Self-organized criticality

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/0034-4885/62/10/201)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 132.239.66.164
This content was downloaded on 23/05/2016 at 19:18

Please note that terms and conditions apply.
Self-organized criticality

Donald L Turcotte
Department of Geological Sciences, Cornell University, Snee Hall, Ithaca, NY 14853-1504, USA

Received 16 March 1999

Abstract

The concept of self-organized criticality was introduced to explain the behaviour of the sandpile model. In this model, particles are randomly dropped onto a square grid of boxes. When a box accumulates four particles they are redistributed to the four adjacent boxes or lost off the edge of the grid. Redistributions can lead to further instabilities with the possibility of more particles being lost from the grid, contributing to the size of each ‘avalanche’. These model ‘avalanches’ satisfied a power-law frequency–area distribution with a slope near unity. Other cellular-automata models, including the slider-block and forest-fire models, are also said to exhibit self-organized critical behaviour. It has been argued that earthquakes, landslides, forest fires, and species extinctions are examples of self-organized criticality in nature. In addition, wars and stock market crashes have been associated with this behaviour. The forest-fire model is particularly interesting in terms of its relation to the critical-point behaviour of the site-percolation model. In the basic forest-fire model, trees are randomly planted on a grid of points. Periodically in time, sparks are randomly dropped on the grid. If a spark drops on a tree, that tree and adjacent trees burn in a model fire. The fires are the ‘avalanches’ and they are found to satisfy power-law frequency–area distributions with slopes near unity. This forest-fire model is closely related to the site-percolation model, that exhibits critical behaviour. In the forest-fire model there is an inverse cascade of trees from small clusters to large clusters, trees are lost primarily from model fires that destroy the largest clusters. This quasi steady-state cascade gives a power-law frequency–area distribution for both clusters of trees and smaller fires. The site-percolation model is equivalent to the forest-fire model without fires. In this case there is a transient cascade of trees from small to large clusters and a power-law distribution is found only at a critical density of trees.
Contents

1. Introduction 1379
2. Sandpile model 1381
 2.1. Cellular-automata model 1381
 2.2. Laboratory sandpiles 1384
 2.3. Landslides 1385
 2.4. Turbidites 1389
3. Slider-block model 1389
 3.1. Chaotic behaviour 1389
 3.2. Self-organized critical behaviour 1391
 3.3. Earthquakes 1394
4. Forest-fire model 1398
 4.1. Cellular-automata model 1398
 4.2. Forest and wild fires 1401
5. Criticality versus self-organized criticality 1402
 5.1. An inverse-cascade model 1402
 5.2. The forest-fire model versus the site-percolation model 1411
6. Other applications in the physical sciences 1414
7. Applications in the biological sciences 1415
 7.1. The Game of Life 1415
 7.2. The Bak–Sneppen model 1415
 7.3. Applications to extinctions 1416
 7.4. Other studies 1417
8. Applications in the social sciences 1418
9. Concluding remarks 1420
 Acknowledgments 1421
 References 1421
1. Introduction

The concept of self-organized criticality was proposed by Bak et al. (1987, 1988) as an explanation for the behaviour of a cellular-automata model they developed. In this model there is a square grid of boxes and at each time step a particle is dropped into a randomly selected box. When a box accumulates four particles, the particles are redistributed to the four neighbouring boxes, or in the case of edge boxes, lost from the grid. Redistributions can lead to further instabilities, with ‘avalanches’ of particles lost from the edge of the grid. Because of this ‘avalanche’ behaviour, this was called a ‘sandpile’ model. The noncumulative frequency–area distribution of model ‘avalanches’ was found to satisfy a power-law (fractal) distribution

\[N \sim A^{-\alpha} \]

where \(N \) is the number of avalanches with area \(A \) and \(\alpha \) is a constant with a value \(\alpha \approx 1 \).

A second model that can exhibit self-organized critical behaviour is the slider-block model (Carlson and Langer 1989a, b). In this model, an array of slider blocks are connected to a constant velocity driver plate by puller springs and to each other by connector springs. The blocks exhibit stick–slip behaviour due to frictional interactions with the plate across which they are pulled. The frequency–area distribution of the smaller slip events again satisfies (1.1) with \(\alpha \approx 1 \). The area \(A \) is defined to be the number of blocks that participate in a slip event. This model is completely deterministic whereas the sandpile model is stochastic. This model also provides a direct bridge to deterministic chaos; for instance, Huang and Turcotte (1990a) showed that a pair of slider blocks pulled over a surface can exhibit deterministic chaos with a period doubling route to chaos.

A third model that exhibits deterministic chaos is the forest-fire model (Bak et al. 1992, Drossel and Schwabl 1992a, b). In the simplest version of this model, a square grid of sites is considered. At each time step either a tree is planted on a randomly chosen site (if the site is unoccupied) or a spark is dropped on the site. If the spark is dropped on a tree, that tree and all adjacent trees are ‘burned’ in a model ‘forest fire’. The frequency–area distribution of the smaller fires again satisfies (1.1) with \(\alpha = 1.0–1.2 \). The area \(A \) is defined to be the number of trees that are burned in a fire. The forest-fire model is closely related to the site-percolation model that is known to exhibit critical behaviour (Stauffer and Aharony 1992). If trees are planted on a grid without fires, site-percolation behaviour is found. The critical point is reached when a tree cluster spans the grid.

A satisfactory definition for self-organized criticality remains elusive. The three models discussed above exhibit similar behaviours but there are also significant differences. Many variations on these models have been proposed; some are considered self-organized critical but many others are not. Totally different models have been proposed that exhibit self-organized critical behaviour. Some of these models are applicable to problems in the biological and social sciences. Bak (1996) has provided a comprehensive, if personal, review of developments. An extensive discussion of self-organized criticality has also been given by Jensen (1998).

Shortly after the ‘sandpile’ model was proposed a number of laboratory studies were undertaken to determine whether actual sandpiles exhibit the behaviour attributed to self-organized criticality. A variety of frequency–size statistics for avalanches were found (Nagel 1992, Feder 1995); in some cases the results were consistent with the power-law relation (1.1), but in other cases they were not.

Although the concept of self-organized criticality was conceived as an explanation for simple ‘toy’ models, it has been associated with several natural hazards (Malamud and Turcotte 1999). Examples include the following:
(1) Earthquakes. Stress accumulates on time scales of hundreds to thousands of years due to the slow movement of the tectonic plates. Stress is relieved in seconds during earthquakes. Earthquakes in a region occur on a mosaic of faults. A universal feature of earthquakes in a region is that they satisfy the power-law relation (1.1) with a near universal value of α. However, for earthquakes, $\alpha \approx 2$ rather than the $\alpha \approx 1$ associated with the models discussed above.

(2) Forest and wild fires. Combustible material grows on long time scales and is destroyed in fires on short time scales. The frequency–area distribution of forest and wild fires is well approximated by the power-law relation (1.1) with $\alpha = 1.3–1.5$.

(3) Landslides. Slope instabilities develop slowly and are relieved on short time scales in landslides. The frequency–area distribution of landslides is well approximated by the power-law relation (1.1) with $\alpha = 2.3–3.3$.

Applications of self-organized criticality have also been proposed in the biological and social sciences. Some examples are the following:

(1) Biodiversity. The diversity of species develops on long time scales and is wiped out in extinctions on short time scales. There is some indication that the frequency–size distribution of extinction events is power-law.

(2) Epidemics. A population develops that has little immunity to diseases over long time scales. The disease spreads as an epidemic on a short time scale. Again there is some evidence that the frequency–size distribution of epidemics is power-law.

(3) Wars. Instabilities between countries develop on relatively long time scales terminating in wars that generally last relatively short periods of time. Richardson (1941) measured the intensity of wars in terms of the numbers of battle deaths and showed that the frequency–intensity distribution of wars is well approximated by a power-law distribution.

(4) Stock-market crashes. Stock markets expand and grow on relatively long time scales but contract in stock-market crashes on relatively short time scales.

A rigorous definition of self-organized critical behaviour is elusive. A working definition is that a system is in a state of self-organized criticality if a measure of the system fluctuates about a state of marginal stability. In self-organized criticality, the ‘input’ to a complex system is constant, whereas the ‘output’ is a series of events or ‘avalanches’ that follow a power-law (fractal) frequency–size distribution. For example, in the case of the sandpile model, the input is the steady addition of sand grains, and the output is sand avalanches.

Power-law (fractal) frequency–size distributions can be explained in terms of scale invariance. The power-law distribution is the only distribution that does not require a characteristic length scale. Thus, natural phenomena that do not inherently have a natural length scale (i.e. that are scale invariant) would be expected to follow a power-law (fractal) distribution. In the past ten years, numerous numerical models have been found that are believed to exhibit self-organized critical behaviour; many believe this universal behaviour is a fundamental basis for the applicability of fractal statistics.

In this review we begin by discussing the sandpile, slider-block and forest-fire models in detail and the relation these models have with the idea of self-organized criticality. In addition to an overall view of the mathematical formalism and statistics of each cellular-automata model, and how each model relates to the other, we will discuss and provide a review of the many ‘applications’ of these models in both the laboratory and the real world. We follow these sections with one that discusses the inverse-cascade and site-percolation models and a comparison of self-organized criticality and criticality. The final sections in this review provide a detailed review of self-organized criticality applied to the physical, biological and social sciences.
2. Sandpile model

2.1. Cellular-automata model

The concept of self-organized criticality evolved from the ‘sandpile’ model proposed by Bak et al (1987, 1988). In this model there is a square grid of boxes and at each time step a particle is dropped into a randomly selected box. When a box accumulates four particles, they are redistributed to the four adjacent boxes, or in the case of edge boxes they are lost from the grid. Since only nearest-neighbour boxes are involved in a redistribution, this is a cellular-automata model. Redistributions can lead to further instabilities and avalanches of particles in which many particles may be lost from the edges of the grid. The input is the steady-state addition of particles. A measure of the state of the system is the average number of particles in the boxes. This ‘density’ fluctuates about a quasi-equilibrium value. Each of the multiple redistributions during a time step contributes to the size of the model ‘avalanche’. One measure of the size of a model avalanche is given by the number of particles lost from the grid during each sequence of redistributions; an alternative measure is given by the number of boxes that participate in the redistributions.

This model was called a ‘sandpile’ model because of the resemblance to an actual sandpile on a table. The randomly dropped particles in the model are analogous to the addition of particles to an actual sandpile and the model avalanches are analogous to sand avalanches down the sides of the sandpile. In some cases the sand avalanches lead to the loss of particles off the table.

The sandpile model depends only on the size of the grid considered. As a specific example of the sandpile model, consider the 3×3 grid illustrated in figure 1. As shown, each box is identified by a row and column. The simulation has been run for some time so that a quasi-equilibrium beginning configuration has been established. In steps 1–4, particles have been added randomly to cells ‘22’, ‘00’, ‘11’ and ‘12’ without requiring any redistributions. In step 5a, a particle is added to box ‘11’; this box is now ‘unstable’ and the four particles are redistributed to the adjacent boxes ‘01’, ‘10’, ‘12’ and ‘21’. This redistribution causes three of these boxes, ‘01’, ‘10’, ‘12’ and ‘21’ to become unstable, requiring further redistributions. The selection of which box to redistribute next is arbitrary; however, the choice does not influence the statistical evolution of the model. In step 5c, the four particles in box ‘01’ are redistributed: one particle is lost from the grid and particles are added to boxes ‘00’, ‘02’, and ‘11’. Eight further redistributions are required before an ‘equilibrium’ configuration (all boxes with less than four particles) is reached. These redistributions are illustrated in steps 5d–5k. During this sequence of redistributions, all nine boxes were unstable and box ‘11’ was unstable twice. During the sequence of redistributions, 12 particles were lost from the grid and the number of particles on the grid was reduced from 25 to 13. In step 6a, a particle is added to box ‘01’ and it is unstable. A single redistribution is required and one particle is lost from the grid.

Having specified the size of the grid, a simulation is run for N_S time steps and the number of avalanches N_L with area A_L is determined. The area A_L is defined to be the number of boxes that participate in an avalanche. The noncumulative frequency–area distribution for model avalanches is given for a 50×50 grid in figure 2. There is a good correlation with the power-law relation (1.1) with $\alpha \approx 1.0$. Large-scale simulations (Kadanoff et al 1989, Manna 1990, Lubeck and Usadel 1997) show that this correlation is valid over the entire range of areas from a single box to the entire grid and is independent of the size of the grid.

The time series associated with the average number of particles in the boxes has been said to exhibit $1/f$ or red noise, where f is the frequency (Bak et al 1987, 1988). If the time T associated with an avalanche is taken to be the number of particle redistributions during an
Figure 1. Illustration of the sandpile model. A 3 x 3 grid is considered and seven time steps are shown. Model ‘avalanches’ occur in steps 5 and 6. For the first avalanche, there are ten required redistributions (steps 5b-5k), all nine boxes were ‘unstable’ at least once, and 12 particles were lost from the grid. In the second avalanche, only one box became unstable, and only one particle was lost from the grid.

In an avalanche, it is found that

\[N \sim T^{-1} \] \hspace{1cm} (2.1)

where \(N \) is the number of events with \(T \) redistributions. This was the basis for the 1/\(f \) argument. However, the usual definition of a 1/\(f \) noise is in terms of the power spectral density \(S \) with

\[S \sim f^{-\beta}. \] \hspace{1cm} (2.2)
When the actual time series behaviour of the sandpile model is studied it is found that $\beta \approx 2$ (Jensen et al 1989, Kertesz and Kiss 1990, O’Brien and Weissman 1992).

Dhar (1990) has shown that the sandpile model described above is Abelian, i.e. the final state of the system is independent of the order in which steps are taken. One consequence of this is that the order in which redistributions are carried out during an avalanche does not affect the final structure of the avalanche (Dhar and Majumdar 1990, Majumdar and Dhar 1992, Speer 1993, Ivashkevich et al 1994, Dhar et al 1995, Dhar 1996, 1999, Tsuchiya and Katori 1999).

The only control parameter in this model is the size of the square grid of boxes. This size limits the size of the largest model avalanche but does not otherwise influence the behaviour of the model. The frequency–area distribution of avalanches is power-law (fractal) whether the area of the avalanche is specified by the number of particles lost from the grid or by the number of boxes that participate in the avalanche. Thus the behaviour of the system is scale invariant. It is also important to note that the slope of the power-law distribution is close to unity in many examples.

When first introduced, the ‘sandpile’ model created a great deal of interest because of its unusual behaviour. It is not a critical problem because there is no control parameter to tune. The behaviour of the system does not approach a well-defined equilibrium and it does not diverge to infinity. The system fluctuates about a quasi-equilibrium density of particles. Particles accumulate slowly as they are randomly added to boxes and are lost precipitously in model avalanches. Because of this great interest many variations on this basic ‘sandpile’ model have been studied. Some exhibit a similar type of behaviour and others do not. Variations include studies of the one-dimensional version (Ali and Dhar 1995a, b, Chang et al 1995, Kutnjak-Urbanc et al 1996a, Head and Rodgers 1997a, Pinho et al 1997, Priezzhev and Sneppen 1998), the three-dimensional version (Robinson 1994), singular diffusion (Carlson et al 1990), and a slope instability rather than a height instability (Chhabra et al 1993). Variations have been

Barriere and Turcotte (1991, 1994), Kutnjak-Urbanc et al (1996b), and Daarden and Vanderzande (1998) studied ‘sandpile’ models with a power-law distribution of box sizes. Redistributions from a large box always generated instabilities in adjacent smaller boxes. These are very similar to the aftershock sequence following earthquakes. In some cases a redistribution from a smaller box generated an instability in a larger box. This is analogous to the occurrence of a foreshock before an earthquake. Edney et al (1998) have determined and compared the critical exponents for eight sandpile models.

2.2. Laboratory sandpiles

A direct analogy can be made between the sandpile model and avalanches on actual sandpiles. Consider a pile of sand on a circular table. Grains of sand are randomly dropped on the pile until the slope of the pile reaches the critical angle of internal friction. This is the maximum slope that a granular material can maintain without additional grains sliding down the slope; in the case of sands, these angles are typically 34–37°. One hypothesis for the behaviour of the sandpile would be that individual grains could be added until the slope is everywhere at an angle of repose. Additional grains would then simply slide down the slope. This is not what happens. The sandpile never reaches the hypothetical critical state. As the critical state is approached, additional sand grains trigger avalanches of various sizes. On average, the number of sand grains added balances the number that slide down the slope and off the table.

In order to test the applicability of the ‘sandpile’ model, many laboratory studies have been carried out on actual sandpiles. The approach just discussed drops individual sand grains onto a table until sand avalanches occur on the resulting sandpile. However, a preferred configuration was to study a rotating drum half-filled with sand. From the classical point of view, the flat surface will be rotated until the static angle of repose is reached. At this time an avalanche is initiated and the avalanche will continue until the dynamic angle of repose is reached. Periodic large avalanches would be expected. However, if the results of the ‘sandpile’ model are applicable, a power-law distribution of avalanche sizes would be expected. Laboratory
Self-organized criticality

1385

experiments have been carried out using spherical glass beads, rough aluminium particles, rice grains and other granular materials in addition to sand. Frequency–volume distributions for avalanches were obtained.

Numerical studies of sandpile avalanches have also carried out with mixed results (Mehta and Barker 1994a, b, Buchholtz and Poschel 1996, Malthe-Sorensen 1996, Boguna and Corral 1997, Zhang 1997, Manna and Khakhar 1998). Dhar (1992) and Prado and Olami (1992) have suggested that the reason that laboratory experiments do not generate power-law avalanche distributions is due to inertial effects. This explanation is consistent with the experimental studies of avalanches on rice piles carried out by Frette et al (1996). They found power-law distributions for elongated grains in which inertial effects were minimized and deviations for more circular rice grains.

When droplets of water fall on an inclined glass plate they adhere to the plate due to surface tension. If there are enough water droplets, however, rivelets of water cascade down the plate. These rivelets can be considered to be ‘avalanches’ in the sense of the sandpile model. Plourde et al (1993) carried out laboratory studies of this problem and found that the frequency–size distribution of rivelets was a power law.

2.3. Landslides

We now turn our attention to the frequency–area distributions of actual landslides. A number of studies (Whitehouse and Griffiths 1983; Ohmori and Hirano 1988, Sasaki et al 1991, Noever 1993, Sugai et al 1994, Yokoi et al 1995, Hovius et al 1997) have presented evidence that landslide frequency–area distributions are often well represented by the power-law relation (1.1).

When considering actual data, results are generally presented using cumulative statistics; for instance, the cumulative number of landslides \(N_{CL} \) with areas greater than \(A_L \) are plotted as a function of \(A_L \). However, the frequency–area distribution for the model avalanches given in figure 2 is noncumulative, i.e. the data is given in terms of unit steps of area. In order to make a direct comparison of the sandpile model results with actual landslides, the noncumulative model data could be converted to a cumulative distribution by summing model avalanches larger than a specified area. However, since the slope of the noncumulative power law is near unity, its integral or sum will be logarithmic. This is true of most models that exhibit self-organized criticality, since the slopes are generally near unity using a noncumulative frequency–area distribution.

Instead of converting the model results from a noncumulative to a cumulative distribution, we present the frequency–area data for landslides in a noncumulative form. This could be done by ‘binning’ the data; however, there would be ambiguities (for example, whether the bin size is in linear or logarithmic coordinates). Therefore, in order to compare the
(noncumulative) sandpile model results with actual landslides, we use a derivative method
to convert a cumulative distribution of actual landslide areas to a noncumulative one.

We start with cumulative data, where \(N_{CL} \) is the number of landslides with area greater
than \(A_L \). We define a noncumulative distribution in terms of the negative of the derivative (i.e.
the slope) of the cumulative distribution with respect to the area \(A_L \). The value is negative,
because the cumulative distribution is summed from the largest to the smallest values. The
derivative, \(dN_{CL}/dA_L \), is the slope of the best-fit line for a specified number of adjacent
cumulative data points.

Malamud and Turcotte (1999) have considered four data sets for the frequency–area
distributions of landslides. These authors derived the slopes, \(dN_{CL}/dA_L \), of the cumulative
data using five adjacent points and a least-squares fit in linear space. The negative of each
slope is plotted as a function of the average of the five adjacent log \(A_L \) points in figure 3. The
results suggest that the frequency–area distributions are similar despite different geographic
settings and triggering mechanisms.

Earthquakes have long been recognized as a trigger for extensive landslides. The first
data set (Harp and Jibson 1995) is a compilation of 11 000 landslides located over an area of
10 000 km\(^2\) that were triggered by the January 17, 1994 Northridge, California earthquake.
Harp and Jibson (1995) estimated that the inventory is nearly complete down to landslides
of about 5 m on a side, below which a significant number may have been missed. The
noncumulative frequency–area distribution is given in figure 3(a). The frequency–area
distribution for large landslides is in good agreement with the power-law relation (1.1) with
\(\alpha \approx 2.3 \). The observed frequency–area distribution flattens out for areas less than about
10\(^{-1}\) km\(^2\), thus few landslides occur with small areas. Note that this change in the distribution
occurs at an area that is an order of magnitude larger than the resolution of the catalogue.
Therefore, it does not appear to be an artifact of completeness of the data set.

In the second data set, 3424 landslides with areas larger than 10\(^{-2}\) km\(^2\) in the Akaishi
Ranges, central Japan, have been compiled by Ohmori and Sugai (1995). In this region,
landslides occur as a result of both heavy rainfall and strong earthquakes. It was estimated
that the inventory is nearly complete for landslides with area greater than 10\(^{-2}\) km\(^2\). The
noncumulative frequency–area distribution is given in figure 3(b). The frequency–area
distribution for large landslides is again in good agreement with the power-law relation (1.1)
with \(\alpha \approx 3.0 \). Again the frequency–area distribution flattens out for small landslides.

In the third set, a set of landslide areas was mapped in the Challana Valley, Bolivia by
Blodgett (1998). This is a relatively aseismic region of the Andes; therefore, the landslides
are thought to have been hydrologically triggered during the wet season. The noncumulative
frequency–area distribution is given in figure 3(c). The frequency–area distribution for large
landslides is again in good agreement with the power-law relation (1.1) with \(\alpha \approx 2.6 \).

The fourth and final data set consists of the frequency–area distribution for 709 landslides
in the Eden Canyon area, Alameda County, California (Nilsen et al 1975). The smallest
landslide deposits mapped are about 50 m in dimension and the landslides range in age from
tens to several hundred thousand years old. The noncumulative frequency–area distribution
is given in figure 3(d); the frequency–area distribution for large landslides is again in good
agreement with the power-law relation (1.1) with \(\alpha \approx 3.3 \).

All four data sets given in figure 3 exhibit similar behaviour. For the larger landslides, the
noncumulative frequency–area distributions correlate well with the power-law relation (1.1)
taking \(\alpha \approx 2.3–3.3 \). This slope is considerably larger than the sandpile model slope of \(\alpha \approx 1.0 \).
It must be noted, however, that landslides have a depth as well as an area, so any comparison
with the strictly two-dimensional sandpile model is only approximate. Nevertheless, all four
data sets give reasonably good power-law correlations for the larger landslides. There are
Self-organized criticality

Figure 3. Noncumulative frequency–area distributions for actual landslides (Malamud and Turcotte 1999). Four examples are given: (a) 11,000 landslides triggered by the January 17, 1994 Northridge, California earthquake (Harp and Jibson 1995). (b) 3,423 landslides in the Akaishi Ranges of central Japan (Ohmori and Sugai 1995). (c) 1,130 landslides in the Challana valley, Yungas region, Eastern Cordillera, Bolivia (Blodgett 1998). (d) 709 landslides in the Eden Canyon area of Alameda county, California (Nilsen et al. 1975). The noncumulative number of landslides, \(-\frac{dN_{CL}}{dA_L}\), with area \(A_L\), is given as a function of \(A_L\). In each case a reasonably good correlation is obtained with the power-law relation (1.1) with \(\alpha = 2.3 - 3.3\).

a number of similarities between the sandpile model and real landslides. Slope instabilities develop slowly and are eliminated in ‘avalanches’. Power-law distributions are obtained. It is basically an arbitrary choice to decide whether landslides are an example of self-organized critical behaviour in nature.

In all four data sets, the frequency of occurrence of small landslides falls systematically below the predictions of the power-law correlation. This cannot be attributed to sampling problems since the fall-off occurs at landslide sizes considerably larger than the resolution
limits. The break in slope occurs at a scale of about 30 m, similar to that recognized in terms of river networks. River networks are believed to form at a scale of 30 m, so slope instabilities (landslides) related to rivers can only occur at larger scales.

Pelletier et al (1997) used observed power-law distributions of soil moisture in conjunction with a slope stability analysis to model the frequency–area distribution of landslides. In their model, landslides occur when a threshold shear stress dependent on cohesion, pore pressure, internal friction, and slope angle, is exceeded. Since cohesion, pore pressure, and internal friction are all primarily dependent on soil moisture, this implies a threshold dependence on soil moisture and slope angle. With soil moisture modelled as above and topography modelled as a Brownian walk, the cumulative frequency–area distribution of domains of shear stress greater than a threshold value is a power-law function of area with an exponent of -1.8 for
large landslide areas. This distribution is similar to that observed for landslides. The effect of
strong ground motion from earthquakes lowers the shear stress necessary for failure, but does
not change the frequency–area distribution of failed areas. This is consistent with observations.
The fact that the surface upon which landslides occur is a self-affine fractal (Turcotte 1997),
is an important difference between the sandpile model, laboratory studies, and real landslides.
An alternative model for the power-law behaviour of landslides has been given by Hergarten

2.4. Turbidites

Under some circumstances, sedimentary layers can be associated with landslides. Turbidite
currents, a suspension of particles denser than the surrounding water, are associated with slumps
(avalanches) off continental margins. Turbidity currents, triggered by a slump, can cover very
large areas (hundreds of thousands of km2) at high speeds (10–100 km h$^{-1}$). These events
can be considered a natural analogue for sand slides, and thus the sandpile model considered
above. The lithologic product of a turbidity current is a turbidite, each deposit representing a
distinct event (slump). Each turbidite is composed of a general upward gradation from coarse-
grained sediments to fine-grained sediments, and individual turbidites are generally separated
by well-defined bedding planes.

Several studies of the frequency–thickness distributions of turbidite deposits have been
carried out. Rothman et al (1994) carried out direct measurements on an outcrop of the
Kingston Peak Formation near the southern end of Death Valley, California. Their results are
given in figure 4(a), where the cumulative number of layers with thickness greater than h, N_c,
is given as a function of h. Good agreement with the power-law (fractal) relation

$$N_c \sim h^{-D}$$

is obtained by taking $D = 1.39$. Rothman et al (1994) associated the observed power-law
distribution of turbidite deposits with the power-law distribution of sandpile model avalanches.
Hiscott et al (1992) have studied a volcanoclastic turbidite deposit in the Izu–Bonin forearc
basin off the shore of Japan. Layer thicknesses were obtained from formation-microscanner
images from well logs in the middle to upper Oligocene part of the section. Results for two
DSDP (Deep Sea Drilling Project) holes located 75 km apart are given in figure 4(b); a good
correlation with (2.3) is obtained by taking $D = 1.12$.

It is interesting to note that the fractal dimensions (power-law exponents) of the thickness
statistics given in figure 4 are greater than one. Because this is a one-dimensional set, the
fractal dimension would be expected to be in the range $0 < D < 1$. The reason for this is
that the distribution will diverge as $h \to 0$. The Cantor set is a specific example of such a
fractal distribution. Thus, the observed distributions are not strictly fractal. However, real
distributions have both upper and lower cutoffs on the range of validity of (2.3). Thus, for
natural distributions D need not be restricted to values less than one. This kind of ambiguity
also arises in any association of natural phenomena with self-organized criticality.

3. Slider-block model

3.1. Chaotic behaviour

Slider-block models have also been said to exhibit self-organized critical behaviour. These
models are considered to be simple analogues for the behaviour of faults in the Earth’s crust.
The simplest example, given in figure 5(a), is a single slider-block of mass m pulled over a
surface by a spring constant k attached to a constant velocity v driver plate. The interaction of
Figure 4. Cumulative frequency–thickness distributions for turbidite sequences of sedimentary layers. (a) Kingston Peak Formation near the southern end of Death Valley, California (Rothman et al. 1994). (b) Izu–Bonin forearc basin off the shore of Japan (Hiscott et al. 1992). Both sets of authors attribute the roll-off for thin layers to loss of resolution. In each case, $N_C(h)$, the number of beds with thickness greater than h is plotted as a function of h. The straight-line correlations with the power-law relation (2.3) give $D = 1.39$ for (a) and $D = 1.12$ for (b).

The block with the surface is controlled by friction. Many friction laws have been proposed; the simplest is the static–dynamic friction law. If $v = 0$ the static frictional force is F_s, if $v \neq 0$ the dynamic frictional force is F_d. If $F_s > F_d$, stick–slip behaviour is obtained and the motion of the block is made up of periodic slip events.

The behaviour of a pair of slider blocks was studied in detail by Huang and Turcotte (1990a, 1992). This model is illustrated in figure 5(b) and the equations of motion for the two blocks were solved simultaneously. Solutions were governed by two parameters, the stiffness of the system $\alpha = k_c / k_p$ (k_c the spring constant of the connector spring and k_p the spring constant of the puller springs) and the ratio of static to dynamic friction $\Phi = F_s / F_d$. For some values of these parameters, deterministic chaos was found. Chaotic behaviour requires some asymmetry in the problem, i.e. $F_{s1} \neq F_{s2}$. The period-doubling route to chaos was observed.
with positive values of the Lyapunov exponent in the chaotic regions. The behaviour of the pair of slider blocks is very similar to the behaviour of the logistic map (May 1976).

A modification of this model is to allow only one block to slip at a time. The first block to become unstable is allowed to complete its harmonic motion before the stability of the second block is considered; if the second block is then unstable, it is allowed to slip before the motion of the driver plate is updated. This is a cellular-automata model. Extensive studies using this model were carried out (Narkounskaya and Turcotte 1992, Narkounskaya et al. 1992) and these showed that its behaviour was essentially identical to the results obtained when both blocks were allowed to slip simultaneously.

The chaotic behaviour of the low-dimensional Lorenz equations (Lorenz 1963) is now accepted as evidence that the behaviour of the atmosphere and oceans is chaotic. Similarly, the chaotic behaviour of a pair of slider blocks is evidence that earthquakes exhibit chaotic behaviour (Huang and Turcotte 1990b).

3.2. Self-organized critical behaviour

The slider-block model with a pair of slider blocks considered above can be extended to include large numbers of slider blocks. Multiple slider-block simulations were first considered by Burridge and Knopoff (1967). Laboratory studies were carried out on a linear array of slider blocks pulled from one end. Large slip events were quasi-periodic and the smaller slip events satisfied a power-law dependence of cumulative number of events on size. Otsuka (1972) obtained power-law frequency–size statistics for a two-dimensional array of 2000 slider blocks using an electrical analogue without dynamic friction. Other early studies were also carried...
The standard multiple slider-block model consists of a square array of slider blocks as illustrated in figure 6. Each block with mass \(m \) is attached to the driver plate with a driver spring, spring constant \(k_p \). Adjacent blocks are attached to each other with connector springs, spring constant \(k_c \). A block remains stationary as long as the net force on the block is less than the static resisting force, \(F_s \). This static stability criteria requires that

\[
k_p x_{i,j} + k_c (x_{i+1,j} + x_{i-1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}) < F_s \tag{3.1}
\]

with \(x_{i,j} \) the position of block \((i, j)\) in the array. When the stability criteria is violated the block begins to slip and its motion is given by

\[
m \frac{d^2 x_{i,j}}{dt^2} + k_p x_{i,j} + k_c (x_{i+1,j} + x_{i-1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}) = F_d \tag{3.2}
\]

where \(F_d \) is the dynamic frictional force between the block and the surface when the block is moving, and \(t \) is time in the slider-block model.

It is convenient to introduce the nondimensional variables

\[
\tau = t \left(\frac{k_p}{m} \right)^{1/2}, \quad X_{i,j} = \frac{k_p x_{i,j}}{F_s}, \quad \Phi = \frac{F_s}{F_d}, \quad \alpha = \frac{k_c}{k_p}. \tag{3.3}
\]

The stability condition (3.1) becomes

\[
X_{i,j} + \alpha(X_{i+1,j} + X_{i-1,j} + X_{i,j+1} + X_{i,j-1} - 4X_{i,j}) < 1 \tag{3.4}
\]

and the equation of motion of a block becomes

\[
\frac{d^2 X_{i,j}}{d\tau^2} + X_{i,j} + \alpha(X_{i+1,j} + X_{i-1,j} + X_{i,j+1} + X_{i,j-1} - 4X_{i,j}) = \Phi^{-1}. \tag{3.5}
\]

Two parameters determine the behaviour of the system: \(\Phi \), the ratio of static to dynamic friction, and \(\alpha = k_c/k_p \), the stiffness of the system. For very soft systems, \(\alpha \to 0 \), the blocks exhibit stick–slip behaviour independently. For very stiff systems, \(\alpha \to \infty \), the array of blocks behaves as a single block.

Carlson and Langer (1989a, b) considered long linear arrays of slider blocks with each block connected by springs to the two neighbouring blocks and to a constant-velocity driver. They used a velocity-weakening friction law and considered up to 400 blocks. Slip events involving large numbers of blocks were observed, the motions of all blocks involved in a slip event were coupled, and the applicable equations of motion had to be solved simultaneously. Because of the strong similarities, these are often known as molecular-dynamics simulations. Although the system is completely deterministic, the behaviour was apparently chaotic. Noncumulative frequency–size statistics were obtained for slip events. The smaller events obeyed a power-law (fractal) relationship with a slope near unity, but there were an anomalously large number of large events that included all the slider blocks. The observed behaviour was characteristic of self-organized criticality. The input in this model was the constant motion of the driver plate. The output or ‘avalanches’ were the slip events, with a power-law frequency–size distribution.

Nakanishi (1990, 1991) studied multiple slider-block models using the cellular automata approach. A linear array of slider blocks was considered but only one block was allowed to move in a slip event. The slip of one block could lead to the instability of either or both of the adjacent blocks, which would then be allowed to slip in a subsequent step or steps, until all blocks were again stable. Brown et al (1991) proposed a modification of this model involving a two-dimensional array of blocks. The use of the cellular automata approach greatly reduces the complexity of the calculations.
Huang et al (1992) carried out many simulations on a square array of blocks using static–dynamic friction and a cellular-automata approach. Their noncumulative frequency–area distribution statistics for model slip events are given in figure 7. The number of slip events per time step with area A_e, N_e/N_0, is given as a function of A_e. Results are given for a stiffness $\alpha = k_c/k_p = 30$, friction $\Phi = F_s/F_d = 1.5$, and grid sizes 20×20, 30×30, 40×40, and 50×50. There is agreement with the power-law relation (1.1) with power-law exponent $\alpha \approx 1.3$. For stiff systems, $\alpha = k_c/k_p$ large, the entire grid of slider blocks is strongly correlated and large slip events including all the blocks occur regularly. These are the peaks for $A_e = 400, 900$, and 1600, illustrated in figure 7. For soft systems, $\alpha = k_c/k_p$ relatively small, no large events occur.

There are strong similarities between the behaviour of the sandpile model and the slider-block model. In both cases smaller slip events have a noncumulative power-law frequency–area distribution with similar power-law exponents, $\alpha \approx 1.0$–1.3. Whereas the sandpile model is stochastic in the selection of boxes, the slider-block model is fully deterministic. The slider-block model provides a bridge between chaotic behaviour (two slider blocks) and self-organized critical behaviour (large numbers of slider blocks). Adjacent solutions for the chaotic behaviour of a pair of slider blocks diverge exponentially. Adjacent solutions for large numbers of slider blocks have a power-law divergence.

Models with far field interactions and no inertia have been considered (Rundle and Klein 1989, 1993, 1995, Rundle and Brown 1991, Olami et al 1992, Rundle 1993, Grassberger 1994, Rundle et al 1996a, Ferguson et al 1998, Kinouchi et al 1998). Typically in these models a redistribution occurs when the stress on a block reaches a critical value. This stress is redistributed to a number of neighbouring blocks (not just nearest neighbours) in a specified way. These neighbours may subsequently fail. In general, there is a noise added to specified values. These models can be discussed in terms of a spinodal phase change. It has been found that the distribution of energies in the springs in this class of models is Boltzmann (Rundle et al 1995, 1996c, 1997).

There is evidence that cellular automata versions of slider-block models behave systematically differently than the molecular dynamics versions. Both generate power-law distributions of small events but the molecular dynamic simulations appear to generate a class of larger events not found in the cellular automata simulations. In order to study this difference studies have been carried out on a multiple slider-block model with no driver plate and no dynamic friction (Morein et al 1997, Morein and Turcotte 1998). Energy is conserved and the static friction acts as a nonlinear switch. In the cellular automata approach a Boltzmann distribution of energies was found but in the molecular dynamics approach normal-mode oscillations were found. These oscillations strongly resembled the oscillons observed in vertically vibrating granular layers (Umbanhowar et al 1996).

Studies have also been carried out on the predictability of the major slip events in slider-block models with mixed results (Bak et al 1994, Pepke and Carlson 1994, Pepke et al 1994, Rundle et al 1996b, Zhang et al 1996). Slider-block models have been reviewed by Carlson et al (1994) and Turcotte (1997).

3.3. Earthquakes

Since the concept of self-organized criticality was first introduced, earthquakes have been identified as an example of this phenomena in nature (Bak and Tang 1989). Earthquakes occur primarily in the brittle upper crust of the Earth at depths of less than 20 km. Most earthquakes occur at or near the boundaries of the tectonic plates, but a few earthquakes occur within plate interiors. Stress is added to the crust slowly due to the tectonic motion of the plates and is relieved rapidly in earthquakes (avalanches). The crustal stress oscillates about an equilibrium value.

For over 50 years, it has been accepted that earthquakes universally obey Gutenberg–Richter scaling; the cumulative number of earthquakes per year in a region with magnitudes greater than m, N_{CE}, is related to m by (Gutenberg and Richter 1954)

$$\log N_{CE} = -bm + \log \dot{a}$$

(3.6)

where the constant b is known as the b-value and has a near-universal value $b = 0.90 \pm 0.15$ (Evernden 1970). The constant \dot{a} is a measure of the intensity of the regional seismicity.

When (3.6) is expressed in terms of the earthquake rupture area, A_E, instead of earthquake magnitude, this relation becomes a power law (Aki 1981)

$$N_{CE} \sim A_E^{-b}$$

(3.7)
Figure 8. Worldwide cumulative, N_{CE}, and noncumulative, $-dN_{CE}/dA_E$, number of earthquakes per year with rupture areas greater than A_E as a function of A_E. These data are from the Harvard Centroid-Moment Tensor Data Base (1997) for the years (1977–94). Earthquake seismic moments have been converted to rupture areas. The equivalent magnitudes, m, are also given.

which is very similar to (1.1), except that (3.7) is based on cumulative statistics and (1.1) is based on noncumulative statistics.

We first consider the worldwide number of earthquakes per year from the Harvard Centroid-Moment Tensor Data Base (1997) for the period 1977–94. Both the cumulative number of earthquakes per year, N_{CE}, with rupture area greater than A_E and the noncumulative number of earthquakes per year, $-dN_{CE}/dA_E$, are given as a function of A_E in figure 8. The equivalent magnitudes, m, are also given in figure 8. The cumulative worldwide data per year correlate with (3.6) taking $b = 1.0$ and $\dot{a} = 10^8$ per year. The data given in figure 8 can be used to estimate the frequency of occurrence of earthquakes of various magnitudes on a worldwide basis. For example, about ten magnitude-seven earthquakes are expected each year and a single magnitude-eight earthquake can be expected in a year. As expected, the slopes of the cumulative and the noncumulative distributions differ by exactly one.

The deviation of the data from the Gutenberg–Richter law (3.6) at magnitudes less than $m = 5.2$ can be attributed to the resolution limits of the global seismic network. Regional studies indicate that good correlations are obtained down to at least $m = 2.0$ (Aki 1987). The deviation of the data from the Gutenberg–Richter law at magnitudes greater than $m = 7.5$ is more controversial (Scholz 1997). Clearly, there must be an upper limit to the size of an earthquake; but the deviations in figure 8 can be attributed either to a real deviation from the correlation line or to the small number of very large earthquakes in the relatively short time span considered. There is a physical basis for a change in scaling for large earthquakes (Pacheco et al 1992). The rupture zone of smaller earthquakes can be approximated by a circle of radius r, so that $r \sim A_E^{1/2}$. However, the depth of large earthquakes is confined by the thickness of the seismogenic zone, say about 20 km, whereas the length, l, can increase virtually without limit. Thus for large earthquakes, $l \sim A_E$. The transition would be expected to occur for $A_E^{1/2} \approx 25$ km or $m \approx 7$.
As we have shown, the models we have considered typically have good agreement with the noncumulative frequency–area power-law relation (1.1) taking $\alpha \approx 1.0$–3.0. The cumulative data shown in figure 8 are in good agreement with equation (3.7) with exponent $b \approx 1.0$. Bak and Tang (1989) pointed out the similarity in slopes between self-organized critical behaviour and earthquakes. However, the model data are noncumulative, and the earthquake data cumulative; therefore, the agreement must be considered fortuitous. The equivalent noncumulative frequency–area distribution of earthquake rupture areas would follow a power-law relation (1.1) with $\alpha \approx 2.0$. The power-law exponents for earthquakes are significantly higher than for the corresponding model (the slider-block model).

In order to further consider the applicability of the Gutenberg–Richter relation to seismicity we consider the frequency–magnitude distribution of earthquakes in southern California on a yearly basis using data obtained from the Southern California Seismographic Network (SCSN Catalog 1995). In figure 9, for each individual year between 1980–94, the cumulative number of earthquakes N_{CE} with magnitudes greater than m is plotted as a function of m. The period 1980–94 taken together results in the Gutenberg–Richter power-law relation (3.6) with $b = 1.05$ and $\hat{a} = 2.06 \times 10^5$ per year, shown as the solid straight lines in figures 9(a)–(c). In figure 9, there is generally good agreement between each individual year’s data and the Gutenberg–Richter relation (solid straight line) for the period 1980–94. The exceptions can be attributed to the aftershock sequences of the 1987 Whittier, 1992 Landers, and 1994 Northridge earthquakes.

With aftershocks removed, the background seismicity in southern California illustrated in figure 9 is nearly uniform from year to year, and is not a function of time. Small earthquakes behave like a thermal background noise. This is observational evidence that the Earth’s crust is continuously on the brink of failure (Scholz 1991). Further evidence for this comes from induced seismicity. Whenever the crust is loaded, whether in a tectonically active area or not, earthquakes are induced. Examples of loading include the filling of a reservoir behind a newly completed dam or the high-pressure injection of fluids in a deep well.

While there are important similarities between slider-block models and earthquakes there are also important differences. Slider-block models would be representative of a distribution of earthquakes on a single fault. However, the Gutenberg–Richter distribution of earthquakes is not associated with a single fault but with a hierarchy of faults. Small earthquakes occur on small faults and large earthquakes occur on large faults. The earthquakes included in the southern California data given in figure 9 occur over a broad zone with a width of about 200 km on a wide variety of faults associated with the San Andreas system.

There is extensive evidence that the distribution of faults in the crust is fractal (power-law). This has led to the suggestion (Sammis et al. 1987) that comminution of the crust has led to a power-law distribution of tectonic blocks. The boundaries of these blocks are the power-law distribution of faults. Typically the cumulative number of faults with areas greater than A_E would satisfy (3.7) with $b \approx 0.8$.

A number of authors have considered the relationship between earthquakes and self-organized criticality (Sornette and Sornette 1989, Ito and Matsuzaki 1990, Sornette et al. 1990, Bak and Chen 1995, Huang et al. 1998). Although slider-block models are the primary basis for associating earthquakes with self-organized criticality, other models such as crack propagation (Chen et al. 1991) and interface depinning (Paczuski and Boettcher 1996, Fisher et al. 1997) have been proposed.

An important aspect of self-organized criticality relative to earthquakes is the implications for earthquake forecasting and prediction. Acceptance of the validity of the Gutenberg–Richter relation (3.6), and the constant rate of occurrence of small earthquakes illustrated in figure 9, implies that the observed frequency of occurrence of small earthquakes can be extrapolated
to estimate the recurrence frequencies of larger earthquakes. This is routinely done and is a primary basis for published maps of the earthquake hazard (Turcotte 1999).

A Russian group developed pattern recognition algorithms to provide intermediate range predictions of earthquakes (Keilis-Borok 1996). A number of successful predictions have been made. The algorithms use increased intermediate level seismicity and changes in aftershock statistics to make the predictions. These changes are observed over relatively large areas so that they imply the long-range interactions associated with critical phenomena. It should be emphasized, however, that this approach is controversial (Main 1996, Geller 1997, Geller et al 1997, Kagan 1997, Leary 1997). Bufe and Varnes (1993) have shown that there is a systematic power-law increase in seismic activity before a major earthquake. This increase is restricted to intermediate size events and does not extend to small events. Bowman et al (1998) have carried out a systematic study of the optimum correlation length over which this precursory activation occurs. They find the radius of the optimum region is about ten times the radius of the subsequent earthquake rupture.
4. Forest-fire model

4.1. Cellular-automata model

Although the forest-fire model (e.g. Bak et al 1992, Drossel and Schwabl 1992a, b, Henley 1993) was not the first model that was associated with self-organized criticality, it is probably the most illustrative. The forest-fire model we consider consists of a square grid of sites, with G the size of the grid. At each time step, a model tree is dropped on a randomly chosen site; if the site is unoccupied, the tree is planted. The sparking frequency, f_s, is the inverse number of attempted tree drops on the square grid before a model match is dropped on a randomly chosen site. If $f_s = \frac{1}{100}$, there have been 99 attempts to plant trees (some successful, some unsuccessful) before a match is dropped at the 100th time step. If the match is dropped on an empty site, nothing happens. If it is dropped on a tree, the tree ignites and a model fire consumes that tree and all adjacent (nondiagonal) trees.

As a specific example, consider the 10×10 grid ($G = 100$) illustrated in figure 10. Each grid site is identified by row and column as shown. The sparking frequency is $1/f_s = 5$; four trees are planted (or attempts to plant are made) before a spark is dropped. Sites are randomly chosen. The beginning configuration has six trees, and is the result of running the simulation for some time so that a quasi-equilibrium state is established. In steps 1–4, trees are dropped on the randomly chosen sites ‘54’, ‘71’, ‘85’ and ‘19’. In the first three steps, the sites are empty, so a tree is planted. In step 4, site ‘19’ is already occupied, so nothing happens. In step 5, a spark is dropped on a site ‘99’, but it is unoccupied so nothing happens. In steps 6–9, four trees are planted on sites ‘17’, ‘81’, ‘43’ and ‘68’. Finally, in step 10, a spark is dropped on site ‘54’ which is occupied by a tree. This tree ‘burns’ along with the adjacent trees on sites ‘44’ and ‘43’ and are eliminated from the grid. The tree in site ‘35’ does not burn because, although adjacent, it is diagonal to the sites being consumed by the fire. This ‘forest fire’ has a size $A_F = 3$, since three trees are burned.

For large time intervals, the number of trees lost in ‘fires’ is approximately equal to the number of trees planted. However, the number of trees on the grid will fluctuate. The frequency–area distribution of ‘fires’ is a statistical measure of the behaviour of the system. This model is probabilistic (stochastic) in that the sites are chosen randomly. It is a cellular-automata model in that only nearest-neighbour trees are ignited by a ‘burning’ tree. In terms of the definition of self-organized critical behaviour, the steady-state input is the continuous planting of trees. The avalanches in which trees are lost are the ‘forest fires’. A measure of the state of the system is the fraction of sites occupied by trees. This ‘density’ fluctuates about a ‘quasi-equilibrium’ value.

Having specified the size of the square grid, G, and the sparking frequency, f_s, a simulation is run for N_S time steps and the number of fires N_F with area A_F is determined. The area, A_F, is the number of trees that burn in a fire. Examples of four typical fires during a run are given in figure 11. In these examples the grid size is 128×128 ($G = 16 384$), $1/f_s = 2000$, and fires with $A_F = 5, 51, 506$, and 5327 trees are illustrated. Figure 11(d) is an example of a special class of forest fire that spans the grid.

The noncumulative frequency–area distributions for the model forest fires are given in figures 12 and 13. The number of fires per time step with area $A_F, N_F/N_S$, is given as a function of A_F. In figure 12, results are given for a grid size 128×128 and three sparking frequencies, $1/f_s = 125, 500$, and 2000. In figure 13, results are given for a sparking frequency $1/f_s = 500$ and three grid sizes, $64 \times 64, 128 \times 128$, and 256×256. In all cases the smaller fires correlate well with the power-law relation (1.1) with $\alpha = 1.0–1.2$.

These results clearly indicate the finite-size effect of the grid. If f_s is large, the frequency–
Figure 10. Illustration of the forest-fire model. A 10×10 grid is considered with sparking frequency $1/f_s = 5$. White boxes are unoccupied sites. Lightly shaded boxes are sites occupied by one tree. Match drops are indicated by a criss-cross pattern. Black boxes are the forest fires. Ten time steps are shown. The model 'fire' at step 10 consumes three trees.

area distribution begins to deviate significantly from a straight line, such that there is an upper termination to the power-law distribution. In figure 12, the deviation begins for $1/f_s = 125$ and $G = 128 \times 128$ at $A_F \approx 1000$. In figure 13, the deviation begins for $1/f_s = 500$ and
Figure 11. Four examples of typical model forest fires are given for a 128 × 128 grid with sparking frequency $1/f_s = 2000$. The heavily shaded regions are forest fires. The lightly shaded regions are unburned forest. The white regions are unoccupied sites. The areas A_F of the four forest fires are (a) 5, (b) 51, (c) 505 and (d) 5327 trees. The largest forest fire is seen to span the entire grid.

$G = 256 \times 256$ at $A_F \approx 4000$. It is also seen that large forest fires become dominant when the sparking frequency is very small. This is easily explained on physical grounds. This transition is clearly illustrated in figure 12. With large sparking frequencies (for example $1/f_s = 125$), trees burn before large clusters can form. For small sparking frequencies (for example $1/f_s = 2000$) clusters form that span the entire grid before ignition occurs.

In figure 13, with a large grid (for example 256×256), trees burn before large clusters can form. However, for a small grid (for example 64×64) clusters form that span the entire grid before ignition occurs. For very small firing frequencies or very small grid sizes, there will be very few fires that form with small values of area, A_F. The grid will become very full before a match sparks a fire. The areas of the fires will all involve a large number of trees, and in most cases the fires will span the grid.

Comprehensive studies of the forest-fire model have been given by Mossner et al (1992) and by Clar et al (1996, 1999). Many variations on the basic ‘forest-fire’ model given above have been studied. Simulations have been carried out in one to six dimensions (Christensen et al 1993), other one-dimensional studies have been undertaken (Drossel et al 1993, 1994a, Paczuski and Bak 1993, Honecker and Peschel 1996), phase transitions have been considered (Clar et al 1997), immune ‘trees’ have been introduced (Drossel and Schwabl 1993b, Albano 1994, 1995), the renormalization group approach has been applied (Loreto et al 1995a, b, 1996) and a variety of other studies have been carried out (Grassberger and Kantz 1991, Drossel and
Figure 12. Noncumulative frequency–area distributions of model forest fires with constant grid size and changing sparking frequency. The number of fires per time step with size A_F, N_F/N_S, is given as a function of A_F, where A_F is the number of trees burned in each fire. Results are given for grid size 128×128 and sparking frequencies, $1/f_s = 125, 500, 2000$. For each f_s, the model was run for $N_S = 1.638 \times 10^9$ time steps. The small and medium fires correlate well with the power-law relation (1.1) taking $\alpha = 1.02 - 1.18$. The finite grid size effect can be seen at the smallest sparking frequency, $1/f_s = 2000$. At $1/f_s = 2000$ fires begin to span the entire grid.

4.2. Forest and wild fires

An obvious application of the forest-fire model is to actual forest and wild fires (Malamud et al 1998). From this study, four forest-fire and wildfire data sets from the United States and Australia are given in figure 14. The first data set includes 4284 fires on US Fish and Wildlife Service land during the period 1986–95. The second data set includes the areas of 120 forest fires as interpreted from tree rings for the western United States for the period 1155–1960. The third data set includes the areas of 164 fires in Alaskan Boreal Forests during 1990–91. The fourth data set includes 298 fires in the Australian Capital Territory during 1926–91. The data sets come from a wide variety of geographic regions with different vegetation types and climates. In each case, the cumulative number of fires per year, N_{CF}, with area greater than A_F has been converted to a noncumulative distribution using the technique described in section 2.3. The results given in figure 14 correlate well with the power-law relation (1.1) taking $\alpha = 1.3 - 1.5$.

The actual forest fires (figure 14) have good power-law distributions over many orders of magnitude, consistent with the model data (figures 12 and 13). However, the model data have power-law exponents ($\alpha = 1.0 - 1.2$) that are somewhat less than those calculated for the actual data. The model is in reasonable, but not exact, agreement with the actual data.

Considering the many complexities of the initiation and propagation of forest fires and wildfires it is remarkable that the frequency–area statistics are very similar under a wide variety
of environments. The proximity of combustible material varies widely. The behaviour of a particular fire depends strongly on meteorological conditions. Fire-fighting efforts extinguish many fires. Despite these complexities, the application of the frequency–area distributions associated with the forest-fire model appears to be robust. Further confirmation of the applicability of the forest-fire model to real forests is the observation that clusters of trees in forests obey fractal (power-law) statistics (Sole and Manrubia 1995a, b). Another application of the forest-fire model has been to the spread of disease (Johansen 1994) and, in particular, to measles epidemics (Rhodes and Anderson 1996a, b, Rhodes et al 1997).

5. Criticality versus self-organized criticality

5.1. An inverse-cascade model

The behaviour of the forest-fire model can be understood using an inverse-cascade model. The one-dimensional forest-fire model has been discussed in terms of a cascade by Paczuski and Bak (1993). In the model presented here (Turcotte et al 1999) clusters of ‘trees’ are considered that contain 1, 2, 2^2, 2^n trees. Single trees are introduced to the cascade and coalesce to form larger clusters. Fires burn clusters of all sizes, but significant numbers of trees are lost only in model fires that burn the largest clusters. There is a cascade of trees from smaller to larger clusters and this cascade gives a power-law frequency–size distribution of clusters. The loss of large clusters in fires terminates the cascade.

From figures 12 and 13 it is seen that the frequency–area distribution of the smaller model forest fires correlates well with the power-law relation (1.1) with exponent $\alpha = 1.0–1.2$. We
Figure 14. Noncumulative frequency–area statistics for actual forest fires and wildfires in the United States and Australia (Malamud et al. 1998). Four examples are given: (a) 4284 fires on US Fish and Wildlife Service land during 1986–95 (National Interagency Fire Center 1996). (b) 120 fires in the western United States during 1155–1960, calculated from tree ring data (Heyerdahl et al. 1994). (c) 164 fires in Alaskan Boreal Forests during 1990–91 (Kasischke and French 1995). (d) 298 fires in the Australian Capital Territory during 1926–91 (ACT Bush Fire council 1996). For each data set, the noncumulative number of fires per year, \(-dN_{CF}/dA_F\), with area \(A_F\), is given as a function of \(A_F\). In each case a reasonably good correlation over many decades of \(A_F\) is obtained by using the power-law relation (1.1) with \(\alpha = 1.3–1.5\).

approximate this behaviour with \(\alpha \approx 1\), giving

\[
\frac{N_f}{N_S} \sim \frac{N_{f0}}{N_S A}
\]

(5.1)
where N_f / N_S is the number of fires per time step that burn a single tree. It must be emphasized that this is a noncumulative distribution with N_f / N_S the number of fires per time step that burn A trees, $A = 1, 2, 3, 4, \ldots, G$ where G is the number of sites on the square grid.

The frequency–area distribution of model forest fires can be directly related to the frequency–area distribution of model tree clusters. A tree cluster is defined to be trees that will burn if a spark is dropped on any one of them and the cluster area A is the number of trees that will burn. If N is the number of tree clusters with area A and G is the total size of the system, we can write

$$\frac{N_f}{N_S} = \frac{NA}{G^f}$$

(5.2)
where \(N_S \) is the total number of time steps that the model has been run, \(N_f / N_S \) is the probability that a fire of size \(A \) will occur at each time step, \(NA/G \) is the probability that a randomly dropped match will land on a cluster of size \(A \), and \(f \) the sparking frequency. Combining (5.1) and (5.2) with \(f \ll 1 \) we have

\[
N = \frac{N_0}{A^2} \tag{5.3}
\]

with

\[
N_0 = \frac{GN_{f0}}{fN_S} \tag{5.4}
\]

where \(N_0 \) is the number of clusters on the grid containing only single trees. The number of fires \(N_f \) of area \(A \) is proportional to \(A^{-1} \) from (5.1), whereas the number of clusters \(N \) of area \(A \) is proportional to \(A^{-2} \) from (5.3). The cumulative number of clusters with areas greater than \(A \), \(N_c \), is given by

\[
N_c = N_0 \int_A^\infty \frac{dA}{A^2} = \frac{N_0}{A}. \tag{5.5}
\]

The cumulative number of clusters with area greater than \(A \) has the same dependence on \(A \) as the noncumulative number of fires of size \(A \) given in (5.1).

A very simple inverse-cascade model can be introduced as an approximation to the forest-fire model. This process is referred to as being ‘inverse’ since the cascade proceeds from the smallest to the largest scales. Small clusters of trees coalesce to form larger clusters until the cluster is destroyed in a fire. It is assumed that clusters contain \(2^n \), \(2^{n+1} \), \(2^{n+2} \), \ldots, \(2^n \) trees; the number of clusters with \(2^n \) trees is \(N_n \). Here, \(N_0 \) is the number of clusters consisting of one tree, as before. A set of population equations can be written to describe the behaviour of the inverse cascade

\[
\frac{dN_0}{dt} = C_0 - C_{0,1}N_0^2 - D_0N_0
\]

\[
\frac{dN_1}{dt} = \frac{1}{2}C_{0,1}N_0^2 - \frac{1}{2}C_{1,2}N_1^2 - D_1N_1
\]

\[
\frac{dN_2}{dt} = \frac{1}{2}C_{1,2}N_1^2 - \frac{1}{2}C_{2,3}N_2^2 - D_2N_2
\]

\[\vdots\]

\[
\frac{dN_n}{dt} = \frac{1}{2}C_{n-1,n}N_{n-1}^2 - C_{n,n+1}N_n^2 - D_nN_n.
\]

Trees are introduced only at the lowest \(n = 0 \) level. Two clusters of size \(2^{n-1} \) coalesce to form a cluster of size \(2^n \). Particles cascade from small clusters to larger clusters. Fires destroy clusters of all sizes. The constant \(C_0 \) is the rate at which single particles are introduced to the cascade. The transition probability \(C_{0,1} \) is the rate at which single particles combine to form particle pairs, \(n = 1 \). In this simple model, clusters of size \(2^n \) are obtained only from the combination of two clusters of size \(2^{n-1} \); the rate at which this occurs is \(\frac{1}{2}[C_{n-1,n}N_{n-1}^2] \).

This is equivalent to a collision probability for clusters; since each cluster can combine with the \(N_{n-1} \) other clusters, the probability is proportional to \(N_{n-1}^2 \). Similarly, clusters of size \(2^n \) are lost as they combine to form clusters of size \(2^{n+1} \); the rate at which this occurs is \(C_{n,n+1}N_n^2 \).

Clusters of size \(2^n \) are also lost directly at a rate \(D_nN_n \). These are the fires in the forest-fire model and they are proportional to the number of clusters of size \(2^n \).

In terms of the forest-fire model, a unit of time \(t \) is the planting interval and \(C_0 \) is the rate at which single trees are planted. In the forest-fire model the number of trees in a cluster
can take any integer value. The cascade model is a renormalization group approximation in
the sense that clusters are boxed into sizes 2^n. It is similar to other dynamic renormalization
model that have been proposed (Newman and Wasserman 1990, Newman and Turcotte
1990, Newman and Knopoff 1990). In a sense it is also a mean-field approximation because
a range of cluster sizes are treated as having the same mean size. An important assumption in
the model is that cluster growth is dominated by the coalescence of clusters of approximately
equal size. In the forest-fire model clusters increase in two ways as illustrated in figure 15. If
a tree lands in a space adjacent to a cluster it increases in size by one. But if a tree bridges a
gap between two clusters with n_1 and n_2 trees, a cluster with $n_1 + n_2 + 1$ trees is formed.
In the analogy between the inverse-cascade model and the forest-fire model it is argued that the
latter process dominates and is proportional to the number of clusters squared multiplied by
the transition probability $C_{n,n+1}$. It is hypothesized that the addition of single trees to clusters
is negligible compared with the coalescence of clusters. Although clusters of all sizes coalesce
with each other, it is further hypothesized that the coalescence of clusters of approximately
equal size (in the same renormalization bin) dominates. It is further assumed that the transition
probability is proportional to the cluster area so that

$$C_{n,n+1} = 2^n \alpha C_0$$

(5.7)

where α is a positive constant.

The dependence of the transition probability on area is similar to a collision cross section.
An example would be the use of the set of equations (5.6) to model coagulation in a colloidal
suspension. However, in our case the clusters are only in relative motion due to their growth.
Statistically, the coalescence of randomly growing clusters is no different that the coalescence
of clusters in random relative motion. The assumption that the transition probability is
proportional to the cluster area is somewhat arbitrary and will be discussed further when
solutions are given. In terms of the forest-fire analogy, the loss term $D_n N_n$ represents fires.
The probability that a spark will hit a cluster is proportional to the cluster area so that we take

$$D_n = 2^n \beta C_0$$

(5.8)

where β is a positive constant. The rate at which clusters of area 2^n are lost is proportional to
the product of the area and the number of clusters; this is true for the forest-fire model. The
constants α and β can be related to parameters in the forest-fire model.

The constant C_0 can be absorbed into the definition of time with no loss of generality

$$\tau = C_0 t.$$

(5.9)
Substitution of (5.7) to (5.9) into (5.6) gives

$$\frac{dN_n}{d\tau} = \frac{1}{2} 2^n \alpha N_{n-1}^2 - 2^n \alpha N_n^2 - 4^n \beta N_n.$$ (5.10)

The behaviour of this inverse-cascade model is illustrated schematically in figure 16. The steady-state solution to this set of equations is obtained by setting $dN_n/d\tau = 0$ with the result

$$N_0 = -\beta + (\beta^2 + 4\alpha)^{1/2}$$
$$N_1 = -\beta + (\beta^2 + \alpha^2 N_0^2)^{1/2}$$
$$N_2 = -\beta + (\beta^2 + \alpha^2 N_1^2)^{1/2}$$

$$\vdots$$

$$N_n = -\beta + (\beta^2 + \alpha^2 N_{n-1}^2)^{1/2}.$$ (5.11)
The second solutions of the quadratic equations can be discarded because they give negative values for N_n. The set of equations (5.11) generates an inverse cascade with a power-law frequency–area distribution if $\beta \ll \alpha$. In this limit it is found that

$$N_0 \approx \alpha^{-1/2}, \quad N_1 \approx \frac{1}{2} N_0, \quad N_2 \approx \frac{1}{2} N_1, \quad \ldots, \quad N_n \approx \frac{1}{2} N_{n-1}. \quad (5.12)$$

With $\alpha = N_0^{-2}$ and $A_n = 2^n$ this result gives

$$N_n = \frac{N_0}{2^n} = \frac{N_0}{A_n}. \quad (5.13)$$

This dependence is a direct consequence of the assumption that the transition probability $C_{n,n+1}$ has a linear dependence on cluster area in (5.7). This model has been extended to include the coalescence of clusters of all sizes (Gabrielov et al. 1999); the inverse cascade remains scale invariant and (5.13) remains valid.

The binning used in this inverse-cascade model is equivalent to a logarithmic binning: that is, N_0 includes clusters of size 1, N_1 includes clusters of size 2 and 3, N_2 includes clusters of size 4–7, N_3 includes clusters of size 8–15, and so forth. When binned logarithmically, the noncumulative frequency–area power-law distribution yields the same power-law exponent as the cumulative distribution. When binned linearly, i.e. 1–2, 2–3, 3–4, ..., the power-law exponent for the noncumulative distribution is exactly 1.0 different from that of the corresponding cumulative distribution. Thus the result in (5.13) ($N_n = N_0/A_n$) is identical to the result applicable for the forest-fire model given in (5.5) ($N_c = N_0/A$). The simple inverse cascade reproduces the frequency–size distribution that is a characteristic of models that are said to exhibit self-organized critical behaviour.

This behaviour of the model is relatively easy to explain. As long as $\beta \ll 2^{-n} \alpha$, the loss of clusters of size 2^n and smaller due to fires is negligibly small compared with the number of clusters moving through the cascade. Significant numbers of clusters are lost only in the largest fires that terminate the cascade. Clusters of size 1 are continuously introduced and combine to form clusters of size 2, the clusters of size 2 combine to form clusters of size 4, and so forth. As long as a negligibly small number of clusters are lost in fires, the inverse cascade from small to large clusters results in the power-law relation (5.13). When $\beta \approx 2^{-n} \alpha$, large numbers of cluster are lost in fires and the inverse cascade is terminated.

In order to complete the analogy between the inverse-cascade model and the forest-fire model it is necessary to relate the loss parameter β to the sparking frequency f. The rate at which clusters are lost per time step in the inverse-cascade model is $2^n N_n \beta$, the rate at which clusters are lost per time step in the forest-fire model is $2^n N_n f/G$, equating these gives

$$\beta = \frac{f}{G}. \quad (5.14)$$

Substitution of this result and $\alpha \approx N_0^{-2}$ from equation (5.12) into equation (5.11) gives

$$\frac{N_1}{G} = -\frac{f}{2} \left(\frac{N_0}{C} \right)^2 + \frac{1}{2} \left[f^2 \left(\frac{N_0}{G} \right)^4 + \left(\frac{N_0}{G} \right)^2 \right]^{1/2},$$

$$\frac{N_2}{G} = -\frac{f}{2} \left(\frac{N_0}{C} \right)^2 + \frac{1}{2} \left[f^2 \left(\frac{N_0}{G} \right)^4 + \left(\frac{N_1}{G} \right)^2 \right]^{1/2},$$

$$\vdots$$

$$\frac{N_n}{G} = -\frac{f}{2} \left(\frac{N_0}{C} \right)^2 + \frac{1}{2} \left[f^2 \left(\frac{N_0}{G} \right)^4 + \left(\frac{N_{n-1}}{G} \right)^2 \right]^{1/2}. \quad (5.15)$$
Figure 17. Theoretical frequency–area distributions for clusters obtained from the inverse-cascade model set of equations (5.15) with \(N_0/G = 0.05 \) and \(1/f = 25, 125, \) and 500. For each firing frequency, \(f \), the number of clusters, \(N_n \), of size \(A_n = 2^n \), divided by the number of grid points \(G \), is given as a function of \(A_n \).

In the application of the inverse cascade approximation to the forest-fire model this result gives the complete cluster size distribution \(N_n/G \) when \(N_0/G \) and \(f \) are specified.

Taking \(1/f = 125 \), we see from figure 12 that \(N_{f_{0_{-}}} = 4 \times 10^{-4} \) and from (5.4) that \(N_{0_{-}} = 0.05 \). Using these two values for \(f \) and \(N_{0_{-}}/G \), we calculate the resulting \(N_n/G \) for \(n = 0, 1, 2, \ldots, 13 \) using (5.15), and in figure 17 plot these with respect to the corresponding \(A_n = 2^n \). Also included in figure 17 are results for \(1/f = 25 \) and \(1/f = 500 \), again using \(N_{0_{-}}/G = 0.05 \). The solid straight line in figure 18 represents the equation \((N_n/G = 0.05/A_n) \) (5.13) with the given \(N_{0_{-}}/G = 0.05 \). These results for the inverse-cascade model can be directly compared with the cluster statistics of the forest-fire model. The frequency–area distributions for clusters from forest-fire model runs with \(G = 128^2 = 16384 \) and \(1/f = 25, 125, 500 \) are given in figure 18. Clusters have been logarithmically binned in sizes \(A_n = 2^n \). Comparing figures 17 and 18 it is seen that the agreement is excellent.

This inverse-cascade model can also be used to study the influence of a finite-size grid. For a finite-size grid the last term in the cascade from (5.10) is

\[
\frac{dN_n}{d\tau} = 2^{n-1} \alpha N_{n-1}^2 - 2^n \beta N_n
\]

where the size of the grid \(G = 2^n \). In writing (5.16) we have considered a cluster that is equal in size to the grid. No further coalescence of clusters is possible and the cascade is terminated. Because clusters of size \(N_n \) cannot combine to form larger clusters, there is no \(-2^n \beta N_n^2 \) term in (5.16). Clusters of size \(N_n \) can only be lost in fires, resulting in the \(-2^n \beta N_n \) term in (5.16)).

Substitution of (5.14) and \(\alpha \approx N_{0_{-}}^2 \) into (5.16), with \(dN_n/d\tau = 0 \) gives

\[
\frac{N_n}{G} = \frac{1}{4f} \left(\frac{G}{N_0} \right)^2 \left(\frac{N_{n-1}}{G} \right)^2 .
\]
Figure 18. Frequency–area distributions of clusters in the forest-fire model with $G = 128^2$ and $1/f = 25, 125, 500$. The logarithmically binned number of clusters per grid point, N_n, divided by G, of size $A_n = 2^n$, is given as a function of A_n. The theoretical results from the cascade model (figure 17) closely match the forest-fire model results presented in this figure.

Figure 19. Frequency–area distributions of clusters with finite size grids with $G = 256, 1024, 4096$ from the inverse-cascade model, (5.15) and (5.17), $1/f = 125$ and $N_0/G = 0.05$. The number of clusters, N_n, of size $A_n = 2^n$, is given as a function of A_n.

Equation (5.17) is used only for the terminal step, $N_n = G$. For lower values of n, (5.15) is used. Taking $1/f = 125, N_0/G = 0.05$, and $G = 256, 1024$, and 4096 the resulting distributions of cluster sizes are given in figure 19. For the smaller grid sizes the peak in the number of largest clusters due to the termination of the cascade is clearly illustrated.
Although this inverse-cascade model is very simple, it appears to reproduce the basic behaviour of the forest-fire model and, therefore, the other cellular-automata models that are said to exhibit self-organized criticality. The behaviour of the model is easily explained. Particles are continuously introduced at the lowest-level clusters containing single particles. These clusters combine to form larger clusters and particles continuously migrate from smaller to larger clusters. This is the inverse cascade. This cascade is self-similar and thus leads to a power-law frequency–size distribution of clusters. Particles must also be lost. Although some particles are lost from all clusters, significant numbers of particles are lost only from the very largest clusters. This loss of particles leads to a break in the power-law behaviour and the termination of the cascade.

The inverse-cascade model can be applied to the sandpile and slider-block models in much the same way that it is applied to the forest-fire model. An initiation of an avalanche is equivalent to a spark being dropped on a cluster of trees. Tree clusters are equivalent to the metastable regions over which an avalanche will spread after rupture is initiated.

5.2. The forest-fire model versus the site-percolation model

It is instructive to compare the forest-fire model with the site-percolation model, which is known to exhibit critical behaviour. The site-percolation model also consists of a square grid of sites and can be discussed in terms of forest fires (Stauffer and Aharony 1992). In its standard formulation the site-percolation problem is specified in terms of the probability that there is a tree on a site \(p \). If \(N_t \) is the number of trees on the grid of size \(G \), then we have \(p = N_t/G \). The probability \(p \) is increased until there is a cluster of trees that spans the grid, this is the critical probability \(p_c \). If the forest-fire model is run without any fires it becomes the site-percolation model. This is a transient problem in which \(p(t) = N(t)/G \) is a monotonically increasing function of time. We have \(p = p_c \) when a cluster of trees first spans the grid. Monte Carlo simulations show that \(p_c = 0.59275 \) (Stinchcombe and Watson 1976).

It is recognized that the site-percolation model is a critical-point problem. The percolation probability, \(p \), is a tuning parameter and the critical point corresponds to the critical percolation probability \(p_c \). Many power-law scalings have been found to be valid in the vicinity of this critical point, i.e. \(|p - p_c| \ll 1\). One of these power-law scalings is the frequency–area distribution of all clusters. The number of clusters \(N \) with size \(A \) scales with \(A \) according to

\[
N \sim A^{-k}
\]

(5.18)

where \(k \) is known as the Fisher exponent and takes a value \(k = \frac{187}{21} \approx 2.055 \) for a variety of two-dimensional percolation models (Stauffer and Aharony 1992). However, unlike the forest-fire model, the power-law frequency–area distribution of clusters is only valid when \(N_t \approx p_c G \).

In order to compare the behaviour of the site-percolation model with the forest-fire model we consider a specific example of the transient behaviour of the forest-fire model without any fires. Trees are planted on randomly chosen grid sites until the entire grid is filled with trees. The time evolution of the number of clusters of various sizes is given in figure 20. Clusters are logarithmically binned in sizes \(A_n = 2^n \) as described in the previous section. The number of clusters of size \(A_n \), \(N_n \), is given as a function of time \(t \). The unit of time, \(\Delta t = 1 \), represents \(G \) (the total number of sites in the grid) attempts to plant trees. Initially, single-tree clusters, \(A_0 = 2^0 \), dominate; subsequently clusters grow and coalesce to form larger clusters of size \(2^1 \), \(2^2 \), \(2^3 \), and so forth. The example given has \(G = 1024^2 \). This is a transient inverse cascade from smaller to larger clusters.

The frequency–area distributions of the binned clusters from figure 20 are given in figure 21.
Figure 20. Dependence of the number of cluster, \(N_n \), of a specified size \(A_n \) on time \(t \) for the forest-fire model without any fires. Results are given for logarithmically binned clusters with \(N_n \) being the number of clusters with area \(A_n = 2^n \). For this example \(G = 1024^2 \). One unit of time, \(\Delta t = 1.00 \), is equivalent to \(G \) (the number of sites in the grid) time steps or attempts to plant trees. For instance, \(t = 2.00 \) represents the time after \(2.097152 \times 10^6 \) time steps, where an attempt is made at each time step to plant one tree.

for various times, \(t \), and percolation probability, \(p = N_t / G \). The total number of trees on the grid \(N_t \) is given as a function of time by the simple relation

\[
p = \frac{N_t}{G} = [1 - \exp(-t)].
\]

The critical density associated with the percolation, \(p_c = N_t / G = 0.59275 \), is reached when \(t = 0.898 \). It is seen from figure 21 that the frequency–area distribution of clusters when \(t = 0.898 \) has a good power-law (fractal) distribution with an exponent of \(-0.96 \). In comparing this result with the Fisher exponent it is important to note that this is a logarithmically binned distribution, which is equivalent to a cumulative distribution. The equivalent noncumulative distribution when binned linearly will have an exponent exactly \(1.0 \) lower, resulting in an exponent of \(-1.96 \), close to the expected Fisher exponent of \(-2.055 \).

Although this transient problem clearly exhibits an inverse-cascade behaviour, the resulting frequency–size distribution is only power-law at the critical percolation threshold. At other times, when the density of trees is either less than or greater than the critical values of 0.59275, the distribution deviates strongly from a power law as illustrated in figure 21.

To further illustrate the difference between critical and self-organized critical behaviour we give an example of cluster size statistics for the forest-fire model. Again, the clusters are logarithmically binned in sizes \(A_n = 2^n \). With \(G = 128^2 \) and \(1/f = 700 \) the number of binned cluster are given as a function of time in figure 22. The times at which large fires of various sizes occur are also given. It is seen that large fires occur when clusters of size 1 and
2 are at a minimum. The growth and fall in numbers of small clusters is very similar to that illustrated in figure 20. It is easily explained in terms of the density of trees. After a large fire the density is low and there is a transient filling of empty sites. As the sites fill the number of small clusters decrease until another major fire occurs. Although it is not possible to predict when large fires occur, it is seen that large fires do not occur when the numbers of small clusters is increasing.

A comparison of figures 21 and 22 clearly illustrate the differences between self-organized criticality and criticality. For the forest-fire model, the numbers of binned clusters fluctuate but are well approximated by a power-law distribution at all times. The cascade of trees from small clusters to large clusters is continuous and can be approximated by the inverse-cascade model. The power-law (fractal) distribution of cluster sizes (and thus fire sizes) is a direct consequence of this continuous cascade.

The forest-fire model without fires is identical to the site-percolation model. This is a transient problem with the density of trees increasing with time until the grid is covered by trees. Power-law frequency–area distributions of tree clusters are only found near the critical value of the density of trees. This corresponds to the first cluster that spans the grid. The forest-fire model is a quasi-steady-state model. Trees are continuously planted and continuously destroyed in model fires. The cascade of trees from small to large cluster results in power-law frequency–size distribution for the clusters. A number of authors have discussed the relationship of self-organized criticality to criticality (Drossel et al 1994b, Sornette 1994, Paczuski 1995, Sornette et al 1995, Alencar et al 1997).
Figure 22. Dependence of the number of clusters, N_n, of a specified size A_n on time, t, for the forest-fire model. Results are given for logarithmically binned clusters, with N_n being the number of clusters with area $A_n = 2^n$. For this example $G = 128^2$ and $1/f = 700$. The unit of time, $\Delta t = 1.0$, corresponds to G (the number of sites on the grid) time steps, with an attempt to plant a tree at each time step. The vertical straight lines are instances during the model run at which large forest fires occur, where the numbers 1–4 represent, respectively, fires that have a size of between 10–20%, 20–30%, 30–40% and 40–50% of the size of the grid, G.

6. Other applications in the physical sciences

Some authors consider that the evolution of landforms is an example of self-organized criticality (Takayasu and Inaoka 1992, Rinaldo et al. 1993, 1998, Rodriguez-Iturbe and Rinaldo 1997). A cellular-automata model for the development of river networks similar to the sandpile model was given by Chase (1992). The development of a fractal branching network is an essential feature of landform evolution. Because landform evolution is not associated with any form of ‘avalanches’, it seems to be inappropriate to associate landform evolution with self-organized criticality (Sapozhnikov and Foufoula-Georgiou 1996). This problem appears to be more closely associated with diffusion-limited aggregation (Masek and Turcotte 1993).

7. Applications in the biological sciences

7.1. The Game of Life

Models that exhibit self-organized criticality have also been applied to problems in the biological sciences. The first of these was the Game of Life, originally conceived by John Conway (Gardner 1970). This is a cellular-automata model that may approximate interactions between living organisms. A square grid of lattice points is considered. Each point represents an organism that is in one of two states: alive or dead. The fate of an organism depends on its eight nearest neighbours. The organism will die if there are less than two live neighbours (overexposure) and will also die with four or more alive neighbours (overcrowding). Otherwise, the organism will remain alive. At a dead site, a new organism will be born only if there are three live neighbours.

This model can be run from random initial conditions using a ‘checkerboard’ algorithm. The distribution will evolve until a stable critical population is reached. This stable state is then perturbed by selecting a random grid point and killing the organism if it is alive or introducing a live organism if the site is dead. An avalanche of births and deaths follow a perturbation. The frequency–area distribution of avalanches is a power law and satisfies (1.1) with \(\alpha \approx 1.4 \). A number of articles discuss in detail the relationship of the Game of Life to self-organized criticality, including Bak et al. (1989), Bak (1992), Garcia et al. (1993), Sales (1993), Alstrom and Leao (1994), Nordfalk and Alstrom (1996), Blok and Bergersen (1997), Newman et al. (1997) and Ninagawa et al. (1998).

7.2. The Bak–Sneppen model

Bak and Sneppen (1993) introduced a cellular-automata model for evolution. A one-dimensional linear set of \(L \) sites is considered and each site is assigned a random number \(f \) between 0 and 1. At each time step, the site with the smallest value of \(f \) is chosen. That site and the two neighbouring sites are then assigned new random values of \(f \) from the uniform distribution. A quasi-stationary state is established. In this state all sites have values, \(f \), above a critical value, \(f_c \). The sites have a uniform distribution of values in the range \(f_c < f < 1 \). The value of \(f_c \) is found to be 0.6670. At the next time step a new random number of \(f \) is assigned to the site with the smallest value of \(f \). If the new value of \(f \) is less than \(f_c \), an avalanche is initiated until all sites again have values greater than \(f_c \). Only adjacent sites participate in the avalanche. The number of sites that have values less than the critical value \(f_c \) define the size of an avalanche. If a site has smaller values several times, these are counted. As in other examples of self-organized criticality, the noncumulative frequency–size distribution of avalanches is power law with a slope very near unity; (1.1) is satisfied with \(\alpha \approx 1.0 \) for the
one-dimension model and $\alpha \approx 1.26$ for the two-dimensional model.

In associating this model with evolution, the random numbers represent the fitness of the species (Kauffman and Levin 1987). The selection of the smallest random number represents the hypothesis of evolution that the least fit species is replaced or mutates. The influence of this mutation on the rest of the ecology is simulated by changing the fitness of neighbouring species on the lattice. An avalanche of mutations is considered to be the analogue of extinctions in the biological record. These avalanches are basically cascades of species with bad genes that become extinct. Sole et al (1999) have given a general discussion of criticality and scaling in terms of evolutionary ecology.

7.3. Applications to extinctions

The temporal variability associated with self-organized criticality is certainly consistent with the concept of punctuated evolution (Gould and Eldredge 1993). The fossil record provides ample evidence that evolution is associated with periods of rapid evolution of species and sudden rapid extinctions.

The largest of all extinctions was the Permo–Triassic extinction at 248 Ma (millions of years ago), which is estimated to have wiped out 96% of all marine species (Erwin 1993). While not the largest extinction, the Cretaceous–Tertiary extinction at 65 Ma has received the most attention. This can be attributed in part with its association with the extinction of the dinosaur. This extinction has been directly associated with a giant meteorite impact. This association was first documented by a discovery of a global iridium anomaly deposited at this time (Alvarez et al 1980). Subsequently other supporting features were found including impact glasses and tsunami deposits. This 10 km diameter impact is now associated with the Chicxulub impact crater in the northern Yucatan Peninsula, Mexico. Although there is little doubt that this impact occurred, there is still considerable controversy regarding its association with the extinction. A massive volcanic eruption of flood basalts in the Deccan Traps, India also occurred at about this time and has been associated with the extinction (Officer and Page 1996). Also, due to details of the timing, many paleontologists question the association of either the impact or the volcanism with the extinction. Other major extinctions occurred in the Late Devonian at 365 Ma with about a 75% loss of species, in the late Ordovician at 445 Ma with about 50% loss, and late Triassic at 220 Ma again with about a 50% loss. These are known as the ‘big five’ extinction events. It should also be noted that there is no evidence for a giant impact as a cause of the Permo–Triassic extinction (Retallack et al 1998).

It must be emphasized that the causes of major extinctions remains extremely controversial. This is summarized by the title of the book by Raup (1991): Extinction: Bad Genes or Bad Luck? Impacts and volcanic eruptions fall in the bad luck category. Climate changes have also been proposed as a cause of global extinctions (Sole et al 1996). The approach to extinctions discussed above, yielding self-organized criticality, certainly falls in the bad genes category.
It is clearly desirable to test whether this hypothesis is valid. One approach is to consider the frequency–size distribution of extinctions. Raup (1986) has given the intensities of 39 extinctions in the geological record. His noncumulative frequency-intensity distribution is given in figure 23. His measure of extinction is defined as the number of extinctions of marine animal families during a geologic stage (time interval). The noncumulative (linearly binned) number of extinctions \(N/\Delta I \) is given as a function of intensity \(I \). This data is compared with the power-law relation:

\[
N/\Delta I = C I^\alpha
\]

with \(\alpha = 2.2 \). Considering the limited nature and scatter of the data, the fit is reasonable. Although caution must be exercised, the results given in figure 22 tend to support extinctions as an example of self-organized criticality. Further support for this conclusion comes from power-law correlations of planktic foraminiferal extinctions (Patterson and Fowler 1996) and extinctions of Hawaiian avifauna (Keitt and Marquet 1996). Alternative models for extinctions have been given by Caldarelli et al. (1998), Drossel (1998) and Killingback and Doebeli (1998). Newman and Sneppen (1996) introduced a coherent external noise model for avalanche behaviour and this model has been applied to extinctions (Newman 1996, 1997a, b, Sneppen and Newman 1997, Wilke and Martinetz 1997, Wilke et al. 1998, Standish 1999). Hewzulla et al. (1997) have discussed the application of self-organized criticality to extinctions in terms of time series.

7.4. Other studies

A variety of other studies have been carried out relating self-organized criticality to biological problems. O’Toole et al. (1999) have considered termite nest architecture. Vandewalle and Ausloos (1995) have considered applications to phylogenetic (evolutionary) trees. Herz and Hopfield (1995) and da Silva et al. (1998) have related slider-block models to the neural reverberations of spiking nerve cells. Chialvo and Bak (1999) have considered learning and
memory. And Barabasi et al (1996) have considered applications to breathing avalanches in the lung.

8. Applications in the social sciences

Applications of self-organized criticality to the social sciences are much more controversial than applications in the physical and biological sciences. Certainly the social sciences involve complex interactions, but it is unclear whether these interactions can be qualified beyond applying random statistics such as Gaussian distributions and Brownian motions. The most quantitative of the social sciences is economics and power-law (fractal) distributions are often found (Mandelbrot 1982, Levy et al 1996).

Stock markets are characterized by crashes, which certainly resemble avalanches (Scheinkman and Woodford 1994, Mantegna and Stanley 1997). Bak et al (1993, 1997) have considered whether the behaviour of stock markets is an example of self-organized criticality, but relatively little other work has been done. It has been argued that there are log-periodic (complex fractal) fluctuations prior to stock market crashes (Feigenbaum and Freund 1996, Sornette et al 1996, Sornette and Johansen 1997), but both their validity and interpretation remain uncertain.

One interesting application of self-organized criticality is to wars (Roberts and Turcotte 1998). It is first shown that the statistical distribution of war intensities is well approximated by a power-law distribution. This distribution is then interpreted in terms of the forest-fire model. An obvious measure of the intensity of a war \(I \) is the number of battle deaths. The frequency–size distribution of war intensities is then simply the dependence of the number of wars, \(N \), on the number of battle deaths, \(I \). Richardson (1941) was the first to carry out this type of study using logarithmic binning. He considered 82 wars between 1820 and 1929 and found that \(N = 1 \) war had \(\log I = 7.0 \pm 0.5 \) (i.e. between 3 160 000 and 31 600 000 battle deaths), \(N = 3 \) wars with \(\log I = 6.0 \pm 0.5 \) (i.e. between 316 000 and 3 160 000 battle deaths), \(N = 16 \) wars with \(\log I = 5.0 \pm 0.5 \) (i.e. between 31 600 and 316 000 battle deaths), and \(N = 62 \) wars with \(\log I = 4.0 \pm 0.5 \) (i.e. between 3 160 and 31 600 battle deaths). Richardson (1941) pointed out that his statistical data correlated well with the relation

\[
N = CI^{-D}
\]

(8.1)

taking \(D = 1.0 \). Richardson (1960) extended and updated his studies in his book *Statistics of Deadly Quarrels*. Because logarithmic binning was used, Richardson’s results were equivalent to cumulative distributions.

One of the major criticisms of the use of the number of battle deaths as a measure of a war’s intensity is the substantial change in the global population over the period of time considered. A more logical measure would be the ratio of battle deaths to the world’s population prior to the war. However, for the earlier wars, estimates of the world’s population are unreliable. For this reason Levy (1983) defines the intensity of a war \(I \) as the ratio of battle deaths to the population of Europe in millions at the time of the war.

Levy (1983) has tabulated the intensities of 119 wars beginning with the war of the League of Venice in 1495–97 and ending with the Vietnam War in 1965–73. The largest wars were the Second World War with \(I = 93 665 \) and the First World War with \(I = 57 616 \). The cumulative number of wars, \(N_c \), with intensity greater than \(I \), has been converted into a noncumulative distribution using the derivative technique. The derivative \(dN_c/dI \) is obtained by taking the mean slope of a specified number of adjacent data points, in this case five. The dependence of \(dN_c/dI \) on \(I \) for the Levy (1983) distribution of war intensities is given in figure 24. If a fractal
Self-organized criticality

Figure 24. Noncumulative frequency–intensity distribution of wars based on the Levy (1983) tabulation of war intensities. The noncumulative number of wars, $-dN_c/dI$, is given as a function of I. The larger wars correlate well with the power-law relation (8.2) taking $D = 1.39$.

(power-law) distribution is applicable we would expect a good correlation with the relation

$$\frac{dN_c}{dI} = CI^{-D}.\quad (8.2)$$

This correlation is illustrated in figure 24 taking $D = 1.39$. This is the best-fit result for wars with intensities greater than 100. The fit is seen to be quite good for war intensities greater than about $I = 30$ and extends over about three orders of magnitude of data. The deviation for small wars may be real or may be due to the incompleteness of the data set.

Although it is certainly of interest that war intensities obey power-law (fractal) statistics, a more fundamental question is why? Are wars an example of a self-organized critical phenomena? In particular, can an association be made between the number of battle deaths in a war and the number of trees that burn (the area) in a forest fire? If this is done, the frequency–size distributions for wars given in figure 24 is remarkably similar to the frequency–size distributions for forest fires given in figure 14. For wars we have $\alpha = 1.39$ from (8.2). For the four data sets for forest fires given in figure 14 we have $\alpha = 1.3, 1.3, 1.4, 1.5$. We can explain this behaviour for forest fires in terms of the forest-fire model, a key question is whether this explanation is also valid for wars.

In terms of the forest-fire model a spark ignites a tree and the model fire consumes the entire cluster to which this tree belongs. This is similar to real forest fires where ignition of the forest must take place for a fire to take place and the fire then spreads through the contiguous flammable material.

Similarly, a war must began in a manner similar to the ignition of a forest. One country may invade another country, or a prominent politician may be assassinated. The war will then spread over the contiguous region of metastable countries. Such regions of metastability could be the countries of the Middle East (Iran, Iraq, Syria, Israel, Egypt, etc) or of the former Yugoslavia (Serbia, Bosnia, Croatia, etc). These are then the metastable clusters. In some cases the metastable clusters could combine. Albania and Greece bridge the gap between the metastable clusters of the Middle East and the former Yugoslavia.

Saperstein (1995) has discussed the relation of wars to complexity theory in a general way. One can qualitatively discuss the breakdown of order in the world in a similar manner to the ‘forest fires’ in the forest-fire model. In the forest-fire model, sometimes a match starts a
fire and sometimes it does not. Some fires are large and some are small. But the frequency–size distribution is power-law. In terms of world order there are small conflicts that may or may not grow into major wars. The stabilizing and destabilizing influences are clearly very complex. The results we have shown indicate that world order behaves as a self-organized critical system independent of the efforts made to control and stabilizer interactions between people and countries.

It is easy to argue that the results given here cannot be significant. The introduction of weapons of mass destruction, particularly the atom bomb, must change global interactions and the associated wars. However, as we have shown, the noncumulative frequency–area statistics of real forest fires are well approximated by power-law distributions with exponents near 1.3. Again it can be argued that attempts to extinguish fires, changing land use practices, and other human interventions should have affected the resulting distribution of fires. But a variety of correlations show that the power-law, frequency–area distributions of these complex phenomena remain valid.

9. Concluding remarks

A number of models and natural phenomena have been discussed that may or may not exhibit self-organized critical behaviour. It is desirable to provide a ‘clean’ definition of what self-organized criticality is, but there is not a universally accepted definition. In fact, some authors would submit that self-organized critical behaviour is the same as critical behaviour.

This inability to provide a generally accepted definition for self-organized criticality is quite similar to the concept of fractals. Mandelbrot (1982), in his book *The Fractal Geometry of Nature*, did not provide a definition of a fractal distribution. Certainly it is agreed that the Cantor set is a fractal. But what about a power-law distribution of fragment masses? Are all or only some of the power-laws observed in nature fractal? In some cases, two power-law distributions are found in nature for different parts of a parameter space, are these both fractal? Mathematicians tend to favour restricted definitions, engineers broad definitions, and physicists are somewhere in between. Although the definition of a fractal remains elusive, the concept is widely used and has great utility. What about self-organized criticality?

Most authors would agree that the original sandpile model proposed by Bak et al (1987) is an example of self-organized critical behaviour. But, this agreement does not extend to the slider-block and forest-fire models. It is certainly possible to provide a rigorous mathematically-based definition of self-organized criticality. For example, full self-similarity would be required. However, such a restricted definition may not address the real utility of the basic concept. The essential question is whether a broad range of real complex phenomena exhibits similar behaviour under very broad conditions. This seems to be true for earthquakes, landslides and forest fires. It may also be true for a variety of other examples in the physical, biological and social sciences. A few examples are species extinctions, epidemics, stock-market crashes and wars.

A universal feature of these phenomena is that they are driven systems that involve ‘avalanches’ with a fractal (power-law) frequency–size distribution. There is a steady-state ‘input’ and the ‘output’ occurs in the ‘avalanches’. Although it has not been widely established, there is evidence that a system with self-organized criticality is on the ‘edge’ of chaos. Adjacent solutions exhibit power-law divergence in time, whereas chaotic solutions exhibit exponential divergence (a positive Lyapunov exponent).

The simple forest-fire model exhibits many of the characteristics associated with self-organized criticality. This forest-fire model is also closely related to the site-percolation model that exhibits critical behaviour. The transient forest-fire model without fires is identical to
the site-percolation model, the critical point is when a cluster has formed that crosses the grid. For both the quasi-steady-state forest-fire model with fires, and the transient forest-fire model without fires, there is an inverse cascade of trees from small to large clusters. In the quasi-steady-state forest-fire model this cascade gives a power-law frequency–area distribution for both the smaller clusters of trees and the forest fires. In the transient cascade associated with the site-percolation problem, a power-law distribution is found only at a critical density of trees. The quasi steady-state, self-similar cascade can explain major differences between critical and self-organized critical behaviour, at least for some models.

The above discussion has focused on the power-law (fractal) distributions of the ‘avalanches’. However, there are other important aspects of the behaviour of models and natural phenomena that are associated with self-organized criticality. One of these concerns correlation lengths. Studies of critical phenomena emphasize the systematic increase in the correlation length as the critical point is approached. It has not been established whether there are systematic temporal variations in correlation lengths in models with self-organized criticality. There is observational evidence for a well-defined correlation length for seismic activation prior to a major earthquake.

As indicated by the large number of references given in this paper, there is a broad interest in self-organized critical behaviour, both in terms of understanding its behaviour and in terms of applications. What has been written above is certainly only a progress report on a rapidly evolving subject, with concepts and applications of self-organizing criticality being published at a rapid rate.

Acknowledgments

The author would like to acknowledge many stimulating discussions with Jie Huang, Bill Klein, Bruce Malamud, Gleb Morein, Bill Newman, David Roberts, John Rundle, Charlie Sammis and Lennie Smith. This research has been partially supported by NSF grant no EAR 9804859.

References

——1987 J. Geophys. Res. 92 1349–1355
——1995b Phys. Rev. E 52 4804–16
Bak P 1990 Physica A 163 403–9
——1992 Physica A 191 41–6
Bak P and Boettcher S 1997 Physica D 107 143–50

Self-organized criticality

Chialvo D R and Bak P 1999 Neuroscience 10 1137–48
Christensen K and Olami Z 1992a J. Geophys. Res. 97 8729–35
Ciliberto S and Laroche C 1994 J. Physique I 4 223–35
Cohen S 1977 J. Geophys. Res. 82 3781–96
Cottrell A H 1996 Phil. Mag. A 74 1041–6
———1998 Physica A 256 533–46
Densmore A L, Anderson R S, McAdoo B G and Ellis M A 1997 Science 275 369–72
Dhar D 1990 Phys. Rev. Lett. 64 1613–16
———1992 Physica A 186 82–7
———1996 Physica A 224 162–8
———1999 Physica A 263 4–25
Dietrich J H 1972 J. Geophys. Res. 77 3771–81
———1997 Physica A 236 309–20
Fedex J 1995 Fractals 3 431–43
Gardner M 1970 Sci. Am. 223 120–3
Grassberger P and Manna S S 1990 J. Physique 51 1077–98
Greger B 1992 Physica A 191 51–6
Harvard Centroid-Moment Tensor Data Base 1997 (Cambridge: Harvard University)

Honecker A and Peschel I 1996 Physica A 229 478–500

Honecker A and Peschel I 1996 Physica A 229 478–500

Johansen A 1994 Physica D 78 186–93

Kawasaki K and Okuzono T 1996 Fractals 4 339–48

Lorenz E N 1963 J. Atmos. Sci. 20 130–41

Leung K T, Muller J and Andersen J V 1997 J. Physique I 7 423–9

Main I 1996 Rev. Geophys. 34 1–24
———1992 Physica A 185 129–45
Malamud B D, Morein G and Turcotte D L 1998 Science 281 1840–2
Malamud B D and Turcotte D L 1999 Natural Hazards at press
Malthe-Sorenssen A 1996 Rev. Geophys. 34 433–62
———1991a Physica A 179 249–68
Marsili M 1994 Europhys. Lett. 28 385–90
McCloskey J 1993 Geophys. J. Int. 115 538–51
———1994 Science 266 410–12
———1996 Fractals 4 279–83
Nagel K and Herrmann H J 1993 Physica A 199 254–69
National Interagency Fire Center 1996 Electronic data from Andrea Olson, Fire Management Branch, US Fish and Wildlife Service, Boise, ID
Self-organized criticality

Sornette D 1992 J. Physique I 2 2089–96
——1994 J. Physique I 4 209–21
Sornette D and Johansen A 1997 Physica A 245 411–22
Sornette D, Johansen A and Bouchard J P 1996 J. Physique I 6 167–75
Sornette D, Johansen A and Dornic I 1995 J. Physique I 5 325–35
Sutherland B R and Jacobs A E 1994 Complex Systems 8 385–405
Vanderwalle N and Ausloos M 1995 J. Physique I 5 1011–25
——1992 Physica A 191 69–74
Whitehouse I E and Griffiths G A 1983 Geology 11 331–4
Yokoi Y, Carr J R and Watters R J 1995 Env. Eng. Geosci. 1 75–81