa

dx′ µ1(x
′)
[
ψn(x

′)
]2

+O(λ3) .

(18.265)
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Chapter 19

Special Relativity

For an extraordinarily lucid, if characteristically brief, discussion, see chs. 1 and 2 of L. D. Landau and
E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics, vol. 2).

19.1 Introduction

All distances are relative in physics. They are measured with respect to a fixed frame of reference. Frames
of reference in which free particles move with constant velocity are called inertial frames. The principle

of relativity states that the laws of Nature are identical in all inertial frames.

19.1.1 Michelson-Morley experiment

We learned how sound waves in a fluid, such as air, obey the Helmholtz equation. Let us restrict our
attention for the moment to solutions of the form φ(x, t) which do not depend on y or z. We then have
a one-dimensional wave equation,

∂2φ

∂x2
=

1

c2
∂2φ

∂t2
. (19.1)

The fluid in which the sound propagates is assumed to be at rest. But suppose the fluid is not at rest.
We can investigate this by shifting to a moving frame, defining x′ = x − ut, with y′ = y, z′ = z and of
course t′ = t. This is a Galilean transformation. In terms of the new variables, we have

∂

∂x
=

∂

∂x′
,

∂

∂t
= −u ∂

∂x′
+

∂

∂t′
. (19.2)

The wave equation is then (
1− u2

c2

)
∂2φ

∂x′2
=

1

c2
∂2φ

∂t′2
− 2u

c2
∂2φ

∂x′ ∂t′
. (19.3)

Clearly the wave equation acquires a different form when expressed in the new variables (x′, t′), i.e. in a
frame in which the fluid is not at rest. The general solution is then of the modified d’Alembert form,

φ(x′, t′) = f(x′ − cRt′) + g(x′ + cLt
′) , (19.4)

163
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Figure 19.1: The Michelson-Morley experiment (1887) used an interferometer to effectively measure the
time difference for light to travel along two different paths. Inset: analysis for the y-directed path.

where cR = c − u and cL = c + u are the speeds of rightward and leftward propagating disturbances,
respectively. Thus, there is a preferred frame of reference – the frame in which the fluid is at rest. In the
rest frame of the fluid, sound waves travel with velocity c in either direction.

Light, as we know, is a wave phenomenon in classical physics. The propagation of light is described by
Maxwell’s equations,

∇ ·E = 4πρ ∇×E = −1

c

∂B

∂t
(19.5)

∇ ·B = 0 ∇×B =
4π

c
j +

1

c

∂E

∂t
, (19.6)

where ρ and j are the local charge and current density, respectively. Taking the curl of Faraday’s law,
and restricting to free space where ρ = j = 0, we once again have (using a Cartesian system for the fields)
the wave equation,

∇2E =
1

c2
∂2E

∂t2
. (19.7)

(We shall discuss below, in section 19.8, the beautiful properties of Maxwell’s equations under general
coordinate transformations.)

In analogy with the theory of sound, it was assumed prior to Einstein that there was in fact a preferred
reference frame for electromagnetic radiation – one in which the medium which was excited during the
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EM wave propagation was at rest. This notional medium was called the lumineferous ether . Indeed, it
was generally assumed during the 19th century that light, electricity, magnetism, and heat (which was not
understood until Boltzmann’s work in the late 19th century) all had separate ethers. It was Maxwell who
realized that light, electricity, and magnetism were all unified phenomena, and accordingly he proposed a
single ether for electromagnetism. It was believed at the time that the earth’s motion through the ether
would result in a drag on the earth.

In 1887, Michelson and Morley set out to measure the changes in the speed of light on earth due to
the earth’s movement through the ether (which was generally assumed to be at rest in the frame of the
Sun). The Michelson interferometer is shown in fig. 19.1, and works as follows. Suppose the apparatus
is moving with velocity u x̂ through the ether. Then the time it takes a light ray to travel from the
half-silvered mirror to the mirror on the right and back again is

tx =
ℓ

c+ u
+

ℓ

c− u =
2ℓc

c2 − u2 . (19.8)

For motion along the other arm of the interferometer, the geometry in the inset of fig. 19.1 shows

ℓ′ =
√
ℓ2 + 1

4u
2t2y, hence

ty =
2ℓ′

c
=

2

c

√
ℓ2 + 1

4u
2t2y ⇒ ty =

2ℓ√
c2 − u2

. (19.9)

Thus, the difference in times along these two paths is

∆t = tx − ty =
2ℓc

c2
− 2ℓ√

c2 − u2
≈ ℓ

c
· u

2

c2
. (19.10)

Thus, the difference in phase between the two paths is

∆φ

2π
= ν∆t ≈ ℓ

λ
· u

2

c2
, (19.11)

where λ is the wavelength of the light. We take u ≈ 30 km/s, which is the earth’s orbital velocity, and
λ ≈ 5000 Å. From this we find that ∆φ ≈ 0.02 × 2π if ℓ = 1m. Michelson and Morley found that the
observed fringe shift ∆φ/2π was approximately 0.02 times the expected value. The inescapable conclusion
was that the speed of light did not depend on the motion of the source. This was very counterintuitive!

The history of the development of special relativity is quite interesting, but we shall not have time to
dwell here on the many streams of scientific thought during those exciting times. Suffice it to say that
the Michelson-Morley experiment, while a landmark result, was not the last word. It had been proposed
that the ether could be dragged, either entirely or partially, by moving bodies. If the earth dragged the
ether along with it, then there would be no ground-level ‘ether wind’ for the MM experiment to detect.
Other experiments, however, such as stellar aberration, in which the apparent position of a distant star
varies due to the earth’s orbital velocity, rendered the “ether drag” theory untenable – the notional ‘ether
bubble’ dragged by the earth could not reasonably be expected to extend to the distant stars.

A more recent test of the effect of a moving source on the speed of light was performed by T. Alv̊ager et
al., Phys. Lett. 12, 260 (1964), who measured the velocity of γ-rays (photons) emitted from the decay
of highly energetic neutral pions (π0). The pion energies were in excess of 6 GeV, which translates to a
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Figure 19.2: Experimental setup of Alvager et al. (1964), who used the decay of high energy neutral
pions to test the source velocity dependence of the speed of light.

velocity of v = 0.99975 c, according to special relativity. Thus, photons emitted in the direction of the
pions should be traveling at close to 2c, if the source and photon velocities were to add. Instead, the
velocity of the photons was found to be c = 2.9977 ± 0.0004 × 1010 cm/s, which is within experimental
error of the best accepted value.

19.1.2 Einsteinian and Galilean relativity

The Principle of Relativity states that the laws of nature are the same when expressed in any inertial
frame. This principle can further be refined into two classes, depending on whether one takes the velocity
of the propagation of interactions to be finite or infinite.

The interaction of matter in classical mechanics is described by a potential function U(r1, . . . , rN ). Typ-

ically, one has two-body interactions in which case one writes U =
∑

i<j U(ri, rj). These interactions are
thus assumed to be instantaneous, which is unphysical. The interaction of particles is mediated by the
exchange of gauge bosons, such as the photon (for electromagnetic interactions), gluons (for the strong
interaction, at least on scales much smaller than the ‘confinement length’), or the graviton (for gravity).
Their velocity of propagation, according to the principle of relativity, is the same in all reference frames,
and is given by the speed of light, c = 2.998 × 108 m/s.

Since c is so large in comparison with terrestrial velocities, and since d/c is much shorter than all other
relevant time scales for typical interparticle separations d, the assumption of an instantaneous interaction
is usually quite accurate. The combination of the principle of relativity with finiteness of c is known as
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Figure 19.3: Two reference frames.

Einsteinian relativity. When c =∞, the combination comprises Galilean relativity:

c <∞ : Einsteinian relativity

c =∞ : Galilean relativity .

Consider a train moving at speed u. In the rest frame of the train track, the speed of the light beam
emanating from the train’s headlight is c + u. This would contradict the principle of relativity. This
leads to some very peculiar consequences, foremost among them being the fact that events which are
simultaneous in one inertial frame will not in general be simultaneous in another. In Newtonian mechanics,
on the other hand, time is absolute, and is independent of the frame of reference. If two events are
simultaneous in one frame then they are simultaneous in all frames. This is not the case in Einsteinian
relativity!

We can begin to apprehend this curious feature of simultaneity by the following Gedankenexperiment

(a long German word meaning “thought experiment”)1. Consider the case in fig. 19.3 in which frame
K ′ moves with velocity u x̂ with respect to frame K. Let a source at S emit a signal (a light pulse) at
t = 0. In the frame K ′ the signal’s arrival at equidistant locations A and B is simultaneous. In frame
K, however, A moves toward left-propagating emitted wavefront, and B moves away from the right-
propagating wavefront. For classical sound, the speed of the left-moving and right-moving wavefronts is
c∓ u, taking into account the motion of the source, and thus the relative velocities of the signal and the
detectors remain at c. But according to the principle of relativity, the speed of light is c in all frames,
and is so in frame K for both the left-propagating and right-propagating signals. Therefore, the relative
velocity of A and the left-moving signal is c+u and the relative velocity of B and the right-moving signal
is c − u. Therefore, A ‘closes in’ on the signal and receives it before B, which is moving away from the
signal. We might expect the arrival times to be t∗A = d/(c+u) and t∗B = d/(c−u), where d is the distance
between the source S and either detector A or B in the K ′ frame. Later on we shall analyze this problem
and show that

t∗A =

√
c− u
c+ u

· d
c

, t∗B =

√
c+ u

c− u ·
d

c
. (19.12)

Our näıve analysis has omitted an important detail – the Lorentz contraction of the distance d as seen
by an observer in the K frame.

1Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like
Gedankenexperiment , Zitterbewegung , Brehmsstrahlung , Stosszahlansatz , Kartoffelsalat , etc.
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19.2 Intervals

Now let us express mathematically the constancy of c in all frames. An event is specified by the time and
place where it occurs. Thus, an event is specified by four coordinates, (t, x, y, z). The four-dimensional
space spanned by these coordinates is called spacetime. The interval between two events in spacetime at
(t1, x1, y1, z1) and (t2, x2, y2, z2) is defined to be

s12 =

√
c2(t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2 . (19.13)

For two events separated by an infinitesimal amount, the interval ds is infinitesimal, with

ds2 = c2 dt2 − dx2 − dy2 − dz2 . (19.14)

Now when the two events denote the emission and reception of an electromagnetic signal, we have ds2 = 0.
This must be true in any frame, owing to the invariance of c, hence since ds and ds′ are differentials of
the same order, we must have ds′2 = ds2. This last result requires homogeneity and isotropy of space as
well. Finally, if infinitesimal intervals are invariant, then integrating we obtain s = s′, and we conclude
that the interval between two space-time events is the same in all inertial frames.

When s212 > 0, the interval is said to be time-like. For timelike intervals, we can always find a reference
frame in which the two events occur at the same locations. As an example, consider a passenger sitting
on a train. Event #1 is the passenger yawning at time t1. Event #2 is the passenger yawning again

at some later time t2. To an observer sitting in the train station, the two events take place at different
locations, but in the frame of the passenger, they occur at the same location.

When s212 < 0, the interval is said to be space-like. Note that s12 =
√
s212 ∈ iR is pure imaginary, so one

says that imaginary intervals are spacelike. As an example, at this moment, in the frame of the reader,
the North and South poles of the earth are separated by a space-like interval. If the interval between two
events is space-like, a reference frame can always be found in which the events are simultaneous.

An interval with s12 = 0 is said to be light-like.

This leads to the concept of the light cone, depicted in fig. 19.4. Consider an event E. In the frame of
an inertial observer, all events with s2 > 0 and ∆t > 0 are in E’s forward light cone and are part of his
absolute future. Events with s2 > 0 and ∆t < 0 lie in E’s backward light cone are are part of his absolute
past . Events with spacelike separations s2 < 0 are causally disconnected from E. Two events which are
causally disconnected can not possible influence each other. Uniform rectilinear motion is represented by
a line t = x/v with constant slope. If v < c, this line is contained within E’s light cone. E is potentially
influenced by all events in its backward light cone, i.e. its absolute past. It is impossible to find a frame
of reference which will transform past into future, or spacelike into timelike intervals.

19.2.1 Proper time

Proper time is the time read on a clock traveling with a moving observer. Consider two observers, one
at rest and one in motion. If dt is the differential time elapsed in the rest frame, then

ds2 = c2 dt2 − dx2 − dy2 − dz2

= c2 dt′2 ,
(19.15)
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Figure 19.4: A (1 + 1)–dimensional light cone. The forward light cone consists of timelike events with
∆t > 0. The backward light cone consists of timelike events with ∆t < 0. The causally disconnected
regions are time-like, and intervals connecting the origin to any point on the light cone itself are light-like.

where dt′ is the differential time elapsed on the moving clock. Thus,

dt′ = dt

√
1− v

2

c2
, (19.16)

and the time elapsed on the moving observer’s clock is

t′2 − t′1 =
t2∫

t1

dt

√
1− v

2(t)

c2
. (19.17)

Thus,moving clocks run slower . This is an essential feature which is key to understandingmany important
aspects of particle physics. A particle with a brief lifetime can, by moving at speeds close to c, appear
to an observer in our frame to be long-lived. It is customary to define two dimensionless measures of a
particle’s velocity:

β ≡ v
c

, γ ≡ 1√
1− β2

. (19.18)

As v → c, we have β → 1 and γ →∞.

Suppose we wish to compare the elapsed time on two clocks. We keep one clock at rest in an inertial
frame, while the other executes a closed path in space, returning to its initial location after some interval
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of time. When the clocks are compared, the moving clock will show a smaller elapsed time. This is often
stated as the “twin paradox.” The total elapsed time on a moving clock is given by

τ =
1

c

b∫

a

ds , (19.19)

where the integral is taken over the world line of the moving clock. The elapsed time τ takes on a
minimum value when the path from a to b is a straight line. To see this, one can express τ

[
x(t)

]
as a

functional of the path x(t) and extremize. This results in ẍ = 0.

19.2.2 Irreverent problem from Spring 2002 final exam

Flowers for Algernon – Bob’s beloved hamster, Algernon, is very ill. He has only three hours to live.
The veterinarian tells Bob that Algernon can be saved only through a gallbadder transplant. A suitable
donor gallbladder is available from a hamster recently pronounced brain dead after a blender accident in
New York (miraculously, the gallbladder was unscathed), but it will take Life Flight five hours to bring
the precious rodent organ to San Diego.

Bob embarks on a bold plan to save Algernon’s life. He places him in a cage, ties the cage to the end
of a strong meter-long rope, and whirls the cage above his head while the Life Flight team is en route.
Bob reasons that if he can make time pass more slowly for Algernon, the gallbladder will arrive in time
to save his life.

(a) At how many revolutions per second must Bob rotate the cage in order that the gallbladder arrive
in time for the life-saving surgery? What is Algernon’s speed v0?

Solution : We have β(t) = ω0R/c is constant, therefore, from eqn. 19.17,

∆t = γ∆t′ . (19.20)

Setting ∆t′ = 3hr and ∆t = 5hr, we have γ = 5
3 , which entails β =

√
1− γ−2 = 4

5 . Thus, v0 = 4
5 c,

which requires a rotation frequency of ω0/2π = 38.2MHz.

(b) Bob finds that he cannot keep up the pace! Assume Algernon’s speed is given by

v(t) = v0

√
1− t

T
(19.21)

where v0 is the speed from part (a), and T = 5h. As the plane lands at the pet hospital’s emergency
runway, Bob peers into the cage to discover that Algernon is dead! In order to fill out his death report,
the veterinarian needs to know: when did Algernon die? Assuming he died after his own hamster watch
registered three hours, derive an expression for the elapsed time on the veterinarian’s clock at the moment
of Algernon’s death.

Solution : 〈Sniffle〉. We have β(t) = 4
5

(
1− t

T

)1/2
. We set

T ′ =

T ∗∫

0

dt
√

1− β2(t) (19.22)
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where T ′ = 3hr and T ∗ is the time of death in Bob’s frame. We write β0 =
4
5 and γ0 = (1−β20)−1/2 = 5

3 .

Note that T ′/T =
√

1− β20 = γ−1
0 .

Rescaling by writing ζ = t/T , we have

T ′

T
= γ−1

0 =

T ∗/T∫

0

dζ
√

1− β20 + β20 ζ

=
2

3β20

[(
1− β20 + β20

T ∗

T

)3/2
− (1− β20)3/2

]

=
2

3γ0
· 1

γ20 − 1

[(
1 + (γ20 − 1)

T ∗

T

)3/2
− 1

]
.

(19.23)

Solving for T ∗/T we have

T ∗

T
=

(
3
2 γ

2
0 − 1

2

)2/3
− 1

γ20 − 1
. (19.24)

With γ0 =
5
3 we obtain

T ∗

T
= 9

16

[(
11
3

)2/3 − 1
]
= 0.77502 . . . (19.25)

Thus, T ∗ = 3.875 hr = 3 hr 52 min 50.5 sec after Bob starts swinging.

(c) Identify at least three practical problems with Bob’s scheme.

Solution : As you can imagine, student responses to this part were varied and generally sarcastic. E.g.

“the atmosphere would ignite,” or “Bob’s arm would fall off,” or “Algernon’s remains would be found on
the inside of the far wall of the cage, squashed flatter than a coat of semi-gloss paint,” etc.

19.3 Four-Vectors and Lorentz Transformations

We have spoken thus far about different reference frames. So how precisely do the coordinates (t, x, y, z)
transform between frames K and K ′? In classical mechanics, we have t = t′ and x = x′ + u t, according
to fig. 19.3. This yields the Galilean transformation,




t
x
y
z


 =




1 0 0 0

ux 1 0 0

uy 0 1 0

uz 0 0 1







t′

x′

y′

z′


 . (19.26)

Such a transformation does not leave intervals invariant.

Let us define the four-vector xµ as

xµ =




ct
x
y
z


 ≡

(
ct
x

)
. (19.27)
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Thus, x0 = ct, x1 = x, x2 = y, and x3 = z. In order for intervals to be invariant, the transformation
between xµ in frame K and x′ µ in frame K ′ must be linear:

xµ = Lµν x
′ ν , (19.28)

where we are using the Einstein convention of summing over repeated indices. We define the Minkowski

metric tensor gµν as follows:

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (19.29)

Clearly g = gt is a symmetric matrix.

Note that the matrix Lαβ has one raised index and one lowered index. For the notation we are about to
develop, it is very important to distinguish raised from lowered indices. To raise or lower an index, we
use the metric tensor. For example,

xµ = gµν x
ν =




ct
−x
−y
−z


 . (19.30)

The act of summing over an identical raised and lowered index is called index contraction. Note that

gµν = gµρ gρν = δµν =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (19.31)

Now let’s investigate the invariance of the interval. We must have x′ µ x′µ = xµ xµ. Note that

xµ xµ = Lµα x
′ α L β

µ x′β

=
(
Lµα gµν L

ν
β

)
x′ α x′ β ,

(19.32)

from which we conclude

Lµα gµν L
ν
β = gαβ . (19.33)

This result also may be written in other ways:

Lµα gµν L
νβ = gαβ , Lt

α
µ gµν L

ν
β = gαβ (19.34)

Another way to write this equation is Lt g L = g. A rank-4 matrix which satisfies this constraint, with
g = diag(+,−,−,−) is an element of the group O(3, 1), known as the Lorentz group.

Let us now count the freedoms in L. As a 4× 4 real matrix, it contains 16 elements. The matrix Lt g L
is a symmetric 4× 4 matrix, which contains 10 independent elements: 4 along the diagonal and 6 above
the diagonal. Thus, there are 10 constraints on 16 elements of L, and we conclude that the group O(3, 1)
is 6-dimensional. This is also the dimension of the four-dimensional orthogonal group O(4), by the way.



19.3. FOUR-VECTORS AND LORENTZ TRANSFORMATIONS 173

Three of these six parameters may be taken to be the Euler angles. That is, the group O(3) constitutes
a three-dimensional subgroup of the Lorentz group O(3, 1), with elements

Lµν =




1 0 0 0

0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33


 , (19.35)

where RtR = MI, i.e. R ∈ O(3) is a rank-3 orthogonal matrix, parameterized by the three Euler angles

(φ, θ, ψ). The remaining three parameters form a vector β = (βx, βy , βz) and define a second class of
Lorentz transformations, called boosts:2

Lµν =




γ γ βx γ βy γ βz
γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 , (19.36)

where

β̂ =
β

|β| , γ =
(
1− β2

)−1/2
. (19.37)

IMPORTANT : Since the components of β are not the spatial components of a four vector, we will
only write these components with a lowered index, as βi, with i = 1, 2, 3. We will not write βi with a

raised index, but if we did, we’d mean the same thing, i.e. βi = βi. Note that for the spatial components

of a 4-vector like xµ, we have xi = −xi.

Let’s look at a simple example, where βx = β and βy = βz = 0. Then

Lµν =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1


 . (19.38)

The effect of this Lorentz transformation xµ = Lµν x
′ ν is thus

ct = γct′ + γβx′

x = γβct′ + γx′ .
(19.39)

How fast is the origin of K ′ moving in the K frame? We have dx′ = 0 and thus

1

c

dx

dt
=
γβ c dt′

γ c dt′
= β . (19.40)

Thus, u = βc, i.e. β = u/c.

It is convenient to take advantage of the fact that Pβij ≡ β̂i β̂j is a projection operator , which satisfies
(
Pβ
)2

= Pβ. The action of Pβij on any vector ξ is to project that vector onto the β̂ direction:

Pβ ξ = (β̂ · ξ) β̂ . (19.41)

2Unlike rotations, the boosts do not themselves define a subgroup of O(3, 1).
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We may now write the general Lorentz boost, with β = u/c, as

L =

(
γ γβt

γβ I + (γ − 1)Pβ

)
, (19.42)

where I is the 3× 3 unit matrix, and where we write column and row vectors

β =



βx
βy
βz


 , βt =

(
βx βy βz

)
(19.43)

as a mnemonic to help with matrix multiplications. We now have

(
ct
x

)
=

(
γ γβt

γβ I + (γ − 1)Pβ

)(
ct′

x′

)
=

(
γct′ + γβ · x′

γβct′ + x′ + (γ − 1)Pβ x′

)
. (19.44)

Thus,

ct = γct′ + γβ ·x′

x = γβct′ + x′ + (γ − 1) (β̂ ·x′) β̂ .
(19.45)

If we resolve x and x′ into components parallel and perpendicular to β, writing

x‖ = β̂ ·x , x⊥ = x− (β̂ ·x) β̂ , (19.46)

with corresponding definitions for x′‖ and x′
⊥, the general Lorentz boost may be written as

ct = γct′ + γβx′‖

x‖ = γβct′ + γx′‖

x⊥ = x′
⊥ .

(19.47)

Thus, the components of x and x′ which are parallel to β enter into a one-dimensional Lorentz boost
along with t and t′, as described by eqn. 19.39. The components of x and x′ which are perpendicular to
β are unaffected by the boost.

Finally, the Lorentz group O(3, 1) is a group under multiplication, which means that if La and Lb are

elements, then so is the product La Lb. Explicitly, we have

(La Lb)
t g La Lb = Lt

b (L
t
a g La)Lb = Lt

b g Lb = g . (19.48)
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19.3.1 Covariance and contravariance

Note that

Lt
α
µ gµν L

ν
β =




γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1




=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 = gαβ , (19.49)

since γ2 (1− β2) = 1. This is in fact the general way that tensors transform under a Lorentz transforma-
tion:

covariant vectors : xµ = Lµν x
′ ν

covariant tensors : Fµν = Lµα L
ν
β F

′ αβ = Lµα F
′ αβ Lt

β
ν

(19.50)

Note how index contractions always involve one raised index and one lowered index. Raised indices are
called contravariant indices and lowered indiced are called covariant indices. The transformation rules
for contravariant vectors and tensors are

contravariant vectors : xµ = L ν
µ x′ν

contravariant tensors : Fµν = L α
µ L β

ν F ′
αβ = L α

µ F ′
αβ L

tβ
ν

(19.51)

A Lorentz scalar has no indices at all. For example,

ds2 = gµν dx
µ dxν , (19.52)

is a Lorentz scalar. In this case, we have contracted a tensor with two four-vectors. The dot product of
two four-vectors is also a Lorentz scalar:

a · b ≡ aµ bµ = gµν a
µ bν

= a0 b0 − a1 b1 − a2 b2 − a3 b3

= a0 b0 − a · b .
(19.53)

Note that the dot product a · b of four-vectors is invariant under a simultaneous Lorentz transformation
of both aµ and bµ, i.e. a · b = a′ · b′. Indeed, this invariance is the very definition of what it means
for something to be a Lorentz scalar. Derivatives with respect to covariant vectors yield contravariant
vectors:

∂f

∂xµ
≡ ∂µf ,

∂Aµ

∂xν
= ∂νA

µ ≡ Bµ
ν ,

∂Bµ
ν

∂xλ
= ∂λB

µ
ν ≡ Cµνλ (19.54)

et cetera. Note that differentiation with respect to the covariant vector xµ is expressed by the con-

travariant differential operator ∂µ:

∂

∂xµ
≡ ∂µ =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

∂

∂xµ
≡ ∂µ =

(
1

c

∂

∂t
, − ∂

∂x
, − ∂

∂y
, − ∂

∂z

)
.

(19.55)
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The contraction ≡ ∂µ∂µ is a Lorentz scalar differential operator, called the D’Alembertian:

=
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (19.56)

The Helmholtz equation for scalar waves propagating with speed c can thus be written in compact form
as φ = 0.

19.3.2 What to do if you hate raised and lowered indices

Admittedly, this covariant and contravariant business takes some getting used to. Ultimately, it helps to
keep straight which indices transform according to L (covariantly) and which transform according to Lt

(contravariantly). If you find all this irksome, the raising and lowering can be safely ignored. We define
the position four-vector as before, but with no difference between raised and lowered indices. In fact, we
can just represent all vectors and tensors with lowered indices exclusively, writing e.g. xµ = (ct, x, y, z).
The metric tensor is g = diag(+,−,−,−) as before. The dot product of two four-vectors is

x · y = gµν xµ yν . (19.57)

The Lorentz transformation is
xµ = Lµν x

′
ν . (19.58)

Since this preserves intervals, we must have

gµν xµ yν = gµν Lµα x
′
α Lνβ y

′
β

=
(
Lt
αµ gµν Lνβ

)
x′α y

′
β ,

(19.59)

which entails
Lt
αµ gµν Lνβ = gαβ . (19.60)

In terms of the quantity Lµν defined above, we have Lµν = Lµν . In this convention, we could completely

avoid raised indices, or we could simply make no distinction, taking xµ = xµ and Lµν = Lµν = Lµν , etc.

19.3.3 Comparing frames

Suppose in the K frame we have a measuring rod which is at rest. What is its length as measured in the
K ′ frame? Recall K ′ moves with velocity u = u x̂ with respect to K. From the Lorentz transformation
in eqn. 19.39, we have

x1 = γ(x′1 + βc t′1)

x2 = γ(x′2 + βc t′2) ,
(19.61)

where x1,2 are the positions of the ends of the rod in frame K. The rod’s length in any frame is
the instantaneous spatial separation of its ends. Thus, we set t′1 = t′2 and compute the separation
∆x′ = x′2 − x′1:

∆x = γ∆x′ =⇒ ∆x′ = γ−1∆x =
(
1− β2

)1/2
∆x . (19.62)
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The proper length ℓ0 of a rod is its instantaneous end-to-end separation in its rest frame. We see that

ℓ(β) =
(
1− β2

)1/2
ℓ0 , (19.63)

so the length is always greatest in the rest frame. This is an example of a Lorentz-Fitzgerald contraction.
Note that the transverse dimensions do not contract:

∆y′ = ∆y , ∆z′ = ∆z . (19.64)

Thus, the volume contraction of a bulk object is given by its length contraction: V ′ = γ−1 V.

A striking example of relativistic issues of length, time, and simultaneity is the famous ‘pole and the
barn’ paradox, described in the Appendix (section 19.9). Here we illustrate some essential features via
two examples.

19.3.4 Example I

Next, let’s analyze the situation depicted in fig. 19.3. In the K ′ frame, we’ll denote the following
spacetime points:

A′ =

(
ct′

−d

)
, B′ =

(
ct′

+d

)
, S′

− =

(
ct′

−ct′
)

, S′
+ =

(
ct′

+ct′

)
. (19.65)

Note that the origin in K ′ is given by O′ = (ct′, 0). Here we are setting y = y′ = z = z′ = 0 and
dealing only with one spatial dimension. The points S′

± denote the left-moving (S′
−) and right-moving

(S′
+) wavefronts. We see that the arrival of the signal S′

1 at A′ requires S′
1 = A′, hence ct′ = d. The same

result holds when we set S′
2 = B′ for the arrival of the right-moving wavefront at B′.

We now use the Lorentz transformation

Lµν =

(
γ γ β
γ β γ

)
(19.66)

to transform to the K frame. Thus,

A =

(
ct∗A
x∗A

)
= LA′ = γ

(
1 β
β 1

)(
d
−d

)
= γ(1− β)d

(
1
−1

)

B =

(
ct∗B
x∗B

)
= LB′ = γ

(
1 β
β 1

)(
d
+d

)
= γ(1 + β)d

(
1
1

)
.

(19.67)

Thus, t∗A = γ(1 − β)d/c and t∗B = γ(1 + β)d/c. Thus, the two events are not simultaneous in K. The
arrival at A is first.

19.3.5 Example II

Consider a rod of length ℓ0 extending from the origin to the point ℓ0 x̂ at rest in frame K. In the frame
K, the two ends of the rod are located at spacetime coordinates

A =

(
ct
0

)
and B =

(
ct

ℓ0

)
, (19.68)
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Figure 19.5: A rectangular plate moving at velocity V = V x̂.

respectively. Now consider the origin in frame K ′. Its spacetime coordinates are

C ′ =

(
ct′

0

)
. (19.69)

To an observer in the K frame, we have

C =

(
γ γβ
γβ γ

)(
ct′

0

)
=

(
γct′

γβct′

)
. (19.70)

Now consider two events. The first event is the coincidence of A with C, i.e. the origin of K ′ instanta-
neously coincides with the origin of K. Setting A = C we obtain t = t′ = 0. The second event is the
coincidence of B with C. Setting B = C we obtain t = l0/βc and t′ = ℓ0/γβc. Note that t = ℓ(β)/βc,

i.e. due to the Lorentz-Fitzgerald contraction of the rod as seen in the K ′ frame, where ℓ(β) = ℓ0/γ.

19.3.6 Deformation of a rectangular plate

Problem: A rectangular plate of dimensions a× b moves at relativistic velocity V = V x̂ as shown in fig.
19.5. In the rest frame of the rectangle, the a side makes an angle θ with respect to the x̂ axis. Describe
in detail and sketch the shape of the plate as measured by an observer in the laboratory frame. Indicate
the lengths of all sides and the values of all interior angles. Evaluate your expressions for the case θ = 1

4π

and V =
√

2
3 c.

Solution: An observer in the laboratory frame will measure lengths parallel to x̂ to be Lorentz contracted
by a factor γ−1, where γ = (1 − β2)−1/2 and β = V/c. Lengths perpendicular to x̂ remain unaffected.
Thus, we have the situation depicted in fig. 19.6. Simple trigonometry then says

tanφ = γ tan θ , tan φ̃ = γ−1 tan θ , (19.71)

as well as

a′ = a

√
γ−2 cos2θ + sin2θ = a

√
1− β2 cos2θ

b′ = b

√
γ−2 sin2θ + cos2θ = b

√
1− β2 sin2θ .

(19.72)
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Figure 19.6: Relativistic deformation of the rectangular plate.

The plate deforms to a parallelogram, with internal angles

χ = 1
2π + tan−1(γ tan θ)− tan−1(γ−1 tan θ)

χ̃ = 1
2π − tan−1(γ tan θ) + tan−1(γ−1 tan θ) .

(19.73)

Note that the area of the plate as measured in the laboratory frame is

Ω′ = a′ b′ sinχ = a′ b′ cos(φ− φ̃)
= γ−1Ω ,

(19.74)

where Ω = ab is the proper area. The area contraction factor is γ−1 and not γ−2 (or γ−3 in a three-
dimensional system) because only the parallel dimension gets contracted.

Setting V =
√

2
3 c gives γ =

√
3, and with θ = 1

4π we have φ = 1
3π and φ̃ = 1

6π. The interior angles are

then χ = 2
3π and χ̃ = 1

3π. The side lengths are a′ =
√

2
3 a and b′ =

√
2
3 b.

19.3.7 Transformation of velocities

Let K ′ move at velocity u = cβ relative to K. The transformation from K ′ to K is given by the Lorentz
boost,

Lµν =




γ γ βx γ βy γ βz
γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z


 . (19.75)

Applying this, we have
dxµ = Lµν dx

′ ν . (19.76)
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This yields

dx0 = γ dx′ 0 + γ β · dx′

dx = γ β dx′ 0 + dx′ + (γ − 1) β̂ β̂ ·dx′ .
(19.77)

We then have

V = c
dx

dx0
=
c γ β dx′ 0 + c dx′ + c (γ − 1) β̂ β̂ ·dx′

γ dx′ 0 + γ β ·dx′

=
u+ γ−1 V ′ + (1− γ−1) û û·V ′

1 + u·V ′/c2
.

(19.78)

The second line is obtained by dividing both numerator and denominator by dx′ 0, and then writing
V ′ = dx′/dx′ 0. There are two special limiting cases:

velocities parallel
(
û·V̂ ′ = 1) =⇒ V =

(u+ V ′) û
1 + uV ′/c2

velocities perpendicular
(
û·V̂ ′ = 0) =⇒ V = u+ γ−1V ′ .

(19.79)

Note that if either u or V ′ is equal to c, the resultant expression has |V | = c as well. One can’t boost
the speed of light!

Let’s revisit briefly the example in section 19.3.4. For an observer, in the K frame, the relative velocity
of S and A is c+ u, because even though we must boost the velocity −c x̂ of the left-moving light wave
by u x̂, the result is still −c x̂, according to our velocity addition formula. The distance between the
emission and detection points is d(β) = d/γ. Thus,

t∗A =
d(β)

c+ u
=
d

γ
· 1

c+ u
=

d

γc
· 1− β
1− β2 = γ (1− β) d

c
. (19.80)

This result is exactly as found in section 19.3.4 by other means. A corresponding analysis yields t∗B =
γ (1 + β) d/c. again in agreement with the earlier result. Here, it is crucial to account for the Lorentz
contraction of the distance between the source S and the observers A and B as measured in the K frame.

19.3.8 Four-velocity and four-acceleration

In nonrelativistic mechanics, the velocity V = dx
dt is locally tangent to a particle’s trajectory. In relativistic

mechanics, one defines the four-velocity ,

uα ≡ dxα

ds
=

dxα√
1− β2 c dt

=

(
γ
γβ

)
, (19.81)

which is locally tangent to the world line of a particle. Note that

gαβ u
α uβ = 1 . (19.82)
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The four-acceleration is defined as

wν ≡ duν

ds
=
d2xν

ds2
. (19.83)

Note that u · w = 0, so the 4-velocity and 4-acceleration are orthogonal with respect to the Minkowski
metric.

19.4 Three Kinds of Relativistic Rockets

19.4.1 Constant acceleration model

Consider a rocket which undergoes constant acceleration along x̂. Clearly the rocket has no rest frame per
se, because its velocity is changing. However, this poses no serious obstacle to discussing its relativistic
motion. We consider a frame K ′ in which the rocket is instantaneously at rest. In such a frame, the
rocket’s 4-acceleration is w′ α = (0, a/c2), where we suppress the transverse coordinates y and z. In an
inertial frame K, we have

wα =
d

ds

(
γ
γβ

)
=
γ

c

(
γ̇

γβ̇ + γ̇β

)
. (19.84)

Transforming w′ α into the K frame, we have

wα =

(
γ γβ
γβ γ

)(
0

a/c2

)
=

(
γβa/c2

γa/c2

)
. (19.85)

Taking the upper component, we obtain the equation

γ̇ =
βa

c
=⇒ d

dt

(
β√

1− β2

)
=
a

c
, (19.86)

the solution of which, with β(0) = 0, is

β(t) =
at√

c2 + a2t2
, γ(t) =

√

1 +

(
at

c

)2
. (19.87)

The proper time for an observer moving with the rocket is thus

τ =

t∫

0

c dt1√
c2 + a2t21

=
c

a
sinh−1

(at
c

)
. (19.88)

For large times t ≫ c/a, the proper time grows logarithmically in t, which is parametrically slower. To
find the position of the rocket, we integrate ẋ = cβ, and obtain, with x(0) = 0,

x(t) =

t∫

0

a ct1 dt1√
c2 + a2t21

=
c

a

(√
c2 + a2 t2 − c

)
. (19.89)
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It is interesting to consider the situation in the frame K ′. We then have

β(τ) = tanh(aτ/c) , γ(τ) = cosh(aτ/c) . (19.90)

For an observer in the frame K ′, the distance he has traveled is ∆x′(τ) = ∆x(τ)/γ(τ), as we found in
eqn. 19.62. Now x(τ) = (c2/a)

(
cosh(aτ/c) − 1

)
, hence

∆x′(τ) =
c2

a

(
1− sech(aτ/c)

)
. (19.91)

For τ ≪ c/a, we expand sech(aτ/c) ≈ 1 − 1
2(aτ/c)

2 and find x′(τ) = 1
2aτ

2, which clearly is the nonrel-
ativistic limit. For τ → ∞, however, we have ∆x′(τ) → c2/a is finite! Thus, while the entire Universe
is falling behind the accelerating observer, it all piles up at a horizon a distance c2/a behind it, in the
frame of the observer. The light from these receding objects is increasingly red-shifted (see section 19.6
below), until it is no longer visible. Thus, as John Baez describes it, the horizon is “a dark plane that
appears to be swallowing the entire Universe!” In the frame of the inertial observer, however, nothing
strange appears to be happening at all!

19.4.2 Constant force with decreasing mass

Suppose instead the rocket is subjected to a constant force F0 in its instantaneous rest frame, and

furthermore that the rocket’s mass satisfies m(τ) = m0(1 − ατ), where τ is the proper time for an
observer moving with the rocket. Then from eqn. 19.86, we have

F0

m0(1− ατ)
=
d(γβ)

dt
= γ−1 d(γβ)

dτ

=
1

1− β2
dβ

dτ
=

d

dτ
1
2 ln

(
1 + β

1− β

)
,

(19.92)

after using the chain rule, and with dτ/dt = γ−1. Integrating, we find

ln

(
1 + β

1− β

)
=

2F0

αm0c
ln
(
1− ατ

)
=⇒ β(τ) =

1− (1− ατ)r
1 + (1− ατ)r , (19.93)

with r = 2F0/αm0c. As τ → α−1, the rocket loses all its mass, and it asymptotically approaches the
speed of light.

It is convenient to write

β(τ) = tanh

[
r

2
ln

(
1

1− ατ

)]
, (19.94)

in which case

γ =
dt

dτ
= cosh

[
r

2
ln

(
1

1− ατ

)]

1

c

dx

dτ
= sinh

[
r

2
ln

(
1

1− ατ

)]
.

(19.95)
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Integrating the first of these from τ = 0 to τ = α−1, we find t∗ ≡ t
(
τ = α−1

)
is

t∗ =
1

2α

1∫

0

dσ
(
σ−r/2 + σr/2

)
=





[
α2 −

( F0
mc

)2]−1
α if α >

F0
mc

∞ if α ≤ F0
mc .

(19.96)

Since β(τ = α−1) = 1, this is the time in the K frame when the rocket reaches the speed of light.

19.4.3 Constant ejecta velocity

Our third relativistic rocket model is a generalization of what is commonly known as the rocket equation

in classical physics. The model is one of a rocket which is continually ejecting burnt fuel at a velocity
−u in the instantaneous rest frame of the rocket. The nonrelativistic rocket equation follows from overall
momentum conservation:

dprocket + dpfuel = d(mv) + (v − u) (−dm) = 0 , (19.97)

since if dm < 0 is the differential change in rocket mass, the differential ejecta mass is −dm. This
immediately gives

mdv + u dm = 0 =⇒ v = u ln

(
m0

m

)
, (19.98)

where the rocket is assumed to begin at rest, and where m0 is the initial mass of the rocket. Note that
as m→ 0 the rocket’s speed increases without bound, which of course violates special relativity.

In relativistic mechanics, as we shall see in section 19.5, the rocket’s momentum, as described by an inertial
observer, is p = γmv, and its energy is γmc2. We now write two equations for overall conservation of
momentum and energy:

d(γmv) + γeve dme = 0

d(γmc2) + γe(dme c
2) = 0 ,

(19.99)

where ve is the velocity of the ejecta in the inertial frame, dme is the differential mass of the ejecta, and

γe =
(
1− v2e

c2

)−1/2
. From the second of these equations, we have

γe dme = −d(γm) , (19.100)

which we can plug into the first equation to obtain

(v − ve) d(γm) + γmdv = 0 . (19.101)

Before solving this, we remark that eqn. 19.100 implies that dme < |dm| – the differential mass of the
ejecta is less than the mass lost by the rocket! This is Einstein’s famous equation E = mc2 at work –
more on this later.
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To proceed, we need to use the parallel velocity addition formula of eqn. 19.79 to find ve:

ve =
v − u
1− uv

c2
=⇒ v − ve =

u
(
1− v2

c2

)
(
1− uv

c2

) . (19.102)

We now define βu = u/c, in which case eqn, 19.101 becomes

βu (1− β2) d(γm) + (1− ββu) γmdβ = 0 . (19.103)

Using dγ = γ3β dβ, we observe a felicitous cancellation of terms, leaving

βu
dm

m
+

dβ

1− β2 = 0 . (19.104)

Integrating, we obtain

β = tanh

(
βu ln

m0

m

)
. (19.105)

Note that this agrees with the result of eqn. 19.94, if we take βu = F0/αmc.

19.5 Relativistic Mechanics

Relativistic particle dynamics follows from an appropriately extended version of Hamilton’s principle
δS = 0. The action S must be a Lorentz scalar. The action for a free particle is

S
[
x(t)

]
= −mc

b∫

a

ds = −mc2
tb∫

ta

dt

√
1− v

2

c2
. (19.106)

Thus, the free particle Lagrangian is

L = −mc2
√

1− v
2

c2
= −mc2 + 1

2mv
2 + 1

8mc
2

(
v2

c2

)2
+ . . . . (19.107)

Thus, L can be written as an expansion in powers of v2/c2. Note that L(v = 0) = −mc2. We interpret

this as −U0, where U0 = mc2 is the rest energy of the particle. As a constant, it has no consequence for
the equations of motion. The next term in L is the familiar nonrelativistic kinetic energy, 1

2mv
2. Higher

order terms are smaller by increasing factors of β2 = v2/c2.

We can add a potential U(x, t) to obtain

L(x, ẋ, t) = −mc2
√

1− ẋ
2

c2
− U(x, t) . (19.108)

The momentum of the particle is

p =
∂L

∂ẋ
= γmẋ . (19.109)
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The force is F = −∇U as usual, and Newton’s Second Law still reads ṗ = F . Note that

ṗ = γm

(
v̇ +

vv̇

c2
γ2v

)
. (19.110)

Thus, the force F is not necessarily in the direction of the acceleration a = v̇. The Hamiltonian, recall,
is a function of coordinates and momenta, and is given by

H = p · ẋ− L =
√
m2c4 + p2c2 + U(x, t) . (19.111)

Since ∂L/∂t = 0 for our case, H is conserved by the motion of the particle. There are two limits of note:

|p| ≪ mc (non-relativistic) : H = mc2 +
p2

2m
+ U +O(p4/m4c4)

|p| ≫ mc (ultra-relativistic) : H = c|p|+ U +O(mc/p) .
(19.112)

Expressed in terms of the coordinates and velocities, we have H = E, the total energy, with

E = γmc2 + U . (19.113)

In particle physics applications, one often defines the kinetic energy T as

T = E − U −mc2 = (γ − 1)mc2 . (19.114)

When electromagnetic fields are included,

L(x, ẋ, t) = −mc2
√

1− ẋ
2

c2
− q φ+

q

c
A · ẋ

= −γmc2 − q

c
Aµ

dxµ

dt
,

(19.115)

where the electromagnetic 4-potential is Aµ = (φ , A). Recall Aµ = gµν Aν has the sign of its spatial
components reversed. One the has

p =
∂L

∂ẋ
= γmẋ+

q

c
A , (19.116)

and the Hamiltonian is

H =

√
m2c4 +

(
p− q

c
A
)2

+ q φ . (19.117)

19.5.1 Relativistic harmonic oscillator

From E = γmc2 + U , we have

ẋ2 = c2

[
1−

(
mc2

E − U(x)

)2 ]
. (19.118)

Consider the one-dimensional harmonic oscillator potential U(x) = 1
2kx

2. We define the turning points
as x = ±b, satisfying

E −mc2 = U(±b) = 1
2kb

2 . (19.119)
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Now define the angle θ via x ≡ b cos θ, and further define the dimensionless parameter ǫ = kb2/4mc2.
Then, after some manipulations, one obtains

θ̇ = ω0

√
1 + ǫ sin2θ

1 + 2ǫ sin2θ
, (19.120)

with ω0 =
√
k/m as in the nonrelativistic case. Hence, the problem is reduced to quadratures (a quaint

way of saying ‘doing an an integral’):

t(θ)− t0 = ω−1
0

θ∫

θ0

dϑ
1 + 2ǫ sin2ϑ√
1 + ǫ sin2ϑ

. (19.121)

While the result can be expressed in terms of elliptic integrals, such an expression is not particularly
illuminating. Here we will content ourselves with computing the period T (ǫ):

T (ǫ) =
4

ω0

π
2∫

0

dϑ
1 + 2ǫ sin2ϑ√
1 + ǫ sin2ϑ

=
4

ω0

π
2∫

0

dϑ
(
1 + 3

2ǫ sin
2ϑ− 5

8ǫ
2 sin4ϑ+ . . .

)

=
2π

ω0
·
{
1 + 3

4ǫ− 15
64ǫ

2 + . . .
}
.

(19.122)

Thus, for the relativistic harmonic oscillator, the period does depend on the amplitude, unlike the non-
relativistic case.

19.5.2 Energy-momentum 4-vector

Let’s focus on the case where U(x) = 0. This is in fact a realistic assumption for subatomic particles,
which propagate freely between collision events.

The differential proper time for a particle is given by

dτ =
ds

c
= γ−1 dt , (19.123)

where xµ = (ct,x) are coordinates for the particle in an inertial frame. Thus,

p = γmẋ = m
dx

dτ
,

E

c
= mcγ = m

dx0

dτ
, (19.124)

with x0 = ct. Thus, we can write the energy-momentum 4-vector as

pµ = m
dxµ

dτ
=




E/c
px

py

pz


 . (19.125)
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Note that pν = mcuν , where uν is the 4-velocity of eqn. 19.81. The four-momentum satisfies the relation

pµ pµ =
E2

c2
− p2 = m2c2 . (19.126)

The relativistic generalization of force is

fµ =
dpµ

dτ
=
(
γF ·v/c , γF

)
, (19.127)

where F = dp/dt as usual.

The energy-momentum four-vector transforms covariantly under a Lorentz transformation. This means

pµ = Lµν p
′ ν . (19.128)

If frame K ′ moves with velocity u = cβ x̂ relative to frame K, then

E

c
=
c−1E′ + β p′x√

1− β2
, px =

p′x + βc−1E′
√

1− β2
, py = p′y , pz = p′z . (19.129)

In general, from eqns. 19.47, we have

E

c
= γ

E′

c
+ γβp′‖

p‖ = γβ
E

c
+ γp′‖

p⊥ = p′⊥

(19.130)

where p‖ = β̂ ·p and p⊥ = p− (β̂ ·p) β̂.

19.5.3 4-momentum for massless particles

For a massless particle, such as a photon, we have pµ pµ = 0, which means E2 = p2 c2. The 4-momentum
may then be written pµ =

(
|p| , p

)
. We define the 4-wavevector kµ by the relation pµ = ~kµ, where

~ = h/2π and h is Planck’s constant. We also write ω = ck, with E = ~ω.

19.6 Relativistic Doppler Effect

The 4-wavevector kµ =
(
ω/c , k

)
for electromagnetic radiation satisfies kµ kµ = 0. The energy-momentum

4-vector is pµ = ~kµ. The phase φ(xµ) = −kµ xµ = k · x − ωt of a plane wave is a Lorentz scalar. This
means that the total number of wave crests (i.e. φ = 2πn) emitted by a source will be the total number
observed by a detector.
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Suppose a moving source emits radiation of angular frequency ω′ in its rest frame. Then

k′ µ = Lµν(−β) kν

=




γ −γ βx −γ βy −γ βz
−γ βx 1 + (γ − 1) β̂x β̂x (γ − 1) β̂x β̂y (γ − 1) β̂x β̂z
−γ βy (γ − 1) β̂x β̂y 1 + (γ − 1) β̂y β̂y (γ − 1) β̂y β̂z
−γ βz (γ − 1) β̂x β̂z (γ − 1) β̂y β̂z 1 + (γ − 1) β̂z β̂z







ω/c
kx

ky

kz


 .

(19.131)

This gives
ω′

c
= γ

ω

c
− γ β · k = γ

ω

c
(1− β cos θ) , (19.132)

where θ = cos−1(β̂ · k̂) is the angle measured in K between β̂ and k̂. Solving for ω, we have

ω =

√
1− β2

1− β cos θ
ω0 , (19.133)

where ω0 = ω′ is the angular frequency in the rest frame of the moving source. Thus,

θ = 0 ⇒ source approaching ⇒ ω =

√
1 + β

1− β ω0

θ = 1
2π ⇒ source perpendicular ⇒ ω =

√
1− β2 ω0

θ = π ⇒ source receding ⇒ ω =

√
1− β
1 + β

ω0 .

(19.134)

Recall the non-relativistic Doppler effect:

ω =
ω0

1− (V/c) cos θ
. (19.135)

We see that approaching sources have their frequencies shifted higher; this is called the blue shift , since
blue light is on the high frequency (short wavelength) end of the optical spectrum. By the same token,
receding sources are red-shifted to lower frequencies.

19.6.1 Romantic example

Alice and Bob have a “May-December” thang going on. Bob is May and Alice December, if you get my
drift. The social stigma is too much to bear! To rectify this, they decide that Alice should take a ride in
a space ship. Alice’s itinerary takes her along a sector of a circle of radius R and angular span of Θ = 1
radian, as depicted in fig. 19.7. Define O ≡ (r = 0), P ≡ (r = R,φ = −1

2Θ), and Q ≡ (r = R,φ = 1
2Θ).

Alice’s speed along the first leg (straight from O to P) is va =
3
5 c. Her speed along the second leg (an arc

from P to Q) is vb = 12
13 c. The final leg (straight from Q to O) she travels at speed vc =

4
5 c. Remember

that the length of an circular arc of radius R and angular spread α (radians) is ℓ = αR.
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Figure 19.7: Alice’s big adventure.

(a) Alice and Bob synchronize watches at the moment of Alice’s departure. What is the elapsed time on
Bob’s watch when Alice returns? What is the elapsed time on Alice’s watch? What must R be in order
for them to erase their initial 30 year age difference?

Solution : In Bob’s frame, Alice’s trip takes a time

∆t =
R

cβa
+
RΘ

cβb
+

R

cβc

=
R

c

(
5
3 +

13
12 + 5

4

)
=

4R

c
.

(19.136)

The elapsed time on Alice’s watch is

∆t′ =
R

cγaβa
+

RΘ

cγbβb
+

R

cγcβc

=
R

c

(
5
3 · 45 + 13

12 · 5
13 + 5

4 · 35
)
=

5R

2c
.

(19.137)

Thus, ∆T = ∆t − ∆t′ = 3R/2c and setting ∆T = 30yr, we find R = 20 ly. So Bob will have aged 80
years and Alice 50 years upon her return. (Maybe this isn’t such a good plan after all.)

(b) As a signal of her undying love for Bob, Alice continually shines a beacon throughout her trip. The
beacon produces monochromatic light at wavelength λ0 = 6000 Å (frequency f0 = c/λ0 = 5 × 1014 Hz).
Every night, Bob peers into the sky (with a radiotelescope), hopefully looking for Alice’s signal. What
frequencies fa, fb, and fc does Bob see?

Solution : Using the relativistic Doppler formula, we have

fa =

√
1− βa
1 + βa

× f0 = 1
2f0

fb =
√

1− β2b × f0 = 5
13f0

fc =

√
1 + βc
1− βc

× f0 = 3f0 .

(19.138)
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(c) Show that the total number of wave crests counted by Bob is the same as the number emitted by
Alice, over the entire trip.

Solution : Consider first the O–P leg of Alice’s trip. The proper time elapsed on Alice’s watch during this
leg is ∆t′a = R/cγaβa, hence she emits N ′

a = Rf0/cγaβa wavefronts during this leg. Similar considerations

hold for the P–Q and Q–O legs, so N ′
b = RΘf0/cγbβb and N

′
c = Rf0/cγcβc.

Although the duration of the O–P segment of Alice’s trip takes a time ∆ta = R/cβa in Bob’s frame, he

keeps receiving the signal at the Doppler-shifted frequency fa until the wavefront emitted when Alice
arrives at P makes its way back to Bob. That takes an extra time R/c, hence the number of crests
emitted for Alice’s O–P leg is

Na =

(
R

cβa
+
R

c

)√
1− βa
1 + βa

× f0 =
Rf0

cγaβa
= N ′

a , (19.139)

since the source is receding from the observer.

During the P–Q leg, we have θ = 1
2π, and Alice’s velocity is orthogonal to the wavevector k, which is

directed radially inward. Bob’s first signal at frequency fb arrives a time R/c after Alice passes P, and
his last signal at this frequency arrives a time R/c after Alice passes Q. Thus, the total time during which

Bob receives the signal at the Doppler-shifted frequency fb is ∆tb = RΘ/c, and

Nb =
RΘ

cβb
·
√

1− β2b × f0 =
RΘf0

cγbβb
= N ′

b . (19.140)

Finally, during the Q–O home stretch, Bob first starts to receive the signal at the Doppler-shifted fre-
quency fc a time R/c after Alice passes Q, and he continues to receive the signal until the moment Alice
rushes into his open and very flabby old arms when she makes it back to O. Thus, Bob receives the
frequency fc signal for a duration ∆tc −R/c, where ∆tc = R/cβc. Thus,

Nc =

(
R

cβc
− R

c

)√
1 + βc
1− βc

× f0 =
Rf0

cγcβc
= N ′

c , (19.141)

since the source is approaching.

Therefore, the number of wavelengths emitted by Alice will be precisely equal to the number received by
Bob – none of the waves gets lost.

19.7 Relativistic Kinematics of Particle Collisions

As should be expected, special relativity is essential toward the understanding of subatomic particle
collisions, where the particles themselves are moving at close to the speed of light. In our analysis of the
kinematics of collisions, we shall find it convenient to adopt the standard convention on units, where we
set c ≡ 1. Energies will typically be given in GeV, where 1GeV = 109 eV = 1.602 × 10−10 J. Momenta
will then be in units of GeV/c, and masses in units of GeV/c2. With c ≡ 1, it is then customary to
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quote masses in energy units. For example, the mass of the proton in these units is mp = 938MeV, and

m
π− = 140MeV.

For a particle of mass M , its 4-momentum satisfies Pµ Pµ = M2 (remember c = 1). Consider now an

observer with 4-velocity Uµ. The energy of the particle, in the rest frame of the observer is E = Pµ Uµ.
For example, if Pµ = (M, 0, 0, 0) is its rest frame, and Uµ = (γ , γβ), then E = γM , as we have already
seen.

Consider next the emission of a photon of 4-momentum Pµ = (~ω/c, ~k) from an object with 4-velocity
V µ, and detected in a frame with 4-velocity Uµ. In the frame of the detector, the photon energy
is E = PµUµ, while in the frame of the emitter its energy is E′ = Pµ Vµ. If Uµ = (1, 0, 0, 0) and
V µ = (γ , γβ), then E = ~ω and E′ = ~ω′ = γ~(ω − β · k) = γ~ω(1 − β cos θ), where θ = cos−1

(
β̂ · k̂

)
.

Thus, ω = γ−1ω′/(1 − β cos θ). This recapitulates our earlier derivation in eqn. 19.132.

Consider next the interaction of several particles. If in a given frame the 4-momenta of the reactants are
Pµi , where n labels the reactant ‘species’, and the 4-momenta of the products are Qµj , then if the collision
is elastic, we have that total 4-momentum is conserved, i.e.

N∑

i=1

Pµi =
N̄∑

j=1

Qµj , (19.142)

where there are N reactants and N̄ products. For massive particles, we can write

Pµi = γimi

(
1 , vi) , Qµj = γ̄j m̄j

(
1 , v̄j) , (19.143)

while for massless particles,

Pµi = ~ki
(
1 , k̂

)
, Qµj = ~k̄j

(
1 , ˆ̄k

)
. (19.144)

19.7.1 Spontaneous particle decay into two products

Consider first the decay of a particle of mass M into two particles. We have Pµ = Qµ1 + Qµ2 , hence in
the rest frame of the (sole) reactant, which is also called the ‘center of mass’ (CM) frame since the total

3-momentum vanishes therein, we have M = E1 + E2. Since ECM
i = γCMmi, and γi ≥ 1, clearly we

must have M > m1 +m2, or else the decay cannot possibly conserve energy. To analyze further, write
Pµ −Qµ1 = Qµ2 . Squaring, we obtain

M2 +m2
1 − 2PµQ

µ
1 = m2

2 . (19.145)

The dot-product P ·Q1 is a Lorentz scalar, and hence may be evaluated in any frame.

Let us first consider the CM frame, where Pµ = M(1, 0, 0, 0), and PµQ
µ
1 = MECM

1 , where ECM
1 is the

energy of n = 1 product in the rest frame of the reactant. Thus,

ECM
1 =

M2 +m2
1 −m2

2

2M
, ECM

2 =
M2 +m2

2 −m2
1

2M
, (19.146)



192 CHAPTER 19. SPECIAL RELATIVITY

Figure 19.8: Spontaneous decay of a single reactant into two products.

where the second result follows merely from switching the product labels. We may now write Qµ1 =
(ECM

1 ,pCM) and Qµ2 = (ECM
2 ,−pCM), with

(pCM)2 = (ECM
1 )2 −m2

1 = (ECM
2 )2 −m2

2

=

(
M2 −m2

1 −m2
2

2M

)2
−
(
m1m2

M

)2
.

(19.147)

In the laboratory frame, we have Pµ = γM (1 , V ) and Qµi = γimi (1 , Vi). Energy and momentum

conservation then provide four equations for the six unknowns V1 and V2. Thus, there is a two-parameter
family of solutions, assuming we regard the reactant velocity V K as fixed, corresponding to the freedom
to choose p̂CM in the CM frame solution above. Clearly the three vectors V , V1, and V2 must lie in the
same plane, and with V fixed, only one additional parameter is required to fix this plane. The other free
parameter may be taken to be the relative angle θ1 = cos−1

(
V̂ · V̂1

)
(see fig. 19.8). The angle θ2 as well

as the speed V2 are then completely determined. We can use eqn. 19.145 to relate θ1 and V1:

M2 +m2
1 −m2

2 = 2Mm1γγ1
(
1− V V1 cos θ1

)
. (19.148)

It is convenient to express both γ1 and V1 in terms of the energy E1:

γ1 =
E1

m1

, V1 =

√
1− γ−2

1 =

√
1− m2

1

E2
1

. (19.149)

This results in a quadratic equation for E1, which may be expressed as

(1− V 2 cos2θ1)E
2
1 − 2

√
1− V 2 ECM

1 E1 + (1− V 2)(ECM
1 )2 +m2

1 V
2 cos2θ1 = 0 , (19.150)

the solutions of which are

E1 =

√
1− V 2 ECM

1 ± V cos θ1

√
(1− V 2)(ECM

1 )2 − (1− V 2 cos2θ1)m
2
1

1− V 2 cos2θ1
. (19.151)

The discriminant is positive provided
(
ECM

1

m1

)2
>

1− V 2 cos2θ1
1− V 2

, (19.152)
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which means

sin2θ1 <
V −2 − 1

(V CM
1 )−2 − 1

≡ sin2θ∗1 , (19.153)

where

V CM
1 =

√

1−
(
m1

ECM
1

)2
(19.154)

is the speed of product 1 in the CM frame. Thus, for V < V CM
1 < 1, the scattering angle θ1 may take

on any value, while for larger reactant speeds V CM
1 < V < 1 the quantity sin2θ1 cannot exceed a critical

value.

19.7.2 Miscellaneous examples of particle decays

Let us now consider some applications of the formulae in eqn. 19.146:

• Consider the decay π0 → γγ, for which m1 = m2 = 0. We then have ECM
1 = ECM

2 = 1
2M . Thus,

with M = m
π0 = 135MeV, we have ECM

1 = ECM
2 = 67.5MeV for the photon energies in the CM

frame.

• For the reaction K+ −→ µ+ + νµ we have M = m
K+ = 494MeV and m1 = m

µ−
= 106MeV. The

neutrino mass is m2 ≈ 0, hence ECM
2 = 236MeV is the emitted neutrino’s energy in the CM frame.

• A Λ0 hyperon with a mass M = m
Λ0 = 1116MeV decays into a proton (m1 = mp = 938MeV) and

a pion m2 = m
π− = 140MeV). The CM energy of the emitted proton is ECM

1 = 943MeV and that
of the emitted pion is ECM

2 = 173MeV.

19.7.3 Threshold particle production with a stationary target

Consider now a particle of mass M1 moving with velocity V1 = V1 x̂, incident upon a stationary target

particle of mass M2, as indicated in fig. 19.9. Let the product masses be m1, m2, . . . , mN ′ . The
4-momenta of the reactants and products are

Pµ1 =
(
E1 , P1

)
, Pµ2 =M2

(
1 , 0

)
, Qµj =

(
εj , pj

)
. (19.155)

Note that E2
1 − P 2

1 =M2
1 and ε2j − p2j = m2

j , with j ∈ {1, 2, . . . , N ′}.

Conservation of momentum means that

Pµ1 + Pµ2 =

N ′∑

j=1

Qµj . (19.156)

In particular, taking the µ = 0 component, we have

E1 +M2 =

N ′∑

j=1

εj , (19.157)
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Figure 19.9: A two-particle initial state, with a stationary target in the LAB frame, and an N ′-particle
final state.

which certainly entails

E1 ≥
N ′∑

j=1

mj −M2 (19.158)

since εj = γjmj ≥ mj. But can the equality ever be achieved? This would only be the case if γj = 1
for all j, i.e. the final velocities are all zero. But this itself is quite impossible, since the initial state
momentum is P .

To determine the threshold energy Ethr
1 , we compare the length of the total momentum vector in the

LAB and CM frames:

(P1 + P2)
2 =M2

1 +M2
2 + 2E1M2 (LAB)

=

(
N ′∑

j=1

εCM
j

)2
(CM) .

(19.159)

Thus,

E1 =

(∑N ′

j=1 ε
CM
j

)2
−M2

1 −M2
2

2M2
(19.160)

and we conclude

E1 ≥ ETHR
1 =

(∑N ′

j=1mj

)2
−M2

1 −M2
2

2M2
. (19.161)

Note that in the CM frame it is possible for each εCM
j = mj.

Finally, we must have ETHR
1 ≥∑N ′

j=1mj −M2. This then requires

M1 +M2 ≤
N ′∑

j=1

mj . (19.162)
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19.7.4 Transformation between frames

Consider a particle with 4-velocity uµ in frame K and consider a Lorentz transformation between this
frame and a frame K ′ moving relative to K with velocity V . We may write

uµ =
(
γ , γv cos θ , γv sin θ n̂⊥

)
, u′µ =

(
γ′ , γ′v′ cos θ′ , γ′v′ sin θ′ n̂′

⊥
)
. (19.163)

According to the general transformation rules of eqns. 19.47, we may write

γ = Γ γ′ + ΓV γ′v′ cos θ′

γv cos θ = ΓV γ′ + Γ γ′v′ cos θ′

γv sin θ = γ′v′ sin θ′

n̂⊥ = n̂′
⊥ ,

(19.164)

where the x̂ axis is taken to be V̂ , and where Γ ≡ (1−V 2)−1/2. Note that the last two of these equations
may be written as a single vector equation for the transverse components.

Dividing the third and second of eqns. 19.164, we obtain the result

tan θ =
sin θ′

Γ
(
V
v′ + cos θ′

) . (19.165)

We can then use the first of eqns. 19.164 to relate v′ and cos θ′:

γ′−1
=
√

1− v′2 = Γ

γ

(
1 + V v′ cos θ′

)
. (19.166)

Squaring both sides, we obtain a quadratic equation whose roots are

v′ =
−Γ 2 V cos θ′ ±

√
γ4 − Γ 2 γ2 (1− V 2 cos2θ′)

γ2 + Γ 2 V 2 cos2θ′
. (19.167)

CM frame mass and velocity

To find the velocity of the CM frame, simply write

Pµtot =

N∑

i=1

Pµi =

(
N∑

i=1

γimi ,

N∑

i=1

γimi vi

)

≡ Γ M (1 , V ) .

(19.168)

Then

M2 =

(
N∑

i=1

γimi

)2

−
(

N∑

i=1

γimi vi

)2

(19.169)

and

V =

∑N
i=1 γimi vi∑N
i=1 γimi

. (19.170)
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Figure 19.10: Compton scattering of a photon and an electron.

19.7.5 Compton scattering

An extremely important example of relativistic scattering occurs when a photon scatters off an electron:
e− + γ −→ e− + γ (see fig. 19.10). Let us work in the rest frame of the reactant electron. Then we have

Pµe = me (1, 0) , P̃µe = me (γ , γV ) (19.171)

for the initial and final 4-momenta of the electron. For the photon, we have

Pµγ = (ω , k) , P̃µγ = (ω̃ , k̃) , (19.172)

where we’ve set ~ = 1 as well. Conservation of 4-momentum entails

Pµγ − P̃µγ = P̃µe − Pµe . (19.173)

Thus, (
ω − ω̃ , k − k̃

)
= me

(
γ − 1 , γV

)
. (19.174)

Squaring each side, we obtain

(
ω − ω̃

)2 −
(
k − k̃

)2
= 2ω ω̃ (cos θ − 1)

= m2
e

(
(γ − 1)2 − γ2V 2

)

= 2m2
e(1− γ)

= 2me

(
ω̃ − ω) .

(19.175)

Here we have used |k| = ω for photons, and also (γ − 1)me = ω − ω̃, from eqn. 19.174.

Restoring the units ~ and c, we find the Compton formula

1

ω̃
− 1

ω
=

~

mec2
(
1− cos θ

)
. (19.176)
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This is often expressed in terms of the photon wavelengths, as

λ̃− λ =
4π~

mec
sin2

(
1
2θ
)
, (19.177)

showing that the wavelength of the scattered light increases with the scattering angle in the rest frame
of the target electron.

19.8 Covariant Electrodynamics

We begin with the following expression for the Lagrangian density of charged particles coupled to an
electromagnetic field, and then show that the Euler-Lagrange equations recapitulate Maxwell’s equations.
The Lagrangian density is

L = − 1

16π
Fµν F

µν − 1

c
jµA

µ . (19.178)

Here, Aµ = (φ ,A) is the electromagnetic 4-potential , which combines the scalar field φ and the vector

field A into a single 4-vector. The quantity Fµν is the electromagnetic field strength tensor and is given
by

Fµν = ∂µAν − ∂νAµ . (19.179)

Note that as defined Fµν = −Fνµ is antisymmetric. Note that, if i = 1, 2, 3 is a spatial index, then

F0i = −
1

c

∂Ai

∂t
− ∂A0

∂xi
= Ei

Fij =
∂Ai

∂xj
− ∂Aj

∂xi
= − ǫijkBk .

(19.180)

Here we have used Aµ = (A0 , A) and Aµ = (A0 , −A), as well as ∂µ = (c−1∂t ,∇).

IMPORTANT : Since the electric and magnetic fields E and B are not part of a 4-vector, we do not
use covariant / contravariant notation for their components. Thus, Ei is the i

th component of the vector

E. We will not write Ei with a raised index, but if we did, we’d mean the same thing: Ei = Ei. By

contrast, for the spatial components of a four-vector like Aµ, we have Ai = −Ai.

Explicitly, then, we have

Fµν =




0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0


 , Fµν =




0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


 , (19.181)

where Fµν = gµα gνβ Fαβ . Note that when comparing Fµν and Fµν , the components with one space and
one time index differ by a minus sign. Thus,

− 1

16π
Fµν F

µν =
E2 −B2

8π
, (19.182)
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which is the electromagnetic Lagrangian density. The j · A term accounts for the interaction between
matter and electromagnetic degrees of freedom. We have

1

c
jµA

µ = ̺φ− 1

c
j ·A , (19.183)

where

jµ =

(
c̺
j

)
, Aµ =

(
φ
A

)
, (19.184)

where ̺ is the charge density and j is the current density. Charge conservation requires

∂µ j
µ =

∂̺

∂t
+∇·j = 0 . (19.185)

We shall have more to say about this further on below.

Let us now derive the Euler-Lagrange equations for the action functional,

S = −c−1

∫
d4x

(
1

16π
Fµν F

µν + c−1 jµA
µ

)
. (19.186)

We first vary with respect to Aµ. Clearly

δFµν = ∂µ δAν − ∂ν δAµ . (19.187)

We then have

δL =

(
1

4π
∂µF

µν − c−1jν
)
δAν − ∂µ

(
1

4π
Fµν δAν

)
. (19.188)

Ignoring the boundary term, we obtain Maxwell’s equations,

∂µ F
µν = 4πc−1 jν (19.189)

The ν = k component of these equations yields

∂0 F
0k + ∂i F

jk = −∂0Ek − ǫjkl ∂j Bl = 4πc−1 jk , (19.190)

which is the k component of the Maxwell-Ampère law,

∇×B =
4π

c
j +

1

c

∂E

∂t
. (19.191)

The ν = 0 component reads

∂i F
i0 =

4π

c
j0 ⇒ ∇·E = 4π̺ , (19.192)

which is Gauss’s law. The remaining two Maxwell equations come ‘for free’ from the very definitions of
E and B:

E = −∇A0 − 1

c

∂A

∂t
B = ∇×A ,

(19.193)

which imply

∇×E = −1

c

∂B

∂t
∇ ·B = 0 .

(19.194)
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19.8.1 Lorentz force law

This has already been worked out in chapter 7. Here we reiterate our earlier derivation. The 4-current
may be written as

jµ(x, t) = c
∑

n

qn

∫
dτ

dXµ
n

dτ
δ(4)(x−X) . (19.195)

Thus, writing Xµ
n =

(
ct ,Xn(t)

)
, we have

j0(x, t) =
∑

n

qn c δ
(
x−Xn(t)

)

j(x, t) =
∑

n

qn Ẋn(t) δ
(
x−Xn(t)

)
.

(19.196)

The Lagrangian for the matter-field interaction term is then

L = −c−1

∫
d3x
(
j0A0 − j ·A

)

= −
∑

n

[
qn φ(Xn, t)−

qn
c
A(Xn, t) · Ẋn

]
,

(19.197)

where φ = A0. For each charge qn, this is equivalent to a particle with velocity-dependent potential
energy

U(x, t) = q φ(x, t) − q

c
A(r, t) · ẋ , (19.198)

where x =Xn.

Let’s work out the equations of motion. We assume a kinetic energy T = 1
2mẋ

2 for the charge. We then
have

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
(19.199)

with L = T − U , which gives

m ẍ+
q

c

dA

dt
= −q∇φ+

q

c
∇(A · ẋ) , (19.200)

or, in component notation,

mẍi +
q

c

∂Ai

∂xj
ẋj +

q

c

∂Ai

∂t
= −q ∂φ

∂xi
+
q

c

∂Aj

∂xi
ẋj , (19.201)

which is to say

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c

(
∂Aj

∂xi
− ∂Ai

∂xj

)
ẋj . (19.202)

It is convenient to express the cross product in terms of the completely antisymmetric tensor of rank
three, ǫijk:

Bi = ǫijk
∂Ak

∂xj
, (19.203)
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and using the result

ǫijk ǫimn = δjm δkn − δjn δkm , (19.204)

we have ǫijk Bi = ∂jAk − ∂kAj, and

mẍi = −q ∂φ
∂xi
− q

c

∂Ai

∂t
+
q

c
ǫijk ẋ

j Bk , (19.205)

or, in vector notation,

m ẍ = −q∇φ− q

c

∂A

∂t
+
q

c
ẋ× (∇×A)

= qE +
q

c
ẋ×B ,

(19.206)

which is, of course, the Lorentz force law.

19.8.2 Gauge invariance

The action S = c−1
∫
d4xL admits a gauge invariance. Let Aµ → Aµ+ ∂µΛ, where Λ(x, t) is an arbitrary

scalar function of spacetime coordinates. Clearly

Fµν → Fµν +
(
∂µ∂νΛ− ∂ν∂µΛ

)
= Fµν , (19.207)

and hence the fields E and B remain invariant under the gauge transformation, even though the 4-
potential itself changes. What about the matter term? Clearly

−c−1 jµAµ → − c−1 jµ Aµ − c−1 jµ ∂µΛ

= −c−1 jµAµ + c−1Λ ∂µ j
µ − ∂µ

(
c−1Λ jµ

)
.

(19.208)

Once again we ignore the boundary term. We may now invoke charge conservation to write ∂µ jµ = 0,
and we conclude that the action is invariant! Woo hoo! Note also the very deep connection

gauge invariance ←→ charge conservation . (19.209)

19.8.3 Transformations of fields

One last detail remains, and that is to exhibit explicitly the Lorentz transformation properties of the
electromagnetic field. For the case of vectors like Aµ, we have

Aµ = Lµν A
′ ν . (19.210)

The E and B fields, however, appear as elements in the field strength tensor Fµν . Clearly this must
transform as a tensor:

Fµν = Lµα L
ν
β F

′ αβ = Lµα F
′ αβ Lt

β
ν . (19.211)
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Figure 19.11: Homer celebrates the manifest gauge invariance of classical electromagnetic theory.

We can write a general Lorentz transformation as a product of a rotation Lrot and a boost Lboost. Let’s
first see how rotations act on the field strength tensor. We take

L = Lrot =

(
11×1 01×3

03×1 R3×3

)
, (19.212)

where RtR = I, i.e. R ∈ O(3) is an orthogonal matrix. We must compute

Lµα F
′ αβ Lt

β
ν =

(
1 0

0 Rij

)(
0 −E′

k

E′
j − ǫjkmB′

m

)(
1 0
0 Rt

kl

)

=

(
0 −E′

kR
t
kl

Rij E
′
j − ǫjkmRij Rlk B′

m

)
.

(19.213)

Thus, we conclude

El = Rlk E
′
k

ǫilnBn = ǫjkmRij Rlk B
′
m .

(19.214)

Now for any 3× 3 matrix R we have

ǫjksRij Rlk Rrs = det(R) ǫilr , (19.215)

and therefore

ǫjkmRij Rlk B
′
m = ǫjkmRij Rlk RnmRnsB

′
s

= det(R) ǫilnRnsB
′
s ,

(19.216)

Therefore,

Ei = Rij E
′
j , Bi = det(R) · Rij B′

j . (19.217)
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For any orthogonal matrix, RtR = I gives that det(R) = ±1. The extra factor of det(R) in the trans-
formation properties of B is due to the fact that the electric field transforms as a vector , while the
magnetic field transforms as a pseudovector . Under space inversion, for example, where R = −I, the
electric field is odd under this transformation (E → −E) while the magnetic field is even (B → +B).
Similar considerations hold in particle mechanics for the linear momentum, p (a vector) and the angular
momentum L = r × p (a pseudovector). The analogy is not complete, however, because while both p
and L are odd under the operation of time-reversal, E is even while B is odd.

OK, so how about boosts? We can write the general boost, from eqn. 19.36, as

L =

(
γ γβ̂

γβ̂ I + (γ − 1)Pβ

)
(19.218)

where Pβij = β̂i β̂j is the projector onto the direction of β. We now compute

Lµα F
′ αβ Lt

β
ν =

(
γ γβt

γβ I + (γ − 1)P

)(
0 −E′ t

E′ − ǫjkmB′
m

)(
γ γβt

γβ I + (γ − 1)P

)
. (19.219)

Carrying out the matrix multiplications, we obtain

E = γ(E′ − β ×B′)− (γ − 1)(β̂ ·E′)β̂

B = γ(B′ + β ×E′)− (γ − 1)(β̂ ·B′)β̂ .
(19.220)

Expressed in terms of the components E‖, E⊥, B‖, and B⊥, one has

E‖ = E′
‖ , E⊥ = γ

(
E′

⊥ − β ×B′
⊥
)

B‖ = B′
‖ , B⊥ = γ

(
B′

⊥ + β ×E′
⊥
)
.

(19.221)

Recall that for any vector ξ, we write

ξ‖ = β̂ · ξ
ξ⊥ = ξ − (β̂ · ξ) β̂ ,

(19.222)

so that β̂ · ξ⊥ = 0.

19.8.4 Invariance versus covariance

We saw that the laws of electromagnetism were gauge invariant . That is, the solutions to the field
equations did not change under a gauge transformation Aµ → Aµ + ∂µΛ. With respect to Lorentz
transformations, however, the theory is Lorentz covariant . This means that Maxwell’s equations in
different inertial frames take the exact same form, ∂µFµν = 4πc−1jν , but that both the fields and the
sources transform appropriately under a change in reference frames. The sources are described by the
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current 4-vector jµ = (c̺ , j) and transform as

c̺ = γc̺′ + γβj′‖

j‖ = γβc̺′ + γj′‖

j⊥ = j ′⊥ .

(19.223)

The fields transform according to eqns. 19.221.

Consider, for example, a static point charge q located at the origin in the frame K ′, which moves with
velocity u x̂ with respect to K. An observer in K ′ measures a charge density ̺′(x′, t′) = q δ(x′). The
electric and magnetic fields in the K ′ frame are then E′ = q r̂′/r′ 2 and B′ = 0. For an observer in the
K frame, the coordinates transform as

ct = γct′ + γβx′ ct′ = γct− γβx
x = γβct′ + γx′ x′ = −γβct+ γx ,

(19.224)

as well as y = y′ and z = z′. The observer in the K frame sees instead a charge at xµ = (ct , ut , 0 , 0)
and both a charge density as well as a current density:

̺(x, t) = γ̺(x′, t′) = q δ(x− ut) δ(y) δ(z)
j(x, t) = γβc ̺(x′, t′) x̂ = u q δ(x− ut) δ(y) δ(z) x̂ .

(19.225)

OK, so much for the sources. How about the fields? Expressed in terms of Cartesian coordinates, the
electric field in K ′ is given by

E′(x′, t′) = q
x′x̂+ y′ŷ + z′ẑ

(
x′ 2 + y′ 2 + z′ 2

)3/2 . (19.226)

From eqns. 19.221, we have Ex = E′
x and Bx = B′

x = 0. Furthermore, we have Ey = γE′
y, Ez = γE′

z,

By = −γβE′
z, and Bz = γβE′

y. Thus,

E(x, t) = γq
(x− ut)x̂+ yŷ + zẑ

[
γ2(x− ut)2 + y2 + z2

]3/2

B(x, t) =
γu

c
q

yẑ − zŷ
[
γ2(x− ut)2 + y2 + z2

]3/2 .
(19.227)

Let us define
R(t) = (x− ut) x̂+ y ŷ + z ẑ . (19.228)

We further define the angle θ ≡ cos−1
(
β̂ · R̂

)
. We may then write

E(x, t) =
qR

R3
· 1− β2
(
1− β2 sin2θ

)3/2

B(x, t) =
q β̂ ×R
R3

· 1− β2
(
1− β2 sin2θ

)3/2 .
(19.229)

The fields are therefore enhanced in the transverse directions: E⊥/E‖ = γ3.
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Figure 19.12: A relativistic runner carries a pole of proper length ℓ into a barn of proper length ℓ.

19.9 Appendix I : The Pole, the Barn, and Rashoman

Akira Kurosawa’s 1950 cinematic masterpiece, Rashoman, describes a rape, murder, and battle from four
different and often contradictory points of view. It poses deep questions regarding the nature of truth.
Psychologists sometimes refer to problems of subjective perception as the Rashoman effect . In literature,
William Faulkner’s 1929 novel, The Sound and the Fury , which describes the tormented incestuous life
of a Mississippi family, also is told from four points of view. Perhaps Faulkner would be a more apt
comparison with Einstein, since time plays an essential role in his novel. For example, Quentin’s watch,
given to him by his father, represents time and the sweep of life’s arc (“Quentin, I give you the mausoleum

of all hope and desire...”). By breaking the watch, Quentin symbolically attempts to escape time and
fate. One could draw an analogy to Einstein, inheriting a watch from those who came before him, which
he too broke – and refashioned. Did Faulkner know of Einstein? But I digress.

Consider a relativistic runner carrying a pole of proper length ℓ, as depicted in fig. 19.12. He runs toward
a barn of proper length ℓ at velocity u = cβ. Let the frame of the barn be K and the frame of the runner
be K ′. Recall that the Lorentz transformations between frames K and K ′ are given by

ct = γct′ + γβx′ ct′ = γct− γβx
x = γβct′ + γx′ x′ = −γβct+ γx .

(19.230)

We define the following points. Let A denote the left door of the barn and B the right door. Furthermore,
let P denote the left end of the pole and Q its right end. The spacetime coordinates for these points in
the two frames are clearly .

A = (ct , 0) P ′ = (ct′ , 0)

B = (ct , ℓ) Q′ = (ct′ , ℓ)
(19.231)

We now compute A′ and B′ in frame K ′, as well as P and Q in frame K:

A′ = (γct , −γβct) B′ = (γct− γβℓ , −γβct+ γℓ)

≡ (ct′ , −βct′) ≡ (ct′ , −βct′ + γ−1ℓ) .
(19.232)

Similarly,

P = (γct′ , γβct′) Q = (γct′ + γβℓ , γβct′ + γℓ)

≡ (ct , βct) ≡ (ct , βct+ γ−1ℓ) .
(19.233)
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We now define four events, by the coincidences of A and B with P and Q:

• Event I : The right end of the pole enters the left door of the barn. This is described by Q = A in
frame K and by Q′ = A′ in frame K ′.

• Event II : The right end of the pole exits the right door of the barn. This is described by Q = B
in frame K and by Q′ = B′ in frame K ′.

• Event III : The left end of the pole enters the left door of the barn. This is described by P = A in
frame K and by P ′ = A′ in frame K ′.

• Event IV : The left end of the pole exits the right door of the barn. This is described by P = B in
frame K and by P ′ = B′ in frame K ′.

Mathematically, we have in frame K that

I : Q = A ⇒ tI = −
ℓ

γu

II : Q = B ⇒ tII = (γ − 1)
ℓ

γu

III : P = A ⇒ tIII = 0

IV : P = B ⇒ tIV =
ℓ

u

(19.234)

In frame K ′, however

I : Q′ = A′ ⇒ t′I = −
ℓ

u

II : Q′ = B′ ⇒ t′II = −(γ − 1)
ℓ

γu

III : P ′ = A′ ⇒ t′III = 0

IV : P ′ = B′ ⇒ t′IV =
ℓ

γu

(19.235)

Thus, to an observer in frame K, the order of events is I, III, II, and IV, because

tI < tIII < tII < tIV . (19.236)

For tIII < t < tII, he observes that the pole is entirely in the barn. Indeed, the right door can start shut
and the left door open, and sensors can automatically and, for the purposes of argument, instantaneously
trigger the closing of the left door immediately following event III and the opening of the right door
immediately prior to event II. So the pole can be inside the barn with both doors shut!

But now for the Rashoman effect : according to the runner, the order of events is I, II, III, and IV, because

t′I < t′II < t′III < t′IV . (19.237)

At no time does the runner observe the pole to be entirely within the barn. Indeed, for t′II < t′ < t′III,
both ends of the pole are sticking outside of the barn!
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Figure 19.13: An object of proper length ℓ and moving with velocity u, when photographed from an
angle α, appears to have a length ℓ̃.

19.10 Appendix II : Photographing a Moving Pole

What is the length ℓ of a moving pole of proper length ℓ0 as measured by an observer at rest? The

answer would appear to be γ−1ℓ0, as we computed in eqn. 19.63. However, we should be more precise

when we we speak of ‘length’. The relation ℓ(β) = γ−1ℓ0 tells us the instantaneous end-to-end distance

as measured in the observer’s rest frame K. But an actual experiment might not measure this quantity.

For example, suppose a relativistic runner carrying a pole of proper length ℓ0 runs past a measuring rod
which is at rest in the rest frame K of an observer. The observer takes a photograph of the moving pole
as it passes by. Suppose further that the angle between the observer’s line of sight and the velocity u of
the pole is α, as shown in fig. 19.13. What is the apparent length ℓ(α, u) of the pole as observed in the
photograph? (I.e. the pole will appear to cover a portion of the measuring rod which is of length ℓ.)

The point here is that the shutter of the camera is very fast (otherwise the image will appear blurry). In
our analysis we will assume the shutter opens and closes instantaneously. Let’s define two events:

• Event 1 : photon γ1 is emitted by the rear end of the pole.

• Event 2 : photon γ2 is emitted by the front end of the pole.

Both photons must arrive at the camera’s lens simultaneously. Since, as shown in the figure, the path of
photon #1 is longer by a distance ℓ cosα, where ℓ is the apparent length of the pole, γ2 must be emitted

a time ∆t = c−1ℓ cosα after γ1. Now if we Lorentz transform from frame K to frame K ′, we have

∆x′ = γ∆x− γβ∆t . (19.238)
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But ∆x′ = ℓ0 is the proper length of the pole, and ∆x = ℓ is the apparent length. With c∆t = ℓ cosα,
then, we have

ℓ =
γ−1 ℓ0

1− β cosα . (19.239)

When α = 90◦, we recover the familiar Lorentz-Fitzgerald contraction ℓ(β) = γ−1 ℓ0. This is because

the photons γ1 and γ2 are then emitted simultaneously, and the photograph measures the instantaneous
end-to-end distance of the pole as measured in the observer’s rest frame K. When cosα 6= 0, however,
the two photons are not emitted simultaneously, and the apparent length is given by eqn. 19.239.
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