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Abstract

Fractional kinetic equations of the di!usion, di!usion}advection, and Fokker}Planck type are presented
as a useful approach for the description of transport dynamics in complex systems which are governed by
anomalous di!usion and non-exponential relaxation patterns. These fractional equations are derived
asymptotically from basic random walk models, and from a generalised master equation. Several physical
consequences are discussed which are relevant to dynamical processes in complex systems. Methods of
solution are introduced and for some special cases exact solutions are calculated. This report demonstrates
that fractional equations have come of age as a complementary tool in the description of anomalous
transport processes. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.40.!a; 05.40.Fb; 02.50.Ey

Keywords: Anomalous di!usion; Fractional di!usion equation; Fractional Fokker}Planck equation; Anomalous relax-
ation; Mittag}Le%er relaxation; Dynamics in complex systems
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For the beginning is assuredly
the end } since we know nothing, pure
and simple, beyond
our own complexities
William Carlos Williams, Patterson

1. Prologue: the scope, and why bother at all

1.1. What can fractional equations do, what can they do better, and why should one care at all?

Before we start o! with the Introduction, we would like to address some points which we believe
to strike many colleagues who are not familiar with the topic.

The universality: The detailed structure of the propagator =(r, t), i.e., the probability density
function (pdf ) for the initial condition lim

t?0`
=(r, t)"d(r), depends, in general, on the special

shape of the underlying geometry. However, the interesting part of the propagator has the
asymptotic behaviour log=(r, t)&!cmu where m,r/ta@2<1 which is expected to be universal.
Here, u"1/(1!a/2) with the anomalous di!usion exponent a de"ned below. The fractional
equations we consider in the following are universal in this respect as we do not consider any form
of quenched disorder. Our results for anomalous di!usion are equivalent to "ndings from random
walk models on an isotropic and homogeneous support.

The non-universality: In contrast to Gaussian di!usion, fractional di!usion is non-universal in
that it involves a parameter a which is the order of the fractional derivative. Obviously, nature
often violates the Gaussian universality mirrored in experimental results which do not follow the
Gaussian predictions. Fractional di!usion equations account for the typical `anomalousa features
which are observed in many systems.

The advantage to random walk models: Within the fractional approach it is possible to include
external "elds in a straightforward manner. Also the consideration of transport in the phase space
spanned by both position and velocity coordinate is possible within the same approach. Moreover,
the calculation of boundary value problems is analogous to the procedure for the corresponding
standard equations.

The comparison to other approaches: The fractional approach is in some sense equivalent
to the generalised master equation approach. The advantage of the fractional model again lies in
the straightforward way of including external force terms and of calculating boundary value
problems. Conversely, generalised Langevin equations lead to a di!erent description as they
correspond to Fokker}Planck equations which are local in time and which contain time-dependent
coe$cients. In most cases of Brownian transport, the deterministic Fokker}Planck equation is
employed for the description of stochastic dynamics in external "elds. In analogy, we promote
to use the fractional Fokker}Planck equation for situations where anomalous di!usion underlies
the system.

The mathematical advantage: A very convenient issue is that standard techniques for solving
partial di!erential equations or for calculating related transport moments also apply to fractional
equations which is demonstrated in the text.

4 R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77



The relation between the fractional solution and its Brownian counterpart: There exists a trans-
formation which maps the Brownian solution onto the corresponding fractional solution, an
interesting relation which is useful for both analytic and numerical analysis.

It is a simple approach: The appearance of fractional equations is very appealing due to their
proximity to the analogous standard equations. It has been demonstrated recently that the
fractional Fokker}Planck equation can be derived from a Langevin equation with Gaussian white
noise for systems where trapping occurs. This o!ers some insight into the physical mechanisms
leading to fractional kinetics.

Fractional kinetic equations are not just another way of presenting old stories. We believe that
they are a powerful framework which is of use for many systems. By relating our and others' work in
that "eld and putting it in some more general context, the present report may be the basis for some
active research on complex dynamics using a tool which is as old and new as classical calculus.

1.2. What is the scope of this report?

We do not present a report on anomalous transport theory: Anomalous di!usion is an involved "eld
with intriguing subtleties. Accordingly, parameters and exponents can change in the course of time
or when an external force is switched on or o!, etc. In our considerations we do not touch on these
issues but assume a given anomalous di!usion exponent. The present knowledge on anomalous
di!usion is compiled in a number of review articles quoted in the list of references.

The focus is on subdiwusion: The major body of the text is concerned with transport processes
which are, in the force-free limit, slower than Brownian di!usion. In a lose sense we also call such
processes subdi!usive or dispersive which take place in an external force "eld and whose force-free
limit corresponds to subdi!usion. Occasionally, such processes are called fractional.

Some care be taken with Le&vy yights: LeH vy #ights do not possess a "nite mean squared displacement.
Their physical signi"cance therefore has been questioned as particles with a "nite mass should not
execute long jumps instantaneously. We do consider them to some extent in the following as there are
special cases whose description in terms of LeH vy #ights corresponds to physical principles.

Le& vy walks: The proper way of considering systems which feature LeH vy type jump length
distributions is to introduce a "nite speed for the test particle, a model referred to as LeH vy walk.
A "rst step towards a fractional dynamics formulation has been presented recently.

Since Newton integer order calculus has been used in physical modelling. Newton's rival Leibniz'
prophesy already claimed in 1695: `Thus it follows that d1@2x will be equal to x 2Jdx : x, an apparent
paradox, from which one day useful consequences will be drawna } we believe that the following
account represents an a$rmative answer to this "rst statement towards a fractional calculus.

2. Introduction

2.1. Anomalous dynamics in complex systems

Complex systems and the investigation of their structural and dynamical properties have
established on the physics agenda. These `structures with variationsa [1] are characterised through

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 5



1Actually, the notion of diverging moments goes back to the formulation of the `St. Petersburg paradoxa by Nicolaas
Bernoulli and its analysis by Daniel Bernoulli in 1724 [38,49].

(i) a large diversity of elementary units, (ii) strong interactions between the units, or (iii) a non-
predictable or anomalous evolution in the course of time [2]. Complex systems and their study
play a dominant ro( le in exact and life sciences, embracing a richness of systems such as glasses,
liquid crystals, polymers, proteins, biopolymers, organisms or even ecosystems. In general, the
temporal evolution of, and within, such systems deviates from the corresponding standard laws
[3,4]. With the development of higher experimental resolutions, or the combination of di!erent
experimental techniques, these deviations have become more prominent, as the accessible larger
data windows are more conclusive.

Thus, relaxation in complex systems deviates from the classical exponential Debye pattern [5}10]

U(t)"U
0

exp(!t/q) , (1)

and can often be described in terms of a Kohlrausch}Williams}Watts stretched exponential law
[11}15]

U(t)"U
0

exp(!(t/q)a) (2)

for 0(a(1, or by an asymptotic power law [9,13,14,16}19]

U(t)"U
0
(1#t/q)~n (3)

with n'0. It is also possible to observe transitions from the stretched exponential pattern (2) to the
power-law behaviour (3) [20}22].

Similarly, di!usion processes in various complex systems usually no longer follow Gaussian
statistics, and thus Fick's second law fails to describe the related transport behaviour. Especially,
one observes deviations from the linear time dependence of the mean squared displacement

Sx2(t)T&K
1
t (4)

which is characteristic of Brownian motion, and as such a direct consequence of the central limit
theorem and the Markovian nature of the underlying stochastic process [23}39]. Instead, anomal-
ous di!usion is found in a wide diversity of systems, its hallmark being the non-linear growth of the
mean squared displacement in the course of time. In this report, we concentrate on the power-law
pattern

Sx2(t)T&Kata (5)

which is ubiquitous to a diverse number of systems [14,38}55]. There exists a variety of other
patterns such as a logarithmic time dependence which we do not touch upon here. The anomalous
di!usion behaviour manifest in Eq. (5) is intimately connected with the breakdown of the central
limit theorem, caused by either broad distributions or long-range correlations. Instead, anomalous
di!usion rests on the validity of the LeH vy}Gnedenko generalised central limit theorem for
such situations where not all moments of the underlying elementary transport events exist
[38,42,47,56}58].1 Thus, broad spatial jump or waiting time distributions lead to non-Gaussian
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Fig. 1. Di!erent domains of anomalous di!usion, de"ned through the mean squared displacement, Eq. (5), parametrised
by the anomalous di!usion exponent a: (a) subdi!usion for 0(a(1, (b) superdi!usion for a'1. On the threshold
between sub- and superdi!usion is the normal Brownian di!usion located. Another special case is ballistic motion
(a"2).

2The random walk concept was formally introduced by Karl Pearson in 1905 [65].
3We use the word deterministic in order to distinguish the partial di!erential equation for the probability density

function=(x, t) from a stochastic di!erential equation like the Langevin equation [37,64], compare, e.g., Risken [36].
4Later the personal practitioner of Austrian empress Maria Theresia, he also discovered the respiration process of

plants.
5He also recognised the signi"cance of the cell nucleus.

propagators and a possibly non-Markovian time evolution of the system, the latter being a typical
manifestation of non-local temporal phenomena encountered in a broad range of systems
[1,3,4,59}63]. Note that the generalised di!usion coe$cient Ka in Eq. (5) has the dimension
[Ka]"cm2 s~a. According to the value of the anomalous di!usion exponent a, de"ned in Eq. (5),
one usually distinguishes several domains of anomalous transport, as sketched in Fig. 1. In what
follows, the main emphasis will be laid on the description of subdi!usive phenomena, which
correspond to 0(a(1.

2.2. Historical remarks

The stochastic formulation of transport phenomena in terms of a random walk process,2 as well
as the description through the deterministic di!usion equation3 are the two fundamental concepts
in the theory of both normal and anomalous di!usion. Indeed, the history of this dual description
basing on erratic motion and on a di!erential equation for the probability density function is quite
interesting and much worth a short digression.

Thus, small #ickering of coal dust particles on the surface of alcohol was observed by the Dutch
physician Jan Ingenhousz4 as early as in 1785. In 1827, the Scottish botanist Robert Brown [67]
observed similar irregular movement of small pollen grain under a microscope.5 At about the same
time, in 1822, Joseph Fourier came up with the heat conduction equation, on the basis of which

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 7



Fig. 2. Recorded random walk trajectories by Jean Baptiste Perrin [72]. Left part: three designs obtained by tracing
a small grain of putty (mastic, used for varnish) at intervals of 30 s. One of the patterns contains 50 single points. Right
part: the starting point of each motion event is shifted to the origin. The "gure illustrates the pdf of the travelled distance
r to be in the interval (r, r#dr), according to (2pm2)~1 exp(!r2/[2m2])2prdr, in two dimensions, with the length variance
m2. These "gures constitute part of the measurement of Perrin, Dabrowski and Chaudesaigues leading to the determina-
tion of the Avogadro number. The result given by Perrin is 70.5]1022. The remarkable wuvre of Perrin discusses all
possibilities of obtaining the Avogadro number known at that time. Concerning the trajectories displayed in the left part
of this "gure, Perrin makes an interesting statement: `Si, en e!et, on faisait des pointeH s de seconde en seconde, chacun de
ces segments rectilignes se trouverait remplaceH par un contour polygonal de 30 co( teH s relativement aussi compliqueH que le
dessin ici reproduit, et ainsi de suitea. [If, veritably, one took the position from second to second, each of these rectilinear
segments would be replaced by a polygonal contour of 30 edges, each itself being as complicated as the reproduced
design, and so forth.] This already anticipates LeH vy's cognisance of the self-similar nature, see footnote 9, as well as of the
non-di!erentiability recognised by N. Wiener.

6 In the historical context, note that the theory of the continuum formulation of #uid dynamics had already been fully
developed at that time. Thus, some of its milestones date back to the 18th and "rst half of the 19th century, such as
Bernoulli's equation (1738); Euler's equation (1755); Navier's (1827) use as a phenomenological model and Stokes' (1845)
derivation of the Navier}Stokes equation. Maxwells' dynamical theory of gases dates back to 1867 and Boltzmann's
transport equation was published in 1872 for the description of collision processes. The latter is the footing for the
atomistic random walk approach to Brownian motion.

A. Fick set up the di!usion equation in 1855 [68].6 Subsequently, the detailed experiments by Gouy
proved the kinetic theory explanation given by C. Weiner in 1863. After attempts of "nding
a stochastic footing like the collision model by von NaK geli and John William Strutt, Lord
Rayleigh's results, it was Albert Einstein who, in 1905, uni"ed the two approaches in his treatises on
the Brownian motion, a name coined by Einstein although he reportedly did not have access to
Brown's original work. Note that a similar description of di!usion was presented by the French
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7Historically, often referred to as the Loschmidt number [28].
8The monovariate Fokker}Planck equation discussed here is often referred to as Smoluchowski equation [80].
9 `Le processus stochastique, que nous appellerons mouvement brownien lineH aire, est une scheHmatisation, qui

repreH sente bien les proprieH teH s du mouvement brownien reH el observables à une eH chelle assez petite, mais non in"niment
petite, et qui suppose que les me(mes proprieH teH s existent à n'importe aquelle eH chellea. (Paul LeH vy [27]) [The stochastic
process which we will call linear Brownian motion is a schematic representation which describes well the properties of
real Brownian motion, observable on a small enough, but not in"nitely small scale, and which assumes that the same
properties exist on whatever scale.]

mathematician Louis Bachelier in his 1900 thesis [69], in terms of stock values instead of physical
quantities [38,70]. An important application of Einstein's results was the independent measure-
ment of the Avogadro number7 by Jean Baptiste Perrin, A. Westgren and Eugen Kappler
[26,28,71}74], to a rather high accuracy. Some results of Perrin are shown in Fig. 2 and they are
part of the work which won him the Nobel Prize in 1926. The random walk which can be
experimentally observed, represents therefore a link between the microscopic dynamics of small
atoms bombarding a larger particle in suspension, and macroscopic observables like the di!usion
coe$cient, or the Avogadro number. In Fig. 3, we reproduced data obtained by Kappler with his
high-accuracy set-up using an optical detection method (a detailed explanation is given in the
"gure caption). Einstein's ideas also set the scene for Langevin's treatment [37,64] of Brownian
motion with the assumption of an external erratic force, and the Fokker}Planck [78,79],
Smoluchowski8 and Klein}Kramers [81,82] theories which culminated in the treatises of Ornstein
and Uhlenbeck, Chandrasekhar and others, and later in the works of Elliott Montroll, and
collaborators [24,83}86].

The mathematical treatment of Brownian motion is mainly due to Norbert Wiener who proved
that the trajectory of a Brownian particle is (almost) everywhere continuous but nowhere di!erenti-
able [87]. This observation is related to the self-a$ne nature of the di!usion process whose
resulting spatial trajectory is self}similar9 [27,38,88}93]. Further important mathematical contri-
butions attribute to J. L. Doob, Mark Kac, W. Feller, and others.

2.3. Anomalous diwusion: experiments and models

Anomalous di!usion has been known since Richardson's treatise on turbulent di!usion
in 1926 [94]. Within transport theory it has been studied since the late 1960s. In particular,
its theoretical investigation was instigated by Scher and Montroll in their description of dispersive
transport in amorphous semiconductors, a system where the traditional methods proved to
fail. The predictions of their continuous time random walk approach were very distinct from
its Brownian counterpart and were shown to provide explanations for a variety of physical
quantities and phenomena in numerous experimental realisations [95}99]. Important contribu-
tions are also due to Weiss [39] and Shlesinger [100]. Besides the random walk description,
generalisations of the di!usion equation were developed which account for the anomalous
transport statistics.

Today, the list of systems displaying anomalous dynamical behaviour is quite extensive
[14,40}55,101,102] and hosts, among others, the following systems in the subdi!usive reH gime:

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 9



Fig. 3. Erroneous behaviour of Brownian motion made visible in a high-precision measurement. Data from an
Edelmann recorder, obtained by Kappler in 1931 [74]. Following calculations of Smoluchowski [75] and "rst
measurements by Gerlach and Lehrer [76,77], Kappler monitored the Brownian motion of a small mirror (surface
approx. 1mm2), suspended from a "ne quartz thread (several cm long and some lm thick). The mean square of

the torsional displacement, u2, follows the relation Du2"k
B
¹, where D is the directional force of the suspension [74].

The facsimiles show four di!erent realisations. From his data, Kappler obtained the Avogadro}Loschmidt number
N

L
"60.59]1022$1%, to a remarkable accuracy.

charge carrier transport in amorphous semiconductors [95}99,101,103,104], nuclear magnetic
resonance (NMR) di!usometry in percolative [105,106], and porous systems [107,108], Rouse or
reptation dynamics in polymeric systems [109}115], transport on fractal geometries [116,117], the

10 R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77



Fig. 3 (continued).

di!usion of a scalar tracer in an array of convection rolls [118,119], or the dynamics of a bead in
a polymeric network [120,121]. Superdi!usion or LeH vy statistics are observed in special domains of
rotating #ows [122], in collective slip di!usion on solid surfaces [123], in layered velocity "elds
[124,125], in Richardson turbulent di!usion [94,126}129], in bulk-surface exchange controlled
dynamics in porous glasses [130}132], in the transport in micelle systems and in heterogeneous
rocks [133}135], in quantum optics [136,137], single molecule spectroscopy [138,139], in the
transport in turbulent plasma [140], bacterial motion [141}145] and even for the #ight of an
albatross [146].

Anomalous di!usion in the presence or absence of an external velocity or force "eld has been
modelled in numerous ways, including (i) fractional Brownian motion dating back to Benom( t
Mandelbrot [89}93,147], (ii) generalised di!usion equations [148], (iii) continuous time random
walk models [52,95}99,101,102,149}155], (iv) Langevin equations [156}160], (v) generalised Lan-
gevin equations [62,161}163], (vi) generalised master equations [164}167], or (vii) generalised
thermostatistics [168}172]. For anomalous di!usion, only the approaches (iii) and (v) incorporate
the system's memory and the special form which is to be expected for the pdf, in a consistent way.
The disadvantage in the continuous time random walk and the generalised master equation
approaches is that there is no straightforward way to incorporate force "elds, boundary value
problems, or to consider the dynamics in phase space.

The alternative approach to anomalous kinetics which we are going to present is given in
terms of fractional equations which appear to be tailored for such kind of problems like the

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 11



10 In Ref. [173], note that the author introduces the de"ning expression for a fractal operator, but does not make
explicit use of fractional calculus, neither of the term fractional as such.

11The capital R refers to the radius averaging over the fractal support which is necessary in order to obtain the smooth
radius dependence.

consideration of external "elds and boundary value problems. In the original works [173}175]10 it
was realised that the replacement of the local time derivative in the di!usion equation by
a fractional operator accounts for the memory e!ects which are connected with many complex
systems.

Recently, a decade after their introduction, such fractional kinetic equations have attracted much
interest. They are presently being extensively studied and recognised as important tools in the
description of anomalous transport processes in both absence and presence of external velocity or
force "elds. Especially in the latter case, their mathematical structure allows for the application of
known methods of solution. In the course of this development, a number of works has been
published dealing with fractional relaxation equations and fractional rheological models
[20,21,176}182], fractional di!usion equations (FDEs) [173}175,183}201], fractional di!usion}
advection equations (FDAEs) [202}209], and fractional Fokker}Planck equations (FFPEs)
[158}160,193,202,203,210}221]. Thereby, various generalisations to fractional order have been
employed, i.e. di!erent fractional operators have been introduced to replace either the time
derivative or the occurring spatial derivatives, or both.

In "rst attempts of generalising the standard di!usion equation for the description of di!usion
processes on fractal geometries of dimension d

f
, radius-dependent di!usion coe$cients were

assumed. O'Shaugnessy and Procaccia studied the generalised di!usion equation [148]11

R=
Rt "R1~df

R
RRRdf~1K(R)

R
RR=(R, t) (6)

with the radius-dependent di!usion coe$cient K(R)"KR~H, and derived the corresponding
propagator

=(R, t)"A(H, d
f
)(K[2#H]2t)~df @(2`H) expA!

R2`H

K(2#H)2tB . (7)

Here, H"d
f
#p!2 is connected to the power-law index p of the radius-dependent, integrated

electrical resistance, R(R)&Rp of the underlying fractal structure the mass density of which scales
as JRdf~3 in a 3-dimensional embedding. The mean squared displacement for this process, given
by Eq. (5) with a"2/(2#H), can readily be inferred. As H is positive, this result implies
subdi!usion [148]. Further investigations indicated that the asymptotic form of the propagator on
fractals such as the SierpinH ski gasket, is given by the scaling form [222,223]

=(R, t)&A(a,b)mb exp(!cmu) (8)

with m"R/ta@2, u"1/(1!a/2), and b is a system-dependent quantity [224]. Eq. (8) is at variance
with the above result, Eq. (7). For subdi!usion, 0(a(1, which prevails on fractal structures,
u3(0, 2) so that expression (8) is often referred to as a stretched Gaussian. Conversely, fractional
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di!usion equations for transport on fractal structures were shown to comply with the basic
properties, like the propagator (8), the returning probability to the origin, the mean squared
displacement, and the non-Markovian nature [183,184,225].

For homogeneous, isotropic systems which we are interested in, one knows from random walk
models that the propagator behaves asymptotically like

=(r, t)&b
0
t~cd@2mb exp(!b

1
ml) (9)

with m"d1@2r/ta@2, l"1/(1!a/2), b"!d(1!a)/(2!a), and b
0

and b
1

are constants depending
on a and the dimension d [238,239]. Such behaviour is reproduced by the fractional di!usion
equations that were anticipated by Balakrishnan [173] and "rst formulated by Wyss [174], and
Schneider and Wyss [175]. In Section 3 we show that the asymptotic behaviour (9) is consistent
with the asymptotic expansion of the exact solution of the fractional di!usion equation. Fractional
kinetic equations, their foundation and solution form the centre-piece of this report.

In what follows, we present the basic principles and physical properties connected with fractional
kinetic equations. We show that fractional equations arise naturally in the di!usion limit of certain
random walk schemes. By discussing methods of solution and deriving explicit solutions, we
demonstrate the usefulness of the fractional approach. At "rst, we introduce FDEs basing on the
continuous time random walk model where the transport events are subject to broad statistics.
Subsequently, FDAEs and FFPEs are presented and they describe the transport in an external
velocity or force "eld. In the "nal section, a physical derivation on the basis of a Langevin equation
with white Gaussian noise is discussed which leads to a fractional Klein}Kramers equation. From
the latter, the FFPE is consistently recovered. In the Appendices we have compiled some basic
de"nitions and useful relations which are of relevance in the main text. Thus, we give a primer on
fractional calculus and the special functions which emerge when dealing with fractional di!erential
equations, as well as a short introduction to LeH vy stable laws. Finally, we list the abbreviations
and the notation used. Note that throughout the text we denote the Laplace and Fourier
transforms of a function by stating the explicit dependence on the associated variable, e.g.
=(k, u)"FMLM=(x, t); tPuN;xPkN.

The numerous illustrations spread throughout the text are to visualise the often striking
di!erences in functional behaviour of the normal and anomalous cases, especially the perseverance
of the initial condition in the subdi!usive domain.

The discussion in the remainder of this report is restricted to the one-dimensional case, with special
emphasis on subdi!usion phenomena. The equations which describe subdi!usion presented in the
text can be extended to higher dimensions through a replacement of the derivatives in respect of the
position coordinate by corresponding orders of the + operator. Some remarks on higher-dimensional
systems are contained in Ref. [215]. For those equations which describe situations with LeH vy
distributed jump lengths and which therefore contain a generalised Laplacian, we refer to the
de"nitions in Ref. [226] and the discussions in Refs. [156}158] for the multi-dimensional case.

3. From continuous time random walk to fractional di4usion equations

In our quest of establishing the fractional di!usion equation (FDE), we borrow from the ideas of
connecting the random walk approach with the continuum description through the di!usion
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Fig. 4. Schematic representation of a Brownian random walk. The walker jumps at each time step t"0,
*t, 2*t,2, n*t,2 to a randomly selected direction, thereby covering the distance *x, the lattice constant.

equation, and we start o! with the continuous time random walk scheme. The latter is #exible
enough to account for the rich panel of transport reH gimes encountered in complex systems. After
establishing the fundamental framework of random walks and recovering the standard di!usion
equation, we move on to the discussion of the continuous time random walk framework, and the
derivation of the FDE. This equation will be shown to enable an investigation of subdi!usive
phenomena, and LeH vy #ights with the tools well-known from dealing with the standard di!usion
equation.

3.1. Revisiting the realm of Brownian motion

A typical Brownian walk like Perrin's original data, is schematically displayed on a two-
dimensional lattice in Fig. 4. In discrete time steps of span *t, the test particle is assumed to jump to
one of its nearest neighbour sites, here displayed on a square lattice with lattice constant *x, the
direction being random. Such a process can be modelled by the master equation

=
j
(t#*t)"1

2
=

j~1
(t)#1

2
=

j`1
(t) (10)

in the one-dimensional analogue, as the process is local in both space and time. In Eq. (10), the
index denotes the position on the underlying one-dimensional lattice. Eq. (10) de"nes the pdf to be
at position j at time t#*t in dependence of the population of the two adjacent sites j$1 at time t.
The prefactor 1/2 expresses the direction isotropy of the jumps. In the continuum limit *tP0 and
*xP0, Taylor expansions in *t and *x,

=
j
(t#*t)"=

j
(t)#*t

R=
j
Rt #O([*t]2) (11)
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and

=
jB1

(t)"=(x, t)$*x
R=
Rx #

(*x)2
2
R2=
Rx2

#O([*x]3) , (12)

lead to the di!usion equation

R=
Rt "K

1

R2
Rx2
=(x, t) , (13)

on taking along the lowest orders in *t and *x. The continuum limit thereby has to be drawn such
that the quotient

K
1
, lim

*x?0,*t?0

(*x)2
2*t

(14)

is "nite. K
1

is called the di!usion constant and is of dimension [K
1
]"cm2 s~1.

The di!usion equation (13) is one of the most fundamental equations in physics, being a direct
consequence of the central limit theorem [27,42,58]. Under the condition that the "rst two
moments of the pdf, describing the appropriately normalised distance covered in a jump event and
the variance, XM "+

i
X

i
and X2, as well as the mean time span *t between any two individual jump

events, exist, the central limit theorem assures that the random walk process is characterised by
a mean velocity <"XM /*t and a di!usion coe$cient K"(2*t)~1[X2!XM 2] [27,42]. Further-
more, for long times, i.e., a large enough number of steps, the pdf of being at a certain position x at
time t, is governed by the di!usion equation (13), and it is given by the Gaussian shape

=(x, t)"
1

J4pK
1
t
expA!

x2

4K
1
tB . (15)

=(x, t) from Eq. (15) is called the propagator, i.e., the solution of the di!usion equation (13) for the
sharp initial condition=

0
(x),lim

t?0`
=(x, t)"d(x). Individual modes of Eq. (13) decay expo-

nentially in time,

=(k, t)"exp(!K
1
k2t) , (16)

with the Fourier transformed di!usion equation,

R=
Rt "!K

1
k2=(k, t) , (17)

being a relaxation equation, for a "xed wavenumber k.

3.2. The continuous time random walk model

For the generalisations to anomalous transport, we choose the continuous time random walk
(CTRW) scheme as the starting point. In parallel to the complementary, dual approach in the
standard di!usion problem, we will then develop a generalised di!usion equation of fractional
order on the basis of the CTRW.
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Fig. 5. Continuous time random walk (CTRW) model. Left: CTRW process on a two-dimensional lattice, generalising
the Brownian situation from Fig. 4. The waiting times are symbolised by the waiting circles the diameter of each is
proportional to the waiting time which is to be spent on a given site before the next jump event occurs. The jump lengths
are still equidistant. Right: (x, t) diagram of a one-dimensional CTRW process where both jump lengths and waiting times
are drawn from pdfs which allow for a broad variation of the corresponding random variables.

The CTRW model is based on the idea that the length of a given jump, as well as the waiting time
elapsing between two successive jumps are drawn from a pdf t(x, t) which will be referred to as the
jump pdf. From t(x, t), the jump length pdf

j(x)"P
=

0

dtt(x, t) (18)

and the waiting time pdf

w(t)"P
=

~=

dxt(x, t) (19)

can be deduced. Thus, j(x) dx produces the probability for a jump length in the interval (x, x#dx)
and w(t) dt the probability for a waiting time in the interval (t, t#dt). If the jump length and
waiting time are independent random variables, one "nds the decoupled form t(x, t)"w(t)j(x) for
the jump pdf t(x, t). If both are coupled, i.e., t(x, t)"p(xDt)w(t) or t(x, t)"p(tDx)j(x), a jump of
a certain length involves a time cost or, vice versa; i.e., in a given time span the walker can only
travel a maximum distance. In what follows, we employ the decoupled version. A schematic
cartoon of the CTRW model is drawn in Fig. 5.

Di!erent types of CTRW processes can be categorised by the characteristic waiting time

¹"P
=

0

dt w(t)t (20)

and the jump length variance

R2"P
=

~=

dx j(x)x2 (21)
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being "nite or diverging, respectively. With these de"nitions, a CTRW process can be described
through an appropriate generalised master equation [150,151,164,166,167], via a set of Langevin
equations [159,160,216,217], or by the equation [151]

g(x, t)"P
=

~=

dx@P
=

0

dt@ g(x@, t@)t(x!x@, t!t@)#d(x)d(t) (22)

which relates the pdf g(x, t) of just having arrived at position x at time t, with the event of having
just arrived at x@ at time t@, g(x@, t@). The second summand in Eq. (22) denotes the initial condition of
the random walk, here chosen to be d(x). Consequently, the pdf=(x, t) of being in x at time t is
given by

=(x, t)"P
t

0

dt g(x, t@)W(t!t@) , (23)

i.e., of arrival on that site at time t@, and not having moved since. The latter is being de"ned by the
cumulative probability

W(t)"1!P
t

0

dt@w(t@) (24)

assigned to the probability of no jump event during the time interval (0, t). In Fourier}Laplace
space, the pdf =(x, t) obeys the algebraic relation [151]

=(k, u)"
1!w(u)

u
=

0
(k)

1!t(k, u)
, (25)

where=
0
(k) denotes the Fourier transform of the initial condition=

0
(x).

3.3. Back to Brownian motion

Consider now di!erent cases of the CTRW model de"ned through the decoupled jump pdf
t(x, t)"w(t)j(x). If both characteristic waiting time and jump length variance, ¹ and R2, are "nite,
the long-time limit corresponds to Brownian motion. Let us consider, for instance, a Poissonian
waiting time pdf w(t)"q~1 exp(!t/q) with ¹"q, together with a Gaussian jump length pdf
j(x)"(4pp2)~1@2 exp(!x2/(4p2)) leading to R2"2p2. Then, the corresponding Laplace and
Fourier transforms are of the forms

w(u)&1!uq#O(q2) , (26)

j(k)&1!p2k2#O(k4) . (27)

In fact, any pair of pdfs leading to "nite ¹ and R2 leads to the same result, to lowest orders, and
thus in the long-time limit [151]. Installing Eqs. (26) and (27) into Eq. (25), one readily recovers, for
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12Note that t(u"0), i.e. lim
u?0

:=
0

dt e~utt(t) is but the normalisation of the waiting time pdf, i.e. t(u"0)"1.

the initial condition=
0
(x)"d(x), the Fourier}Laplace space transform of the propagator,

=(k, u)"
1

u#K
1
k2

, (28)

with K
1
,p2/q. Back-transformed to (x, t)-coordinates, this is but the well-known Gaussian

propagator, Eq. (15). After multiplication with the denominator in Eq. (28), and making use of
the di!erentiation theorems of Fourier (i.e., FMR2=(x, t)/Rx2N"!k2=(k, t)) and Laplace
(i.e., LMR=(x, t)/RtN"u=(x, u)!=

0
(x)) transformations, Fick's second law (13) is immediately

obtained. Note that the notion long-time, equivalent to the di!usion limit, is only relative in respect
to the time scale q. In Fourier}Laplace space, the di!usion limit is given through the assumption of
(k, u)P(0, 0) [150,223,227,228].

3.4. Long rests: a fractional diwusion equation describing subdiwusion

Consider the following situation, sometimes referred to as fractal time random walk [101], where
the characteristic waiting time ¹ diverges, but the jump length variance R2 is still kept "nite. To
this end, a long-tailed waiting time pdf with the asymptotic behaviour [83}85]

w(t)&Aa (q/t)1`a , (29)

for 0(a(1 is introduced, which has the corresponding Laplace space asymptotics
[83}85,151,229}230]12

w(u)&1!(uq)a . (30)

Again, the speci"c form of w(t) is of minor importance. Consequently, together with the Gaussian
jump length pdf characterised through Eq. (27), the pdf in Fourier Laplace space becomes

=(k, u)"
[=

0
(k)/u]

1#Kau~ak2
(31)

in the (k, u)P(0, 0) di!usion limit. Employing the integration rule for fractional integrals [226,232],

LM
0
D~p

t
=(x, t)N"u~p=(x,u), p50 , (32)

one infers the fractional integral equation

=(x, t)!=
0
(x)"

0
D~a

t
Ka
R2
Rx2
=(x, t) (33)

from relation (31). By application of the di!erential operator R/Rt, one "nally arrives at the FDE

R=
Rt "

0
D1~a

t
Ka
R2
Rx2
=(x, t) . (34)
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The Riemann}Liouville operator
0
D1~a

t
"(R/Rt)

0
D~a

t
, for 0(a(1, is de"ned through the

relation [226,232}235]

0
D1~a

t
=(x, t)"

1
C(a)
R
RtP

t

0

dt@
=(x, t@)

(t!t@)1~a
. (35)

Its fundamental property is the fractional order di!erentiation of a power,

0
D1~a

t
tp"

C(1#p)
C(p#a)

tp`a~1 . (36)

In fact, it can be shown that the more general relation

0
Dq

t
tp"

C(1#p)
C(1#p!q)

tp~q (37)

holds, for any real q. Especially, the Riemann}Liouville fractional di!erintegration of a constant
becomes

0
Dq

t
1"

1
C(1!q)

t~q . (38)

The special cases of integer order di!erentiation of a constant, dn1/dtn"0, are included through
the poles of the Gamma function for q"1, 2,2 . A more detailed introduction to fractional
di!erintegration is given in Appendix A.

Thus, the integrodi!erential nature of the Riemann}Liouville fractional operator
0
D1~a

t
accord-

ing to Eq. (35), with the integral kernel M(t)Jta~1, ensures the non-Markovian nature of the
subdi!usive process de"ned by the FDE (34). Indeed, calculating the mean squared displacement
from relation (31) via the relation Sx2T"lim

k?0
M!(d2/dk2)=(k,u)N and subsequent Laplace

inversion, the result

Sx2(t)T"
2Ka

C(1#a)
ta (39)

is obtained. Alternatively, it can be inferred from the FDE (34) through integration over :=
~=

dx x2,
leading to (d/dt)Sx2(t)T"

0
D1~a

t
2Ka"2Kata~1/C(a).

Rewriting the FDE (34) in the equivalent form

0
Da

t
=!

t~a
C(1!a)

=
0
(x)"Ka

R2
Rx2
=(x, t) , (40)

the initial value=
0
(x) is seen to decay with the inverse power-law form (t~a/C(1!a))=

0
(x), and

not exponentially fast as for standard di!usion [215]. Note that in the limit aP1, the FDE (34)
reduces to Fick's second law, as it should. The generalised di!usion constant Ka which appears in
the FDE (34), is de"ned by

Ka,p2/qa (41)
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in terms of the scales p and q, leading to the dimension [Ka]"cm2 s~a. The FDE (34) was "rst
considered in the integral form (33) by Schneider and Wyss [175]. An equivalent form was
considered by Balakrishnan [173], and a di!erential form by Wyss [174].

A closed-form solution for the FDE (34) can be found in terms of Fox functions, the result being

=(x, t)"
1

J4pKata
H2,0

1,2C
x2

4Kata K
(1!a/2, a)

(0, 1), (1
2
, 1) D , (42)

introducing the Fox function H2,0
1,2

. The Fox function is de"ned in Appendix B. Note that the result
(42) can be rewritten in the alternative form

=(x, t)"
1

J4Kata
H1,0

1,1C
DxD

JKata
K
(1!a/2, a/2)

(0, 1) D , (43)

employing the de"nition of the Fox function and the duplication rule of the Gamma function
[236].

Due to the occurrence of non-integer powers of the Laplace variable u in the expression for
=(k, u), Eq. (31), a direct Laplace inversion is not tabled. There are three basic methods to compute
the inversion: (i) First applied by Wyss [174], and Schneider and Wyss [175], the Mellin technique
can overcome this problem by the roundabout way through Mellin space. Thereby, the path
integral de"ning the Mellin inversion has a similar structure as the de"nition of the Fox functions,
Eq. (B.8), so that the result can be directly inferred from its Mellin transform. (ii) One can identify
the expression for=(k, u), Eq. (31), with its corresponding Fox function, and then use the existing
rules for the Fox functions to calculate the Laplace and Fourier inversions, see Refs. [180,237].
The result is again a Fox function, which can be simpli"ed by standard rules, to obtain the above
results. (iii) One can "rst Fourier invert =(k, u), to obtain

=(x, u)"
1
2
ua@2~1 exp(!DxDua@2) , (44)

expand the exponential function in its Taylor series, and invert term-by-term, using the rule (37).
The "nal result is a power series, which can be shown to be identical with expression (43) [215].
Without the identi"cation as a Fox function, the obtained series does not render any straightfor-
ward information on the stretched exponential asymptotics (45) derived below from standard
properties of the Fox function.

Employing some standard theorems of the Fox function, one can derive the asymptotic stretched
Gaussian behaviour

W(x, t)&
1

J4pKata
S

1
2!aA

2
aB

(1~a)@(2~a)
A

DxD

JKata
B

~(1~a)@(2~a)

]expA!
2!a

2 A
a
2B

a@(2~a)
C

DxD

JKata
D

1@(1~a@2)
B . (45)

valid for DxD<JKata. The functional form of the result (45) is equivalent to the CTRW "ndings
reported by Zumofen and Klafter [238,239], see Eq. (9). Furthermore,=(x, t) can be represented
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Fig. 6. Propagator=(x, t) for subdi!usion with anomalous di!usion exponent a"1/2, drawn for the consecutive times
t"0.1, 1, 10. The cusp shape of the pdf is distinct.

via the series expansion

=(x, t)"
1

J4Kata
=
+
n/0

(!1)n
n!C(1!a[n#1]/2)A

x2

KataB
n@2

(46)

in computable form. If a is a rational rather than a real number, the Fox function in Eqs. (42) and
(43) can be simpli"ed. Thus, for a"1/2, it can be rewritten in terms of the Meijer G-function

=(x, t)"
1

J2p2K
1@2

t1@2
H2,0

0,2C
x2

8K
1@2

t1@2 K(0, 1), (1
4
, 1
2
)D

"

1

J8p3K
1@2

t1@2
H3,0

0,3CA
x2

16K
1@2

t1@2B
2

K (0, 1) (1
4
, 1), (1

2
, 1)D

"

1

J8p3K
1@2

t1@2
G3,0

0,3CA
x2

16K
1@2

t1@2B
2

K0, 1
4
, 1
2D (47)

by twice using the duplication formula of the Gamma function [236] in the Mellin}Barnes type
integral, Eq. (B.8), de"ning the Fox function [237,240}243]. This representation is useful, as
the Meijer G-function belongs to the implemented special functions of Mathematica [244], the
notation being

1

J8p3t1@2
G3,0

0,3CA
x2

16t1@2B
2

K0, 1
4
, 1
2D

"1/(8Pi K 3t ) (1/2))*

MeijerG[MMN, MNN,MM0,1/4,1/2N,MNN,x K 4/(16 ) 2 t)] . (48)
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Fig. 7. Propagator=(x, t) for Brownian di!usion (a"1) for the times t"0.05, 0.2 and 1. The much smoother shape
close to the origin sets this solution apart from the subdi!usive counterpart drawn in Fig. 6.

That way, the graphical representation of =(x, t) for the subdi!usive case a"1/2 is obtained,
which is displayed in Fig. 6. In comparison to the standard Gaussian result, shown in Fig. 7, the
pronounced cusps of the subdi!usive propagator are distinct. Note that single modes of the FDE
(34) decay in accordance to the Mittag}Le%er pattern

=(k, t)"Ea (!Kak2ta) (49)

with the asymptotic power-law behaviour =(k, t)&(Kak2taC(1!a))~1. This typical Mittag}
Le%er behaviour of the mode relaxation replaces the exponential mode relaxation (16) occurring
for normal di!usion, and it is discussed in more detail in Section 5. The Mittag}Le%er function is
introduced in Appendix B.

Recently, it has been shown how boundary value problems for the FDE (34) can be solved [200].
As the jump length pdf in the subdi!usive case 0(a(1 is narrow, i.e., it possesses a "nite variance
R2, one can apply the method of images due to Lord Kelvin which is summarised in the book of
Feller [88]. Consider, for instance, the half space problem with a re#ecting boundary at the origin.
This situation is de"ned through the von Neumann condition, (RQ(x, t)/Rx)D

x/0
"0, where Q,

speci"ed below, denotes the image solution of this boundary value problem. Suppose the initial
condition to be a sharp distribution at x

0
,=

0
(x)"d(x!x

0
). Then the free solution can be &folded'

along a line through the origin, perpendicular to the x axis, i.e., the unrestricted solution is taken,
and the portion which spreads to the space region opposite to x

0
, in respect to the origin, is

re#ected at this line; the "nal result ful"ls the von Neumann condition. The solution is thus given
by the function [88]

Q(x, tDx
0
)"=(x!x

0
, t)#=(!x!x

0
, t) , (50)
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13This relation can be easily proved by the Poisson summation formula [247]

=
+

k/~=

f (k)"
=
+

m/~=
P

=

~=

dxf (x)e2p*mx

and the integral de"nition of the delta function [248]

d(x!x@)"
1

2pP
=

~=

dke*k(x~x{),

as well as some resummations.

where =(x, t) denotes the solution of the FDE (34), for natural boundary conditions. A typical
example is portrayed in Fig. 8, alongside with its Brownian counterpart in Fig. 9. Similarly, for an
absorbing barrier, the problem is de"ned via the Dirichlet condition Q(x

0
, t)"0, and the half space

solution for the sharp initial condition=
0
(x)"d(x!x

0
) takes on the form

Q(x, tDx
0
)"=(x!x

0
, t)!=(!x!x

0
, t) . (51)

For subdi!usion in a box of extension (!a, a), the propagator=(x, t) also su$ces to determine
the boundary value problem of two absorbing or two re#ecting boundaries which are supposed to
lie at x"$a. There, the free solution with the initial value problem=

0
(x)"d(x) is successively

folded along the lines through x"$a, perpendicular to the x axis, i.e., the exact solution is
constructed with increasing accuracy according to the method of images, to result in the boundary
value solution [88,205]

Q(x, t)"
=
+

m/~=

[=(x#4ma, t)G=(4ma!x#2a, t)] , (52)

where the minus sign stands for absorbing, the plus sign for re#ecting boundaries at x"$a. We
note that the solution for the mixed condition of one absorbing and one re#ecting boundary is
obtained via a "nal folding at the origin of the solution for two absorbing boundaries. Employing
the relation13

=
+

m/~=

e~*km"e~*k@2
=
+

m/~=

(!1)mdAm#

k
2pB , (53)

we rewrite Eq. (52), after an additional Laplace transform, as

Q(x, u)"(4a)~1
=
+

m/~=

e*pmx@(2a)C=Ak"
mp
2a

, uBG(!1)m=Ak"!

mp
2a

, uBD . (54)

Making use of Eq. (31), the sums can be simpli"ed and evaluated numerically. A typical result is
shown in Fig. 10, in comparison with the Brownian counterpart.

An alternative solution procedure, the method of separation of variables is discussed in
Section 5.

Being a direct generalisation of Fick's second law, the fractional partial di!erential equation (34)
can be solved by standard methods, like the Fourier}Laplace technique, or the method of images.
The solution =(x, t), Eq. (42), of the FDE (34) has been expressed analytically, in closed form,
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Fig. 8. Subdi!usive image solution Q(x, t) for a re#ecting boundary at x"0, portrayed for the times t"0.02, 0.2, 20, for
a"1/2. The relatively long time passing by until the initial hump at x

0
"1 disappears, in comparison to the Brownian

case, is obvious on comparison to Fig. 9.

Fig. 9. Brownian image solution Q(x, t) portrayed for the times t"0.01, 0.1 and 1. The initial condition of starting in
x
0
"1 decays much faster in comparison to the subdi!usive case graphed in Fig. 8.

by the Fox function H2,0
1,2

which has been studied in detail; compare Appendix B. The pro-
pagator =(x, t) possesses similar scaling properties like the Gaussian solution (15), i.e., it is
given by the functional form =(x, t)"u(t)g(m), where the scaling variable m is de"ned through
m"x/ta@2 [249].
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Fig. 10. Image solution Q(x, t) for absorbing boundaries at x"$1. Top: The subdi!usive case, a"1/2. Bottom: The
Brownian case, c"1. Note, again, the cusp shape of the subdi!usive solution. The curves are shown for the times
t"0.005, 0.1 and 10 on top and t"0.05, 0.1 and 10 on the bottom. The broad wings in the top graph are due to the
stretched Gaussian shape of the free propagator in the subdi!usive reH gime.

14 It was shown that the results follow an asymptotic power-law in Fourier space which is neither consistent with the
Gaussian approach nor a LeH vy #ight or walk approach which is of stretched Gaussian shape in Fourier space.

Veri"cations of the FDE (34) have so far been discussed for NMR in disordered systems where
the usually found Gaussian shape of the Fourier transformed propagator gets replaced by an
inverse power-law pattern [225,250]. These predictions were corroborated by "ndings from NMR
experiments in biological tissue [251] which were interpreted along the lines of a fractional
di!usion equation.14 A further example is given by FRAP (Fluorescent Recovery After Photo-
bleaching) experiments [253,254].

3.5. Long jumps: LeH vy yights

The opposite case of "nite characteristic waiting time ¹ and diverging jump length variance
R2 can be modelled by a Poissonian waiting time and a LeH vy distribution for the jump length, i.e.,

j(k)"exp(!pkDkDk)&1!pkDkDk (55)
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15The case 0(k41, though very similar, is not discussed here.
16Note that we suppress the imaginary unit in Fourier space by adopting the slightly modi"ed de"nition

FM
~=

Dk
x
f (x)N"!DkDk f (k) instead of FM

~=
Dk

x
f (x)N"ikDkDk f (k), following a convention initiated by Compte [192].

17Note that we refer to the trajectory of the LeH vy #ight. The spatiotemporal behaviour of these organisms has a "nite
velocity of motion, see below.

for 1(k(2,15 corresponding to the asymptotic behaviour

j(x)&Akp~kDxD~1~k (56)

for DxD<p. Due to the "niteness of ¹, this process is of Markovian nature. Substituting the
asymptotic expansion from Eq. (55) into the relation (25), one obtains

=(k, u)"
1

u#KkDkDk
(57)

from which, upon Fourier and Laplace inversion, the FDE [192,202]

R=
Rt "Kk

~=
Dk

x
=(x, t) (58)

is inferred. The Weyl operator
~=

Dk
x

which in one dimension is equivalent to the Riesz operator +k,
is de"ned in Section A.2.16 Here, the generalised di!usion constant is

Kk,pk/q , (59)

and carries the dimension [Kk]"cmk s~1. The Fourier transform of the propagator can be readily
computed, obtaining

=(k, t)"exp(!KktDkDk) , (60)

which is but the characteristic function of a centred and symmetric LeH vy distribution, and as such
used to generate LeH vy #ights [42]. Note that the Fourier space version of Eq. (58) was discussed in
Ref. [134].

In Fig. 11 a computer simulation of a LeH vy #ight is shown on the right, in comparison to the
trajectory of a walk with "nite jump length variance R2, for the same number of steps. Due to the
asymptotic property (56) of the jump length pdf, very long jumps may occur with a signi"cantly
higher probability than for an exponentially decaying pdf like the formerly employed Gaussian
jump length pdf. The scaling nature of the jump length pdf, as expressed by Eq. (56) leads to the
clustering nature of the LeH vy #ights, i.e., local motion is occasionally interrupted by long sojourns,
on all length scales. That is, one "nds clusters of local motion within clusters. In fact, the LeH vy #ight
trajectory can be assigned a fractal dimension d

f
"k [38,42,89] and is commonly supposed to be

an e$cient search strategy of living organisms [141,142,146].17 Contrarily, the trajectory drawn
on the left of Fig. 11, with R2(R, "lls the two-dimensional space completely, and features no
distinguishable clusters, as all jumps are of about the same length.
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Fig. 11. Comparison of the trajectories of a Brownian or subdi!usive random walk (left) and a LeH vy walk with index
k"1.5 (right). Whereas both trajectories are statistically self-similar, the LeH vy walk trajectory possesses a fractal
dimension, characterising the island structure of clusters of smaller steps, connected by a long step. Both walks are drawn
for the same number of steps (approx. 7000).

The solution of the FDE (58) in (x, t) space can again be obtained analytically by making use of
the Fox functions, the result being [195,217]

=(x, t)"
1

kDxD
H1,1

2,2C
DxD

(Kkt)1@k K
(1, 1/k), (1, 1/2)

(1, 1), (1, 1/2) D . (61)

This is a closed-form representation of a LeH vy stable law, see Appendix C for details. For limk?2
,

the classical Gaussian solution is recovered, by standard theorems of the Fox functions. As
expected, one can infer from Eq. (61) the power-law asymptotics [47,217]

=(x, t)&
Kkt

DxD1`k
, k(2 , (62)

typical for LeH vy distributions. Due to this property, the mean squared displacement diverges:

Sx2(t)TPR (63)

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 27



which has caused some controversy in that it is di!erent from quantities obtained through cut-o!s,
scaling relations obtained from similarity methods, or rescaling of a fractional moment

SDxDdTJtd@k (64)

for 0(d(k42, and loosely called `mean squared displacementa [42,49,52,159,160,227,228].
Clearly, Eq. (63) cannot be valid for a particle with a non-diverging mass. For such massive
particles, a "nite velocity of propagation exists, making long instantaneous jumps impossible, see
below.

The exact calculation of fractional moments pro"ts from the de"nition of the Fox functions.
Thus, writing

SDxDdT"2P
=

0

dx xd=(x, t) , (65)

with 0(d, it follows that this integral, due to Eq. (62), only converges for d(k. In this case, note
that through Eq. (61) the integral (65) de"nes the Mellin transformation

MM f (t); sN"P
=

0

dt ts~1f (t) (66)

of the Fox function:

SDxDdT"
2
kP

=

0

dx xd~1H1,1
2,2C

DxD
(Kkt)1@k K

(1, 1/k), (1, 1/2)

(1, 1), (1, 1/2) D,
2
k
MGH1,1

2,2A
DxD

(Kkt)1@kBH . (67)

Employing the property [237,242]

P
=

0

dxxs~1Hm,n
p,qCaxK

(a
p
,A

p
)

(b
q
, B

q
)D"a~ss(!s) (68)

of the Fox function, where s(s) is de"ned in Eq. (B.9), one readily infers

SDxDdT"
2
k
(Kkt)d@ks(!d)"

2
k
(Kkt)d@k

C(!d/k)C(1#d)
C(!d/2)C(1#d/2)

. (69)

Due to the condition 0(d(k, SDxDdT is always positive, as can be seen from the C functions in
Eq. (69). Also, whereas SDxDdTJtd@k is always sublinear in t, the rescaling of this fractional moment
leads to the pseudo mean squared displacement [x2]Jt2@k, i.e., `superdi!usiona.

Consider two special cases. For dP0, one proves from Eq. (69) the normalisation:

lim
d?0

SDxDdT"1 , (70)

by help of 1/C(z)&z, for z;1. In the Gaussian limit k"2, the linear time dependence

lim
d?2,k?2

SDxDdT"2K
1
t (71)
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of the mean squared displacement is recovered. Note that numerically obtained fractional
moments have been used in single molecule spectroscopy for system characterisation
[138,139].

For certain physical systems, for instance the di!usion in energy space encountered in single
molecule spectroscopy [138,139] or the di!usion on a polymer chain in chemical space [255] the
divergence (63) of the mean squared displacement does not violate physical principles. However,
if dealing with massive particles in direct space, physics implies a "nite velocity of propagation.
The latter dilemma can be overcome by replacing LeH vy #ights by LeH vy walks, a version of
the CTRW with a spatiotemporal coupling, usually introduced through the delta coupling
t(x, t)"1

2
w(t)d(DxD!vt) [52,151}153], with a time cost penalising long jumps [49,52,151]. This is,

for example, the case in the chaotic phase di!usion in Josephson junctions [256], in turbulent #ow
[257], or in chaotic Hamiltonian systems [49,258,259]. As we are mainly concerned with subdif-
fusive systems, LeH vy walks are not considered here.

Boundary value problems for LeH vy #ights are more involved than for the subdi!usive case, as
the long jumps make the de"nition of a boundary actually quite intricate. Such problems were
discussed for LeH vy #ights in the half-space by Zumofen and Klafter [260] and for a box by
Drysdale and Robinson [261].

3.6. The competition between long rests and long jumps

As noted, the problem of the diverging mean squared displacement encountered in the discussion
of LeH vy #ights is often circumvented by the consideration of (x}t) scaling relations, or measuring
the width of the pdf =(x, t) rather than its variance. An alternative method was applied in
Ref. [217], making use of the de"nition

Sx2(t)T
L
&P

L2 t
1@k

L1 t
1@k

dx x2=(x, t)&t2@k (72)

according to which the walker is considered in an imaginary, growing box, leading to the &t2@k
behaviour. The latter was veri"ed by numerical simulations [217]. Note that the cut-o!s of
the integral in Eq. (72) are time dependent. The imaginary box spans the spatial interval
*(t)"(¸

1
!¸

2
)t1@k which grows in the course of time. It gives a measure, that a "nite portion of

the probability is gathered within the given interval *(t).
By use of such relations, one can consider a random walk characterised through broad pdfs for

both waiting time and jump length, thus leading to in"nite ¹ and R2, and the FDE

R=
Rt "

0
D1~a

t
Kka+k=(x, t) (73)

with Kka,pk/qa. In this case, the appropriately de"ned quantity Sx2(t)T
L
, which we call the pseudo

or imaginary mean squared displacement, reveals the temporal form

Sx2(t)T
L
&t2a@k . (74)

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 29



Fig. 12. Phase diagram for the FDE (73). The di!erent `phasesa characterise the four domains which can be distin-
guished according to diverging or "nite characteristic waiting time ¹ and jump length variance R2. If the parameters
a and k become larger than 1 and two, respectively, the corresponding CTRW processes lock onto processes dominated
by "nite ¹ or R2. For R2PR, one observes either the traditional Markovian LeH vy #ights for a'1, or the
non-Markovian version (s) with single modes decaying in a Mittag}Le%er pattern.

Consequently, the phase diagram displayed in Fig. 12 can be drawn. Note that in expression (74),
the exponent a enters in a `propera way, i.e., it is already present for R2(R, whereas the LeH vy
index k manifests the arti"ce of introducing the pseudo mean squared displacement. Conversely,
the competition of laminar motion events (`#ightsa) and localisation (waiting) events in the LeH vy
walk picture is given through the relation [262]

Sx2T&G
t2`a~k if 1(k(2, 0(a(1 ,

t3~k if 1(k(2, a'1 ,
(75)

whereby the time spans spent in laminar motion events is governed by the pdf t(t)&at~k~1, and
the waiting times are drawn from the pdf tI (t)&bt~a~1. Eq. (75) for LeH vy walks clearly di!ers from
the multiplicative nature by which the exponents a and k enter into Eq. (74).

3.7. What's the course, helmsman?

Let us take stock at this point and address two important issues concerning the fractional
di!usion concept.

3.7.1. The long time limit and its consequence for the fractional diwusion equation
In the derivation of both the subdi!usive FDE (34) and the LeH vy #ight FDE (58) from the CTRW

scheme, the di!usion limit (k, u)P(0, 0) was drawn. Equivalently, the di!usion limit corresponds
to choosing (p, q)P(0, 0) with Ka"p2/qa"const or Kk"pk/q"const which matches the limit
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K"lim*x?0,*t?0
(*x)2/(2*t) drawn in the Brownian case. In this sense, the FDE is valid in the

di!usion limit t<q. In this di!usion limit, the equivalence to the CTRW model holds true for all
moments. Indeed, from the FDE (34) one obtains the general expression

Sx2n(t)T"(2n)!
Knatna

C(1#na)
. (76)

From the CTRW theory with untruncated wave number expansion, one "nds higher-order
corrections of the form

Sx2n(t)T"(2n)!
Knatna

C(1#na)
(1#O((Kata)~1)) (77)

which can be neglected in the drawn di!usion limit.
Di!erences with the CTRW model occur in details of the pdf=(x, t) where higher orders in the

k expansion come into play [239], and in higher dimensions as discussed in Ref. [215].

3.7.2. Fractional diwusion equations and limit theorems
The Gaussian solution obtained for Brownian motion is a consequence of the central limit

theorem. How should the results for the subdi!usive FDE (34) and its LeH vy #ight counterpart (58)
be judged from the limit theorem point of view?

The subdi!usive process combines the long tailed waiting time process with a jump length
distribution that possesses a "nite characteristic variance. The resulting pdf =(x, t) which is the
solution of the FDE (34) is not Gaussian. However, in the sense of Bouchaud and Georges [42],
there exists a central limit theorem controlling this process as =(x, t) ful"ls a scaling relation
=(x, t)"m(t) f (x/m(t)) as can be seen from Eq. (42). Moreover, the temporal distribution of this
subdi!usive process is a one-sided LeH vy distribution characterised through its Laplace transform,
the quantity=(x, u) as given in Eq. (44). The existence of such a central limit theorem for this type
of random walk process is further corroborated by the properties of the Fox function in the
solution (42) which guarantee a smooth transition to the classical Gaussian in the limit aP1.

LeH vy #ights are Markovian processes and they are governed by a pdf which is LeH vy stable.
Therefore, they are a direct result of the LeH vy}Gnedenko generalised central limit theorem.

Thus, the FDE concept is a valid extension of the standard di!usion equation in the same sense
as CTRW generalises Brownian motion.

4. Fractional di4usion}advection equations

Di!usion with an additional velocity "eld v and di!usion under the in#uence of a constant
external force "eld are, in the Brownian case, both modelled by the di!usion}advection equation
(DAE)

R=
Rt #v

R=
Rx "K

1

R2
Rx2
=(x, t) . (78)
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In the case of anomalous di!usion this is no longer true, i.e., the fractional generalisation may
be di!erent for the advection case and the transport in an external force "eld. We start
with considering the external velocity "eld, the external force "eld is discussed in the following
section.

In the stationary state, i.e., without inertial terms, described by the DAE (78), the problem is
Galilei invariant: it is invariant under a transformation xPx!vt. Requiring this property to carry
over to the anomalous case, a straightforward extension of the CTRW scheme leads to a fractional
di!usion}advection equation (FDAE). A Galilei variant model is discussed subsequently. Alterna-
tive formulations for advected LeH vy #ights are presented at the end of this section.

A more detailed summary of FDAEs including dispersive sedimentation processes and the
partial sticking mechanism, as well as suggestions for the measurement, are given in Ref. [207].

4.1. The Galilei invariant fractional diwusion}advection equation

In the moving frame of the test particle which is dragged along the homogeneous velocity "eld v,
the random walk is governed by the usual jump pdf t(x, t). The corresponding jump pdf /(x, t) in
the laboratory frame is consequently obtained via the transformation

/(x, t)"t(x!vt, t) . (79)

This carries over, Fourier}Laplace transformed, to the functional relation

/(k, u)"t(k, u#ivk) (80)

between /(k, u) and t(k, u). For the case of in"nite characteristic waiting time ¹, i.e., a broad
waiting time pdf, and "nite jump length variance R2, the Fourier}Laplace form of the propagator,

=(k, u)"
1

u#ivk#Kak2u1~a
, (81)

can be directly deduced from the CTRW solution (25) for the di!usion limit kP0 and uP0.
Proceeding along the same steps as outlined in Section 3, one is led to the FDAE [202]

R=
Rt #v

R=
Rx "

0
D1~a

t
Ka
R2
Rx2
=(x, t) , (82)

by virtue of Eq. (32). Due to the required Galilei invariance, the solution for the propagator in (x, t)
space is given by the Galilei-shifted solution of the FDE (34), i.e.,

=(x, t)"=
v/0

(x!vt, t) (83)

where=
v/0

(x, t) denotes the free propagator according to Eqs. (42) and (43), for the sharp initial
value=

0
(x)"d(x).
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Fig. 13. Galilei invariant subdi!usive model. The propagator is shown for the dimensionless times t"0.02, 0.2 and 2.
The propagator is symmetric with respect to its maximum which is translated with velocity v"1. The cusps marking the
initial condition are distinct in comparison to the Brownian result shown in Fig. 14.

The moments of the FDAE (82) are readily calculated, and one obtains

Sx(t)T"vt , (84)

Sx2(t)T"
2Ka

C(1#a)
ta#v2t2 , (85)

S(*x(t))2T"
2Ka

C(1#a)
ta . (86)

Thus, the mean squared displacement S(*x(t))2T contains solely the molecular contribution, i.e., the
relative mixing in the moving frame, whereas the "rst moment Sx(t)T accounts for the simple drag
along the velocity "eld v, as is to be expected from the ordinary drift term v R=/Rx occurring in the
FDAE (82). The assumed Galilei invariance thus carries over to the moments, as it should. This
behavior is also found in the temporal evolution of the pdf which is depicted in Figs. 13 and 14.

A possible realisation of the Galilei invariant subdi!usion is the motion of a particle in a #ow
"eld where the #owing substance itself causes the occurrence of subdi!usion, like in the case of
a polymer solution, and a small bead immersed in it.

4.2. The Galilei variant fractional diwusion}advection equation

Instead of assuming the Galilei invariance expressed in Eqs. (79) and (80) leading to the
propagator (83), Compte [205], and Compte et al. [206], for an explicitly position-dependent
velocity "eld v(x), assume the relation

/(x, t;x
0
)"t(x!q

!
v(x

0
), t) (87)
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Fig. 14. Galilei invariant Brownian model. The propagator is shown for the dimensionless times t"0.02, 0.2 and 2. The
propagator is symmetric with respect to its maximum which is translated with velocity v"1. The fast decay of the initial
condition is mirrored in the smooth peak of the distribution, compare to the subdi!usive result shown in Fig. 13.

between the jump pdf / and the jump pdf t(x, t) of the free di!usion process. Thereby, / depends
on both the jump length x and the starting point x

0
. Additionally, a microscopic advection time

q
!

is introduced. On that basis, the framework developed in Ref. [205] is applied in Ref. [206] to
Taylor #ows.

The resulting FDAE [204}206]

R=
Rt "

0
D1~a

t C!Aa
R
Rxv(x)#Ka

R2
Rx2D=(x, t) (88)

has the same structure as the fractional Fokker}Planck equation. For a homogeneous velocity
"eld, the resulting FDAE

R=
Rt "

0
D1~a

t C!Aa
R
Rxv#Ka

R2
Rx2D=(x, t) (89)

has a constant drift coe$cient. It can be proved that the fractional solution does not ful"l
a generalised Galilei invariance of the form=(x!vHta, t). However, according to Section 5.4 the
fractional solution=a (x, t) can be expressed in terms of the Brownian solution=

1
(x, t), the Galilei

shifted Gaussian

=
1
(x, t)"

1

J4pKt
expA!

(x!vt)2
4Kt B , (90)

for numerical purposes [207]. This way, Fig. 15 was obtained which is to be compared with Figs. 13
and 14 for the Galilei invariant case. Note the growing skewness of the solution. This persistence of
the initial condition has already been celebrated by Scher and coworkers.
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Fig. 15. Galilei variant subdi!usive model. The propagator is shown for the dimensionless times t"0.02, 0.2 and 2. The
propagator is asymmetric with respect to its maximum which stays "xed at the origin. The plume stretches more and
more into the direction of the velocity.

The di!erence to the Galilei invariant model is also mirrored in the moments. From Eq. (89) one
deduces

Sx(t)T"
Aavta

C(1#a)
, (91)

Sx2(t)T"
2A2av2t2a
C(1#2a)

#

2Kata
C(1#a)

, (92)

where now the "rst moment increases sublinearly in time. This model describes physical systems
where trapping occurs, compare Section 6, i.e., the particle gets repeatedly immobilised in the
environment for a trapping time drawn from the waiting time pdf w(t), before it gets dragged along
the velocity stream again. Experimental realisations might be found in porous systems like the one
displayed in Fig. 16 where the particle gets trapped in still regions o! the velocity backbone, or the
multiple trapping systems addressed in Section 6, or possibly in gel electrophoresis [263].

4.3. Alternative approaches for LeH vy yights

For LeH vy #ights in an external velocity "eld v, i.e., for "nite characteristic waiting time ¹ but
in"nite jump length variance R2, the FDAE [202]

R=
Rt #v

R=
Rx "Kk+k=(x, t) (93)

is recovered [202], which describes a Markovian process with diverging mean squared displace-
ment, see the discussion in Section 3.5. The drift term v R=/Rx in Eq. (93) is the same as in the
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Fig. 16. Swiss cheese percolation network, as used by Klemm et al. [106]. The image clearly shows the relatively sharp
distinction between regions with high #ow velocities (backbones), and still domains. A particle trapped in one of the
side-pores o! the backbones stays approximately stationary, until it rejoins the main stream backbones. Courtesy
A. Klemm and R. Kimmich, Ulm University.

standard DAE (78), and thus the result is simply given in accordance to the subdi!usive case,
Eq. (83), by =

v
(x, t)"=

v/0
(x!vt, t) where here =

v/0
(x, t) is the LeH vy stable solution (61). The

latter is symmetric in x.
There may occur situations where the resulting propagator is asymmetric. This case is modelled

by the alternative approach in Refs. [208,209] where a skewed LeH vy distribution is assumed instead
of the symmetric one leading to the Riesz/Weyl operator +k introduced in the preceding parts.
Consequently, the resulting FDAE possesses an additional parameter accounting for the asym-
metry, in comparison to the FDAE (93).

5. The fractional Fokker}Planck equation: anomalous di4usion in an external force 5eld

Many physical transport problems take place under the in#uence of an external force "eld:
a constant electrical bias "eld exerting a force on charge carriers, a periodic potential encountered
in certain problems in solid state physics or in the modelling of molecular motors, a bistable
potential in reaction dynamics or molecular switching processes, or a harmonic potential describ-
ing a bound particle. In this section, a framework for the treatment of anomalous di!usion
problems under the in#uence of an external force "eld is developed. A physical model based on the
Langevin equation with Gaussian white noise for multiple trapping systems is introduced in the
next section.
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5.1. The Fokker}Planck equation

Normal di!usion in an external force "eld is often modelled in terms of the Fokker}Planck
equation (FPE) [24,29,35}37,78}80,264}266]

R=
Rt "C

R
Rx
<@(x)
mg

1

#K
1

R2
Rx2D=(x, t) (94)

where m is the mass of the di!using test particle, g
1

denotes the friction constant characterising the
interaction between the test particle and its embedding, and the force is related to the external
potential through F(x)"!d<(x)/dx. Let us "rst list some basic properties of the FPE (94) to
which the fractional counterpart developed below can be compared.

(i) In the force-free limit, the FPE (94) reduces to Fick's second law and thus the time evolution of
the mean squared displacement follows the linear form (4).

(ii) Single modes of the FPE (94) relax exponentially in time,

¹
n
(t)"exp(!j

n,1
t) , (95)

where j
n,1

is the eigenvalue of the Fokker}Planck operator ¸
FP

de"ned below.
(iii) The stationary solution

=
45
(x),lim

t?=

=(x, t) (96)

is given by the Gibbs}Boltzmann distribution

=
45
(x)"N exp(!b<(x)) (97)

where N is a normalisation constant and b,(k
B
¹)~1 denotes the Boltzmann factor.

(iv) The FPE (94) further ful"ls the Einstein}Stokes}Smoluchowski relation [38]

K
1
"k

B
¹/mg

1
(98)

which is closely connected with the #uctuation}dissipation theorem.
(v) Finally, the second Einstein relation

Sx(t)T
F
"

1
2

FSx2(t)T
0

k
B
¹

, (99)

is recovered from Eq. (94) which connects the "rst moment in presence of the constant force F,
Sx(t)T

F
, with the second moment in absence of this force,

Sx2(t)T
0
"2K

1
t . (100)

The latter relationship, Eq. (99), is a consequence of linear response.

5.2. The fractional Fokker}Planck equation

The FPE (94) is well studied for a variety of potential types, and the respective results have found
wide application. For the description of anomalous transport in the presence of an external "eld,
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we introduce a fractional extension of the FPE, namely the fractional Fokker}Planck equation
(FFPE) [212}215]

R=
Rt "

0
D1~a

t C
R
Rx
<@(x)
mga

#Ka
R2
Rx2D=(x, t) . (101)

The FP-operator

¸
FP

"

R
Rx
<@(x)
mga

#Ka
R2
Rx2

(102)

occurring in the FFPE (101) contains the generalised di!usion constant Ka and the generalised
friction constant ga of dimension [ga]"sa~2. For aP1, the standard FPE (94) is recovered, and
for <(x)"const., i.e. in the force-free limit, the FDE (34) emerges.

We will show that this equation ful"ls the following requirements:

(i) The FFPE (101) describes subdi!usion in accordance to the mean squared displacement

Sx2(t)T
0
"

2Ka
C(1#a)

ta (103)

in the force-free limit. This is obvious as for <(x)"const., Eq. (101) reduces to the standard
FDE, Eq. (34).

(ii) The relaxation of single modes is governed by a Mittag}Le%er pattern

¹
n
(t)"Ea (!j

n,ata) . (104)

(iii) The stationary solution is given by the Gibbs}Boltzmann distribution (97).
(iv) A generalisation of the Einstein}Stokes}Smoluchowski relation (98) connects the generalised

friction and di!usion coe$cients.
(v) The second Einstein relation (99) can be shown to hold true for Eq. (101).

The FFPE (101) will be derived explicitly in the following subsection, and independently in the
next section as the high friction limit of a fractional phase space model.

In order to derive the stationary solution=
45
(x) of the FFPE (101), note that the right-hand side

of the Eq. (101) can be rewritten as

!
0
D1~a

t

RS(x, t)
Rx (105)

in terms of the probability current [36]

S(x, t)"A!
<@(x)
mga

!Ka
R
RxB=(x, t) . (106)

If a stationary state is reached, S(x, t) must be a constant. Thus, if S
45
(x

0
)"0 at any point x

0
, it

vanishes everywhere, and the stationary solution of the FFPE satis"es [36,212]

<@(x)
mga
=

45
(x)#Ka

d
dx
=

45
(x)"0 (107)
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from which the exponential result

=
45
(x)"N expA!

<(x)
mgaKaB (108)

can be inferred. Requiring, in analogy to the standard case, that =
45

is given by the Boltzmann
distribution (97), the generalised Einstein}Stokes}Smoluchowski relation [42,203,212}215,267]

Ka"k
B
¹/mga (109)

is readily recovered. Thus, the FFPE (101) obeys some generalised #uctuation}dissipation the-
orem. The generalised Einstein}Stokes}Smoluchowski relation (109) has recently been supported
by "ndings of Amblard and coworkers [120,121]. In order to check whether the FFPE (101)
satis"es the second Einstein relation (99), the "rst moment in presence of the constant force F is
calculated under linear response conditions, obtaining the expression

Sx(t)T
F
"

F
mgaC(1#a)

ta . (110)

A comparison to the force-free result of the mean squared displacement, Eq. (103), leads to the
second Einstein relation (99). The validity of this relation in the case of subdi!usion has found
support experimentally in the work by Schi! et al. [103].

At this point it is worth digressing a bit and noting that the condition R=/Rt"0, i.e., the usual
stationary condition, allows for a unique solution for the fractional equation (101), namely
the Gibbs}Boltzmann form (97). On the one hand, R=/Rt"0 implies ="const(x). On the
other hand,

0
D1~a

t
=(x, t)"0 is ful"lled by =(x, t)"const(x) corresponding to the reasoning

in the above derivation via the vanishing probability current, S
45
(x)"0, as well as by

=(x, t)"const(x)t~a, according to relation (37). This contradicts, however, the requirement
="const(x) imposed by the stationarity condition. Thus, the exponential form derived above is
unique. This fact is mirrored in the stationary solution obtained by the method of separation
of variables discussed below, which leads to a time-independent solution. Note further that a quasi-
stationary form similar to Jt~a was found for a fractional phase space equation by Hilfer in his
thermodynamical derivation of fractional dynamics [235,268,269].

5.3. Separation of variables and the fractional Ornstein}Uhlenbeck process

5.3.1. The separation of variables
In order to determine the pattern according to which the stationary solution is approached, the

separation ansatz

=
n
(x, t)"¹

n
(t)u

n
(x) (111)

for a given mode n is introduced into the FFPE (101), leading to the decoupled set of eigen-
equations

d¹
n
(t)

dt
"!j

n,a 0
D1~a

t
¹

n
(t) (112)

¸
FP

u
n
(x)"!j

n,aun
(x) , (113)
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featuring the fractional eigenvalues j
n,a . The temporal eigenfunction ¹

n
(t) being governed by the

fractional relaxation equation (112), it is described by the Mittag}Le%er pattern

¹
n
(t)"Ea (!j

n,ata),
=
+
j/0

(!j
n,ata)j

C(1#aj)
(114)

with the choice ¹
n
(0)"1. For a"1, the standard exponential form ¹

n
(t)"exp(!j

n,1
t) follows,

whereas for 0(a(1, the initial stretched exponential behaviour

¹
n
(t)&expA!

j
n,ata

C(1#a)B (115)

turns over to the power-law long-time behaviour

¹
n
(t)&

1
C(1!a)j

n,ata
. (116)

This interpolation from stretched exponential to inverse power-law behaviour has been reported
from the rheology of polymeric systems [20,21], and from protein rebinding [22]. Let us brie#y
examine the importance of the Mittag}Le%er function. In Refs. [180,270] it is shown, that the
Mittag}Le%er function is the exact relaxation function for an underlying fractal time random walk
process, and that this function directly leads to the Cole}Cole behaviour [270,271] for the complex
susceptibility which is broadly used to describe experimental results. Furthermore, the Mit-
tag}Le%er function can be decomposed into single Debye processes, the relaxation time distribu-
tion of which is given by a modi"ed, completely asymmetric LeH vy distribution [270]. This last
observation is related to the formulation of Mittag}Le%er relaxation described in Refs. [21,180].
In Ref. [245], the signi"cance of the Mittag}Le%er function was shown, where its Laplace
transform was obtained as a general result for a collision model in the Rayleigh limit.

The full solution of the FFPE (101) is given by the sum over all eigensolutions, i.e., by

=(x, tDx@,0)"eU(x{)@2~U(x)@2+
n

t
n
(x)t

n
(x@)Ec (!j

n,ata) (117)

for an initial distribution concentrated in x@. Here, the eigenfunctions t
n
(x)"eU(x)@2u

n
(x) of the

Hermitian operator ¸ are de"ned in terms of the u
n
(x), the eigenfunctions of the FP-operator ¸

FP
,

via the scaled potential U(x)"<(x)/[k
B
¹], ¸ and ¸

FP
sharing the same eigenvalues j

n,a [36]. On
arranging these eigenvalues in increasing order, i.e., 04j

0,a(j
1,a(j

2,a(2, the "rst eigen-
value is zero i! there exists a stationary solution, which is positive de"nite and de"ned through
=

45
(x)"lim

t?=
=(x, t). This stationary solution is independent of the fractional index a and

coincides with the required Boltzmann solution (97). However, the temporal relaxation of a single
mode n towards equilibrium is highly non-exponential.

The FFPE (101) obeys, in Laplace space, the functional relation [212]

=a (x, u)"
ga
g
1

ua~1=
1Ax,

ga
g
1

uaB (118)
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for the same initial condition=
0
(x)"d(x!x@). The subscripts refer to the solutions of the FPE

(94) for a"1 and the FFPE (101) for arbitrary 0(a(1, respectively. Thus, in the Laplace
domain, the subdi!usive system passes through the same states as its normal counterpart, for
a rescaled Laplace variable. In Section 5.4 we show that the solution=a of the FFPE (101) can be
expressed in terms of=

1
through an integral relation from which the non-negativity of=a can be

proved, as the Pawula theorem guarantees that the solution=
1

is a proper pdf. For the force}free
FDE (34) describing subdi!usion, Schneider and Wyss proved directly that the propagator=(x, t),
Eq. (42), is a proper pdf.

5.3.2. The fractional harmonically bound particle
It is worthwhile considering the example of a subdi!usive, harmonically bound particle, i.e. the

subdi!usive motion in the potential <(x)"1
2
mu2x2 which exerts a restoring force on the test

particle. We "nd the following solution [212]

="S
mu2

2pk
B
¹

=
+
0

1
2nn!

Ea (!ntI a)H
nA

x8 @

J2BHnA
x8

J2Be~x8
2@2 , (119)

employing reduced coordinates tI"t/q and x8 "xJmu2/[k
B
¹], as well as q~a,u2/ga . Hn

denotes
the Hermite polynomials [236], and the eigenvalues here are j

n,a"nu2/ga . This result is plotted in
Figs. 17}19 in the course of time, for an asymmetric initial condition, and compared to the
Brownian result. The stationary solution of this process is found to be [236]

=
45
(x)"S

mu2

2pk
B
¹

H
0A

x8 @

J2BH0A
x8

J2Be~x8
2@2"S

mu2

2pk
B
¹

expA!
mu2x2

2k
B
¹ B (120)

i.e., the Gibbs}Boltzmann distribution, as it should.
For a given potential <(x), one can extract the moments of order n, Sxn(t)T, directly from

the FFPE (101), by integration over :=
~=

dx xn. This leads to a fractional di!erential equation
for the respective moment. For instance, for Sx(t)T one obtains the relation (d/dt)Sx(t)T
"

0
D1~a

t
(u2/ga )Sx(t)T, i.e., the fractional relaxation equation, solved by the Mittag}Le%er pattern

Sx(t)T"x
0
Ea(!(t/q)a) . (121)

Eq. (121) describes the relaxation of the mean of an o!-centre initial distribution, sliding into the
symmetric "nal state on the bottom of the potential valley, which is characterised by the symmetric
limit lim

t?=
Sx(t)T"0. The temporal evolution of the second moment,

Sx2(t)T"x2
th
#[x2

0
!x2

th
]Ea (!2(t/q)a) (122)

also follows the Mittag}Le%er pattern, however characterised by the relaxation time scale q/21@a.
Hereby, the thermal equilibrium is de"ned as x2

th
"k

B
¹/[mu2] reached for tPR. The second

moment (122) is graphed for the subdi!usive case in Fig. 20, in comparison to the Brownian
counterpart.

Note that this process discussed in position space is equivalent to the fractional version of the
Ornstein}Uhlenbeck process. The Laplace transformed versions of Eqs. (121) and (122) were found
in Ref. [245] to describe the relaxation of a heavy test particle immersed in a bath of light particles,
in a generalised Rayleigh limit.
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Fig. 17. Pdf =(x, t), Eq. (119), of the fractional Ornstein}Uhlenbeck process, for the anomalous di!usion exponent
a"1/2. The initial value is chosen to be=

0
(x)"d(x!1). The maximum clearly slides towards the origin, acquiring an

inversion symmetric shape. The curves are drawn for the times t"0.02, 0.2, and 20, employing the integral relation with
the Brownian solution. Note the distinct cusps around the initial position. Compare Fig. 18.

Fig. 18. Fractional Ornstein}Uhlenbeck process. Comparison of the numerical behaviour of the summation representa-
tion (dashed) with 151 summation terms and the integral representation (A transform). The latter is obtained by
Mathematica employing the numerical integration command NIntegrate. The cusp which is a typical feature for
subdi!usive processes is much more pronounced in the curve obtained through the integral transformation. The
computation time for the latter is even shorter than for the calculation of the truncated sum so that this representation is
preferable for numerical purposes.
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Fig. 19. Fractional Ornstein}Uhlenbeck process. Comparison of subdi!usive pdf at t"0.4 and 20 with Brownian
solution at t"0.36 (dashed) and the stationary solution (dashed). The cusp emphasising the slowly devaying initial
condition at x

0
"1 in the subdi!usive case is distinct. Also note the pronounced asymmetry of the fractional solution.

18¸`a (t) is de"ned on the positive real axis and shows the asymptotic power-law behaviour ¸`a &t~1~a, compare
Appendix C.

5.4. The connection between the fractional solution and its Brownian counterpart

The solution of the FFPE,=(x, t), follows the scaling relation given in Eq. (118). As shown by
Barkai and Silbey [272], Eq. (118) can be rewritten in the form

=a (x, t)"P
=

0

dsA(s, t)=
1
(x, s) (123)

which corresponds to a modi"ed Laplace transformation from t to (ga/g1)ua. The kernel A(s, t) is
de"ned in terms of the inverse Laplace transformation

A(s, t)"L~1G
ga

g
1
u1~a

expA!
ga
g
1

uasBH , (124)

the result being the modi"ed one-sided LeH vy distribution ¸`a 18

A(s, t)"
t
as

¸`a A
t

(sH)1@aB, sH,gas/g1 . (125)

Consequently, the transformation (123) guarantees the existence and positivity of =a (x, t) if only
the Brownian counterpart,=

1
(x, t), is a proper pdf.
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Fig. 20. Mean squared displacement for the fractional (a"1/2, full line) and normal (dashed) Ornstein}Uhlenbeck
process. The normal process shows the typical proportionality to t for small times, and approaches the saturation value
much faster than its subdi!usive analogue which starts o! with the t1@2 behaviour and approaches the thermal
equilibrium value by a power-law, compare Eq. (122).

In the normalised version, the kernel A is given through A(s, u)"ua~1e~su
a. Rewriting it in terms

of a Fox function, one obtains the exact representation

A(s, t)"
1
as

H1,0
1,1C

s1@a
t K

(1, 1)

(1, 1/a)D (126)

in terms of the Fox function H1,0
1,1

whose series representation reads

A(s, t)"
1
s

=
+
n/0

(!1)n
C(1!a!an)C(1#n)A

s
taB

1`n
. (127)

From the properties of the Fox function, or by using Mathematica, one can derive the following
results for some special cases:

a"1/2:

A(s, t)"
1

Jpt
expA!

s2
4tB ; (128)

a"1/3:

A(s, t)"S
s
3tCI~1@3A

2s3@2

3J3tB!I
1@3A

2s3@2

3J3tBD ; (129)
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a"2/3:

A(s, t)"
1

t2@3C
1

C(1/3) 1
F

1A
5
6
;
2
3
;!

4s3
27t2B!

s
t2@3C(!1/3) 1

F
1A

7
6
;
4
3
;!

4s3
27t2BD . (130)

With such expressions at hand, one has a very convenient method for plotting the fractional
solutions via relation (123). This method shows a good performance when used in Mathematica
with the NIntegrate command. Via this method, Figs. 15 and 17}19 have been obtained.

Note that the connection between=a and=
1

is related to the quantity s
s
(t) that exactly s events

occurred in time t known from a random walk characterised by the waiting time distribution
w(t), s

s
(u)"[w(u)]s[1!w(u)]/w(u) [277]. For the special form of the waiting time distribution,

w(u)"e~u
a, one "nds in the long time limit s

s
(u)"ua~1e~su

a
,A(s, u).

5.5. The fractional analogue of Kramers escape theory from a potential well

As we have seen, it is an important feature of the fractional kinetic equations that its solution
=a can be expressed in terms of its Brownian counterpart =

1
. In fact, all kinetic processes

associated with such a fractional equation are a!ected by scaling relations such as Eq. (118).
Let us recall that in the standard Kramers problem the escape of a scalar test particle subject to

a Gaussian white noise over a potential barrier is considered in the limit of low di!usivity, *</K
where *< is the barrier height and K the di!usion constant [36]. The temporal decay of the
probability to still "nd the particle within the potential well is given by an exponential function

p(t)"e~rK t (131)

where the Kramers rate in the overdamped limit is de"ned through [36]

r
K
"

1
2pmg

J<A(x
.*/

)D<A(x
.!9

)D exp(!b*<) (132)

with *<"<(x
.!9

)!<(x
.*/

); compare Fig. 21. In Eq. (132), the exponential function contains the
Boltzmann factor b,(k

B
¹)~1 so that the inverse Kramers rate follows an Arrhenius activation

r~1
K

Jec@T [274].
Let us now derive the fractional counterpart to the exponential decay pattern from Eq. (131).

Application of relation (118) to the Laplace transform p(u)"(r
k
#u)~1 of the survival probability,

Eq. (131), produces

pa(u)"
ga
g

1
u#r(a)

K
u1~a

(133)

with the generalised, fractional Kramers rate

r(a)
K
"

g
ga

r
K
"

1
2pmga

J<A(x
.*/

)D<A(x
.!9

)D exp(!b *<) . (134)
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Fig. 21. Potential well in the Kramers rate model. Initially the particle is assumed to be caught in the potential hole. The
x axis corresponds to a reaction coordinate.

Note that consequently the Arrhenius form of the temperature activation is preserved. Via Laplace
inversion of Eq. (133) one "nds the fractional survival probability

pa(t)"Ea(!r(a)
K

ta) (135)

in terms of the Mittag}Le%er function Ea .
Often the notion of time-dependent rate coe$cients is preferred, i.e., the survival probability is

de"ned as p(t)"exp(!k(t)t) in terms of the rate coe$cient k(t). For the fractional Kramers model
we therefore "nd k(t)"DlnEa (!r(a)

K
ta)D/t which leads to the two limiting cases

k(t)&
r(a)
K

t1~aC(1#a)
, t;(r(a)

K
)1@a (136)

and

k(t)&
a
t
ln(t[r(a)

K
C(1!a)]1@a), t<(r(a)

K
)1@a . (137)

A detailed investigation of this topic is found in Ref. [273], including the discussion of a possible
application to ligand rebinding in proteins, compare Refs. [200,275,276].

5.6. The derivation of the fractional Fokker}Planck equation

For the derivation of the subdi!usive FFPE (101), and a further generalisation accounting
for a broad jump distance statistics introduced below, we again draw from the random walk
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formulation and its duality with (generalised) di!usion equations. In order to derive the standard
FPE, the random walk model employed in Section 3 has to be modi"ed as to account for the
broken spatial homogeneity, in comparison to the force-free di!usion under natural boundary
conditions. A non-linear external force "eld F(x) acting upon the system, the local probabilities to
jump right or left, A( j) and B( j), explicitly depend on the position j. The corresponding discrete
master equation therefore becomes

=
j
(t#*t)"A

j~1
=

j~1
(t)#B

j`1
=

j`1
(t) , (138)

compare to Eq. (10). Taylor expansions in time, analogous to those already introduced, and in
space,

A
j~1
=

j~1
(t)"A(x)=(x, t)!*x

RA(x)=(x, t)
Rx #

(*x)2
2
R2A(x)=(x, t)

Rx2
#O([*x]3) (139)

lead to the FPE (94), with the appropriate limits

<@(x)
mg

1

, lim
*x?0,*t?0

*x
*t

[B(x)!A(x)] , (140)

K
1
, lim

*x?0,*t?0

(*x)2
2*t

. (141)

For taking these limits, we impose the normalisation A(x)#B(x)"1 and note that the in-
homogeneity in jumping left or right, A(x)!B(x), becomes small for *xP0, according to
a Boltzmann distribution for a system close to thermal equilibrium, so that

B(x)!A(x)K
*x<@(x)
2k

B
¹

#O([*x]2) . (142)

The master equation (138) involves local steps in time and position, thus enabling the Taylor
expansions. Broad waiting time pdfs or jump length pdfs do not allow for such an expansion,
as they are connected with long-range steps, and thus *x or *t cannot be considered small
parameters.

An extension of above scheme for subdi!usion in an external force "eld has recently been
presented by Barkai et al. [215], and is discussed below. Here, we prefer an alternative derivation
which also accounts for a broad jump length statistics [213,214]. Note that for non-local jumps,
already the simple master equation (138) has to be modi"ed to the form

=
j
(t#*t)"

=
+
n/1

A
j,n
=

j~n
(t)#

=
+
n/1

B
j,n
=

j`n
(t) (143)

allowing for jumps from any site j$n to site j, involving the normalisation

=
+
n/1

(A
j,n

#B
j,n

)"1 , (144)
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i.e., a step to site j can come from any site j$n. In order to introduce the continuum limit of this
random walk model, the transfer kernel [213,214]

K(x,x@),j(x!x@)[A(x@)H(x!x@)#B(x@)H(x@!x)] (145)

replaces the homogeneous and isotropic jump length pdf j(x!x@)"j(Dx!x@D) in the CTRW
approach. Thus, the function K explicitly depends on both the departure site x@ and the arrival site
x. K obeys the normalisation condition

P
=

~=

ddK(x@DDd)"1 (146)

where K(x@DDx!x@),K(x,x@). Including an arbitrary waiting time pdf w(t), it was shown that the
underlying inhomogeneous CTRW is governed by the generalised master equation [213]

R=
Rt "P

=

~=

dx@P
t

0

dt@K(x,x@; t!t@)=(x@, t@) (147)

with the kernel

K(x,x@; u),uw(u)
K(x,x@)!d(x)

1!w(u)
(148)

given in Laplace space; or, equivalently, through the equation

=(x, t)"P
=

~=

dx@P
t

0

dt@w(t!t@)K(x,x@)=(x@, t@)#W(t)=
0
(x) . (149)

Transforming to Fourier}Laplace space, the FFPE (101) can be derived for a broad waiting time
pdf with a diverging characteristic waiting time ¹, Eq. (20), in combination with a "nite jump
length variance R2, Eq. (21). Taking also non-local jump statistics into account, i.e., assuming
a jump length pdf with in"nite R2, one recovers the FFPE

R=
Rt "

0
D1~a

t C
R
Rx
<@(x)
mga

#Kka+kD=(x, t) (150)

whereby the drift and di!usion coe$cients are given by [213,214]

<@(x)
mga

,

2p
kqa

[B(x)!A(x)] , (151)

Kka,
pk
qa

. (152)

The FFPE (150) thus describes the competition between subdi!usion and LeH vy #ights, as it was
already encountered for the FDE (73).

An alternative derivation for the FFPE (101), from an asymmetric random walk scheme is given
by Barkai et al. as follows [215].
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We consider an unbounded random walk on a one-dimensional lattice with a lattice spacing a.
Individual lattice sites are denoted by M2,!1, 0, 1,2, n,2N. At time t"0 the particle be located
at site n"0. Once the particle has arrived at site n it is trapped there for some random time. These
waiting times are given by Mq

i
N and i"1, 2,2. The Mq

i
N are independent random variables,

identically distributed according to a pdf w(q). It is assumed that w(q) is independent of the location
of the particle n (i.e., it is independent of the external "eld). It is further assumed that the particle
executes only nearest neighbour jumps. The probability of hopping from site n to n#1 is A(n), and
from site n to site n!1 it is B(n), the normalisation condition being A(n)#B(n)"1. A(n) and B(n)
are time independent.

The probability that the random walker has jumped i times in the interval (0, t), Q
i
(t), is given in

Laplace space through

Q
i
(u)"

1!w(u)
u

w(u)i , (153)

using the Laplace transform W(u)"(1!w(u))/u of the sticking probability (24). If=
n
(t) denotes the

probability of "nding the particle at site n at time t, and p
i
(n) be the probability to be on site n after

step i, then

=
n
(t)"

=
+
i/0

p
i
(n)Q

i
(t) . (154)

Using Eq. (153),

=
n
(u)"

1!w(u)
u

=
+
i/0

p
i
(n)w(u)i . (155)

The evolution of p
i
(n) is determined by the discrete time and space equation

p
i`1

(n)"A(n!1)p
i
(n!1)#B(n#1)p

i
(n#1) . (156)

In Eq. (156) we have used the assumption that the directional jump probabilities A(n) and B(n)
are independent of the waiting times. The continuum limit of this equation is obtained by using
the replacement p

i
(n)Pp

i
(x), where p

i
(x) dx is the probability of "nding the particle after the

ith jump in the interval (x,x#dx). Similarly, A(n)PA(x) and B(n)PB(x), with the normalisation
A(x)#B(x)"1. In addition we have A(n#1)PA(x#a) and B(n#1)PB(x#a). We now
expand Eq. (156) in a Taylor series in a, a typical term being

A(n!1)p
i
(n!1)PA(x)p

i
(x)#

R
Rx[A(x)p

i
(x)](!a)#

R2
Rx2

[A(x)p
i
(x)]

a2

2
#2 , (157)

where higher-order terms proportional to a3, a4, etc., are omitted.
The system is supposed to be close to thermal equilibrium de"ned by a temperature ¹,

A(x)KB(x)K1/2, and to be according to detailed balance A(x)!B(x)KaF(x)/(2k
B
¹). In this case

we obtain from Eqs. (157)}(158) in the continuum limit

p
i`1

(x)"p
i
(x)#

a2

2 C
R2
Rx2

p
i
(x)!

R
Rx

F(x)
k
B
¹

p
i
(x)D#2 . (158)
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Rewriting Eq. (155) leads to

=(x, u)"
1!w(u)

u
p
0
(x)#

1!w(u)
u

=
+
i/1

p
i
(x)w(u)i (159)

where the continuum approximation =
n
(u)P=(x, u) has been made. Inserting Eq. (158) into

Eq. (159), and using p
0
(x)"d(x), one "nds

=(x, u)"
1!w(u)

u
d(x)

#

1!w(u)
u

=
+
i/1
Gpi~1

(x)#
a2

2
R2
Rx2

p
i~1

(x)!
a2

2
R
RxCpi~1

(x)
F(x)
k
B
¹D#2Hw(u)i . (160)

Notice that according to Eq. (155)

1!w(u)
u

=
+
i/1

p
i~1

(x)w(u)i"=(x,u)w(u) (161)

and hence from Eq. (160) one obtains

=(x, u)"
1!w(u)

u
d(x)

#w(u)G=(x, u)#
a2

2
R2
Rx2
=(x, u)!

a2

2
R
RxC=(x, u)

F(x)
k
B
¹D#2H . (162)

Introducing the waiting time probability density function, which for small u behaves as

w(u)"1!(uq)a#c
1
(uq)2a#2 (163)

with 0(a(1, the "rst moment of the waiting times diverges. Inserting Eq. (163) into Eq. (162) one
is led to

=(x, u)"
(uq)a!c

1
(uq)2a#2

u
d(x)#[1!(uq)a#c

1
(uq)2a#2]

]G=(x, u)#
a2

2
R2
Rx2
=(x, u)!

a2

2 C=(x, u)
F(x)
k
B
¹D#2H . (164)

Consider the limit aP0. In the standard di!usion approximation (i.e., a"1) such a limit is
meaningful only when both the mean waiting time and the lattice spacing a approach zero. For
those cases where the mean waiting time diverges, the standard limit of the di!usion approximation
breaks down. We take aP0 and qP0, while the ratio

lim
a
2
?0,q?0

a2

2qa
"Ka (165)
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is kept "nite. When a"1, K
1
"a2/(2SqT) and SqT"q is the "nite mean waiting time, as expected

for this normal case. Multiplying Eq. (164) by q~au1~a and using the limiting procedure de"ned in
Eq. (165), we "nd that

u=(x, u)!d(x)"u1~a¸
FP
=(x, u) , (166)

where

¸
FP

,KaA
R2
Rx2

!

R
Rx

F(x)
k
B
¹B (167)

is the well known Fokker}Planck operator. Eq. (166) can be rewritten in t space in terms of the
fractional Riemann}Liouville operator [232] as

R=
Rt "

0
D1~a

t
¸

FP
=(x, t) . (168)

5.7. A fractional Fokker}Planck equation for LeH vy yights

The FFPE (150) for k"2, i.e., for the case with "nite jump length variance R2, reduces to the
subdi!usive FFPE (101) discussed in Section 5.2. Here we brie#y discuss the opposite case of "nite
characteristic waiting time ¹, but diverging R2PR. This Markovian analogue of the FFPE (150),

R=
Rt "C

R
Rx
<@(x)
mg

1

#Kk
1 ~=

Dk
xD=(x, t) (169)

describes LeH vy #ights in the force "eld F(x). It can be independently derived from the Langevin
equation [159,160,216,217]

d
dt

x(t)"
F(x)
mg

1

#C(t) (170)

with the LeH vy noise C(t) the distribution of which, p(C), is given through p(k)"exp(!KkDkDk) in
Fourier space. The FFPE was investigated in some detail by Jespersen et al. [217].

The basic feature of the FFPE (169) is that it describes systems far o! thermal Boltzmann
equilibrium. Thus, for a harmonically bound particle underlying the potential <(x)"1

2
mu2x2, the

stationary solution

=
45
(x)"

1
DxD

H1,1
2,2C

DxDkku2

Kk
1
g
1
m K

(1, 1), (1,k/2)

(1, k), (1,k/2)D (171)

is LeH vy stable, its Fourier transform being

=
45
(k)"expA!

g
1
mKk

1
DkDk

ku2 B , (172)
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Consequently, the asymptotic behaviour

=
45
(x)&

Kk
1
g
1
m

ku2DxD1`k
(173)

is enforced for large DxD. Especially, the mean squared displacement diverges, even for the stationary
case.

Making use of the method of characteristics, it can be shown that the solution of the FFPE (169)
for the force F(x)"!u2x#F is given by

=u,F
"=

0Ax!
F
u2C1!expG!

u2t
mg

1
HD,

g
1
m

ku2C1!expG!
u2t
mg

1
HDB (174)

where=
0
(x, t) denotes the force-free solution

=
0
(x, t)"

1
kDxD

H1,1
2,2C

DxD
(Kk

1
t)1@k K

(1, 1/k), (1, 1/2)

(1, 1), (1, 1/2) D (175)

which is again LeH vy stable [217].

5.8. A generalised Kramers}Moyal expansion

Taking into account higher-order terms in the Taylor expansions of the type (139), leading to the
FPE (94), the Kramers}Moyal (KM) expansion

R=
Rt "

=
+
n/1
A!

R
RxB

n
D(n)(x)=(x, t) (176)

can be obtained, where the KM-coe$cients are de"ned through

D(n)(x),
(*x)n
n!*t

[A(x)#(!1)nB(x)] . (177)

Alternatively, the KM-expansion foots on an expansion of the distribution function [36]

P(x, t#qDx, t)"Pdy d(x!y)P(y, t#qDx@, t) , (178)

P denoting the transition probability from x@ to x during the time span q, in combination with the
formal expansion

d(x!y)"
=
+
n/0

(y!x@)
n! A!

R
RxB

n
d(x@!x) . (179)

Note that in the full KM-expansion (176) no limits have to be taken as the full Taylor expansion
is included. This is connected with the Pawula theorem [36] as either the Taylor expansion has to
be terminated after the second order, or no proper limit can be de"ned. A truncation of the
KM-expansion after the nth term, n'2, may lead to negative solutions for the pdf=(x, t) [36]. In
the random walk derivation, the lack of appropriate limits is obvious, as the limit is only properly
de"ned for the quotient (*x)2/*t. All higher terms are, however, of order (*x)2`n/*t.
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A generalised KM-expansion has been obtained recently for systems underlying LeH vy jump
statistics with index 1(k(2 [214]:

R=
Rt "

0
D1~a

t C
=
+
n/1

~=
Dnk

x
D(n)(x)#

=
+
n/1

(!1)n
R
Rx~=

Dnk
x

DM (n)(x)

#

=
+
n/0

(!1)1`nA
R
RxB

1`2n
DI (n)(x)D=(x, t) (180)

where the generalised KM-coe$cients are de"ned via

D(n)(x)"i*nk+~1
pnk
qa

, (181)

DM (n)(x)"i*nk+(1!d
2,k)

p1`nk
qa

[A(x)!B(x)]
sinA

nkp
2 B

2n!sinA
p
2
[1#nk]B

, (182)

DI (n)(x)"
p1`2n

qa
[A(x)!B(x)]

aA!
1#2n

k B
pk

. (183)

Note that the occurrence of possibly imaginary coe$cients in higher-order terms in the genera-
lised Kramers}Moyal expansion (180) is due to the di!erentiation theorem of the Fourier
transformation (compare footnote 16); thus, the Riesz}Weyl operator occurs to orders nk,
n"1, 2,2 .

A crucial feature of the generalised KM-expansion is that the lowest-order contribution
involves a "rst-order spatial derivative R/Rx, and thus preserves the physical drift character. That
means that, to lowest order, the external force in the generalised KM-expansion leads to a transla-
tion of the pdf =(x, t). The latter statement is di!erent from the "ndings of Zaslavsky et al.
[187,193,211] who assume a generalisation of relation (179) in their description of chaotic
Hamiltonian systems.

6. From the Langevin equation to fractional di4usion: microscopic foundation of
dispersive transport close to thermal equilibrium

In this "nal section we brie#y review a physical scenario giving some insight into the origin of the
fractional Fokker}Planck equation for multiple trapping systems. From the continuous time
version of the Chapman}Kolmogorov equation combined with the Markovian Langevin equation
of a damped particle in an external force "eld, a fractional Klein}Kramers equation is derived
whose velocity averaged high-friction limit reproduces the fractional Fokker}Planck equation, and
explains the occurrence of the generalised transport coe$cients Ka and ga .
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6.1. Langevin dynamics and the three stages to subdiwusion

In his treatment of the Brownian motion of a scalar test particle in a bath of smaller atoms or
molecules exerting random collisions upon that particle, Langevin [64] amended Newton's law of
motion with a #uctuating force. On the basis of the resulting, stochastic, Langevin equation, the
corresponding phase space dynamics is governed by the deterministic Klein}Kramers equation
[35,36,81,82,278,279]. Its solution, the pdf =(x, v, t) to "nd the test particle at the position
x,2, x#dx with the velocity v,2, v#dv, at time t, describes the macroscopic dynamics of the
system. Thereby, two limiting cases can be distinguished, these being the Rayleigh equation
controlling the velocity distribution=(v, t) in the force-free limit, and the Fokker}Planck equation
from which the pdf =(x, t) can be derived.

Fractional Fokker}Planck and Klein}Kramers equations have been derived and discussed for
LeH vy #ights which are Markovian but possess a diverging mean squared displacement. Although
the fractional Fokker}Planck equation can be derived from the generalised master equation or
continuous time random walk models as shown in the preceding section, a foundation on
microscopic dynamics within the Langevin picture sheds some light on the coming into existence of
fractional dynamics as is brie#y shown in this section.

The three stages of this model comprise the following steps: Firstly, the Newtonian motion of the
scalar test particle experiencing a random force, in accordance to the Langevin equation

m
d2x
dt2

"!mgv#F(x)#mC(t), v"
dx
dt

(184)

with the d-correlated Gaussian noise C(t). Secondly, its combination with kinetic energy-con-
serving trapping events which are ruled by the broad waiting time statistics according to
w(t)&qa/t1`a. During a trapping event the particle is temporarily immobilised. And, thirdly,
the macroscopic average in which the long-tailed trapping events win out in the competition
with the Langevin motion events of average duration qH, in the spirit of the generalised
central limit theorem. This model o!ers some physical insight into the origin of fractional
dynamics for systems which exhibit multiple trapping such as the charge carrier transport
in amorphous semiconductors [95}97], or the phase space dynamics of chaotic Hamiltonian
systems [280].

After straightforward calculations basing on the continuous time version of the Chapman}
Kolmogorov equation [164,219] which are valid in the long-time limit t<maxMq, qHN, one obtains
the fractional Klein}Kramers equation [219,220]

R=
Rt "

0
D1~a

t C!vH
R
Rx#

R
RvAgHv!

FH(x)
m B#gH

k
B
¹

m
R2
Rv2D=(x, v, t) . (185)

Hereby, the Klein}Kramers operator in the square brackets has the same structure as in the
Brownian case, except for the occurrence of the starred quantities which are de"ned through
vH,v0, gH,g0, and FH(x),F(x)0 whereby the factor 0 is the ratio 0,qH/qa of the inter-
trapping time scale qH and the internal waiting time scale q. This rescaling automatically reveals the
generalised Einstein relation Ka"k

B
/mga [219,220].
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6.2. The fractional Klein}Kramers equation and related transport equations

Integration of Eq. (185) over velocity, and of v times Eq. (185) over velocity results in two
equations whose combination leads to the fractional equation [219,281]

R=
Rt #

0
D1`a

t

1
gH
="

0
D1~a

t C!
R
Rx

F(x)
mga

#Ka
R2
Rx2D=(x, t) . (186)

Eq. (186) is of the generalised Cattaneo equation type [283}286] and reduces to the telegrapher's
type equation found in the Brownian limit a"1 [281]. In the usual high-friction or long-time limit,
one recovers the fractional Fokker}Planck equation (101).

The integration of the fractional Klein}Kramers equation (185) over the position coordinate,
leads in the force-free limit to the fractional Rayleigh equation [282]

R=
Rt "

0
D1~a

t
gHC
R
Rvv#

k
B
¹

m
R2
Rv2D=(v, t) . (187)

Its solution, the pdf =(v, t), describes the equilibration of the velocity distribution towards the
Maxwell distribution

=
45
(v)"S

bm
2p

expA!b
m
2

v2B . (188)

The presented model for subdi!usion in the external force "eld F(x)"!<@(x) provides a basis
for fractional kinetic equations, starting from Langevin dynamics which is combined with long-
tailed trapping events possessing a diverging characteristic waiting time ¹. This combined process
is governed by the long-tailed form of the waiting time pdf, manifested in the fractional nature of
the associated Eq. (185). Physically, this causes the rescaling of the fundamental quantity g by the
scaling factor 0, to result in the generalised friction constant

ga"g/0 . (189)

It is interesting to note that a similar process depicting a force-free trapping-walk scenario on
a kinematics level was described in Ref. [287] in (x, t)-coordinates, revealing the subdi!usive mean
squared displacement Sx2(t)TJta.

The Langevin picture rules the Markov motion parts in between successive trapping states. On
this stage the test particle consequently obeys to Newton's law, in the noise-averaged sense de"ned
above. Conversely, averaging the fractional Klein}Kramers equation (185) over velocity and
position coordinates, one recovers the memory relation (d/dt)|x(t)}"0

0
D1~a

t
|v(t)} between the

mean position |x(t)} and the mean velocity |v(t)}. This `violationa is only due to the additional
waiting time averaging which camou#ages the Langevin-dominated motion events.

7. Conclusions

Roughly a hundred years have elapsed since the advent of random walk and di!usion theory.
The success of the framework developed by its most important contributor, Albert Einstein,
obtained an additional thrust when the experimentalist Perrin came up so successfully with his
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determination of the Avogadro}Loschmidt number. The ideas of how random walks can be used as
a model for the transport dynamics in physical systems are still the same, and have become a joint
venture of mathematicians, physicists, chemists, engineers, earth and life scientists. The extension of
random walk theory to incorporate generalised statistics which no longer follow the central limit
theorem, and memory e!ects violating the Markovian nature of early days random walks, has
created a very rich tool, rich enough to be able to describe certain features of complex systems.

Random walks are a very convenient tool in drawing a physical picture of the processes
underlying the dynamics of systems which are of a probabilistic nature. To deal with problems
involving boundary values or external "elds, the di!erential equation approach is more convenient,
however. In this report we have demonstrated the versatility of fractional equations of the di!usion,
di!usion}advection, and Fokker}Planck type, generalising their standard counterparts. Appropri-
ate methods of solutions such as the Fourier}Laplace technique, the method of images, and the
method of separation of variables have been discussed. Mellin transformation techniques, term-
by-term inversion, as well as the method of characteristics have been discussed elsewhere. We
presented an integral transformation between the Brownian solution and its fractional counterpart.
Moreover, a phase space model was discussed which explains the genesis of fractional dynamics in
trapping systems. These issues make the fractional equation approach a powerful instrument.

Note that whereas we showed the solution of the FDE for simple boundary values, the opposite
problem, a standard equation with fractal boundary conditions, has also received some interest
[288}293]. With the fractional approach it should be possible to discuss such type of boundary
value problems also for anomalous di!usion.

The main emphasis in the present work has been laid on subdi!usion. A basic feature arising in
that context is the replacement of the exponential decay of modes by the Mittag}Le%er pattern.
This feature involves the slow decay of the initial condition, slower dispersion, memory e!ects, and
consequently a relatively slow approaching of the stationary state. Such strange dynamics have
recently been discovered in protein systems [294]. In fact, it is supposed that dispersive kinetics are
responsible for relaxation processes in protein systems [295,296].

A further advantage of the fractional approach is the relatively straightforward way of calculat-
ing the moments. Being very simple for the CTRW approach in force-free di!usion, this advantage
is obvious in such cases where a non-linear external force acts upon the test particle. Thereby,
integration over the underlying fractional equation produces an ordinary fractional di!erential
equation from which the moments can be inferred.

It has been shown that subdi!usive phenomena described by the FFPE are close to thermal
equilibrium which is reached via the aforementioned Mittag}Le%er pattern. The calculation of the
generalised Einstein}Stokes}Smoluchowski relation, and the validity of the second Einstein
relation in a way justify the use of the subdi!usive FFPE as direct generalisation of the Brownian
analogue. Both phenomena have been corroborated experimentally for subdi!usive systems.

Note added in proof

Recently, Barkai and Silbey have presented the fractional Klein}Kramers equation [66]

R=(x, v, t)
Rt #v

R=
Rx #

F(x)
m
R=
Rv "ga0D

t
1~a¸

FP
=(x, v, t) (190)

56 R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77



for 0(a(1, with the Fokker}Planck operator

¸
FP

,

R
Rvv#

K
B
¹

m
R2
Rv2 (191)

and [ga]"s~a. This equation corresponds to the force-free mean squared displacement

Sx2(t)T"
2k

B
¹

m
t2Ea,3(!gata)&G

k
B
¹

m
t2, gata;1

2k
B
¹

gam
t2~a, gata<1

(192)

and thus describes the transition from ballistic to sub-ballistic superdi!usion. Further studies of
this equation, especially on the non-negativity of the pdf are under way.

We would further like to point out that a fractional Fokker}Planck equation was proposed by
Jumarie [231], and that non-integer order spatial derivatives were presented by Onuki [246] and
Suzuki [306]. A LeH vy approach to quantum pdfs has been reported by West [307]. A "rst passage
time study in anomalous di!usion on the basis of the FFPE has been accomplished by Rangarajan
and Ding [308]; we thank these authors for sending us a set of unpublished manuscripts.
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Appendix A. Fractional di4erentiation and integration

As early as in 1695, when Leibniz and Newton had just been establishing standard calculus,
Leibniz wrote in a letter to de l'Hospital: &&Thus it follows that d1@2x will be equal to x 2Jdx : x
an apparent paradox, from which one day useful consequences will be drawn.a In the course of
time, many famous mathematicians worked on this and related questions, creating the "eld
which is known as fractional calculus today. The list of prominent names includes Laplace,
Lacroix, Cayley, Pincherle, Holmgren, GruK nwald, Krug, Heaviside, Laurent, Riemann, Liouville,
Hardy, Hadamard, LeH vy, Weyl, ErdeH lyi and Kober, thus indicating the relevance of the topic in the
mathematicians' point of view.
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Throughout this report, we employ the so-called Riemann}Liouville fractional integral de"ned
through [226,232}235]

t0
D~a

t
f (t)"

1
C(a)P

t

t0

dt@
f (t@)

(t!t@)1~a
, (A.1)

a direct extension of Cauchy's multiple integral for arbitrary complex a with Re(a)'0. A fractional
derivative is then established via a fractional integration and successive ordinary di!erentiation
according to

t0
Db

t
f (t)"

dn

dtn t0
Db~n

t
f (t) (A.2)

with Re(b)'0, and the natural number n satis"es the inequality n5Re(b)'n!1. Through this
de"nition it is clear that the fractional di!erentiation is non-local. As in standard calculus,
integration and di!erentiation are not commutative, i.e.,

d
dxP

x
dt f (t)"f (t), P

x
dt

d
dt

f (t)"f (x)#c , (A.3)

certain composition rules for successive fractional operations have to be formulated, see below.
In respect to the multiple Cauchy integral, a fractional integral may be viewed as a non-integer

multiple integral, i.e., an a-fold integral with a a real, or even complex number. This might seem an
odd statement; however, the same paradox is encountered in the notion of a fractal dimension
which is a generally accepted mathematical notion. Indeed, there exist tight relations between
fractional di!erintegrals and fractal geometry dimensions, as can be anticipated by the relation
(A.16) established below, which demonstrates that

0
Da

t
is a map relating power-laws of di!erent

indices. Fractional di!erintegrals even serve as sensors for the fractal graph dimensions of certain
functions [297,298].

Two special cases are of importance in this report, these being the Riemann}Liouville operator

0
Da

t
for t

0
"0, and the Weyl operator

~=
Dk

x
for t

0
"!R in Eq. (A.1). Mathematically,

the expression
0
Da

t
f (t)"(1/C(a))ta~1*f (t) is a Laplace convolution, whereas

~=
Dk

x
f (x)"

(1/C(k))xk~1wf (x) represents a Fourier convolution. Therefore, Laplace and Fourier transforma-
tions will be a useful tool in solving fractional order di!erential and integrodi!erential equations.

A.1. The Riemann}Liouville fractional operator

The Riemann}Liouville operator,
0
Dp

t
, de"ned through

0
Dp

t
f (t)"

1
C(n!p)

dn

dtnP
t

0

dt@
f (t@)

(t!t@)1~n`p
(A.4)

for n5Re(p)'n!1, obeys the following theorem for Laplace transformation:

LM
0
D~q

t
f (t )N"u~qf (u) , (A.5)
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q'0, which is a direct generalisation of the integral theorem for integer-order integrals. Converse-
ly, the di!erentiation theorem is modi"ed to the form [232]

LM
0
Dp

t
f (t)N"upf (u)!

n~1
+
j/0

ujc
j

(A.6)

which involves the quasi initial value terms

c
j
"lim

t?0
0
Dp~1~j

t
f (t) . (A.7)

Finally, the Riemann}Liouville operator obeys the following composition rules [232]:

0
Dq

t 0
DQ

t
f (t)"

0
Dq`Q

t
f (t) if Q(0sQ(1 and f (0) bounded , (A.8)

0
Dq

t 0
DQ

t
f (t)"

0
Dq`Q

t Af (t)!
m
+
j/1

c
j
tQ~kB, Q'0 (A.9)

with

c
j
"lim

t?0

0
DQ~j

t
f (t)

C(Q!j#1)
. (A.10)

A.2. The Riesz/Weyl fractional operator

The Weyl fractional operator
~=

Dk
x

has a simpler behaviour under transformations, as due to
t
0
"!R, no initial values come into play. Thus, its Fourier transform is

FM
~=

Dk
x
f (x)N"(ik)kf (k) , (A.11)

and the composition rules become

~=
Dk

x ~=
Dl

x
"

~=
Dk`l

x
∀k, l . (A.12)

Note that, in the main text, we preferred the simpler notation suppressing the imaginary unit,
de"ned through

FM
~=

Dk
x
f (x)N,!DkDkf (k) (A.13)

which has somehow established in fractional applications, for instance compare [192]. In one
dimension, the Weyl operator is equivalent to the Riesz operator which preserves the property
(A.13) to higher dimensions. We refer to the symbol

~=
Dk

x
as the Riesz/Weyl operator.

A.3. Diwerintegrable functions and an equivalent dexnition

Following Oldham and Spanier [232], we de"ne the class of di!erintegrable functions as all
functions f (t) which can be expanded as a di!erintegrable series according to

f (t)"(t!q)p
=
+
j/0

f
j
(t!q)j@n (A.14)
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where qO0, n is a natural number, and p'!1. Most of the special functions used in mathemat-
ical physics are subsumed under this de"nition. The de"nition (A.14) of di!erintegrable functions
actually is very strict, and many functions or distributions like the Heaviside jump distribution or
the Dirac delta distribution can be di!erintegrated to fractional order.

A de"nition equivalent to the Riemann}Liouville fractional integral (A.1) for Re(a)'0 is given
through the limit [232]

t0
D~a

t
f (t), lim

N?=
CA

t!t
0

N B
aN~1

+
j/0

C( j#a)
C(a)j!

fA
Nt!jt#jt

0
N BD . (A.15)

Di!erently to Eq. (A.1), this de"nition also holds for fractional di!erentiation, i.e., Re(a)(0. Again,
the non-local character becomes clear.

A.4. Examples

The fractional Riemann}Liouville di!erintegration of an arbitrary power for t
0
"0 is given by

0
Dl

t
tk"

C(1#k)
C(1#k!l)

tk~l (A.16)

which coincides with the heuristic generalisation of the standard di!erentiation

dntm
dtn

"

m!
(m!n)!

tm~n (A.17)

by introduction of the Gamma function. An interesting consequence of Eq. (A.16) is the non-
vanishing fractional di!erintegration of a constant:

0
Dl

t
1"

1
C(1!l)

t~l . (A.18)

The Riemann}Liouville di!erentiation of the exponential function leads to

0
Dl

t
et"

t~l
C(1!l) 1

F
1
(1, 1!l, t) (A.19)

involving the con#uent hypergeometric function
1
F
1

[236]. This result can be found easily by
di!erentiating term by term in the exponential series according to Eq. (A.16). On the other hand,
for the Weyl fractional operator

~=
Dl

t
, the fundamental property of the exponential function, i.e.

(et)(n)"et carries over to fractional orders:

~=
Dl

t
et"et . (A.20)

A.5. The singular nature of the fractional operator

Some caution has to be paid to the singularity at t"t@. Consider the derivation of Eq. (A.16).
With the de"nition

B(b#1, d#1)xb`d`1,
C(b#1)C(d#1)

C(b#d#2)
xb`d`1"P

x

0

dt(x!t)btd"P
x

0

dt tb(x!t)d (A.21)
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of Euler's Beta function B, the Riemann}Liouville di!erintegration of the power-law tk can be
achieved. The de"nition of the Beta function is valid for b, d'!1 only. The fractional di!erenti-
ation of order 1!c, 0(c(1, of the power xp is then

0
D1~c

x
xp"

d
dx

1
C(c)P

x

0

dt(x!t)~1`ctp"
d
dt

1
C(c)

B(c, p#1)x1~c`p

"

C(p#1)
C(p#c)

xp~1`c . (A.22)

It is tempting to evaluate the parametric di!erentiation d/dx explicitly, according to

d
dxP

x

0

dt f (x, t)"f (x,x)#P
x

0

dt
Rf (x, t)
Rx . (A.23)

This leads to a term with a pole and a second term containing an integral which violates the
de"nition of the Beta function. On closer inspection, this integral itself has a pole which in some
way compensates the pole of the "rst term. In fact, a similar situation arises for Abel's integral
equation:

xf (x)"P
x

0

dt(x!t)~1@2f (t) (A.24)

solved by f (x)"x~3@2e~p@x. Whereas the di!erentiation of the left-hand side is no problem, on the
right two singularities `compensatea each other. The de"nition of fractional di!erintegrals
thus involves singular integrals. However, the mathematical framework is well de"ned if caution
according to above considerations is paid.

Appendix B. Special functions: Mittag}Le8er and Fox functions

B.1. The Mittag}Le{er function

The Mittag}Le%er function [299,300] is the natural generalisation of the exponential function.
Being a special case of the Fox function introduced below, it is de"ned through the inverse Laplace
transform

Ea (!(t/q)a)"L~1G
1

u#q~au1~aH , (B.1)

from which the series expansion

Ea (!(t/q)a)"
=
+
n/0

(!(t/q)a)n
C(1#an)

(B.2)

can be deduced. The asymptotic behaviour is

Ea (!(t/q)a)&((t/q)aC(1!a))~1 (B.3)
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Fig. 22. Mittag}Le%er relaxation. The full line represents the Mittag}Le%er function for index 1/2. The dashed lines
demonstrate the initial stretched exponential behaviour and the "nal inverse power-law pattern.

for t<q, 0(a(1. Special cases of the Mittag}Le%er function are the exponential function

E
1
(!t/q)"e~t@q (B.4)

and the product of the exponential and the complementary error function

E
1@2

(!(t/q)1@2)"et@q erfc((t/q)1@2) . (B.5)

We note in passing that the Mittag}Le%er function is the solution of the fractional relaxation
equation [20,21,180]

dU(t)
dt

"!qa
0
D1~a

t
U(t) . (B.6)

As already mentioned in the main text, and by GloK ckle and Nonnenmacher [21], the Mittag}
Le%er function interpolates between the initial stretched exponential form

Ea (!(t/q)a)&expA!
(t/q)a

C(1#a)B (B.7)

and the long-time inverse power-law behaviour (B.3). The Mittag}Le%er function E
1@2

(!(t/q)1@2)
is displayed in Fig. 22.

B.2. The Fox function

The Fox function, also referred to as Fox's H-function, H-function, generalised Mellin}Barnes
function, or generalised Meijer's G-function, has been applied in statistics before it was introduced
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19According to Ref. [243], these functions have been known since at last 1868, and Fox rediscovered them in his
studies. Their introduction into physics is due to Bernasconi et al. [155] in the study of conductivity in disordered
systems. Schneider [301] demonstrated that LeH vy stable densities can be expressed analytically in terms of Fox functions.
Wyss [174], and Schneider and Wyss [175] use Fox functions for the solution of the fractional di!usion equation.

into physics by Schneider [155,174,175,301] as analytic representations for LeH vy distributions in
x-space, and as solutions of fractional equations. The importance of the Fox function lies in the fact
that it includes nearly all special functions occurring in applied mathematics and statistics, as its
special cases. Even sophisticated functions like Wright's generalised Bessel functions, Meijer's
G-function or Maitland's generalised hypergeometric function are embraced by the class of
Fox function.

In 1961 Fox de"ned the H-function in his studies of symmetrical Fourier kernels as the
Mellin}Barnes type path integral [237,240}243]19

Hmn
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pqCzK
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2piP

L

ds s(s)zs (B.8)

with the integral density:

s(s)"
<m

1
C(b

j
!B

j
s)<n

1
C(1!a

j
#A

j
s)

<q
m`1

C(1!b
j
#B

j
s)<p

n`1
C(a

j
!A

j
s)

. (B.9)

Note that the path integral in Eq. (B.8) represents just the inverse Mellin transform of s(s) [237].
Due to the structure of the de"ning integral kernel s(s) from Eq. (B.9), the Fox functions ful"ls

several convenient properties, three of which we list here:

Proposition B.1. For k'0

Hmn
pqCxK
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)

(b
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, B
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)D"kHmn

pqCxkK
(a

p
, kA

p
)

(b
q
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q
)D . (B.10)

Proposition B.2.

xpHmn
pqCxK
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q
) D . (B.11)

Proposition B.3. The fractional diwerintegral of the Fox function is a map into the function class
[180,237]:

0
Dl

zAzaHm,n
p,qC(az)bK

(a
p
, A

p
)

(b
q
, B

q
)DB"za~lHm,n`1

p`1,q`1C(az)bK
(!a,b), (a

p
, A

p
)

(b
q
,B

q
), (l!a,b)D . (B.12)
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An H-function can be expressed as a computable series in the form [237,242]

Hmn
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(z)"
m
+
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=
+
l/0
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j/1,jEh
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C(a
j
!A

j
(b

h
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h
)

]
(!1)lz(bh`l)@Bh

l!B
h

(B.13)

which is an alternating series and thus shows slow convergence. For large argument DzDPR, the
Fox functions can be expanded as a series over the residues [241]

Hm,n
p,q

(z)&
=
+
l/0

res(s(s)zs) (B.14)

to be taken at the points s"(a
j
!1!l)/A

j
, for j"1,2, n.

Some special functions and their Fox function representation:

zbe~z"H1,0
0,1CzK(b, 1)D ; (B.15)

1
(1#z)r

"H1,1
1,1CzK

(1!r, 1)

(0, 1) D ; (B.16)

zb
1#aza

"a~b@aH1,1
1,1CazaK

(b/a, 1)

(b/a, 1)D . (B.17)

Maitland's generalised hypergeometric or Wright's function:
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Generalised Mittag}Le%er function (Ea,1(z)"Ea(z)):

Ea,b(!z)"H1,1
1,2CzK

(0, 1)

(0, 1), (1!b, a)D"
=
+
j/0

zj
C(b#aj)

. (B.19)

Appendix C. Some remarks on LeH vy distributions and their exact representation in terms of
Fox functions

The fundamental importance of the normal distribution is due to the Central Limit Theorem
which, within the history of probability theory, is a consequence of the inequality of BienaymeH , the
theorems of Bernoulli and de Moivre}Laplace, and the law of large numbers. These concepts were
extended by the works of Paul LeH vy, after which the generalised normal distributions are named,
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20As remarked by Takayasu [91], this property may be viewed as some kind of self-similarity.

A.Ya. Khintchine, A.M. Kolmogorov and B.V. Gnedenko, among others. The classical books
dealing with LeH vy distributions and the LeH vy}Gnedenko generalised central limit theorem are
listed in Refs. [56}58,88].

According to LeH vy [57], a distribution F is stable i! for the two positive constants c
1

and
c
2

there exists a positive constant c such that X given by

c
1
X

1
#c

2
X

2
"cX (C.1)

is a random variable following the same distribution F as the independent, identically distributed
(iid) random variables X

1
and X

2
. Alternatively, if

u(z),Se*XzT"P
=

~=

e*Xz dF(X) (C.2)

denotes the characteristic function of the distribution F, then F is stable i!

u(c
1
z)u(c

2
z)"u(cz) . (C.3)

A more general de"nition is given by Feller [88]. Let X,X
1
, X

2
,2, X

n
be iid random variables

with a common distribution F. Then F is called stable i! there exist constants c
n
'0 and c

n
such that

>
n
,+

i

X
i

$
" c

n
X#c

n
(C.4)

where $
" indicates that the random variables of both sides follow the same distribution, F.20

Consequently, the characteristic function according to de"nition (C.3) ful"ls the functional relation

un(z)"u(c
n
z)e*cn z , (C.5)

which can be solved exactly. The result is

Proposition C.1.

t(z)"logu(z)"icz!cDzDaG1#ib
z
DzD

u(z, a)H , (C.6)

where a,b, c, c are constants (c is any real number, 0(a42, !1(b(1, and c'0), and

u(z, a)"G
tan

pa
2

if aO1 ,

2
p

logDzD if a"1 .
(C.7)

a is called the LeH vy index or characteristic exponent. From Eq. (C.6) it can be shown that the
normalisation factor c

n
in Eq. (C.3) is n1@a. The limiting case a"2 corresponds to the Gaussian
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Fig. 23. Parameter space (a,b) for stable laws. All pairs of indices inside and on the edge of the diamond shape refer to
proper stable laws. The double line denotes one-sided stable laws (OS). The letters represent the normal or Gaussian law
(N), the Holtsmark distribution (H), the Cauchy or Lorentz distribution (C), and the approximate log-normal distribu-
tion (¸) close to a+0, see text.

normal distribution governed by the central limit theorem. For b"0, the distribution is sym-
metric. c translates the distribution, and c is a scaling factor for X. Thus, c and c are not essential
parameters, and disregarding them, the characteristic function satis"es the following proposition.

Proposition C.2. Du(z)D"e~@z@
a, aO1 . (C.8)

Thus, one can write

t(z)"!DzDa expGi
pb
2

sign(z)H (C.9)

with the new centring constant b which is restricted in the following region:

DbD4G
a, if 0(a(1

2!a, if 1(a(2 .
(C.10)

The resulting allowed parameter space is portrayed in Fig. 23.

Proposition C.3. The pdf fa,b(x) is the Fourier transform of u(z), dexned by Eq. (C.9):

fa,b (x)"
1
p

ReP
=

0

expA!ixz!za expGi
pb
2 HB . (C.11)
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Thus,

fa,b (x)"fa,~b(!x) (C.12)

and consequently

fa,0 (x)"fa,0 (!x) (C.13)

is symmetric in x.

Proposition C.4 (LeH vy}Gnedenko generalised central limit theorem). For iid random variables
X

1
, X

2
,2 let>

n
"+n

i/1
X

i
. If the distribution of>

n
, with an appropriate normalisation, converges to

some distribution F in the limit nPR, F is stable. In particular, if its variance is xnite, F is Gaussian,
and obeys to the central limit theorem.

Proposition C.5. The asymptotic behaviour of a Le&vy stable distribution follows the inverse power-law

fa,b (x)&
Aa,b

DxD1`a
, a(2 . (C.14)

Proposition C.6. For all Le&vy stable laws with 0(k(2, the variance diverges:

Sx2TPR (C.15)

Proposition C.7. Conversely, the fractional moments of the absolute value of x,

SDxDdT(R (C.16)

exist for any 04d(k42.

Proposition C.8. The analytic form of a stable law is given through the Fox function [301]

fa,b (x)"eH1,1
2,2CxK

(1!e, e), (1!c, c)

(0, 1), (1!c, c) D (C.17)

for a'1, and with the abbreviations e"1/a and c"(a!b)/2a; for a(1, one obtains the result

fa,b (x~1)"ex2H1,1
2,2CxK

(!1, 1), (!c, c)

(!e, e), (!c, c) D . (C.18)

Some reductions of these Fox representations for special cases of b are discussed by Schneider
[301]. From the known theorems of the Fox function, the series representations and the asymptotic
behaviour can be determined, thus, for a'1, one obtains

fa,b (x)"
1
p

=
+
n/1

C(1#ne)
n!

sin(pnc)(!x)n~1 , (C.19)
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21This fact, as well as the striking similarity between results (C.17) and (C.18) are based on the fundamental property
[237,242]
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and the asymptotic behaviour

fa,b (x)&
1
p

=
+
n/1

C(1#na)
n!

sin(pnac)DxD~1~na (C.20)

for DbD'a!2. An exception is the case b"a!2. Conversely, for a(1, the expansions for large
and small x are given by Eqs. (C.19) and (C.20), respectively, except the case DbD"a.21

Proposition C.9. For a"2, b,0, and the stable density is identical to the Gaussian normal
distribution.

Proposition C.10. For a"1 and b"0, the stable density is identical to the Cauchy or Lorentz
distribution

f
1,0

(x)"
a

p(a2#x2)
. (C.21)

Proposition C.11. If 0(a(1 and b"!a, the pdf fa,~a(x)"0 ∀x(0 is one-sided. For instance,
the one-sided stable density for a"1/2 and b"!1/2 is given by

f
1@2,~1@2

(x)"
1

2Jp
x~3@2e~1@4x . (C.22)

Proposition C.12. For not too small and not too large x, as well as a+0, the pdf fa,~a(x) can be
approximated by a log-normal distribution [302]:

fa,~a(x)J
1
x

expA!
a2

2
(logx)2B . (C.23)

For a"3/2 and b"0, one recovers the Holtsmark distribution which is of some use in
cosmology [88]. The above-mentioned special cases are included in the phase diagram, Fig. 23.
Further examples can be found in the article of Schneider [301], and in the book of Feller [88].

In Fig. 24, the Gaussian normal distribution is compared to the LeH vy stable law f
1,0

(x), the
Cauchy distribution.

A more recent monograph dealing with stable distributions is the book by Samorodnitsky and
Taqqu [303]. Some additional historical remarks are to be found in the textbook by Johnson et al.
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Fig. 24. Comparison of the Gaussian normal pdf p~1@2e~x
2 (dashed) and the Cauchy pdf p~1(1#x2)~1, the LeH vy stable

law for LeH vy index k"1. Both are normalised to unity. Note that the concentration around zero is much more
pronounced for the Gaussian. The insert shows the double-logarithmic plot of the same functions, pronouncing the
slower power-law decay of the Cauchy pdf which turns over to the straight line in this presentation.

Fig. 25. A roaming Brownian particle P moves along a line, and radiates light. On the moving "lm F, the particle leaves
a mark each time it passes the slit. The time intervals between single marks on the "lm is given by the one-sided
distribution f

1@2,~1@2
(q).

[304]. An interesting and readable summary of stable laws is given by Takayasu [91]. He also
mentions a physical example, see Fig. 25, equivalent to the PoH lya problem [38,305]. It leads to the
one-sided pdf f

1@2,~1@2
(q), Eq. (C.22) for the distribution of the time span q between individual

signals. An application might be in single molecule spectroscopy [138,139].

Appendix D. Abbreviations used

pdf probability density function
CTRW continuous time random walk
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FDE fractional di!usion equation
DAE di!usion}advection equation
FDAE fractional di!usion}advection equation
FPE Fokker}Planck equation
FFPE fractional Fokker}Planck equation
KM-expansion Kramers}Moyal expansion
FKKE fractional Klein}Kramers equation
g(x, t) pdf of just arriving at position x at time t
=(x, t) pdf of being at x at time t
t(x, t) jump pdf, considered in the decoupled form t(x, t)"w(t)j(x)
w(t) waiting time pdf
j(x) jump length pdf
W(t) sticking probability, Eq. (24)
Ka generalised di!usion coe$cient, subdi!usion
Kk generalised di!usion coe$cient, LeH vy #ights
K(x,x@) transfer kernel
=

0
(x) initial condition=

0
(x),lim

t?0`
=(x, t)

=
45
(x) stationary solution=

45
(x),lim

t?=
=(x, t)

Ea (z) Mittag}Le%er function
Hm,n

p,q
(z) Fox's H-function

b,(k
B
¹)~1 Boltzmann factor

m mass of test particle
ga generalised friction coe$cient
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[204] A. Compte, M.O. Càceres, Phys. Rev. Lett. 81 (1998) 3140.
[205] A. Compte, Phys. Rev. E 55 (1997) 6821.
[206] A. Compte, R. Metzler, J. Camacho, Phys. Rev. E 56 (1997) 1445.
[207] R. Metzler, A. Compte, J. Phys. Chem. B 104 (2000) 3858.
[208] M.M. Meerschaert, D.A. Benson, B. Baumer, Phys. Rev. E 59 (1999) 5026.
[209] P.L. Anderson, M.M. Meerschaert, Water Resour. Res. 34 (1998) 2271.
[210] J. Honkonen, Phys. Rev. E 53 (1996) 327.
[211] G.M. Zaslavsky, M. Edelman, B.A. Niyazov, Chaos 7 (1997) 159.

74 R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77



[212] R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82 (1999) 3563.
[213] R. Metzler, E. Barkai, J. Klafter, Europhys. Lett. 46 (1999) 431.
[214] R. Metzler, submitted.
[215] E. Barkai, R. Metzler, J. Klafter, Phys. Rev. E 61 (2000) 132.
[216] H.C. Fogedby, Phys. Rev. E 58 (1998) 1690.
[217] S. Jespersen, R. Metzler, H.C. Fogedby, Phys. Rev. E 59 (1999) 2736.
[218] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80 (1998) 214.
[219] R. Metzler, J. Klafter, J. Phys. Chem. B 104 (2000) 3851.
[220] R. Metzler, J. Klafter, Phys. Rev. E 61 (2000) 6308.
[221] D. Kusnezov, A. Bulgac, G. Do Dang, Phys. Rev. Lett. 82 (1999) 1136.
[222] R.A. Guyer, Phys. Rev. A 29 (1984) 2751.
[223] J. Klafter, G. Zumofen, A. Blumen, J. Phys. A 25 (1991) 4835.
[224] H.E. Roman, Phys. Rev. E 51 (1995) 5422.
[225] R. Metzler, T.F. Nonnenmacher, J. Phys. A 30 (1997) 1089.
[226] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives } Theory and Applications, Gordon

and Breach, New York, 1993.
[227] J.-P. Bouchaud, A. Georges, Phys. Rev. A 41 (1990) 1156.
[228] J. Klafter, A. Blumen, M.F. Shlesinger, G. Zumofen, Phys. Rev. A 41 (1990) 1158.
[229] K.B. Wolf, Integral Transforms in Science and Engineering, Plenum Press, New York, 1979.
[230] W.I. Smirnow, Lehrgang der hoK heren Mathematik, Vols. III/2 and IV/1, VEB Deutscher Verlag der Wissenschaf-

ten, Berlin, 1988.
[231] G. Jumarie, J. Math. Phys. 33 (1992) 3536.
[232] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[233] B. Ross (Ed.), Fractional Calculus and its Applications, Lecture Notes in Mathematics, Vol. 457, Springer, Berlin,

1975.
[234] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Di!erential Equations, Wiley,

New York, 1993.
[235] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scienti"c, Singapore, 1999.
[236] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
[237] H.M. Srivastava, K.C. Gupta, S.P. Goyal, The H-Functions of One and Two Variables with Applications, South

Asian Publishers, New Delhi, 1982.
[238] G. Zumofen, J. Klafter, Phys. Rev. E 47 (1993) 851.
[239] J. Klafter, G. Zumofen, J. Phys. Chem. 98 (1994) 7366.
[240] C. Fox, Trans. Amer. Math. Soc. 98 (1961) 395.
[241] B.L.J. Braaksma, Compos. Math. 15 (1964) 239.
[242] A.M. Mathai, R.K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Wiley Eastern,

New Delhi, 1978.
[243] H.M. Srivastava, B.R.K. Kashyap, Special Functions in Queuing Theory and Related Stochastic Processes,

Academic Press, New York, 1982.
[244] S. Wolfram, The Mathematica Book, 4th Edition, Cambridge University Press, Cambridge, 1999.
[245] E. Barkai, V.N. Fleurov, J. Chem. Phys. 212 (1996) 69.
[246] A. Onuki, Prog. Theor. Phys. 74 (1985) 1155.
[247] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
[248] J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1975.
[249] G.W. Bluman, J.D. Cole, Similarity Methods for Di!erential Equations, Springer, New York, 1974.
[250] R.A. Damion, K.J. Packer, Proc. Roy. Soc. Lond. A 453 (1997) 205.
[251] M. KoK pf, R. Metzler, O. Haferkamp, T.F. Nonnenmacher, in [252].
[252] G.A. Losa, D. Merlini, T.F. Nonnenmacher, E.R. Weibel (Eds.), Fractals in Biology and Medicine, Vol. 2,

BirkhaK user, Basel, 1998.
[253] W.G. GloK ckle, T. Mattfeld, T.F. Nonnenmacher, in T.F. Nonnenmacher, G.A. Losa, E.R. Weibl (Eds.), Fractals in

Biology and Medicine, Vol. I, BirkhaK user, Basel, 1993.

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 75



[254] T.F. Nonnenmacher, G.A. Losa, E.R. Weibl (Eds.), Fractals in Biology and Medicine, Vol. II, BirkhaK user, Basel,
1993.

[255] I.M. Sokolov, J. Mai, A. Blumen, Phys. Rev. Lett. 79 (1997) 857.
[256] T. Geisel, J. Nierwetberg, A. Zacherl, Phys. Rev. Lett. 54 (1985) 616.
[257] A.E. Hansen, M.C. Jullien, J. Paret, P. Tabeling, in [53].
[258] D. Chaikovsky, G. Zaslavsky, Chaos 1 (1991) 463.
[259] T. Geisel, A. Zacherl, G. Radons, Z. Phys. B 71 (1988) 117.
[260] G. Zumofen, J. Klafter, Phys. Rev. E 51 (1995) 2805.
[261] P.M. Drysdale, P.A. Robinson, Phys. Rev. E 58 (1998) 5382.
[262] G. Zumofen, J. Klafter, Phys. Rev. E 51 (1995) 1818.
[263] E. Yarmola, P. Calabrese, A. Chrambach, G.H. Weiss, J. Phys. Chem. 101 (1997) 2381.
[264] F. Moss, P.V.E. McClintock, Noise in Nonlinear Dynamical Systems, Vol. 1, Theory of continuous

Fokker}Planck systems, Cambridge University Press, Cambridge, 1989.
[265] F. Moss, P.V.E. McClintock, Noise in Nonlinear Dynamical Systems, Vol. 2, Theory of Noise Induced Processes

in Special Applications, Cambridge University Press, Cambridge, 1989.
[266] F. Moss, P.V.E. McClintock, Noise in Nonlinear Dynamical Systems, Vol. 3, Experiments and Simulations,

Cambridge University Press, Cambridge, 1989.
[267] E. Barkai, V.N. Fleurov, Phys. Rev. E 58 (1998) 1296.
[268] R. Hilfer, Phys. Rev. E 48 (1993) 2466.
[269] R. Hilfer, Chaos, Solit. & Fract. 5 (1995) 1475.
[270] K. Weron, M. Kotulski, Physica A 232 (1996) 180.
[271] K.S. Cole, R.H. Cole, J. Chem. Phys. 9 (1941) 341.
[272] E. Barkai, R. Silbey, J. Phys. Chem. B 104 (2000) 3866.
[273] R. Metzler, J. Klafter, Chem. Phys. Lett. 321 (2000) 238.
[274] S. Arrhenius, Z. Phys. Chem. 4 (1889) 226.
[275] G.H. Weiss, J. Chem. Phys. 80 (1984) 2880.
[276] R. Zwanzig, J. Chem. Phys. 97 (1992) 3587.
[277] A. Blumen, J. Klafter, G. Zumofen in: L. Pietronero, E. Tosati (Eds.), Fractals in Physics.
[278] S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1; reprinted in [24].
[279] M.Ch. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17 (1945) 323; reprinted in [24].
[280] G. Zumofen, J. Klafter, Phys. Rev. E 49 (1995) 4873. L. Kuznetsov, G.M. Zaslavsky, Phys. Rev. E 58 (1998) 7330.

S. Benkadda, S. Kassibrakis, R.B. White, G.M. Zaslavsky, Phys. Rev. E 55 (1997) 4909.
[281] R.W. Davies, Phys. Rev. 93 (1954) 1169.
[282] J.W. Strutt, Lord Rayleigh, Phil. Mag. 32 (1891) 424. M.R. Hoare, Adv. Chem. Phys. 20 (1971) 135. J.A. Barker,

M.R. Hoare, S. Raval, J. Phys. A: Math. Gen. 14 (1981) 423.
[283] G. Cattaneo, Atti Sem. Mat. Fis. Univ. Modena 3 (1948) 83.
[284] J. Casas}VaH zquez, D. Jou, G. Lebon, Extended Irreversible Thermodynamics, Springer, Berlin, 1996.
[285] A. Compte, R. Metzler, J. Phys. A 30 (1997) 7277.
[286] R. Metzler, A. Compte, Physica A 268 (1999) 454.
[287] M.F. Shlesinger, J. Klafter, J. Phys. Chem. 93 (1989) 7023.
[288] M.L. Lapidus, C. Pomerance, Proc. London Math. Soc. 66 (1993) 41.
[289] M.L. Lapidus, H. Maier, J. London Math. Soc. 52 (1995) 15.
[290] M.L. Lapidus, Fractals 3 (1995) 725.
[291] B. Hebert, B. Sapoval, S. Russ, J. Acc. Soc. Amer. 105 (1999) 1567.
[292] O. Haeberle, B. Sapoval, K. Menou, H. Vach, Appl. Phys. Lett. 73 (1998) 3357.
[293] B. Sapoval, in T.F. Nonnenmacher, G.A. Losa, E.R. Weibl (Eds.), Fractals in Biology and Medicine, Vol. II,

BirkhaK user, Basel, 1993.
[294] J. Sabelko, J. Ervin, M. Gruebele, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 6031.
[295] R. Metzler, J. Klafter, J. Jortner, M. Volk, Chem. Phys. Lett. 293 (1998) 477.
[296] R. Metzler, J. Klafter, J. Jortner, Proc. Natl. Acad. Sci. USA 96 (1999) 11085.
[297] K.M. Kolwankar, A.D. Gangal, Chaos 6 (1996) 505.

76 R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77



[298] A. Rocco, B.J. West, Physica A 265 (1999) 535.
[299] G. Mittag}Le%er, Acta Math. 29 (1905) 101.
[300] A. ErdeH lyi (Ed.), Tables of Integral Transforms, Bateman Manuscript Project, Vol. I, McGraw-Hill, New York, 1954.
[301] W.R. Schneider, in: S. Albeverio, G. Casati, D. Merlini (Eds.), Stochastic Processes in Classical and Quantum

Systems, Lecture Notes in Physics, Vol. 262, Springer, Berlin, 1986.
[302] E.W. Montroll, J.T. Bendler, J. Stat. Phys. 34 (1984) 129.
[303] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.
[304] N. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, 2nd Edition, Wiley, New York, 1994.
[305] G. PoH lya, Math. Ann. 84 (1921) 149.
[306] M. Suzuki, Phys. Lett. 43A (1973) 245.
[307] B.J. West, J. Phys. Chem. B 104 (2000) 3830.
[308] G. Rangarajan, M. Ding, Phys. Rev. E 62 (2000) 120.

R. Metzler, J. Klafter / Physics Reports 339 (2000) 1}77 77


