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Chapter 3

Fractional Quantum Hall Effect

3.1 Many-Body States in the Lowest Landau Level

3.1.1 Introduction

Transport experiments in the quantum Hall regime reveal QH plateaus at fractional values
of σxy = ν e2/h with ν = p/q a rational fraction, principally with q odd. This corresponds
to fractional filling of a Landau level. Recall that electrons are fermions, and a many-body
fermionic wavefunction must be totally antisymmetric with respect to change of labels, viz.

Ψ (ξσ(1) , . . . , ξσ(N)) = sgn(σ) Ψ (ξ1 , . . . , ξN) , (3.1)

where ξj = (rj, τj) is a compound variable including the spatial coordinates and spin polar-
ization (τj = ±1) for the jth electron, and where sgn(σ) ≡ (−1)σ is the sign of the permutation
σ ∈ SN . Initially we will presume that the Zeeman field polarizes all the electrons into the same
spin state with τj = +1 for all j. In this case we only need concern ourselves with the spatial
coordinates {rj}.

One way to construct such a totally antisymmetric state is via the Slater determinant,

Ψ (r1 , . . . , rN) = det
{
ϕi(rj)

}
= det




ϕ1(r1) ϕ1(r2) · · · ϕ1(rN)
ϕ2(r1) ϕ2(r2) · · · ϕ2(rN)
...

. . .
...

ϕN(r1) · · · · · · ϕN(rN )


 , (3.2)

Here
{
ϕi(r)

}
is a basis of single particle wavefunctions. Recall that in the LLL, in the symmetric

gauge A = 1
2
B(y,−x), for which B = −Bẑ, all the wavefunctions are of the restricted form

ψ(r) = f(z) exp(−zz̄/4ℓ2), where f(z) is an analytic function in z = x+ iy, meaning ∂̄f(z) = 0,

1
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where ∂̄ ≡ ∂z̄ = 1
2
(∂x + i∂y). In the LLL, then, the most general N-electron wavefunction is of

the form

Ψ (r1 , . . . , rN ) = F (z1, . . . , zN)
N∏

j=1

exp
(
−zj z̄j/4ℓ2

)
, (3.3)

where F is analytic in all its arguments. Now recall the angular momentum basis for the LLL,

ϕm(r) =
1√

2πℓ2m!

(
z√
2 ℓ

)m
e−zz̄/4ℓ2 . (3.4)

Without normalization, we have the analytic factor fm(z) = zm, and forming a Slater determi-
nant among N electrons in the angular momentum states m ∈ {0, 1, . . . , N − 1}, we have

F (z1, . . . , zN) = det
{
zmj
}
= det




z01 z02 · · · z0N
z11 z12 · · · z1N
...

. . .
...

zN−1
1 · · · · · · zN−1

N


 . (3.5)

Clearly F (Z) is a homogeneous polynomial in its arguments Z = {z1, . . . , zN}, which says
F (λZ) = λdegFF (Z). Since the kth row of F (λZ) is multiplied by zk−1, we have

degF =

N∑

k=1

(k − 1) = 1
2
N(N − 1) . (3.6)

Furthermore, since F (Z) is totally antisymmetric, it must vanish whenever zi = zj for all i 6= j.
Thus, the product

V (Z) ≡
∏

i>j

(zi − zj) (3.7)

must be a factor of F (Z). But since there are 1
2
N(N −1) terms in the product for V (Z), we must

have that F (Z) = CV (Z), where C is a constant. Since the coefficient of the term z01z
1
2 · · · zN−1

N in
both F (Z) and V (Z) is 1, we conclude C = 1 and hence F (Z) = V (Z), which is called the Van-
dermonde determinant. It corresponds to the holomorphic part of the N-body LLL wavefunction
where each of the lowest N angular momentum states, i.e. with m ∈ {0, . . . , N − 1}, is filled,
with no holes. The Vandermonde determinant holomorphic factor corresponds to a filled Landau level.
The many-body normalization integral is

∫
d2r1 · · ·

∫
d2rN

∣∣V (z1, . . . , zN )
∣∣2 exp

(
− 1

2ℓ2

N∑

i=1

|zi|2
)

= N !

N−1∏

m=0

[
2πℓ2

(√
2 ℓ
)m
m!
]

. (3.8)
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3.1.2 Second quantization

With an orthonormal set of single particle wavefunctions
{
ϕα(ri)

}
, the normalized Slater de-

terminant state is given by

Ψα1···αN
(r1, . . . , rN) =

1√
N !

∑

σ∈S
N

sgn(σ)ϕα
σ(1)

(r1) · · ·ϕα
σ(N)

(rN) . (3.9)

We define the state

|α1, . . . , αN 〉 = 1√
N !

∑

σ∈S
N

sgn(σ) |ασ(1) 〉 ⊗ · · · ⊗ |ασ(N) 〉 ≡ c†α
N
· · · c†α1

| 0 〉 (3.10)

in which case Ψα1···αN
(r1, . . . , rN) = 〈 r1, . . . , rN |α1, . . . , αN 〉. Here

{
cα , c

†
β

}
= δαβ are the

canonical anticommutation relations for fermionic annihilation (cα) and creation (c†β) operators.

The second quantized Hamiltonian is written as Ĥ = T̂ + Û + V̂ . The kinetic energy is

T̂ =
∑

α,β

〈α | t | β 〉 c†α cβ , (3.11)

where

〈α | t | β 〉 =
∫
ddr ϕ∗

α(r) t
(
r,∇

)
ϕβ(r) , (3.12)

where t(r,∇) is the single particle kinetic energy operator, and is often a function of the vector

derivative ∇ alone, is t = − ~2

2m
∇

2. Of course for a particle in a magnetic field, we have that

t = ~2

2m

(
− i∇ + e

~c
A
)2

. A single particle potential u(r) gives rise to the second quantized
contribution

Û =
∑

α,β

〈α | u | β 〉 c†α cβ , (3.13)

where

〈α | u | β 〉 =
∫
ddr ϕ∗

α(r) u(r)ϕβ(r) , (3.14)

Finally, the two-body potential is given in second quantized form as

V̂ =
1

2

∑

α,β,γ,δ

〈αβ | v | γδ 〉 c†α c†β cδ cγ , (3.15)

where

〈αβ | v | γδ 〉 =
∫
ddr1

∫
ddr2 ϕ

∗(r1)ϕ
∗(r2) v(r1 − r2)ϕδ(r2)ϕγ(r1) . (3.16)

The field operator is given by

ψ(r) =
∑

α

ϕα(r) cα , ψ†(r) =
∑

α

ϕ∗
α(r) c

†
α . (3.17)
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Thus,

{
ψ(r) , ψ†(r′)

}
=
∑

α

ϕ∗
α(r)ϕα(r

′) = δ(r − r′) (entire Hilbert space)

=
1

2πℓ2
ei Im (z̄z′)/2ℓ2 e−|z−z′|2/4ℓ2 (LLL only) .

(3.18)

As an example of the second quantized formalism, consider the density operator

n(r) = ψ†(r)ψ(r) =
∑

m1

∑

m2

ϕ∗
m1

(r)ϕm2
(r) c†m1

cm2
. (3.19)

where we use the angular momentum basis. Let |Ψ1 〉 =
∏N

φ
−1

m=0 c
†
m | 0 〉 denote the filled Landau

level, where Nφ is the Landau level degeneracy and N = Nφ is the number of electrons. Then

〈Ψ1 | c†m1
cm2

|Ψ1 〉 = δm1,m2
, (3.20)

and therefore

n(r) = 〈Ψ1 |ψ†(r)ψ(r) |Ψ1 〉 =
N
φ
−1∑

m=0

∣∣ϕm(r)
∣∣2 = 1

2πℓ2

N
φ
−1∑

m=0

1

m!

( |z|2
2ℓ2

)m
e−|z|2/2ℓ2 . (3.21)

In the limit Nφ → ∞, we have n(r) → 1/2πℓ2, the number density of a filled Landau level. For
finite Nφ , the electron density is described by a droplet of radius R, where πR2 = 2πℓ2Nφ . To

see this, let ζ ≡ |z|2/2ℓ2, so ν(ζ) ≡ 2πℓ2 n(r) = e−ζ
∑M

m=0 ζ
m/m! where M ≡ Nφ − 1. Thus we

have dν/dζ = −e−ζ ζM/M ! which is maximized in magnitude at ζ = M , where for large M it

takes the value −1/
√
2πM . Now using the chain rule we obtain (dν/dr)min = −1/2

√
πℓ. Thus,

ν(r) drops from ν ≈ 1 inside the droplet, i.e. r < R = (2Nφ)
1/2 ℓ, to ν ≈ 0 outside the droplet on

a distance scale ∆r ∼ ℓ.

We can carry out the same computation in the Landau basis, where in the n = 0 LL

ψk(x) =
(√

π ℓL
)−1/2

eiky e−(x−kℓ2)2/2ℓ2 . (3.22)

Suppose we fill all states with k < 0, so

n(x) = L

0∫

−∞

dk

2π

∣∣ψk(x)
∣∣2 = 1

4πℓ2
erfc(x/ℓ) , (3.23)

where

erfc(z) =
2√
π

∞∫

z

dt e−t2 = 1− erf(z) . (3.24)
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Note erfc(−∞) = 1 while erfc(0) = 1
2

and erfc(∞) = 0 . Thus there is an edge at x = 0, across
which the electron density drops from n(−∞) = 1/2πℓ2 to n(∞) = 0 within an interval ∆x ∼ ℓ.
If we further assume a neutralizing background of number density Θ(−x)/2πℓ2, then the total
charge density in units of the electron charge is given by

ρ(x) ≡ n(x)− Θ(−x)
2πℓ2

=
1

4πℓ2
erfc(x/ℓ) sgn(x) . (3.25)

Thus there is overall charge neutrality, i.e.
∞∫

−∞
dx ρ(x) = 0, and we may define a dipole moment

per unit length

δ =

∞∫

−∞

dx x ρ(x) =
1

8π
. (3.26)

For our next trick, let’s evaluate the expression

n2(r, r
′) = 〈Ψ1 |ψ†(r)ψ†(r′)ψ(r′)ψ(r) |Ψ1 〉

= N(N − 1)

∫
d2r3 · · ·

∫
d2rN

∣∣Ψ1(r, r
′, r3, . . . , rN)

∣∣2

=
∑

m1

∑

m2

∑

m3

∑

m4

ϕ∗
m1

(r)ϕ∗
m2

(r′)ϕm3
(r′)ϕm4

(r) 〈Ψ1 | c†m1
c†m2

cm3
cm4

|Ψ1 〉

(3.27)

Now

〈Ψ1 | c†m1
c†m2

cm3
cm4

|Ψ2 〉 = δm1,m4
δm2,m3

− δm1,m3
δm2,m4

(3.28)

and therefore

n2(r, r
′) =

∑

m

∑

m′

(∣∣ϕm(r)
∣∣2 ∣∣ϕm′(r′)

∣∣2 − ϕ∗
m(r)ϕm(r

′)ϕ∗
m′(r′)ϕm′(r)

)

=
1

(2πℓ2)2

(
1− e−(r−r′)2/2ℓ2

)
≡ n2

0 g
(
|r − r′|

)
≡ n2

0

(
1 + h

(
|r − r′|

))
,

(3.29)

where we have taken the Nφ → ∞ limit. Here n0 = ν/2πℓ2 is the droplet density for the filled
LL (ν = 1) , g(r) = 1− exp(−r2/2ℓ2) is the pair distribution function and

h(r) = g(r)− 1 = − exp(−r2/2ℓ2) (3.30)

is the pair correlation function. The Coulomb energy per particle, once a neutralizing background
is introduced, is given by

〈V 〉corr
N

= 1
2
n

∫
d2r v(r) h(r) = −

√
π

8

e2

ǫℓ
. (3.31)
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3.1.3 LLL projection

Consider the matrix element of a function V (r) between two LLL states, f(z) exp(−zz̄/4ℓ2) and
g(z) exp(−zz̄/4ℓ2). We define

〈 g | V | f 〉 =
∫
d2r g(z)V (r) f(z) exp(−zz̄/2ℓ2) . (3.32)

With f(z) =
∑∞

m=0 fm z
m and g(z) =

∑∞
m=0 gm z

m, we have g(z) =
∑∞

m=0 ḡm z̄
m, i.e. g(z) = ḡ(z̄).

Now define the normal ordered operator : V (z̄, z) : to be the function V (r) expressed in terms
of z and z̄, but with all z̄ factors to the left of all z factors. Thus, : r2 : = z̄z . When z and z̄
commute, normal ordering accomplishes nothing. But note that

〈 g | V | f 〉 =
∫
d2r exp(−zz̄/2ℓ2) ḡ(z̄) : V (2ℓ2∂, z) : f(z) (3.33)

because we can integrate by parts, acting with −2ℓ2∂ to the left, where it has no effect on ḡ(z̄),
which his holomorphic in z̄, and which acts on the exponential factor as

− 2ℓ2∂ exp(−zz̄/2ℓ2) = z̄ exp(−zz̄/2ℓ2) , (3.34)

thereby bringing down one factor of z̄ for each application of 2ℓ2∂ . Thus, the action of an
operator V (r) on the LLL wavefunction ψ(r) = f(z) exp(−zz̄/4ℓ2) is tantamount to acting only
on the holomorphic part f(z) with the operator1

: V (2ℓ2∂, z) : . Thus, the Schrödinger equation
in the LLL, dropping the constant 1

2
~ωc zero point cyclotron energy term, is

:V (2ℓ2∂, z) : f(z) = Ef(z) . (3.35)

As an example, consider the harmonic potential V (r) = 1
2
Kr2. Projected to the LLL, the eigen-

states in this potential have holomorphic parts f(z) which satisfy

2ℓ2
∂

∂z

[
z f(z)

]
= E f(z) . (3.36)

Clearly the solutions are the angular momentum states, with fm(z) = Cmz
m, where Cm is a

normalization constant. The energy eigenvalues are then Em = (m+ 1)Kℓ2.

A particularly important application for us will be that of the plane wave, for which

: exp(−ik · r) : = exp(−ikℓ2∂) exp(−ik̄z/2) . (3.37)

Note further that

: exp(−ik · r) : f(z) = exp(−k̄kℓ2/2) exp(−ik̄z/2) f(z − ikℓ2) . (3.38)

Thus, the holomorphic coordinate within the function f(z) is displaced by −ikℓ2.

1S. M. Girvin and T. Jach, Phys. Rev. B 29, 5617 (1984).
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3.2 The Wigner Crystal

Let’s first consider the interacting 2DEG in a field, but in the absence of disorder. The Hamil-
tonian is

H =
1

2m∗

N∑

i=1

(
pi +

e
c
Ai

)2
+
∑

i<j

v(ri − rj) , (3.39)

with v(r) = e2/ǫr is the three-dimensional Coulomb interaction. We reiterate that while the
electrons in are confined to a 2DEG, they interact via the three-dimensional 1/r potential and
not the two-dimensional ln(1/r) form. This is because the field lines between charges in the
2DEG are themselves not confined to the 2DEG, but exist throughout the three-dimensional
host heterostructure. The static dielectric constant in GaAs is ǫ = 13.13.

In heterojunctions, the electron number N is fixed by the density of dopants. At fixed area
A, the number of fluxoids in a finite area A under uniform B = −Bẑ is Nφ = BA/φ0, where

the Dirac flux quantum is φ0 = hc/e = 4.137 × 105T · Å2
. The Landau level filling fraction,

ν = N/Nφ, may then be adjusted by varying the field strength B. In Si MOSFETs, the electron
density is set by the gate voltage Vg and can be varied during an experiment, as can B. Thus
there are two ways to change ν in a MOSFET.

Recall that in the LLL, the kinetic energy is quenched, hence HLLL = Π0H Π0 = 1
2
N~ωc + Ṽ ,

where
Ṽ = Π0

∑

i<j

v(ri − rj) Π0 =
∑

i<j

v(Ri −Rj) , (3.40)

where Ri = (Xi,Yi) are the guiding center coordinates for the ith particle2. Recall that

[
Xi,Yj

]
= −iℓ2 δij , (3.41)

with
[
Xi,Xj

]
=
[
Yi,Yj

]
= 0 . We may drop the constant 1

2
N~ωc piece in HLLL and take the LLL-

projected Hamiltonian to be Ṽ . Projecting onto a single Landau level ignores Landau level
mixing effects. We expect this approximation is justified provided the typical Coulomb energy
scale e2

√
πn/ǫ is sufficiently smaller than the cyclotron energy gap ~ωc , or the Zeeman gap

ζ~ωc , where ζ = g∗m∗/2me (see §2.2.5). With n = ν/2πℓ2 and ωc = ~/m∗ℓ2, this criterion, up to
dimensionless factors of order unity, is given by

√
ν ℓ≪

√
2 a∗B , (3.42)

where a∗B = ǫ~2/m∗e2 is the effective Bohr radius, which is large in GaAs, with m∗ = 0.067me

and ǫ = 13, we obtain a∗B = 104 Å, and with ℓ = 257 Å
√
B[T ], our criterion then becomes

ν ≪ 0.33B[T ], which is reasonably satisfied within the LLL (ν ≤ 1) for B>∼ 10T. In fact, there

2Recall that there are some subtleties associated with the LLL projection, having to do with normal-ordering,
as discussed in §1.3.2.
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will always be some degree of LL mixing, and the issue is really whether the actual ground
state |Ψ0 〉 is adiabatically connected to some model or trial state that is conveniently expressed
solely within the LLL, i.e. what phase of matter is present.

3.2.1 Classical Wigner crystal

At ν = 1 there is a unique state corresponding to a filled LLL, but for N < Nφ, the number of
possible many-body states is given by the size of the Slater determinant basis, which is

Ω(N,Nφ) =

(
Nφ

N

)
≃ ec(ν)Nφ , (3.43)

where c(ν) = −ν ln ν − (1− ν) ln(1 − ν) . There are thus exponentially many states to consider,
so we need some intuition or physical principle to help us choose among them. One thing we
can do is throw up our hands and ignore quantum mechanics3 and pretend that the components
of Ri commute. This is equivalent to considering the classical potential energy function

V (r1, . . . , rN) =
∑

i<j

v(ri − rj) , (3.44)

with v(r) = e2/ǫr. To be more precise, we could place our N particles in a circular disk of
radius Λ, along with a uniform neutralizing background. Without the background, the energy
will diverge as N → ∞ with no thermodynamic limit (i.e. the energy will scale as N2 rather
than as N), but the neutralizing background, which is of course physical, fixes this problem4.
What is the ground state? The simplest guess would be that it is a crystal. In some cases this
can be proven mathematically, such as the case of ‘sticky disks’ where v(r) = +∞ for r < a,
v(r) = −1 for r = a, and v(r) = 0 for r > 0. For this case, the ground state is a triangular
Bravais lattice5. Recall that the Abrikosov vortex lattice in a type-II s-wave superconductor,
where the vortices interact by a screened repulsive logarithmic potential, is also triangular.
That weak crystallization, meaning crystallization in a weakly first-order transition, should result
in a triangular lattice in d = 2 was argued by Alexander and McTague6 based on a Landau
theory of the transition. The argument is as follows. Let ̺G be the amplitude of the Fourier
component of the density ̺(r) with wavevector G, which is a reciprocal lattice vector of the

3I am a trained professional. Students should not try this at home.
4Recall that in heterostructures, the neutralizing background is due to the dopants, which are typically recessed

by several hundred Ångstroms from the 2DEG.
5R. C. Heitmann and C. Radin, J. Stat. Phys. 22, 281 (1980) and also C. Radin, J. Stat. Phys. 26, 365 (1981), where

the original proof was extended to ‘soft disks’ where there is an annulus over which the interaction potential varies
linearly with distance between v(a) = −1 and v(b) = 0.

6S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978). See also E. I. Kats, V. V. Lebedev, and A. R.
Muranov, Phys. Rep. 228, 1 (1993).
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incipient crystalline phase. Then construct the free energy

F
[
{̺G}

]
=

1

2

∑

G

χ−1(G) |̺G|2 −
1

3
B
∑

G1

∑

G2

∑

G3

̺G1
̺G2

̺G3
δG1+G2+G3,0

+
1

4
C
∑

G1

∑

G2

∑

G3

∑

G4

̺G1
̺G2

̺G3
̺G4

δG1+G2+G3+G4,0
+ . . . ,

(3.45)

where
χ−1(k) = r + b (k2 −G2)2 (3.46)

is the inverse static susceptibility at wavevector k, which for fixed r is minimized for |k| = G.
The quadratic term determines the magnitude of the preferred wavevectors at which conden-
sation takes place at r = rc = 0, but this energy is degenerate over the circle (or sphere in d = 3)
of radius G. For weak crystallization, then, the cubic term determines the crystal structure,
and evidently prefers structures whose reciprocal lattices contain the maximum number of tri-
angles, in order to satisfy the G1 + G2 + G3 = 0 condition. In d = 2 this prefers a reciprocal
lattice which is triangular, hence the underlying direct Bravais lattice is also triangular (or hon-
eycomb). In d = 3, this condition prefers the fcc structure among all regular lattices, and the
corresponding direct lattice is thus bcc. It should be emphasized that the Alexander-McTague
theory applies to the weak crystallization of a fluid, and really describes the formation of a
charge density wave structure, rather than a Wigner crystal of point particles.

The energy per particle of d = 2 crystalline lattices of charges interacting by the potential
v(r) = e2/ǫr, in the presence of a uniform neutralizing background, was computed by Bonsall
and Maradudin (BM) using the Ewald summation method7. They obtained the general result,

uWC =
UWC

N
= − e2

ǫ
√
Ω

{
2−

∑

R

′
φ−1/2(πR

2/Ω)

}
(3.47)

where the sum is over all nonzero direct lattice vectors R, Ω is the unit cell area, and

φn(z) =

∞∫

1

dt tn e−zt (3.48)

is known as the Misra function. BM obtained the following results:

uWC = −e
2

ǫ

(
2π

Ω

)1/2
×
{
0.777990 (square)

0.782133 (triangular) .
(3.49)

Thus, the triangular lattice configuration has lower energy per particle. Note that nΩ = 1 where
n = ν/2πℓ2 is the density, hence (2π/Ω)1/2 =

√
ν/ℓ.

7L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).
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3.2.2 Quantum Wigner crystal

How can we restore quantum mechanics, i.e. the noncommutativity of [Xi,Yj] = −iℓ2 δij? Maki
and Zotos8 constructed a trial LLL Wigner crystal wavefunction, using the coherent states
ϕR(r) as a basis, where the set {R} corresponds to a triangular lattice, i.e. Rmn = ma1 + na2

with a1,2 = 1
2
a
(
x̂ ∓

√
3 ŷ
)

and Ω = n−1 = 1
2

√
3 a2. Recall the form of the LLL coherent state

wavefunction from §1.3.7,

ϕR(r) = 〈 r |R 〉 = (2πℓ2)−1/2 exp
(
iR× r · ẑ/2ℓ2

)
exp
(
−|r −R|2/4ℓ2

)
. (3.50)

The Maki-Zotos wavefunction is then

|ΨMZ 〉 = N−1/2
∑

σ∈S
N

sgn(σ) |Rσ(1), . . . ,Rσ(N) 〉 . (3.51)

Note that the MZ wavefunction is not normalized, due to the fact that the von Neumann lattice
of coherent states is not an orthonormal basis:

〈ΨMZ |ΨMZ 〉 =
∑

σ∈S
N

N∏

j=1

〈Rj |Rσ(j) 〉 , (3.52)

where
〈R |R′ 〉 = exp

(
−iR×R′ · ẑ/2ℓ2

)
exp
(
−|R−R′|2/4ℓ2

)
. (3.53)

Therefore, in computing the expectation value of any operator O in the MZ state, one must
compute

〈O〉MZ =
〈ΨMZ | O |ΨMZ 〉
〈ΨMZ |ΨMZ 〉

. (3.54)

For nearest neighbors, the overlap magnitude is
∣∣〈R |R′ 〉

∣∣ = exp(−a2/4ℓ2) = exp(2π/
√
3 ν),

which says that exchange effects are negligible in the low density limit ν → 0.

Taking into account only electron-electron interactions, i.e. with no neutralizing background
as of yet, the energy of the MZ Wigner crystal atate is

E =
e2

ǫ

〈ΨMZ |
∑

i<j
1
rij

|ΨMZ 〉
〈ΨMZ |ΨMZ 〉

=
∑

i<j

Ṽ2(Ri −Rj) +
∑

i<j<k

Ṽ3(Ri,Rj ,Rk) + . . . , (3.55)

where

Ṽ2(R) =
e2

ǫ

〈 0,R | 1
|r−r′| | 0,R 〉 − 〈 0,R | 1

|r−r′| |R, 0 〉
〈 0,R | 0,R 〉 − 〈 0,R |R, 0 〉

=

√
π e2

4ǫℓ
sech(R2/8ℓ2) I0(R

2/8ℓ2) =

{√
π e2/4ǫℓ R → 0

e2/ǫR R → ∞ .

=
e2

ǫR

{
1 +

ℓ2

R2
+

9ℓ4

2R4
+

75ℓ6

2R6
+ . . .

}
.

(3.56)

8K. Maki and X. Zotos, Phys. Rev. B 28, 4849 (1983).
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Figure 3.1: Bare (dashed, black), projected (red) and exchange-corrected (blue) Coulomb inter-
action in the LLL.

For details on the three-body term, see Maki and Zotos. Note that without the exchange cor-
rection, we would have

Ṽ ′
2(R) =

e2

ǫ
〈 0,R | 1

|r − r′| | 0,R 〉

=

√
π e2

2ǫℓ
exp(−R2/8ℓ2) I0(R

2/8ℓ2) =

{√
π e2/2ǫℓ R → 0

e2/ǫR R → ∞ .

(3.57)

The consequences of projection and exchange correction are shown in Fig. 3.1.

The first term in the expansion of Eqn. 3.56 in powers of R−1 gives the classical energy, which
diverges as N2 in the absence of a neutralizing background. With the background, this term
gives us the Bonsall-Maradudin result uWC = −0.782133

√
ν e2/ǫℓ per particle. The remaining

contributions, which are positive, are the quantum contributions to the correlation energy per
particle. Note that the correlation energy of the filled Landau level, which we computed in
Eqn. 3.31, is ucorr(ν = 1) = −0.626657 e2/ǫℓ, which is clearly greater than the classical WC en-
ergy at this density. This is due to zero point quantum fluctuations of the electron coordinates
relative to their classical energy-minimizing locations. Maki and Zotos found that their corre-
lation energy compared well with Hartree-Fock CDW calculations by Yoshioka and Lee9, with
agreement to 1% throughout the regime ν < 1

2
. Exchange effects were important to consider

for ν ∈ [0.4, 0.5] but accounted for less than a percent of the correlation energy at lower fillings.
The salient feature here is that the correlation energy uWC(ν) is a smooth function of the filling ν.

9D. Yoshioka and P. A. Lee, Phys. Rev. B 27, 4986 (1983).
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Figure 3.2: Evidence of Wigner crystal behavior for ν <∼ 0.2. Left: Data from H. W. Jiang et al.,
Phys. Rev. Lett. 65, 633 (1990). The longitudinal resistance Rxx exhibits pronounced peaks,
dwarfing those in all FQH states, for ν ≈ 0.21 and for ν < 0.19, suggesting reentrant solid
behavior. Right: Wigner crystal phase diagram inferred from capacitive measurements of ef-
fective screening by H. Deng et al., Phys. Rev. Lett. 122, 116601 (2019), showing reentrant solid
behavior between ν = 1

5
and ν = 2

9
. The WC phase screens very poorly, and screening efficiency

improves once the WC melts.

As we shall see, this is inconsistent with the phenomenology of the FQHE, which requires that
the free energy F (ν) have cusps when ν corresponds to the filling at a FQH plateau. In addition,
a Wigner crystal or charge density wave state breaks translational invariance, and is subject to
pinning and the formation of Imry-Ma domains10. Observations of Wigner crystal phases of
GaAs/AlGaAs heterojunction 2DEGs were first reported by E. Andrei et al., Phys. Rev. Lett.
60, 2765 (1988).

3.2.3 Magnetophonons in the Wigner crystal and in charged elastic media

Within the harmonic approximation, the energy of the deformed crystal, with R → R+ uR , is

U =
1

2

∑

R 6=R′

Ṽ
(
R+ uR −R′ − uR′

)

= U0 +
1

2

∑

R 6=R′

(
uαR − uαR′

)(
uβR − uβR′

) ∂2Ṽ (R−R′)

∂Rα ∂Rβ
+ . . . ,

(3.58)

10H. Fukuyama and P. A. Lee, Phys. Rev. B 18, 6245 (1978).
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where each R is a triangular lattice site. Now write

uαR =
1√
Nc

∑

k

ûα(k) eik·R (3.59)

where Nc = N is the number of unit cells11, in which case

U = U0 +
1

2

∑

k

∑

α,β

Φ̂αβ(k) û
α(k) ûβ(−k) +O(u3) , (3.60)

with the dynamical matrix

Φ̂αβ(k) =
∑

R

(1− cos k ·R)
∂2Ṽ (R)

∂Rα ∂Rβ
. (3.61)

We now write Ṽ (R) as a Fourier integral, viz.

Ṽ (R) =

∫
d2q

(2π)2
ˆ̃
V (q) eiq·R , (3.62)

and make use of the Poisson summation formula,

∑

R

eik·R =
(2π)2

Ω

∑

G

δ(k −G) , (3.63)

where Ω = 1/n is the area per unit cell. This gives

Φ̂αβ(k) =
ν

2πℓ2

∑

G

[
(Gα + kα)(Gβ + kβ)

ˆ̃
V (G+ k)−GαGβ

ˆ̃
V (G)

]
(3.64)

Now we may quantize, writing

ẑ(k) = ûx(k) + iûy(k) =
√
2 ℓ b†−k , (3.65)

in the LLL (cf. Eqn. 1.48), to obtain the magnetophonon Hamiltonian,

H0
MP

=
∑

k

[
Ωk

(
b†k bk + b†−k b−k

)
+∆k bk b−k +∆∗

k b
†
k b

†
−k

]
, (3.66)

where

Ωk = 1
2
ℓ2
[
Φ̂xx(k) + Φ̂yy(k)

]

∆k = 1
2
ℓ2
[
Φ̂xx(k)− Φ̂yy(k) + 2iΦ̂xy(k)

]
.

(3.67)

11There is one electron per unit cell, because the triangular lattice is a Bravais lattice.
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Diagonalizing H0
MP

via a Bogoliubov transformation, we obtain the dispersion

ωk =
√
Ω2

k − |∆k|2 = ℓ
√

Φ̂xx(k) Φ̂yy(k)− Φ̂2
xy(k) . (3.68)

Let
ˆ̃
V (k) = (2πe2ℓ/ǫ)F̂ (kℓ). Then

Φ̂αβ(k) =
νe2

ǫℓ

([
F̂ (kℓ) + C0

]
kα kβ + C1k

2 δαβ +O(k3)
)

(3.69)

with

C0 =
∑

G

′[
F̂ (Gℓ) + 7

8
(Gℓ)F̂ ′(Gℓ) + 1

8
(Gℓ)2F̂ ′′(Gℓ)

]

C1 =
∑

G

′[
3
16
(Gℓ)F̂ ′(Gℓ) + 1

16
(Gℓ)2F̂ ′′(Gℓ)

]
.

(3.70)

where the primes on the sums indicate that G = 0 is excluded. For the unprojected Coulomb

potential v(r) = e2/ǫr, the Fourier transform yields F̂ (kℓ) = 1/kℓ and the sums fail to converge.
One must then reformulate the problem using the Ewald summation method. However in our

case, Ṽ (r) is the LLL-projected and exchange-corrected potential of Eqn. 3.56. In this case F̂ (kℓ)
behaves as 1/kℓ in the infrared (i.e. as k → 0), but in the ultraviolet the short distance blunting
of the 1/r divergence from the LLL projection results in an exponential decay in kℓ, as in the
case of the Yukawa potential. In this case, the sums for C0,1 converge nicely12. It is left as an
exercise to the reader to verify the long wavelength dispersion,

ωk =
νe2

ǫ
k2
√
C0 F̂ (kℓ) + C1(C0 + C1) . (3.71)

As k → 0, then, we have F (kℓ) = 1/kℓ dominates inside the radical, and ωk ∝ k3/2. Note that if
F (kℓ) were to approach a constant as k → 0, corresponding to v(r) ∼ δ(r), we’d have ωk ∝ k2.
Conversely, if the potential were logarithmic, we’d obtain ωk ∝ k.

Classical derivation

Consider an elastic medium with potential energy density

U(x) = µTr(ε2) + 1
2
λ (Tr ε)2 (3.72)

where ε(x) is the symmetric strain tensor, with components

εαβ =
1

2

(
∂uα

∂xβ
+
∂uβ

∂xα

)
, (3.73)

12We assume both C0 and C1 are positive.
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where u(x) is the local displacement field.. The Lagrangian density is

L = 1
2
n0m

(
u̇2x + u̇2y

)
+
neB

2c

(
ux u̇y − uy u̇x

)
− U(x) , (3.74)

where n0 is the number density, n0m is the mass density and (−n0 e) is the charge density.
Writing the action in terms of the Fourier modes uαk , we have

S =

∫
dt
∑

k

{
1
2
n0mu̇αk u̇

α
−k+

n0 eB

2c
ǫαβ u

α
k u̇

β
−k− 1

2

[
µ(δαβ− k̂αk̂β)+(λ+2µ) k̂αk̂β

]
k2

}
. (3.75)

We now express uαk in terms of longitudinal and transverse modes:

uk = ik̂ u
‖
k + iẑ × k̂ u⊥k . (3.76)

The factors of i ensure that u∗
k = u−k if (u‖/⊥k )∗ = u

‖/⊥
−k , i.e. they are all Fourier components of

real fields. Now we have L = T − U with

T =
∑

k

{
1
2
n0m

(
u̇
‖
k u̇

‖
−k + u̇⊥k u̇

⊥
−k

)
+
n0 eB

2c

(
u
‖
k u̇

⊥
−k − u⊥k u̇

‖
−k

)}

U =
∑

k

{
1
2
(λ+ 2µ) k2

∣∣u‖k
∣∣2 + 1

2
µ k2

∣∣u⊥k
∣∣2
}

.

(3.77)

Now write the Lagrangian L = T −U and take the functional variation of the action S =
∫
dt L

with respect to u
‖
−k and with respect to u⊥−k to get

δS

δu
‖
−k

= 0 ⇒ n0mü
‖
k −

n0 eB

c
u̇⊥k = (λ+ 2µ) k2 u

‖
k

δS

δu⊥−k

= 0 ⇒ n0mü⊥k +
n0 eB

c
u̇
‖
k = µ k2 u⊥k .

(3.78)

In frequency space, this is equivalent to the system
(
ω2 − ω2

L(k) i ω ωc

−i ω ωc ω2 − ω2
T(k)

)(
u
‖
k

u⊥k

)
= 0 , (3.79)

where ωc = eB/mc, and where

ωL(k) =

(
λ+ 2µ

n0m

)1/2
|k| , ωT(k) =

(
µ

n0m

)1/2
|k| (3.80)

are the long wavelength longitudinal and transverse phonon dispersions when B = 0. Setting
the determinant to zero, we obtain the two normal modes,

ω±(k) =

[
1
2

[
ω2
c + ω2

L(k) + ω2
T(k)

]2 ± 1
2

√(
ω2
c + ω2

L(k) + ω2
T(k)

)2 − 4ω2
L(k)ω

2
T(k)

]1/2
. (3.81)
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In the long wavelength (k → 0) limit, then,

ω+(k) = ωc +
ω2
L(k) + ω2

T(k)

2ωc

+ . . .

ω−(k) =
ωL(k)ωT(k)

ωc

+ . . . .

(3.82)

Since both ωL(k) and ωT(k) vanish linearly with k in this limit, we find that the lower mode
disperses as k2 and the upper mode is gapped with ω+(0) = ωc.

How do we add Coulomb interactions to this model? Note that Tr ε = ∇·u , which is related
to the local variation of the number density according to

n(x) = n0

(
1 +∇ · u

)
, (3.83)

i.e. δn(x) = n(x)− n0(x) = n0∇·u . Thus

∆U =
1

2

∫
d2x

∫
d2x′ δn(x) v(x− x′) δn(x′) =

n2
0

2

∑

k

v̂(k) k2
∣∣u‖k
∣∣∣
2

, (3.84)

and the Coulomb interaction v̂(k) = 2πe2/ǫ|k| is accommodated by the replacement of the
Lamé parameter λ with an effective Lamé parameter λ(k), viz.

λ→ λ(k) = λ+ n2
0 v̂(k) . (3.85)

We then have ωL(k) = (2πn0 e
2/ǫm)1/2 k1/2 at long wavelengths. This is the dispersion of the

two-dimensional plasmon. Note that for v̂(k) ∝ k−2, as would be the case for a logarithmic
potential, the 2D plasmon would be gapped, as is the plasmon in d = 3 with 1/r interactions,
corresponding to v̂

3D
(k) = 4πe2/ǫk2. The k1/2 longitudinal mode for B = 0 in d = 2 then entails

ω−(k) ∝ k3/2 for a charged elastic medium in a uniform magnetic field. This is the famous k3/2

magnetophonon!

3.2.4 Imry-Ma argument: pinning by quenched disorder

In a crystalline phase there is long-ranged positional order and a breaking of the continuous
symmetry of translation. It then behooves us to ask how such phases fare in the presence of
quenched disorder, which in the case of QH systems is due to the random positions of dopant
ions, each of which becomes a Coulomb impurity scatterer. The issue of how quenched ran-
domness affects a system’s attempt to order was taken up in a beautiful paper by Imry and
Ma in 197513. Quenched disorder in these systems is typically modeled as a local field. In sys-
tems with discrete symmetries, such as the Ising model, one would take Vdis = −∑rHr σr . In

13J. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
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Figure 3.3: Adding disorder to systems which spontaneously break a discrete or continuous
symmetry results in the formation of Imry-Ma domains of finite size Ld if d is less than the
critical dimension dc, where dc = 2 for discrete symmetry and dc = 4 for continuous symme-
try. Left: Imry-Ma domains for a model with O(2) symmetry. Right: Energetics of domain
formation. The region Ld < a is unphysical.

systems with continuous symmetries, such as the O(n) model, Vdis = −∑r Hr ·Sr . In charge
density wave systems, if Ψ(r) is the order parameter which encodes the local amplitude |Ψ(r)|2
and phase argΨ(r) of the local density variation δ̺(r) relative to the homogeneous liquid, we
may write

Vdis = −
∫
d2r Re

[
H∗(r) Ψ(r)

]
, (3.86)

where H(r) ∈ C is a complex number with a random amplitude and phase. Imry and Ma
reasoned that such systems could try to lower their free energy by forming spatial domains
in which the order parameter takes advantage of the local fluctuations in the random field.
They presumed that such domains have a typical length scale Ld, which is determined by the
following energy minimization argument.

There are two contributions to the energy of a given domain: bulk and surface terms from
the disorder. The bulk energy is given by Ebulk = −Γ (Ld/a)

d/2, where a is an ultraviolet cutoff,
typically set by an atomic lattice spacing, and where Γ = H

RMS
= 〈|H(r)|2〉 is the root mean

square amplitude of the random field. This is the Central Limit Theorem at work: if the phase

of the CDW is locked over a patch of linear dimension Ld, then adding Ld/a random fields
gives us a contribution proportional to the square root of the number of such terms. The surface
energy corresponds to the energy for creating a domain wall in the order parameter, which goes
as

Esurf ∝
{
J(Ld/a)

d−1 (discrete symmetry)

J(Ld/a)
d−2 (continuous symmetry) ,

(3.87)
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where J is the stiffness of the order parameter field arising from an energy density term J |∇Ψ|2.
For the discrete case, the width of the domain wall may be taken to be a, in which case the
surface energy is proportional to the surface area. For continuous symmetry, the domain wall
is described by a continuous twist in the order parameter over a distance Ld perpendicular to
the DW interface. If we take φ(x) = 2πx/Ld and assume |Ψ| ≈ 1 in the CDW, then

J

L
d∫

0

dx (∂xφ)
2 =

4π2J

Ld

, (3.88)

which introduces a factor of 1/Ld relative to the discrete case. Thus the free energy density per
unit cell volume ad is

f(Ld) =

(
a

Ld

)d(
Ebulk + Esurf

)
≈ J

(
a

Ld

)p
− Γ

(
a

Ld

)d/2
, (3.89)

where p = 1 for discrete and p = 2 for continuous symmetry of the order parameter. Extremiz-
ing, we find that there is an extremum at

L∗
d

a
=

(
dc
d

· J
Γ

) 2
dc−d

, (3.90)

where dc = 2p is dc = 2 (discrete) or dc = 4 (continuous). If d < dc , the extremum is a local
maximum. For weak disorder, Γ ≪ J , and thus Ld ≫ a. If d > dc, the free energy attains a local
maximum at L∗

d, but the sign of the exponent is reversed, and thus for weak disorder one has
L∗
d ≪ a. Since Ld cannot become smaller than the UV cutoff scale a, the entire region Ld < a

is unphysical, and the apparent instability where f(Ld → 0) → −∞ is avoided. The minimum
value then occurs at L∗

d = ∞, meaning that the LRO phase exists. The situation is summarized
in Fig. 3.3.

Thus we conclude that a Wigner crystal phase in d = 2 with true LRO cannot exist in the
presence of quenched disorder. Nevertheless, as we have seen, the length scale for Imry-Ma
domains may be quite large, and it therefore makes good sense to speak of local crystalline
order. Not included in the above analysis is the condensation energy of the ordered phase
itself, which is dominated by local effects14, and in assessing the stability of correlated liquid
states, which we shall next discuss, it is generally sensible to compare to the energy density of
the hypothetical pristine Wigner crystal.

14Although, as we have seen, the ground state energy density of triangular versus square Wigner crystals is
slight and long-ranged features of the potential may possibly determine the specific crystallographic symmetry of
the ordered state.
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3.3 The Principal Sequence of Laughlin States

Two weeks before the publication of Laughlin’s theory, Yoshioka, Halperin, and Lee15 pre-
sented results of numerical studies which suggested that the ground state of the (Coulomb)
interacting 2DEG at high magnetic fields does not possess solid-like order, and that the ac-
tual ground state energy lies somewhat below the corresponding Hartree-Fock CDW values16.
They furthermore concluded,

We regard our data as supportive of the idea that the ground state is not crystalline,
but a translationally invariant ”liquid”. We speculate that this liquid has commensu-
ration energy at ν = 1

3
(and possibly at other simple rational values), and that for a

large but finite system, the ground state at ν = 1
3

is threefold degenerate and sepa-
rated by an energy gap from a variety of excited states. By going to a moving frame,
it is then clear that at ν = 1

3
a Hall current will flow without dissipation, even in

the presence of impurities. At ν close to 1
3
, we further suppose that the ground state,

which is now highly degenerate, can be described as the ν = 1
3

ground state plus
an additional small density of quasi ”particles” or ”holes”. This leads naturally to a
downward cusp in the energy as a function of ν. The Hall plateau at σxy = e2/3h
can then be explained if the quasiparticles are localized by impurities and thus do not
contribute to the Hall current, which is simply carried by the underlying ν = 1

3
state.

Very recently, we have learned of a very original proposal by Laughlin of a wave
function for a liquid state at ν = 1/p, for p odd, which appears to have the requisite
commensuration energy.

One of the first good omens observed by Laughlin17 was that his ν = 1
3

fluid ground state
weighed in at a lower energy than did even the best CDW estimates. This sat well with those
who viewed solid-like order with great uneasiness in light of earlier investigations of CDW
pinning by disorder, which would be inconsistent with the observed finite (and indeed quan-
tized) Hall conductivity at ν = 1

3
. By comparing energies of the Laughlin fluid and the best

correlated CDW states, a crude one-parameter phase diagram emerged, predicting a transition
between correlated fluid and Wigner crystal phases at ν ≈ 1

5
filling18.

An argument by Allan MacDonald19 concludes that the FQH state must be incompressible in
the absence of disorder in order to be consistent with experiment. Recall that the isothermal
compressibility of a thermodynamic system is defined to be

κT = − 1

V

(
∂V

∂p

)

T

=
1

n2

(
∂n

∂µ

)

T

. (3.91)

15D. Yoshioka, B. I. Halperin, and P. A. Lee, Phys. Rev. Lett. 50, 1219 (1983).
16The Maki-Zotos Wigner crystal describes the same state as the Hartree-Fock CDW and for ν < 1

2
has almost

the same energy.
17R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
18As we have seen above (see Fig. 3.2, there is also experimental evidence for reentrant crystalline behavior.
19A. H. MacDonald, Introduction to the Physics of the Quantum Hall Regime, arXiv: cond-mat/9410047.
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Figure 3.4: Energies for particle for the 2DEG as a function of ν, from D. Yoshioka, B. I.
Halperin, P. A. and Lee, Phys. Rev. Lett. 50, 1219 (1983). The dashed and dotted lines show
electron and hole Hartree-Fock crystal energies for the infinite system. Open circles, closed cir-
cles, and triangles show exact diagonalization results for N = 4, 5, and 6 electrons. Energies for
the crystalline state with N = 4 are shown with closed (exact diagonalization) and open (HF)
squares. The solid line interpolating the N = 5 data is a guide to the eye.

It follows that when κ = 0, i.e. when the system is incompressible, the chemical potential µ is a
discontinuous function of the density n. Consider now a quantum Hall droplet in which there
is a current density j(r). The magnetization of the droplet is given by

M =
1

2c

∫
d2r r × j(r) ⇒ δM =

1

2c

∫
d2r r × δj(r) . (3.92)

Now let us imagine changing the chemical potential µ by an amount δµ. If µ = εF lies within a
mobility gap, the only change in the current distribution can take place along the edge, which
is some closed curve R(s). The parameterization is unimportant, but to be concrete we may
take s to be the length along the curve. The differential change δj(r) in current density is then

δj(r) = δI

∫
dR δ(r −R) , (3.93)

where δI is the additional edge current. This entails the relation

δM =
δI

2c

∮
R× dR =

A

c
δI ẑ , (3.94)

where A is the enclosed area. Thus,

δI =
c

A
δM =

c

A

(
∂M

∂µ

)

B

δµ =
c

A

(
∂N

∂B

)

µ

δµ , (3.95)
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Figure 3.5: An expanding QH droplet, with δj(r) = δI
∫
dR δ(r − R). The single electron

potential Vtot(r) is the sum of the random background and confining potentials plus Coulomb
contributions from all the other electrons.

where we have invoked a Maxwell relation. This establishes the result

δI

δµ
= c

(
∂n

∂B

)

µ

. (3.96)

Therefore, if n(B) depends on B, i.e. if (∂n/∂B)µ 6= 0, and if µ lies within a spectral gap (or,
more generally, a mobility gap) such that no internal currents are generated by an increase in
chemical potential δµ, then there must be gapless edge excitations.

As acknowledged by MacDonald, there are a couple of weak points to this argument. For ex-
ample, it would seem that the Hall voltage VH should have to be small in magnitude compared
with ~ωc/e, yet in experiments good quantization is observed even if the former is hundreds
of times larger than the latter. In addition, it may not be that all the transport current flows at
the edges of the system20. A more realistic approach to boundary conditions in the QHE was
considered by Niu and Thouless21.

3.3.1 Laughlin’s excellent idea

Recall that all N-electron LLL states may be written in the form

Ψ(r1, . . . , rN) = P (z1, . . . , zN) exp

(
− 1

4ℓ2

N∑

j=1

|zl|2
)

, (3.97)

20C. Wexler and D. J. Thouless, Phys. Rev. B 49, 4815 (1994).
21Q. Niu and D. J. Thouless, Phys. Rev. B 35, 2188 (1987).
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where P (Z) is a multinomial function which is odd under exchange, i.e.

P (Zσ) = sgn(σ)P (Z) , (3.98)

where Zσ = {zσ(1), . . . , zσ(N)}, and where, restricting the single particle states to the angular

momentum basis, with m ∈ {0, . . . , Nφ−1}, the highest degree in each holomorphic coordinate

zj is z
Nφ−1
j . Furthermore, if Ψ is a state of definite total angular momentum J = Lz , then F (Z)

must be homogeneous, with F (λZ) = λdeg(F )F (Z) where J = deg(F ) . The filling fraction
is then given by ν = N/Nφ. We’ve already encountered the example of the Vandermonde
determinant,

V (Z) = det(zkj ) =
∏

i>j

(zi − zj) , (3.99)

for which J = 1
2
N(N − 1) and Nφ = N .

Laughlin (1983) proposed the sequence of FQHE states

Ψq(r1, . . . , rN) =
∏

i>j

(zi − zj)
q exp

(
− 1

4ℓ2

N∑

j=1

|zl|2
)

, (3.100)

i.e. Fq(Z) =
[
V (Z)

]q
. Since V (Z) is completely antisymmetric, we have

Fq(Zσ) =
(
sgn(σ)

)q
Fq(Z) , (3.101)

hence Ψq corresponds to a fermionic wavefunction provided q is an odd integer. The total
electronic angular momentum is J = 1

2
qN(N − 1) and the highest individual degree in any zj

is Nφ − 1 = q(N − 1). Thus ν = N/Nφ = q−1 in the thermodynamic limit. Note that for bosons,
the Laughlin wavefunctions have m even.

3.3.2 Plasma analogy

The Laughlin states are a generalization of the Bijl-Jastrow pair product form, ΨBJ =
∏

i<j f(rij).
Consider, for example, the extended form,

ΨGBJ(r1, . . . , rN) =
∏

i

exp
{
− 1

2
u(ri)

}∏

i>j

exp
{
− 1

2
v(rij)

}∏

i>j>k

exp
{
− 1

2
w(rij, rjk)

}
, (3.102)

where rij = |ri − rj |. Then the N-particle probability density is

|ΨGBJ|2 = exp
{
− βΦ(r1, . . . , rN)

}
(3.103)

where
βΦ(r1, . . . , rN) =

∑

i

u(ri) +
∑

i>j

v(rij) +
∑

i>j>k

w(rij, rjk) . (3.104)



3.3. THE PRINCIPAL SEQUENCE OF LAUGHLIN STATES 23

Here we assume u, v, and w are all real. Thus the many-particle probability density is equiva-
lent to the Boltzmann weight of a classical problem in the same number of dimensions, with one-
body, two-body, three-body, etc. potentials.

For the Laughlin wavefunction, we have |Ψq|2 = exp(−βΦ), with β = 1/q and

Φ(r1, . . . , rN) = −2q2
∑

i>j

ln |ri − rj |+
q

2ℓ2

∑

i

r2i . (3.105)

This is the classical two-dimensional one-component plasma, or 2DOCP, consisting of N point
charges, each of strength θ = q

√
2, interacting by the potential v(r) = θ2φ(r) = 2q2φ(r),

with φ(r) = − ln r, and subject to the background potential u(r) = qr2/2ℓ2, all at temperature
k

B
T = q. Note that ∇2φ(r) = −2π δ(r), hence ∇2u(r) = 2q/ℓ2, corresponding to the interaction

of a charge q
√
2 with a uniform background of charge density ρ = −1/

√
2πℓ2. To minimize

the Coulomb energy, the N point charges form a disk of number density n = 1/2πqℓ2, so that
total charge neutrality holds, i.e. nq

√
2 + ρ = 0. The radius R of this disk is then given by the

condition πR2n = N , hence R =
√
2qN ℓ.

3.3.3 The 2DOCP

Properties of the 2DOCP are discussed in a review article by J. M. Caillol et al.22 To fix the
problem precisely, consider a classical system of particles each of charge e, interacting via a
potential v(r) = −e2 ln(r/d), where d is a length scale. Clearly d is irrelevant as it enters the
energy additively and thus sets the location of the zero of energy. Consider N such particles in
a disk of radius R. The mean particle number density is thus n = N/πR2; then a ≡ (πn)−1/2 is
called the ion disk radius. Let the disk be filled with a uniform neutralizing background of charge
density (−en). Taking into account particle-particle, particle-background, and background-
background interactions, the energy is then

H(r1, . . . , rN) = −e2
N∑

j<k

ln

( |rj − rk|
d

)
+ 1

2
Ne2

N∑

i=1

(
ri
R

)2
+ 1

2
N2e2

[
ln

(
R

d

)
− 3

4

]
(3.106)

The partition function is

Z =

R∫
d2r1 · · ·

R∫
d2rN e−βH(r1,...,rN ) ≡ e−Nβf , (3.107)

where f = −N−1kBT lnZ is the free energy per particle. Defining xi ≡ ri/R ,

βf = (1− 1
4
Γ) ln(πn)− 1

2
Γ ln d− 3

8
N Γ + 1

4
Γ lnN − 1

N
lnW (N,Γ) , (3.108)

22J. M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, J. Stat. Phys. 28, 325 (1982).
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where Γ ≡ βe2 is the dimensionless plasma parameter and

W (N,Γ) =

1∫
d2x1 · · ·

1∫
d2xN

N∏

j<k

|xj − xk|Γ
N∏

i=1

e−NΓx2
i /2 . (3.109)

From the thermodynamic relation

df
∣∣
N
= −s dT + pn−2dn , (3.110)

we have the equation of state
p = (1− 1

4
Γ)nkBT . (3.111)

The isothermal compressibility is then κT = n−1(∂n/∂p)T = 1/p , and we define the dimension-
less isothermal compressibility χT ≡ nk

B
T κT = (1− 1

4
Γ)−1.

The equilibrium properties of the plasma are dependent solely on Γ. When Γ is small, the
plasma is said to be weakly coupled. For Γ > Γc ≈ 140 , the 2DOCP crystallizes. Much of the
physics of the 2DOCP is reflected in the behavior of the pair distribution function,

n g(r) =
1

N

〈 N∑

i 6=j

δ(r + rj − ri)

〉
(3.112)

and the associated pair correlation function h(r) = g(r) − 1. The static structure factor, for
example, is given by

ŝ(k) = 1 + n

∫
d2r h(r) e−ik·r = 1 + n ĥ(k) . (3.113)

The Fourier transform of the direct correlation function, ĉ(k), is defined by

ĉ(k) ≡ ĥ(k)

1 + n ĥ(k)
⇐⇒ ĥ(k) =

ĉ(k)

1− n ĉ(k)
, (3.114)

which is equivalent to the relation

h(r) = c(r) + n

∫
d3r′ h(r − r′) c(r′) . (3.115)

This is known as the Ornstein-Zernike equation. Physically it says that the correlation between
a particle at position 0 and a particle at position r can be written as a sum of the direct correlator
c(r) plus an term arising from the indirect effect of the particle at 0 with a third particle at r′

which affects that at r both directly and indirectly.

The asymptotic long wavelength behavior of ĉ(k) is believed to correspond to a weak cou-
pling limit, in which case

ĉ(k) −→ −βv̂(k) = −Q2/nk2 , (3.116)
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Figure 3.6: Pair distribution function g(r) for the 2DOCP. Monte Carlo results from Figs. 1 and
2 of Caillol et al. (1982).

where Q = (2πnβe2)1/2 = (2πnΓ)1/2 is the Debye wavevector. Separating out this singular
term, one writes ĉ(k) = −Q2/nk2 + ĉR(k) where ĉR(k) = ĉR(0) +O(k2). The regular part ĉR(k)
is related to the dimensionless isothermal compressibility:

lim
k→0

ĉR(k) = ĉR(0) = n−1(1− χ−1
T ) . (3.117)

The above results entail the expansion

n ĥ(k) = −1 +
k2

Q2
+

k4

χTQ
4
+O(k6) . (3.118)

In real space, then, we have the following sum rules on moments of the pair correlation func-
tion:

n

∫
d2r h(r) = n ĥ(k)

∣∣
k=0

= −1 , (3.119)

known as the charge neutrality sum rule,

n

∫
d2r r2 h(r) = −n∇2

k ĥ(k)
∣∣
k=0

= − 4

Q2
, (3.120)

known as the perfect screening sum rule, and

n

∫
d2r r4 h(r) = n (∇2

k)
2
ĥ(k)

∣∣
k=0

= − 64

χTQ
4

, (3.121)

known as the compressibility sum rule.

From Monte Carlo studies, we know that the 2DOCP crystallizes at Γ ≃ 140. At this point,
the structure factor s(k) exhibits Bragg peaks. Since the Coulomb potential is long-ranged,
the system can evade the usual Hohenberg-Mermin-Wagner restrictions which forbid broken
continuous translational symmetry at finite temperature in d ≤ 2 dimensions.
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3.3.4 Laughlin vs. Wigner crystal

The correspondence between the Laughlin wavefunction |Ψq|2 = exp(−βH) and the 2DOCP
Hamiltonian H is then:

β =
1

q
, e2 = 2q2 Γ = 2q , n =

1

2πqℓ2
. (3.122)

The sum rules provide information on the long-wavelength behavior of the structure factor in
the Laughlin states, viz.

ŝ(k) = 1
2
k2ℓ2 + 1

8
(q − 1) k4ℓ4 +O(k6) . (3.123)

Crystallization of the 2DOCP (into a triangular structure) at Γ = 140 means that the Laughlin
wavefunction has triangular crystalline order for q > 70. However, recall that the Laughlin
state is an Ansatz wavefunction. It isn’t even a proper variational state, since the only free
parameter q is discrete and is fixed by the filling, with ν = q−1.

The actual 2DEG in the LLL crystallizes well before the filling fraction gets as low as 1
70

. Upon
taking the thermodynamic limit and properly including the effects of the uniform neutralizing
background, the energy per particle is given by

u =
U

N
=
n

2

∫
d2r v(r)

[
g(r)− 1

]
, (3.124)

where v(r) = e2/ǫr . The pair distribution function in the Laughlin states has been evaluated
using the so-called hypernetted chain approximation (Laughlin, 1983) and by Monte Carlo
methods23. At ν = 1

3
, these calculations yield energies uHNC

L (q = 3) = −0.4156 ± 0.0012 and
uMC

L (q = 3) = −0.410 ± 0.001, respectively (units of e2/ǫℓ). Exact diagonalization studies by
Haldane and Rezayi24 extrapolated finite size results on the sphere for N ≤ 7 to N = ∞ and
obtained uED

L (q = 3) = −0.415 ± 0.005. In contrast, the energy for the Wigner crystal, as com-
puted by Yoshioka, Halperin, and Lee, or by Maki and Zotos, is about uWC(ν = 1

3
) ≈ −0.38,

which is much higher. In order to give the Wigner crystal a fighting chance, Lam and Girvin25

investigated the correlated Wigner crystal wavefunction,

ΨCWC(r1, . . . , rN) = exp

(
1

2

∑

i,j

(zi − Ri)Bij (zj − Rj)

)∏

l

ϕR
l
(rl) , (3.125)

where the prefactor is a holomorphic function in {z1, . . . , zN} and Bij = B(Ri − Rj) is a cor-
relating matrix. As the effects of antisymmetrization below ν = 0.4 were found by Maki and

23See D. Levesque, J. J. Weis, and A. H. MacDonald, Phys. Rev. B 30, 1056 (1984) and R. Morf and B. I. Halperin,
Phys. Rev. B 32, 2221 (1986).

24F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 54, 237 (1985).
25P. K. Lam and S. M. Girvin, Phys. Rev. 30, 473 (1984).
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Figure 3.7: Pair correlation function (a,b) and structure factor (c) for q = 3 and q = 5 Laughlin
states. From S. M. Girvin, A. M. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481
(1986). Panel (d) shows a comparison of the (interpolated Laughlin state energy with that of
the correlated Wigner crystal, indicating a transition to the WC state at ν−1 ≈ 6.5. From P. K.
Lam and S. M. Girvin, Phys. Rev. 30, 473 (1984).

Zotos to be insignificant, no antisymmetrization was imposed. The matrix Bij was then de-
termined variationally by minimizing the Coulomb energy in this state. Within the harmonic

approximation, the lattice Fourier transform B̂(k) =
∑

RB(R) e−ik·R is given by

B̂(k) =
ωL(k)− ωT(k)

ωL(k) + ωT(k)
, (3.126)

where ωL,T(k) are the longitudinal and transverse magnetophonon frequencies. Such an opti-

mized WC state significantly lowers the correlation energy, to u
CWC

(ν = 1
3
) = −0.3948 ± 0.0005,

which is still about 2.7% higher than that of the q = 3 Laughlin state. The Laughlin state is
remarkably robust in terms of its Coulomb energy with respect to variational tweaking, and
the extrapolated differences between the Coulomb energy in the Laughlin state and that from
exact diagonalization differ by about 0.05%26.

26See M. Fremling, J. Fulsebakke, N. Moran, and J. K. Slingerland, Phys. Rev. B, 93, 235149 (2016).
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3.3.5 Haldane pseudopotentials

It was realized by Haldane27 and by Trugman and Kivelson28 that the Laughlin state Ψq is the
exact ground state for sufficiently short-ranged interaction potentials29. Whenever the interac-
tion potential v(r) is central, i.e. a function of r = |r| alone, its Fourier transform,

v̂(k) =

∫
d2r v(r) e−ik·r = 2π

∞∫

0

dr r v(r)J0(kr) , (3.127)

may be expanded as a power series in k2, i.e. v̂(k) =
∑∞

j=0Aj (−k2ℓ2)j . Thus in real space, we
may write v(r) as an expansion in powers of the Laplacian acting on a delta-function:

v(r) =
∞∑

j=0

Aj (ℓ
2∇2)j δ(r) . (3.128)

For a totally antisymmetric wavefunction Ψ(r1, . . . , rN), the j = 0 term will not contribute to
the total energy.

The interaction energy per particle is given by30

Eint

N
= 〈Ψ|Hint|Ψ〉 = 1

2
n

∫
d2r v(r) g(r) = 1

2
n

∞∑

j=0

Aj (ℓ
2∇2)jg(r)

∣∣∣
r=0

, (3.129)

where g(r) is the pair distribution function. In the Laughlin state Ψq , the r → 0 behavior of
g(r) is given by

g(r) = cq (r/ℓ)
2q + cq+1 (r/ℓ)

2(q+1) + . . . , (3.130)

where the {cj} are constant coefficients. Thus all terms in the potential with coefficients Aj with
j < q will make no contribution to Eint. Suppose now that A1,2 > 0 but A3 = A4 = · · · = 0 . If a

wavefunction Ψ = P (Z)
∏

j e
−|zj |2/4ℓ2 is to satisfy 〈Ψ|Hint|Ψ〉 = 0, it is clear that it must vanish

at least as fast as (zi − zj)
3 as the pair separation tends to zero, and hence P (Z) must contain at

least 3 factors of V (Z), where V (Z) is the Vandermonde determinant. On the other hand, for
homogeneous states, the filling factor is given by

ν =
N(N − 1)

2J
, (3.131)

27F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
28S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985).
29On the sphere, the Laughlin state is nondegenerate. On the torus, the degeneracy is q, and on a Riemann

surface of genus g, the degeneracy is qg. See X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990). On the plane,
with a confining potential, there will be a continuum of gapless edge excitations.

30This energy includes only particle-particle interactions and does not include the effects of any neutralizing
background.
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where J is the total angular momentum. Since deg(V ) = 1
2
N(N − 1), we conclude that the

holomorphic part of Ψ is P (Z) = C
[
V (Z)

]q
, where C is a constant. Thus the Laughlin state

with q = 3 is the only homogeneous state at ν = 1
3

which has zero energy. Similarly, when
A1,2,3,4 > 0 and A5 = A6 = · · · = 0, the q = 5 Laughlin state is the sole ν = 1

5
state which lies at

zero energy31.

There is a convenient parameterization (Haldane 1983) of the pair interaction in terms of
relative coordinate ‘pseudopotentials’. Writing

v(ri − rj) =

∫
d2k

(2π)2
eik·(ri−rj) , (3.132)

and invoking the separation into cyclotron and guiding center ladder operators32 z =
√
2 ℓ(a+

b†), we have that the LLL-projected interaction is

Π0 v(ri − rj) Π0 =

∫
d2k

(2π)2
v̂(k) exp

[
iℓk√
2
(bi − bj)

]
exp

[
iℓk̄√
2
(b†i − b†j)

]

=

∞∑

n=0

1

(n!)2

∫
d2k

(2π)2
v̂(k) (−k2ℓ2)n (J−

ij )
n (J+

ij )
n .

(3.133)

The operators J±
ij raise and lower the relative angular momentum of the pair (ij):

J+
ij = 1√

2
(b†i − b†j) , J−

ij = 1√
2
(bi − bj) , (3.134)

with
Jij = Π0

(
1
2
(ri − rj)× (pi − pj) · ẑ

)
Π0 = J+

ij J
−
ij . (3.135)

The relative angular momentum raising and lowering operators satisfy the algebra
[
J−
ij , J

+
ij

]
= 1

2

(
δik + δjl − δil − δjk

)
. (3.136)

If we define the projector Ps(ij) to be the projector of the pair (ij) onto the relative angular
momentum Jij = s subspace, then

Π0 v(ri − rj) Π0 =
∞∑

s=0

Vs Ps(ij)

Vs =

∫
d2k

(2π)2
v̂(k)Ls(k

2ℓ2) e−k2ℓ2 ,

(3.137)

where Ls(x) is the Laguerre polynomial. This provides us with another way to expand the real
space potential, i.e. in terms of the pseudopotential amplitudes {Vs}:

v(r) = 4πℓ2
∞∑

s=0

Vs Ls(−ℓ2∇2) δ(r) . (3.138)

31Other than center-of-mass degeneracies on Riemann surfaces of genus g > 0.
32Recall we have been working in the symmetric gauge since §1.3.7.
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which may be compared with Eqn. 3.128. One then finds

Aj =
4πℓ2

j!

∞∑

s=j

(
s

s− j

)
Vs . (3.139)

If Vs = 0 for all s > s0, then the power series expansion of Eqn. 3.128 is simply a rearrangement
of the pseudopotential expansion, up to the same leading order in powers of ∇2. Again, only
odd pseudopotentials contribute to the energy for a fermionic system.

For the Coulomb interaction v(r) = e2/ǫr, one finds

V COUL

s =
1

4s

(
2s

s

)
·
√
πe2

2ǫℓ
. (3.140)

As s → ∞, we have Vs ≃ e2/2
√
sǫℓ ∝ s−1/2, corresponding to the fact that the single particle

state with angular momentum s encloses an area πr2 = 2πsℓ2. Thus V COUL

1 =
√
πe2/4ǫℓ and

V COUL

3 = 5
8
V COUL

1 , V COUL

5 = 63
238

V COUL

1 , etc. If we define

Vs(λ) = (1− λ)V COUL

1 δs,1 + λ V COUL

s , (3.141)

which interpolates between the truncated pseudopotential Vs(0) = V COUL

1 δs,1 at λ = 0 and the
full Coulomb Vs(1) = V COUL

s at λ = 1. One can then ask whether the gap at λ = 0 remains
finite for all λ ∈ [0, 1], in which case no phase boundaries are crossed as one evolves from the
truncated pure V1 model to the full Coulomb interaction. Alternatively, Haldane33 considered
the potential given by

Vs =
(
V1 − V COUL

1

)
δs,1 + V COUL

s (3.142)

as a function of V1, which takes the Coulomb interaction and replaces the s = 1 pseudopotential
component V COUL

1 with the parameter V1. Results for N = 6 particles in a spherical geometry
are shown in Fig. 3.8. As the V1 pseudopotential is decreased from its Coulomb value of
V COUL

1 = 0.4781 on the sphere34, the bulk gap is found to collapse at V3 ≈ 0.37, heralding a
second order phase transition to a compressible phase.

To understand better the spectrum of relative angular momentum in the Laughlin states,
define the complex center-of-mass and relative coordinates for a select pair (i = 1, j = 2) as
W ≡ 1

2
(z1 + z2) and w ≡ z2 − z1 , so that z1,2 = W ∓ 1

2
w . Then

V (z1, . . . , zN ) = w

N∏

j=3

[
(W − zj)

2 − 1
4
w2
]
V (z3, . . . , zN) . (3.143)

The spectrum of relative angular momentum states for the pair (1, 2) can be gleaned by identi-
fying terms homogeneous in the relative coordinate w, i.e. terms proportional to wl for some l.

33F. D. M. Haldane in The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds. (Springer, 1987).
34On the sphere, the Coulomb interaction is proportional to the inverse chord length, yielding V COUL

1 = 0.4781
and V COUL

3 = 0.3092, rather than V COUL

1 = 0.4431 and V COUL

3 = 0.2769 as obtained on the plane.
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Figure 3.8: Effect of varying the V1 pseudopotential on low-lying energy states. Excited energy
levels are labeled by their total angular momentum L on the sphere (N = 6). The Laughlin-
Jastrow (L-J) state has L = 0. The overlap of the ground state with the Laughlin state is also
shown. Arrows on the V1 axis indicate values of V COUL

1 and V COUL

3 (units of e2/ǫℓ). For V1 > 0.37
the system is gapped and incompressible. Below this value the system is gapless and hence
compressible. From Haldane (1987).

Clearly we have contributions from l ∈ {1, 3, 5, . . . , 2N − 3}. Note that only odd l terms enter
the spectrum. When we raise V (Z) to the power q, we obtain

l ∈
{
q, q + 2, q + 4 , . . . , 2q(N − 2) + 1

}
. (3.144)

Thus, in the Laughlin state Ψq, the spectrum of relative coordinate angular momenta is all odd
integers l starting at lmin = q, and terminating at the cutoff lmax = 2q(N − 1) + 1.

Given an arbitrary many-body state, the pair distribution function g(r) may be expanded in
powers of r2 for small r, viz.

g(r) =
∞∑

p=0

cp (r
2/ℓ2)p . (3.145)

If the holomorphic factor P (Z) contains q factors of the Vandermonde determinant V (Z), then
cp = 0 for p = 0, . . . , q − 1 . Exact diagonalization studies by Yoshioka35 for small fermionic
(N ≤ 8) and bosonic (N ≤ 7) systems in a toroidal geometry examined the behavior of the
coefficients cp as a function of filling fraction. Results are shown in Fig. 3.9. One sees that
for fermionic states with ν < 1

3
, the coefficients c1,2 are both exceedingly small, suggesting

that the cube of the Vandermonde determinant approximately divides the holomorphic part

35D. Yoshioka, Phys. Rev. B 29, 6822 (1984).
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Figure 3.9: Pair distribution function coefficients in exact finite N ground states versus filling
fraction. (a) Coefficients c1 (circles) and c2 (squares) for fermionic states. (b) Coefficients c3
(circles) and c4 (squares) for fermionic states. (c) Coefficients c0 (circles) and c1 (squares) for
bosonic states. (d) Coefficients c2 (circles) and c3 (squares) for bosonic states. From D. Yoshioka,
Phys. Rev. B 29, 6822 (1984).

P (Z) of the exact wavefunction. Similar results are found vis-a-vis c3,4 when ν < 1
5
. Yoshioka’s

numerics establish that for Coulomb systems with ν ≤ q−1, for both bosons and fermions, the
holomorphic part P (Z) of the ground state wavefunction is almost perfectly divided by the qth

power of the Vandermonde determinant.

3.3.6 Quasiparticles

Laughlin also proposed wavefunctions for localized charged excitations, called quasiholes and
quasielectrons. The quasihole wavefunctions are the easiest to understand and are of the form

ΨQH

q (r1, . . . , rN ; ξ) =

N∏

l=1

(zl − ξ)

N∏

j>k

(zj − zk)
q

N∏

i=1

exp(−ziz̄i/4ℓ2) , (3.146)

where ξ is the complexified quasihole position ξ = ξx + iξy . Laughlin argues that such a state
should be gauge-equivalent to an eigenstate of a many-electron system in which Ψq is a ground
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state, since it results from adiabatic flux threading by φ0 = hc/e parallel to the applied field at the
point r = ξ. The associated plasma Hamiltonian is then

Φq(r1, . . . , rN ; ξ) = −m ln |Ψq|2 = −2q2
∑

j>k

ln |rj − rk|+
q

2ℓ2

∑

i

r2i − 2q
∑

l

ln |rl − ξ| . (3.147)

The last term corresponds to a charge θ∗ =
√
2 object at ξ interacting via the logarithmic po-

tential v(r) = −θθ∗ ln |ri − ξ| with charge e∗ = q
√
2 particles at each ri . Since any charged

impurities are completely screened in the plasma phase of the 2DOCP, there will be a deficit of
θ∗/θ = q−1 particles localized about the position ξ on the scale of the Debye length, which is

λD = 1/Q = a/
√
2Γ where a = (πn)−1/2 =

√
2q ℓ is the ion disk radius of the 2DOCP and Γ = 2q

is the plasma parameter. Thus λD = ℓ/
√
2 is the screening length.

The quasielectron wavefunctions are somewhat more complicated. Adiabatically inserting
flux φ0 parallel to the applied field has the effect of |m 〉 → |m+ 1 〉 on the single particle
angular momentum basis states with origin at ξ. If we adiabatically insert flux φ0 antiparallel
to the applied field, it stands to reason that |m 〉 → |m− 1 〉, in which case whither |m = 0 〉?
Laughlin’s proposed quasielectron wavefunction is given by

ΨQE

q (r1, . . . , rN ; η) =
N∏

i=1

exp(−ziz̄i/4ℓ2)
N∏

l=1

(
2ℓ2

∂

∂zl
− η̄

) N∏

j>k

(zj − zk)
q , (3.148)

where η̄ = ηx − iηy . This form is inspired by the Girvin-Jach substitution z̄ → 2ℓ2∂, and results
in a localized defect of increased number density q−1 within λD of the quasielectron at η. Note
that dividing Ψq by the product

∏
j(zj − η) results in a nonanalyticity and the resulting state

is no longer in the LLL. Morf and Halperin (1986) calculated the quasihole and quasielectron
energies at ν = 1

3
via Monte Carlo, obtaining

ε̃QH

MH = (0.0268± 0.0033)
e2

ǫℓ
, ε̃QP

MH = (0.073± 0.008)
e2

ǫℓ
. (3.149)

It should be stressed that these are so-called ”proper quasiparticle energies”, representing the
change in energy of the system at fixed N and R when the total magnetic flux is changed by a
single Dirac quantum. The gap Eg ≡ ε̃QH + ε̃QP = (0.099± 0.009) e2/ǫℓ compares well with com-
putations of Haldane and Rezayi (1985), who obtained Eg = (0.105± 0.005) e2/ǫℓ , extrapolated
from finite size exact diagonalization results.

A few words on how the sausage is made: Morf and Halperin worked with the Laughlin
ground state and quasihole/quasielectron wavefunctions, evaluating the Coulomb energy for
the system on the plane. Recall that the radiusR of a Laughlin droplet at filling ν = q−1 is given
by R =

√
2qN ℓ . When a quasihole is created at the origin at fixed N , a small bubble is blown

in the droplet, as each single particle angular momentum state is effectively shifted from |m 〉
to |m+ 1 〉 (with some consequential changes in normalization36), hence the outer radius of the

36Note that since ϕm(r) = (2πℓ2m!)−1/2(z/
√
2ℓ)m exp(−|z|2/4ℓ2) that z ϕm(r) =

√
2(m+ 1)ℓ ϕm+1(r), and the

j-dependence means that this multiplication is not precisely equivalent to adiabatically increasing the j quantum
number.
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droplet increases slightly. Since the largest single particle angular momentum is m = q(N − 1),
in the state with a single quasihole at the origin the outer droplet radius shifts according to

R =
√

2q(N − 1) ℓ → R =
√

2[q(N − 1) + 1] ℓ . (3.150)

In order to keep the droplet radius fixed at the original value of R =
√

2q(N − 1), Morf and
Halperin adjust the magnetic field, increasing it by a factor 1+[q(N−1)]−1, which has the effect
of decreasing ℓ by just the right amount to prevent the outer radius of the droplet from shifting.
Similarly for the quasielectron states, the field is reduced by a factor 1− [q(N − 1)]−1.

MacDonald and Girvin37 proposed the trial quasiparticle states

|ΨQH

q 〉 = Û |Ψq 〉
|ΨQE

q 〉 = (1− ν)−1/2 D̂ |Ψq 〉 ,
(3.151)

where Û |m 〉 = |m+ 1 〉 and D̂ |m 〉 = (1 − δm,0) |m− 1 〉 raise and lower the single parti-
cle angular momentum quantum number of each electron, respectively38. Their quasiparticle
energies were somewhat larger than those of Morf and Halperin:

ε̃QH

GM = (0.0287± 0.001)
e2

ǫℓ
, ε̃QP

GM = (0.085± 0.002)
e2

ǫℓ
. (3.152)

The energy gap Eg is related to the discontinuity in the chemical potential,

∆µ =
∂E

∂N

∣∣∣∣
ν+

− ∂E

∂N

∣∣∣∣
ν−

=
ε̃QE + ε̃QH

|e∗/e| = qEg , (3.153)

where e∗ = ±e/q. A pristine system should exhibit thermally activated resistivity according to
ρxx(T ) ∝ exp(−Eg/2kBT ).

Adiabatic calculation of fractional quasiparticle charge and statistics

Consider a Hamiltonian H(λ) where λ = {λ1, . . . , λK} are a set of parameters. Recall the defi-
nition of the geometric (Berry) connection

A(λ) = i 〈Ψ (λ) |∇λ |Ψ (λ) 〉 (3.154)

and the geometric phase

γ(C) =
∮

C

dλ ·A(λ) . (3.155)

37A. H. MacDonald and S. M. Girvin, Phys. Rev. B 33, 4414 (1986).
38The (1− ν)−1/2 factor in the quasielectron wavefunction is necessary to preserve normalization.
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Recall also the Laughlin quasihole and quasielectron wavefunctions,

ΨQH

q (r1, . . . , rN ; ξ) = M(ξ)

N∏

l=1

(zl − ξ)

N∏

j>k

(zj − zk)
q

N∏

i=1

exp
(
−ziz̄i/4ℓ2

)

ΨQE

q (r1, . . . , rN ; η) = N (η)
N∏

i=1

exp
(
−ziz̄i/4ℓ2

) N∏

l=1

(
2ℓ2

∂

∂zl
− η̄

) N∏

j>k

(zj − zk)
q ,

(3.156)

where M(ξ) and N (η) are normalization constants, which without loss of generality may be
assumed to be real functions of their arguments. Treating the quasihole and quasielectron
coordinates as adiabatic parameters, we may compute the geometric phase accrued as they
each traverse a closed loop in two-dimensional space. Taking the differential of the quasihole
wavefunction, we have

d ΨQH(ξ) =
[
d lnM(ξ) +

N∑

i=1

d ln(zi − ξ)
]
ΨQH(ξ) , (3.157)

where for notational simplicity we write ΨQH

q (r1, . . . , rN ; ξ) ≡ ΨQH[ξ]. With λ = λ(t) along the
path C, we compute the differential dγ = γ̇ dt, and find

dγQH = i d lnM(ξ) + i 〈ΨQH(ξ) |
N∑

i=1

d ln(zi − ξ) |ΨQH(ξ) 〉 . (3.158)

The number density in the quasihole state is

nQH

ξ (r) = 〈ΨQH(ξ) |
N∑

i=1

δ(r − ri) |ΨQH(ξ) 〉 . (3.159)

Since the normalization M(ξ) is a real single-valued function of its argument, it cannot con-
tribute to the integral for γ(C), since it is the same at the initial and end points of any closed
path. We now write nQH

ξ (r) = n+δnξ(r), where n = ν/2πℓ2 is the density in the Laughlin ground
state with ν = q−1 and δnξ(r) is concentrated about the location ξ of the quasihole defect. From
the plasma analogy, we expect that in the thermodynamic limit that δn(ξ) should be a function
of |r − ξ| decaying on the scale of the Debye screening length ℓ/

√
2 . Therefore we have

γQH(C) = i

∮

|ξ|=R

dξ

∫
d2r

n + δnQH

ξ (r)

ξ − z
(3.160)

Integrating ξ(t) over a circle of radius R, we have
∮

|ξ|=R

dξ

ξ − z
= 2πiΘ

(
R− |x|

)
, (3.161)
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where Θ(x) is a step function. Thus the background density term in nQH

ξ (r) yields a contribution
to the total Berry phase of

γQH

0 (C) = i

∫
d2r 2πi nΘ(R− r) = −2π 〈N〉C = −2πν Φ(C)/φ0 , (3.162)

where Φ(C) = πR2B = φ0R
2/2ℓ2 is the total magnetic flux enclosed by the loop C. This is

consistent with a Bohm-Aharonov phase of a charge e∗
QH

= νe quasihole. The δnQH

ξ (r) term

integrates to zero if δnQH

ξ (r) = δn
(
|r − ξ|

)
is a rotationally symmetric function in the difference

r − ξ. This will be exponentially accurate if ξ lies in the bulk of the Laughlin droplet, far from
the edge. Thus the full Berry phase is γQH(C) = −2πν Φ(C)/φ0 .

To determine the statistics of the quasihole, we consider the state with two quasiholes:

ΨQH(ξ, ξ′) = M(ξ, ξ′)

N∏

l=1

(zl − ξ)(zl − ξ′)

N∏

j>k

(zj − zk)
q

N∏

i=1

exp
(
−ziz̄i/4ℓ2

)
. (3.163)

We now carry out the same adiabatic calculation of the Berry phase by taking ξ around a cir-
cle of radius R, with ξ′ held fixed. If ξ′ lies outside the circle |ξ| = R by a distance d which
is greater than just a few magnetic lengths, then the above analysis is unchanged, and the
phase is γQH(C) = −2πν Φ(C)/φ0 . If, on the other hand, ξ′ lies inside the loop, then there is a
deficit in 〈N〉C of (−ν), and the accrued phase is γ′(C) = γQH(C) + 2πν , which says that when
one quasihole winds around another, the wavefunction accumulates an extra statistical phase
∆γ(C) = 2πν . For exchange, one need only traverse half a circle, i.e. the relative angle of ξ and
ξ′ changes by π, leading to the statistical angle θ = πν for exchange of quasiholes. At ν = 1,
the statistical angle is θ

QH
= π , corresponding to Fermi statistics, but for ν = q−1, the statistical

angle is θ
QH

= π/q , corresponding to fractional statistics.

Fractional statistics for particles in d = 2 was first discussed by Leinaas and Myrheim39. An
interpretation of particles obeying fractional statistics in terms of charge-flux composites was
first discussed by Wilczek40, who called such particles anyons, because they could exhibit any
type of exchange statistics. It was Halperin who first suggested that FQH quasiparticles obey
fractional statistics, and argued that condensation of gases of these anyonic quasiparticles gave
rise to a hierarchy of new FQH states at fillings ν = p/q with p 6= 1 and thus outside the
principal Laughlin sequence of states. The adiabatic calculation of quasiparticle charge was
first carried out by Arovas, Schrieffer, and Wilczek41 (ASW).

The adiabatic calculation for quasielectrons is a tricky affair. The adiabatic argument of ASW
analyzed

dγQE = i d lnN (η) + i 〈ΨQE(η) | e−G(Z)

(
N∑

i=1

d ln
(
2ℓ2∂i − η̄

)
)
eG(Z) |ΨQE(η) 〉 , (3.164)

39J. M. Leinaas and J. Myrheim, Il Nuovo Cimento 37, 1, 1977.
40F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).
41D. P. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).
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where G(Z) = 1
4ℓ2

∑N
j=1 |zj |2, appealing to the Girvin-Jach replacement 2ℓ2∂i ↔ z̄i. This would

appear to give

γQE(C) = i

∮

|η|=R

dη̄

∫
d2r

n+ δnQE

η (r)

η̄ − z̄
. (3.165)

The η̄ integral is taken clockwise around the path C, hence this calculation yields the opposite
value of the charge, i.e. e∗

QE
= −νe for the quasielectron. Since the quasielectron thus represents

an increase in electron density at r = η, there are two cancelling factors of (−1) in the calcu-
lation, and the statistical angle for quasielectrons is also θ

QE
= π/q . Numerical calculations

using Laughlin wavefunctions at ν = 1
3

for up to 200 particles were effected by Kjønsberg and
Myrheim42, who found good convergence for the adiabatic quasihole charge and statistics, but
surprising poor convergence for the quasielectron values (especially the quasielectron statisti-
cal angle). These authors also found that boundary effects complicate the glib application of
the Girvin-Jach replacement in the ASW calculations for the quasielectron.

The adiabatic method for determining effective quasiparticle charge and statistics is based
on the adiabatic effective Lagrangian prescription of Moody, Shapere, and Wilczek43, which
goes as follows. Let Ψ [λ] be an adiabatic wavefunction and λ the adiabatic parameters. The
adiabatic Lagrangian L(λ, λ̇) is then given by

L(λ, λ̇) = −
〈
Ψ [λ]

∣∣
{
i
d

dt
+H(λ)

}∣∣Ψ [λ]
〉
= −A(λ) · dλ

dt
−E(λ) , (3.166)

where A(λ) is the Berry connection from §1.7.1. In the Born-Oppenheimer approach, where the
nuclear coordinates {R1, . . . ,RNnuc

} are regarded as adiabatically varying so far as the electrons
are concerned, the total effective Lagrangian is

L
(
{Rj}, {Ṙj}

)
=

Nnuc∑

i=1

1
2
MṘ2

i −
Nnuc∑

i=1

Ai

(
{Rj}

)
· dRi

dt
− Eelec

(
{Rj}

)
−Enuc

(
{Rj}

)
. (3.167)

3.3.7 Excitons

An exciton is a neutral entity formed from a quasielectron-quasihole pair bound by their mu-
tually attractive Coulomb force. A callow description consists of charges ±e∗ = ±e/q located
at positions r1,2. One then defines center-of-mass and relative coordinates R = 1

2
(r1 + r2) and

r = r1− r2. Within the LLL, these objects have no inertial mass. If we assign each a mass m, the
Lagrangian of the exciton system in the symmetric gauge becomes

L = mṘ2 + 1
4
mṙ2 − e∗B

2c
ẑ · (R× ṙ + r × Ṙ)− v(r) , (3.168)

42H. Kjønsberg and J. Myrheim, Int. Jour. Mod. Phys. A 14, 537, 1999.
43J. Moody, A. Shapere, and F. Wilczek, Adiabatic Effective Lagrangians, in Geometric Phases in Physics F. Wilczek

and A. Shapere, eds. (World ScienRtific, 1989).
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where v(r) = −e∗2/ǫr is the Coulomb interaction44. Thus

P =
∂L

∂Ṙ
= 2mṘ+

e∗B

2c
ẑ × r

p =
∂L

∂ṙ
= 1

2
mṙ − e∗B

2c
ẑ ×R .

(3.169)

The equations of motion are

2mR̈+
e∗B

c
ẑ × ṙ = 0

1
2
mr̈ − e∗B

c
ẑ × Ṙ = −∇v(r) ,

(3.170)

and therefore
d

dt

(
2mṘ+

e∗B

c
ẑ × r

)
= 0 , (3.171)

Averaging over the fast cyclotron motion, we obtain

〈Ṙ 〉 = − c

e∗B
ẑ ×∇ṽ(r) (3.172)

where ṽ(r) is an averaged potential as in §1.1.4 and 〈ṙ〉 = 0. Thus, the component charges of
the exciton maintain their relative separation r and drift with speed cv′(r)/e∗B in a direction
perpendicular to r.

The Hamiltonian of the exciton system is

H =
1

4m

(
P − e∗B

2c
ẑ × r

)2
+

1

m

(
p− e∗B

2c
ẑ ×R

)2
+ v(r) . (3.173)

where P and p are the CM and relative coordinate canonical momenta, respectively. One may
now define

G =
√
2

(
p− e∗B

2c
ẑ ×R

)
, Λ =

1√
2

(
c

e∗B
ẑ × P + 1

2
r

)
(3.174)

and

g = P +
e∗B

2c
ẑ × r , λ = − c

e∗B
ẑ × p+ 1

2
R , (3.175)

which satisfy [
Gα , Λβ

]
= −i~δαβ ,

[
gα , λβ

]
= −i~δαβ , (3.176)

which no other nonzero commutators. Then

H =
G2

2m
+ 1

2
mω2

cΛ
2 + v

(√
2Λ +

c

e∗B
g × ẑ

)
, (3.177)

44If r <∼ ℓ, the LLL projection blunts the 1/r divergence of the Coulomb interaction, as computed in §3.2.2.
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where ωc = e∗B/mc. Thus
[
H, g ] = 0 and we may specify the momentum g. Note that

g = 2mṘ + e∗B
c

ẑ × r was classically conserved. Recall that in charged systems at most one
component of the total momentum could be fixed, e.g. in the Landau strip basis. Because the
exciton is neutral, there is a conserved momentum. If we project the G and Λ degrees of free-
dom onto their lowest harmonic oscillator state, then we have

〈
Λ
〉
= 0 and

〈
Λ2
〉
= ~c/e∗B ,

and for large values of g we have that the energy is

∆
EX
(g) = ε̃QE + ε̃QH + v

(
c

e∗B
g × ẑ

)
. (3.178)

Note c/e∗B = qℓ2/~ at filling ν = q−1.

3.3.8 Collective excitations

One might expect that there exist excited states of the FQH ground states corresponding to
long-wavelength density oscillations, i.e. phonons. Whenever the ground state Ψ is of uni-
form density, it can often be argued on general grounds that such excitations are adequately
represented by the Ansatze

|Φk 〉 =
1√
N

N∑

i=1

eik·ri |Ψ 〉 = N−1/2ρk |Ψ 〉 , (3.179)

where

ρk =

∫
d2r eik·r

n(r)︷ ︸︸ ︷
N∑

i=1

δ(r − ri) =
N∑

i=1

eik·ri (3.180)

is the Fourier transform of the density. For k → 0, the state |Φk 〉 will feature the same short-
ranged correlations which favor the ground state |Ψ 〉, yet 〈Ψ |Φk 〉 = (2π)2N−1/2n δ(k) which
vanishes for k 6= 0. Thus, |Φk 〉 serves as a trial state whose expected energy is a rigorous upper
bound to the exact lowest excitation energy at wavevector k.

The excitation energy of the state |Φk 〉 is given by

∆(k) =
〈Φk |H −E0 |Φk 〉

〈Φk |Φk 〉
=
f(k)

s(k)
, (3.181)

where

s(k) =
1

N
〈Ψ | ρ†k ρk |Ψ 〉

f(k) =
1

2N
〈Ψ |

[
ρ†k , [H, ρk]

]
|Ψ 〉 .

(3.182)
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The quantity s(k) is the static structure factor, and f(k) is known as the oscillator strength.
When the Hamiltonian is of the form

H =
N∑

i=1

p2
i

2m
+
∑

j<k

v(rj − rk) , (3.183)

the oscillator strength is given by

f(k) =
~2k2

2m
, (3.184)

independent of the potential v. This is known as the f -sum rule. It is also valid in a uniform
magnetic field in which case pi is replaced by πi = pi+

e
c
A(ri) for electrons. The static structure

factor is

s(k) = 1 + n

∫
d2r

[
g(r)− 1

]
e−ik·r + (2π)2n δ(k) . (3.185)

where the pair distribution function g(r) is defined in Eqn. 3.112. Note that the last term above
is not included in the definition of in Eqn. 3.113. This is because our definition in this section
includes the diagonal i = j term in what is the sum in Eqn. 3.112. This is a matter of convention
and has no consequences for the following developments.

This approximation was originally employed by Feynman in deducing the phonon-roton
spectrum of superfluid 4He. It is really quite remarkable, for it allows one to represent a collec-
tive mode excitation spectrum solely in terms of static correlations in the ground state. In 4He,
s(k) rises linearly45 at small k and peaks at k ≡ kR ∝ n1/2, where n is the ground state number
density. As a result, ∆(k) exhibits a local minimum at kR, called the roton minimum.

The dynamic structure factor (dsf) S(k, ω) is given by

S(k, ω) =
1

N

∑

j

∣∣〈Ψj | ρk |Ψ0 〉
∣∣2 δ(ω − ωj) (3.186)

where ~ωj ≡ Ej −E0 . Here |Ψ0 〉 is the ground state and the sum is over the entire many-body
spectrum of states |Ψj 〉. We then have

s(k) =

∞∫

0

dω S(k, ω)

f(k) =

∞∫

0

dω S(k, ω) ~ω ,

(3.187)

and he have that ∆(k) is the first moment of the dsf. The expression for ∆(k) is therefore exact
if S(k, ω) as a function of ω for each k has no variance, i.e. if S(k, ω) = S

SMA
(k, ω), where

S
SMA

(k, ω) = s(k) δ
(
ω − ~

−1∆
SMA

(k)
)

. (3.188)

45See the Appendix §3.7.
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Thus, ∆(k) is exact if a single mode saturates all the oscillator strength at wavevector k. For this
reason, this procedure is known as the single mode approximation or SMA. Precisely, the SMA
energy ∆

SMA
(k) is the exact first moment of the dynamic structure factor at wavevector k.

If one naı̈vely applies the SMA to the Laughlin ground state, a disappointing result is found.
Invoking the result of Eqn. 3.123 for k 6= 0, and with the f -sum rule fixing f(k), we obtain

∆
SMA

(k) = ~ωc

[
1− 1

4
(q − 1) k2ℓ2 +O(k4ℓ4)

]
, (3.189)

i.e. the excitation energy as k → 0 is independent of filling fraction and the interaction po-
tential, and lies outside the lowest Landau level, at energy ~ωc. The problem here is that the
density operator ρk creates a mixture of inter-LL and intra-LL excitations, and for small k al-
most all of the oscillator strength is saturated by the inter-LL piece. This is known as Kohn’s
theorem46, which says that the cyclotron resonance mode in systems without disorder saturates
the oscillator strength up to terms of order k2 as k → 0. For any interaction vij = v(ri − rj), the
N-electron Hamiltonian

H =

N∑

i=1

π2
i

2m∗ +
∑

i<j

v(ri − rj) (3.190)

satisfies [H,Πα ] = i~ωc ǫαβ Π
β, with Πα =

∑
i π

α
i . In particular, note that [V,Πα ] = 0. Thus,

Π = Πx + iΠy is an eigenoperator of H , satisfying [H,Π ] = ~ωcΠ . This means that if |Ψ0 〉 is
the exact ground state of H , with H |Ψ0 〉 = E0 |Ψ0 〉 , then defining

|Ψ1 〉 ≡
Π |Ψ0 〉

〈Ψ0 |Π†Π |Ψ0 〉1/2
, (3.191)

we have H |Ψ1 〉 = (E0 + ~ωc) |Ψ1 〉 , i.e. |Ψ1 〉 is an exact excited state with excitation energy ~ωc

above the ground state, independent of the interaction potential. This is the Kohn mode.

To get at the intra-LL collective mode, Girvin, MacDonald, and Platzman47 realized that what
was needed is to project the density operator ρk onto the LLL. This is easily accomplished:

ρ̄k = Π0

N∑

i=1

eikz̄i/2 eik̄zi/2 Π0 =

N∑

i=1

eikℓbi/
√
2 eik̄ℓb

†
i /

√
2 , (3.192)

where we work in the symmetric gauge and invoke Eqn. 1.48, which expresses the complex
coordinate z in terms of the cyclotron and guiding center ladder operators: z =

√
2 ℓ(a + b†).

Recall also the definition of the single particle magnetic translation operator,

t(d) = e(db−d̄b†)/
√
2 ℓ . (3.193)

46W. Kohn, Phys. Rev. 123, 142 (1961).
47S. M Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2381 (1986).
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Thus, we may write

ρ̄k = e−k2ℓ2/4

N∑

i=1

ti(ℓ
2ẑ × k) , (3.194)

where ti(d) is the MTO for the ith particle. The MTOs satisfy the relations

t(a) t(b) = eiẑ·a×b/2ℓ2 t(a+ b) = eiẑ·a×b/ℓ2 t(b) t(a) . (3.195)

Thus the projected density operators ρ̄k form a closed Lie algebra, viz.

[
ρ̄k , ρ̄k′

]
=
(
ek̄k

′ℓ2/2 − ekk̄
′ℓ2/2

)
ρ̄k+k′ , (3.196)

which is known as the Girvin-MacDonald-Platzman (GMP) algebra48. Another useful result
may be derived based on these relations:

Π0 ρk ρk′ Π0 = ρ̄k ρ̄k′ +
(
1− ek̄k

′ℓ2/2
)
ρ̄k+k′ (3.197)

The LLL-projected Hamiltonian, after dropping the constant 1
2
N~ωc cyclotron energy per par-

ticle, may be written

H̄ = Π0

∑

i<j

v(ri − rj) Π0 =
1

2

∫
d2k

(2π)2
v̂(k) Π0 ρ

†
k ρk Π0

=
1

2

∫
d2k

(2π)2
v̂(k)

(
ρ̄†k ρ̄k −Ne−k2ℓ2/2

)
.

(3.198)

Applying a projected version of the SMA, then, GMP defined the state

|Φk 〉 =
ρ̄k |Ψ0 〉

〈Ψ0 | ρ̄†k ρ̄k |Ψ0 〉
1/2

, (3.199)

where |Ψ0 〉 is the exact ground state. Treating |Ψk 〉 as a trial state, we have

∆
SMA

(k) = 〈Φk | H̄ − E0 |Φk 〉 =
f̄(k)

s̄(k)
, (3.200)

where

s(k) =
1

N
〈Ψ0 | ρ̄†k ρ̄k |Ψ0 〉

f(k) =
1

2N
〈Ψ0 |

[
ρ̄†k , [H, ρ̄k]

]
|Ψ0 〉 .

(3.201)

48Note that ρ†
k
= ρ

−k
and ρ̄†

k
= ρ̄

−k
, and also that ρ

0
= ρ̄

0
= 1.
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Figure 3.10: The theoretical and numerical dispersions for the magnetophonon-magnetoroton
branch. Upper panels: Theoretical predictions of the collective mode dispersion at ν = 1

3
,

1
5
, 1

7
, and 1

9
(units of e2/ǫℓ) from S. M. Girvin, A. M. MacDonald, and P. M. Platzman, Phys.

Rev. B 33, 2481 (1986). The arrows point to locations of the first reciprocal lattice vector of
the corresponding Wigner crystal. Lower panels: Numerical computations of the excitation
spectra for the Coulomb system at ν = 1

3
on the torus (left) and sphere (right), showing a clear

k → 0 gap and magnetoroton dip. From F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985) and
F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 54, 237 (1985).

are the projected structure factor and oscillator strength, which are given by

s̄(k) = s(k)− 1 + e−k2ℓ2/2

f̄(k) =

∫
d2p

(2π)2
v̂(p)

(
1− cos(ℓ2ẑ · k× p)

)[
s̄(k + p) eℓ

2k ·p − s̄(p) e−k2ℓ2/2
]

.
(3.202)

Appealing to Eqn. 3.123 and assuming this result, valid for the Laughlin states |Ψq 〉, is also
valid for the exact ground state |Ψ0 〉, we find

s̄(k) = 1
8
(q − 1) k4ℓ4 +O(k6ℓ6) . (3.203)
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Note that the projected structure factor vanishes as k4 in the long wavelength limit, in contrast
to s(k) itself, which vanishes as k2. Now consider the lengthy expression for f̄(k) in the limit
k → 0. The first factor in round brackets is proportional to k2, The second factor in round
brackets clearly vanishes when k = 0, but the linear term in k must vanish after integrating
over p whenever v(p) and s̄(p) are isotropic. Thus the second factor in round brackets also
vanishes as k4 in the long wavelength limit. We conclude that the projected SMA results in the
prediction of a gap in the collective mode spectrum at k = 0. Note that when q = 1, the projected
structure factor vanishes to all orders in k, because the SMA wavefunction itself vanishes (more
on this below)!

Both the structure factor s(k) and its projection s̄(k) exhibit a peak at the wavevector k∗ ≈ π/a

where πa2n = 1 with n = ν/2πℓ2. Thus k∗ℓ ≈ π
√
ν/2 . Although we don’t have much intu-

ition about the behavior of f̄(k), a natural guess is that the SMA energy ∆
SMA

(k) = f̄(k)/s̄(k)
should exhibit a dip in the vicinity of k∗. Indeed this is what was found by GMP, whose results
compared quite well with previous numerical studies of the excitation spectrum at ν = 1

3
by

Haldane and by Haldane and Rezayi (1985). The k ≈ 0 portion of this excitation branch is called
the magnetophonon, and the k ≈ k∗ portion the magnetoroton, using terminology borrowed from
the study of superfluid 4He. A comparison of theoretical predictions and numerical computa-
tions for this elementary excitation is shown in Fig. 3.10. Note that over a wide region centered
at k = k∗, the magnetoroton appears as a true elementary excitation, i.e. as an isolated mode
which contributes a δ-function to the dynamical structure factor S(k, ω). While other states at
k ≈ k∗ are present at higher energies, they have much weaker oscillator strength, whence the
accuracy of the SMA in this application.

GMP also examined the regime kℓ≫ 1, and found

lim
k→∞

∆
SMA

(k) =
2 ε

COH
(ν)

1− ν
, (3.204)

where ε
COH

(ν) = ε(ν)− νε(1) is the cohesive energy per particle49.

Note that while the SMA presumes that the underlying state |Ψ0 〉 is the exact ground state,
GMP used the Laughlin states |Ψq 〉 in its place. The agreement between the theoretical and
numerically computed elementary excitation dispersion ∆

SMA
(k) in the vicinity of its minimum

is due to the accurate short-distance correlations encoded in the Laughlin state, and to the fact
that the magnetoroton appears as a sharp collective mode in the excitation spectrum, and that
this feature is not destroyed as one proceeds from the truncated pseudopotential Hamiltonian,
for which the Laughlin state is exact, to the exact Coulomb ground state.

49The energy per particle is defined to be ε(ν) = E(ν)/N .
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Charge susceptibility in the SMA

Suppose we add a dynamical perturbation to the Hamiltonian which couples to the density,
described by

H̄ ′ = −
∫
d2r ρ̄(r)U(r, t) . (3.205)

Then from linear response theory,

〈
δρ̄(r, t)

〉
=

∞∫

−∞

dt′
∫
d2r′ χ(r − r′, t− t′)U(r′, t′) , (3.206)

where χ(r − r′, t− t′) is the dynamical susceptibility, whose Fourier transform is

χ(k, ω) =
∑

j

∣∣〈Ψ0 | ρ̄k | j 〉
∣∣2
{

1

ω + ωj + iǫ
− 1

ω − ωj + iǫ

}

=

∞∫

−∞

dν S(k, ν)
2ν

ν2 − (ω + iǫ)2
.

(3.207)

where ǫ = 0+ is a positive infinitesimal. Thus,

δ ˆ̄ρ(k, ω) = χ(k, ω) Û(k, ω) . (3.208)

Replacing S(k, ν) in Eqn. 3.207 with the SMA result s̄(k) δ
(
~ν −∆

SMA
(k)
)
, we obtain

χSMA(k, ω) =
2 s̄(k)∆

SMA
(k)

∆2
SMA

(k)− (~ω + iǫ)2
. (3.209)

For static properties, at zero frequency, then, we have

χ
SMA

(k) =
2s̄(k)

∆
SMA

(k)
=

2
[
s̄(k)

]2

f̄(k)
. (3.210)

Note that χ
SMA

(k) ∼ k4 in the limit k → 0. As an application, consider the response to an

impurity potential U(r). The resulting induced number density is 〈 δ ˆ̄ρ(k) 〉 = χ
SMA

(k) Û(k). The

total induced charge is obtained by taking the limit k → 0; this vanishes provided Û(k) does
not diverge as k−σ with σ ≥ 4, where perturbation theory surely fails. The change in Coulomb
energy of the electron system resulting from the perturbation is given by

δE
COUL

= −1
2
nRe

∫
d2k

(2π)2
v̂(−k) 〈 δ ˆ̄ρ(k) 〉 = −1

2
nRe

∫
d2k

(2π)2
χ

SMA
(k) v̂(−k) Û(k) (3.211)
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For a Coulomb impurity of charge +Ze, we have Û(k) = +Z v̂(k) and the energy shift within
the SMA is found to be

δE
COUL

= −1
2
Zn

∫
d2k

(2π)2
χ

SMA
(k)

(
2πe2

ǫk

)2
. (3.212)

GMP report that evaluation of the above formula yields δE
COUL

= −1.15Ze2/ǫℓ at ν = 1
3

(with
n = ν/2πℓ2 as always), in substantial agreement with numerical calculations from exact diago-
nalization studies50.

Orthogonality of SMA states of different wavevector

For the translationally invariant Bijl-Feynman wavefunction for 4He, the density operator ρk
changes the many-body momentum of the ground state. That is, if

T (d) =

N∏

i=1

t0,i(d) =

N∏

i=1

eipi·d/~ (3.213)

is the many-body translation operator, which implements ri → ri + d for all i ∈ {1, . . . , N},
then if the ground state is a state of definite momentum P0 , then T (d) |Ψ0 〉 = eiP0·d/~ |Ψ0 〉 for
any translation d. It is then easy to prove that the state |Ψk 〉 = ρk |Ψ0 〉 is a state of momentum
P1 = P0 + ~k. This establishes that 〈Ψk |Ψk′ 〉 = 0 for k 6= k′.

The situation is more complicated in the presence of a magnetic field, where the individual
MTOs satisfy the algebra of Eqn. 3.215. If we placeN electrons in a periodic (toroidal) geometry
spanned by vectors L1,2 such that ẑ · L1 × L2 = 2πℓ2Nφ , then the many-body MTOs,

T (d) =

N∏

i=1

ti(d) =

N∏

i=1

exp

(
d bi − d̄ b†i√

2 ℓ

)
(3.214)

satisfy the many-body version of Eqn. 3.215,

T (a) T (b) = eiN ẑ·a×b/2ℓ2 T (a+ b) = eiN ẑ·a×b/ℓ2 T (b) T (a) . (3.215)

Then T (L1) T (L2) = e2πiNN
φ T (L2) T (L1) = T (L2) T (L1) and therefore we can separately specify

for each a ∈ {1, 2} that T (La) |Ψ 〉 = eiΘa |Ψ 〉 for all states |Ψ 〉 in our many-body Hilbert space.
One can now check that

T (La) ti(ℓ
2ẑ × k) T †(La) = eik·La ti(ℓ

2ẑ × k) (3.216)

50F. C. Zhang, V. Z. Vulovic, Y. Guo, and S. Das Sarma, Phys. Rev. B 32, 6920 (1985) studied systems of up
to N = 4 electrons in a toroidal geometry. The loss of translational invariance due to the impurity makes larger
systems difficult to study numerically.
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and therefore provided eik·La = 1 all our SMA states lie in the same Hilbert space as specified
by the eigenvalues of the unitaries T (L1,2). This establishes the proper quantization of the
SMA wavevectors k in a periodic geometry, but it does not prove that SMA states of different
wavevector are orthogonal.

We will delve more deeply into the many-body MTO algebra below. For now, let us establish
the desired result by appealing to the thermodynamic limit for states on the plane. From Eqn.
3.197 we have, for any many-body state |Ψ 〉 purely within the LLL,

〈Ψ | ρ̄†k ρ̄k′ |Ψ 〉 = 〈Ψ | ρ†k ρk′ |Ψ 〉 −
(
1− e−k̄k′ℓ2/2

)
〈Ψ | ρk′−k |Ψ 〉 . (3.217)

Now

〈Ψ | ρ†k ρk′ |Ψ 〉 =
∫
d2r

∫
d2r′ n2(r, r

′) e−ik·r eik
′·r′ +

∫
d2r n1(r) e

i(k′−k)·r

〈Ψ | ρk′−k |Ψ 〉 =
∫
d2r n1(r) e

i(k′−k)·r ,

(3.218)

where

nj(r1, . . . , rj) =
N !

(N − j)!

∫
d2xj+1 · · ·

∫
d2xN

∣∣Ψ (r1, . . . , rj ,xj+1, . . . ,xN)
∣∣2 (3.219)

are the diagonal elements of the j-particle density matrix. The j-particle distribution function
is then defined as the ratio

gj(r1, . . . , rj) ≡
nj(r1, . . . , rj)

n1(r1) · · ·n1(rj)
. (3.220)

In the thermodynamic limit, we may write n1(r) = n and n2(r, r
′) = n2 g(r − r′), in which case

〈Ψ | ρ̄†k ρ̄k′ |Ψ 〉 = (2π)2
(
n2 ĥ(k) + n e−k2ℓ2/2

)
δ(k − k′) + (2π)4n2 δ(k) δ(k′) , (3.221)

where ĥ(k) is the Fourier transform of the pair correlation function. Note that in a system of
finite area A we may replace (2π)2 δ(k − k′) → Aδkk′ . We thus have established the result

〈Φk |Φk′ 〉 = A s̄(k) δkk′ +N2 δk,0 δk′,0 (3.222)

where |Φk 〉 = ρ̄k |Ψ0 〉, and where 〈Ψ0 |Ψ0 〉 = 1 is assumed.

Final remarks on the SMA

In Eqn. 3.38 we saw how projecting a plane wave e−ik·r onto the LLL yields the result

Π0 e
−ik·r f(z) e−r2/4ℓ2 = e−k2ℓ2/2 e−ik̄z/2 f(z − ikℓ2) e−r2/4ℓ2 . (3.223)
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The generalization to a many-body wavefunction Ψ (r1, . . . , rN) = P (z1, . . . , zN )
∏N

i=1 e
−r2i /4ℓ

2
is

Π0

(
N∏

i=1

e−z̄izi/4ℓ
2

)
N∑

i=1

e−ik·ri P (z1, . . . , zN) (3.224)

=

(
N∏

i=1

e−z̄izi/4ℓ
2

)
e−k2ℓ2/2

N∑

j=1

P (z1, . . . , zj−1, zj − ikℓ2, zj+1, . . . , zN) e
−ik̄zj/2

︸ ︷︷ ︸
≡ Pk(z1, . . . , zN)

Note that on the RHS, we have each zj in Pk(Z) is in turn translated by −ikℓ2. This messes with

the zeroes of the wavefunction. In the Laughlin state, where P (Z) =
[
V (Z)

]q
, the zeros of P (Z)

as a function of one of the holomorphic coordinates (say z1) lie at the positions of all the other
particles. In the SMA wavefunction, some of these zeros have shifted off the particle positions.
However, since ρk is still symmetric under interchange of particle labels, we still have that
Pk(Zσ) = sgn(σ)Pk(Z). So at least (N − 1) of the q(N − 1) zeros like on the positions of the
other particles. The remaining (q − 1)(N − 1) zeros are shifted, and this results in an increase
in energy, as is quite clear if we adopt a model truncated pseudopotential Hamiltonian.

What happens when q = 1 and P (Z) = V (Z)? Since V (Z) is the only polynomial in our
Hilbert space when ν = 1, it must be that ρ̄k annihilates the filled LL whenever k 6= 0. This is not
so easy to show, however, and requires an appeal to the thermodynamic limit. Invoking the
results of §3.1.2, we first obtain the second quantized form of the projected density operator in
the angular momentum basis:

ρ̄k =
∑

m,m′

〈m | e−ik·r |m′ 〉 c†m cm′ , (3.225)

where the matrix element is

Im,m′(k) ≡ 〈m | e−ik·r |m′ 〉 =
∫
d2r ϕ∗

m(r) e
−ik·r ϕm′(r) , (3.226)

where ϕm(r) = (2πℓ2m!)−1/2 (z/
√
2 ℓ)m exp(−zz̄/4ℓ2) . We can use

I0,0(k) =
1

2πℓ2

∫
d2r e−ikz̄/2 e−ik̄z/2 e−z̄z/2ℓ2 = e−k̄kℓ2/2 (3.227)

as a generating function, for which it is easily seen that

Im,m′(k) =
1√

m!m′!

(
i
√
2

ℓ

∂

∂k

)m(
i
√
2

ℓ

∂

∂k̄

)m′

e−k̄kℓ2/2 =
im−m′

√
m!m′!

(
∂

∂w

)m(
wm′

e−w̄w
)

(3.228)

with w = kℓ/
√
2 , w̄ = k̄ℓ/

√
2 , and j = m′ −m . Thus,

Im,m+j(k) = (−i)j
(

m!

(m+ j)!

)1/2(
kℓ√
2

)m
L(j)
m

(
k2ℓ2/2

)
e−k2ℓ2/2 , (3.229)
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where L
(j)
m (x) is a generalized Laguerre polynomial. Note Im+j,m(k) = I∗m,m+j(−k).

Now consider the action of the projected density operator ρ̄k =
∑

m,m′ Im,m′(k) c†m cm′ on the

filled Landau level |Ψ1 〉 =
∏N

φ
−1

m=0 c
†
m | 0 〉. In the thermodynamic limit, we have Nφ → ∞. Since

every m state is occupied at ν = 1, the off-diagonal terms in ρ̄k with m 6= m′ must annihilate
|Ψ1 〉 . This leaves only the diagonal elements, for which

Im,m(k) = Lm

(
k2ℓ2/2

)
e−k2ℓ2/2 . (3.230)

Thus,

ρ̄k |Ψ1 〉 =
∞∑

m=0

Im,m(k) |Ψ1 〉 = e−k2ℓ2/2

∞∑

m=0

Lm(k
2ℓ2/2) |Ψ1 〉 . (3.231)

But the generating function of Ln(x) yields51

∞∑

m=0

tm Lm(x) =
1

1− t
exp

(
− tx

1− t

)
, (3.232)

and thus taking t ↑ 1 we encounter an essential singularity and provided k 6= 0 the sum is zero!
When k = 0, from Lm(0) = 1 and cutting off the m sum at Nφ, we have ρ̄

0
|Ψ1 〉 = Nφ |Ψ1 〉 ,

which is also correct.

3.4 The Hierarchy

FQH plateaus have been observed at a number of odd-denominator rational fractions, includ-
ing the principal Laughlin states at ν = 1

3
and ν = 1

5
, their particle-hole conjugates at ν = 2

3
and

ν = 4
5
, and at a number of other fillings: ν = 2

5
, 3
5
, 2
7
, 3
7
, 4
7
, 5
7
, 4
9
, 5
11

, 6
13

, etc. Other plateaus have
been observed at ν = 4

3
, 7
5
, 10

7
, i.e. in higher Landau levels. Fractions ν = p/q with p /∈ {1, q − 1}

are understood in terms of a hierarchical scheme originally due to Haldane and to Halperin,
and a very successful set of wavefunctions due to Jain known as the composite fermion con-
struction.

3.4.1 Particle-hole conjugation

Consider an arbitrary N-electron wavefunction within the LLL,

Ψ (r1, . . . , rN) = P (z1, . . . , zN ) exp

(
− 1

4ℓ2

N∑

i=1

|zi|2
)

, (3.233)

51See Gradshteyn and Ryzhik 8.975.1.
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how does one construct its particle-hole conjugate? Here we presume that P (Z) is a multino-
mial function of its arguments. We start with the filled Landau level with Nφ total states, whose

holomorphic component is the Vandermonde determinant V (z1, . . . , zN
φ
) , viz.

Ψ1(r1, . . . , rN
φ
) = V (z1, . . . , zN

φ
) exp

(
− 1

4ℓ2

N
φ∑

i=1

|zi|2
)

. (3.234)

The unnormalized particle-hole conjugate wavefunction of the N-particle state in Eqn. 3.233 is
constructed by taking its ’image’ in the filled LL:

ΨC(rN+1, . . . , rN
φ
) =

∫
d2r1 · · ·

∫
d2rN Ψ1(r1, . . . , rN

φ
) Ψ (r1, . . . , rN) , (3.235)

where the bar denotes complex conjugation. This means that the holomorphic component of

the M-particle wavefunction ΨC(r1, . . . , rM) is

P C(z1, . . . , zM) =

∫
d2y1 · · ·

∫
d2yN V (y1, . . . , yN , z1, . . . , zM)P (y1, . . . , yN) exp

(
− 1

2ℓ2

N∑

i=1

|yi|2
)

(3.236)
where M + N = Nφ . Clearly P C(Z) is totally antisymmetric in Z = {z1, . . . , zM} . It is useful
to introduce the notation P [N ] ≡ P (z1, . . . , zN) to explicitly denote the number of holomorphic
coordinates of P . We then have

degP C[M ] = 1
2
Nφ(Nφ − 1)− deg P [N ] , (3.237)

and therefore if degP [N ] = N(N − 1)/2ν , with N = νNφ , then

degP C[M ] =
N

2ν

(
N

ν
− 1

)
− N

2ν
(N − 1) =

M(M − 1)

2(1− ν)
, (3.238)

where M = Nφ −N = (ν−1 − 1)N . This of course confirms that the filling is

νC =
M(M − 1)

2 degP C[M ]
= 1− ν . (3.239)

3.4.2 Particle-hole symmetry

Consider the LLL-projected Coulomb Hamiltonian in the presence of a neutralizing back-
ground of density νn0 , where n0 = 1/2πℓ2 :

Hν = 1
2

∫
d2r

∫
d2r′ v(r − r′)

{
ψ†(r)ψ†(r′)ψ(r′)ψ(r)− 2νn0 ψ

†(r)ψ(r) + ν2n2
0

}
. (3.240)
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Recall that the electron field operator is

ψ(r) =
∑

α

ϕm(r) cm , (3.241)

expressed in terms of the angular momentum basis (or any orthonormal basis complete in the
LLL). Thus

{
ψ(r), ψ†(r′)

}
= n0G(r, r

′) where n0 = 1/2πℓ2 and

G(r, r′) = ezz̄
′/2ℓ2 e−zz̄/4ℓ2 e−z′z̄′/4ℓ2 = eiẑ·r×r′/2ℓ2 e−(r−r′)2/4ℓ2 =

[
G(r′, r)

]∗
. (3.242)

The anticommutation relations yield the following result,

ψ†(r)ψ†(r′)ψ(r′)ψ(r) = ψ(r)ψ(r′)ψ†(r′)ψ†(r) + n0 ψ
†(r)ψ(r)− n0 ψ(r

′)ψ†(r′) (3.243)

+ n0G(r, r
′)ψ(r′)ψ†(r)− n0G(r

′, r)ψ†(r′)ψ(r) ,

which establishes

Hν [ψ, ψ
†] = H1−ν [ψ̃, ψ̃

†] + 1
2
n0

∫
d2r

∫
d2r′ v(r − r′)

{
G(r, r′)ψ(r)ψ†(r′)−G(r′, r)ψ†(r)ψ(r′)

}

(3.244)
where ψ̃(r) = ψ†(r) and ψ̃†(r) = ψ(r) is a particle-hole canonical transformation. Note however

that
{
ψ̃(r), ψ̃†(r′)

}
= n0G(r

′, r) . Of course this is is because particles and holes have opposite
electric charge! We can now show that in any state |Ψν 〉 in which 〈Ψν | c†m cn |Ψν 〉 = ν δmn , or
equivalently 〈Ψν |ψ†(r′)ψ(r) |Ψν 〉 = ν G(r, r′) , that

〈
Ψν

∣∣Hν [ψ, ψ
†]
∣∣Ψν

〉
+Nφ ν

2

√
π

8

e2

ǫℓ
=
〈
Ψ̃1−ν

∣∣H1−ν [ψ̃, ψ̃
†]
∣∣ Ψ̃1−ν

〉
+Nφ (1− ν)2

√
π

8

e2

ǫℓ
, (3.245)

where | Ψ̃1−ν 〉 ≡ |Ψν 〉 . This establishes that if there is a cusp in the total energy at filling fraction
ν, there will also be a cusp at filling fraction 1− ν.

3.4.3 Hierarchical construction of FQH wavefunctions

Haldane52 was the first to suggest that Laughlin’s quasiparticles could themselves condense
into a higher order FQH state, which, in turn would itself have quasiparticle excitations which
could condense, ad infinitum. Energetics would then determine how far along this chain one
can proceed and still have stable condensates53. In Haldane’s analysis, the quasiparticles carry
bosonic statistics. Subsequently Halperin54 devised a hierarchy based on fractional quasiparti-
cle statistics, which we discussed in §3.3.6. Laughlin55 proposed explicit hierarchical wavefunc-
tions for the ν = 2

5
and 2

7
states, and argued that the quasiparticles obeyed fermionic statistics.

52F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
53One competing phase would be a Wigner crystal of quasiparticles, for example.
54B. I. Halperin, Phys. Rev. Lett. 52, 1982 (1984).
55R. B. Laughlin, Surf. Sci. 142, 163 (1984).
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Consistent with the Chern-Simons Ginzburg-Landau field theory of the FQHE, which we shall
discuss in §CSGL below, I believe that a proper understanding of quasiparticle statistics in the
FQHE entails that they are anyons, but the matter of their exchange statistics will not enter the
following discussion.

To elicit hierarchical wavefunctions, we will follow the scheme of MacDonald, Aers, and
Dharma-wardana56, which relies heavily on the particle-hole conjugation formalism discussed
in §3.4.1. In particular, recall the relation in Eqn. 3.236 between the N-particle holomorphic
factor P (z1, . . . , zN) and its particle-hole conjugate P C(z1, . . . , zM). If at level t− 1 of the hierar-
chy one has the holomorphic polynomial Pt−1(Z) corresponding to a filling νt−1 , we construct
a new polynomial Pt(Z) in one of two ways. The first way is to write

Pt(Z) = P C
t−1(Z)

[
V (Z)

]2pt (3.246)

with pt a nonnegative integer. Note here that P C
t−1(Z) = P C[N ] is a function of the N holomor-

phic coordinates {z1, . . . , zN}. Therefore, from Eqn. 3.238,

degPt[N ] =
N(N − 1)

2νt
= deg P C

t−1[N ] + 2pt deg V [N ]

=
N(N − 1)

2(1− νt−1)
+ ptN(N − 1) ,

(3.247)

from which we obtain

ν−1
t = 2pt +

1

1− νt−1

= 2pt + 1 +
1

ν−1
t−1 − 1

. (3.248)

Starting at level i = 0 of the hierarchy with the polynomial P0(Z) ≡ 1, which has degP0[N ] = 0,
corresponding to a filling ν0 = 0 , the above formula then gives ν1 = 1/(2p1 + 1) , which is one
of the principal Laughlin states57. If we iterate the formula once more, with p2 = 0, we obtain
the particle-hole conjugate of the state at level i = 1, with filling ν2 = 2p1/(2p1 + 1) .

The second iterative construction is given by58

Pt(Z) = V (Z)

(
P C
t−1(Z)

V (Z)

)† [
V (Z)

]2pt , (3.249)

where z†i ≡ 2ℓ2 ∂t . Note

deg

(
P C
t−1[N ]

V [N ]

)
=

N(N − 1)

2(1− νt−1)
− N(N − 1)

2
=

N(N − 1)

2(ν−1
t−1 − 1)

, (3.250)

56A. H. MacDonald, G. C. Aers, and M. W. C. Dharma-wardana, Phys. Rev. B 31, 5529 (1985).
57While the initial polynomial P0(Z) = 1 is not antisymmetric, this is not an issue. All the polynomials at level

i > 0 in the hierarchy are completely antisymmetric. We can think of P0(Z) as the limit as ν → 0 of a proper
fermionic state.

58I think that another possible choice here would be to take Pt(Z) =
[
PC
t−1(Z)

]†[
V (Z)

]2pt . This should yield the
same fractions, but in with a different labeling.
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and therefore

degPt[Z] =
N(N − 1)

2νt
= 1

2
N(N − 1) + ptN(N − 1)− N(N − 1)

2(ν−1
t−1 − 1)

, (3.251)

and thus

ν−1
t = 2pt + 1− 1

ν−1
t−1 − 1

. (3.252)

We can express both steps of the hierarchy by the formula

ν−1
t = 2pt + 1 +

αt−1

ν−1
t−1 − 1

, (3.253)

where αt−1 ≡ +1 if Eqn. 3.246 is used and αt−1 ≡ −1 if Eqn. 3.249 is used. If we iterate the
formulae t times, we obtain

νt ≡
[
pt, αt−1 pt−1 , . . . , α0 p0

]
=

1

1 + 2pt +
αt−1

2pt−1+
α
t−2

. . .
+

α
1

2p
1
+

α
0

2p0

(3.254)

It is convenient to write αp = p̄ for α = −1. One then finds

1
3
= [1] 2

3
= [0, 1]

1
5
= [2] 4

5
= [0, 2]

2
5
= [1, 1̄] 3

5
= [0, 1, 1̄]

2
7
= [1, 1] 5

7
= [0, 1, 1]

3
7
= [1, 1̄, 1̄] 4

7
= [0, 1, 1̄, 1̄]

4
9
= [1, 1̄, 1̄, 1̄] 5

9
= [0, 1, 1̄, 1̄, 1̄]

3
11

= [1, 1, 1̄] 8
11

= [0, 1, 1, 1̄] .

As is clear from the above, particle-hole conjugation means

νCt = 1− νt =
[
0, pt, αt−1 pt−1 , . . . , α0 p0

]
. (3.255)

Note that the same fraction may be represented by more than one sequence. For example,

4
7
= [0, 1, 1̄, 1̄] = [1, 1, 1̄, 1̄, 1̄] , (3.256)

which is a rather awkward aspect to this procedure. More seriously, one has to proceed rather
deep into the hierarchy to arrive at several observed FQH fractions, such as ν = 4

9
= [1, 1̄, 1̄, 1̄].



54 CHAPTER 3. FRACTIONAL QUANTUM HALL EFFECT

3.4.4 Composite fermions

The composite fermion (CF) approach, pioneered by J. K. Jain59, starts with the ν = r Slater
determinant state of r filled LLs. In this state we have N/Nφ = r in the thermodynamic
limit. We denote this state as Φr if B = −Bẑ as has been our convention, and as Φ−r if
B = +Bẑ. Now consider the flux attachment operation where 2p flux quanta are attached
to each particle, yielding a composite fermion. This introduces 2p additional zeros whenever any
two particles coincide, and is accomplished by multiplying the wavefunction Φ±r for r filled
LLs by the (2p)th power of the Vandermonde determinant, yielding the N-particle wavefunc-
tion Ψ±r,p[N ] = V 2p[N ] Φ±r[N ]. The total flux per particle is then

ν−1 =
Nφ

N
= ±1

r
+ 2p ⇒ ν±r,p =

r

2rp± 1
. (3.257)

Clearly this state will contain contributions from single-particle wavefunctions in the first n
Landau levels, and if a bona fide LLL many-body wavefunction is desired, one should then
project onto the n = 0 LL, viz.

Ψ̃±r,p[N ] ≡ Π0Ψ±r,p[N ] = Π0 V
2p[N ] Φ±r[N ] . (3.258)

Note that the projector Π0 commutes with the total particle number N . Note also that the pro-
jector is applied after the state Φ±r[N ] is multiplied by V 2p[N ] , since otherwise it is annihilated,
i.e. Π0Φ±r[N ] = 0 for n > 1 .

ν±r,p r = 1̄ r = 1 r = 2̄ r = 2 r = 3̄ r = 3 r = 4̄ r = 4 r = 5̄ r = 5

p = 0 1̄ 1 2̄ 2 3̄ 3 4̄ 4 5̄ 5

p = 1 1 1/3 2/3 2/5 3/5 3/7 4/7 4/9 5/9 5/11

p = 2 1/3 1/5 2/7 2/9 3/11 3/13 4/15 4/17 5/19 5/21

p = 3 1/5 1/7 2/11 2/13 3/17 3/19 4/23 4/25 5/29 5/31

p = 4 1/7 1/9 2/15 2/17 3/23 3/25 4/31 4/33 5/39 5/41

Table 3.1: Filling fractions ν±r,p for the first level of composite fermion states (r̄ ≡ −r). Ob-
served fractions are printed in red. Not shown are the corresponding particle-hole conjugate
states, for which νC±r,p = 1− ν±r,p.

One might worry about the effect of the projector, but Jain found that it has a rather weak

59J. K. Jain, Phys. Rev. Lett. 63, 199 (1989); J. K. Jain, Phys. Rev. B 41, 7653 (1990). See also J. K. Jain, Composite
Fermions (Cambridge, 2007).



3.4. THE HIERARCHY 55

effect, and most of the state Ψ±r,p[N ] is confined to the LLL, with

ν = 2
5
(r = 2, p = 1) :

〈Ψr,p |Π0 |Ψr,p 〉
〈Ψr,p |Ψr,p 〉

≈ 0.05

ν = 4
9
(r = 4, p = 1) :

〈Ψr,p |Π0 |Ψr,p 〉
〈Ψr,p |Ψr,p 〉

≈ 0.01 .

(3.259)

With Ψ̃±r,p[N ] fully in the LLL, we can construct its particle-hole conjugate ΨC
±r,p[N ], with filling

νc±r,p = 1− ν±r,p . A table of values for small n and p is given in Tab. 3.1. States in this sequence
may be thought of as describing an integer quantum Hall state of composite fermions. A touted
success of the CF theory is that most of the observed states appear at early in the sequence.

Note that the r → ∞ limit of this sequence yields a filling

lim
r→∞

ν±r,p =
1

2p
, (3.260)

which is an even denominator fermionic state with r−1 = 0 flux per composite fermion. If the
wavefunction is Ψ[N ] = V 2p[N ] Φ[N ] , then the component Φ[N ] is a state corresponding to zero
flux. One possibility is a Slater determinant of plane waves, i.e.

Φ(r1, . . . , rN) = A−N/2 det
(
eiki·rj

)
, (3.261)

If the wavevectors {k1, . . . , kN} are arranged in a Fermi circle, then there must be gapless particle-

hole excitations corresponding to removing a state just below kF and replacing it with one just

above kF. We will discuss the theory of the half-filled Landau level in the next chapter.

The CF states described above represent only the first level of the CF hierarchy. At the second
level, one can start, for instance, with the ν = 4

3
state, which is ν = 1

3
state in the n = 1 LL sitting

atop a filled n = 0 LL60. Thus ν = N/Nφ = 4
3

and Nφ = 3
4
N . The flux attachment operation

results in ν−1 → ν−2 + 2 hence ν ′ = ν/(2ν + 1) and with ν = 4
3

we obtain ν ′ = 4
11

, which
is an observed fraction that is in fact not present among the states of the first level of the CF
hierarchy. The states 5

13
, 7
11

, 4
13

, 6
17

, and 5
17

are also observed (see Fig. 3.11 and are present only

60We assume 100% spin polarization, so we work only with spinless fermion wavefunctions here.
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at the second level of the hierarchy. Note that under flux addition we have61

4

3
−→ 4/3

(8p/3)± 1
=
p=1

{
4/11

4/5

4

3
−→ 4/3

(8p/3)± 1
=
p=2

{
4/19

4/13

6

5
−→ 6/5

(12p/5)± 1
=
p=1

{
6/17

6/7

5

3
−→ 5/3

(10p/3)± 1
=
p=1

{
5/13

5/7

7

3
−→ 7/3

(14p/3)± 1
=
p=1

{
7/17

7/11

(3.262)

States in this sequence may be thought of as describing a fractional quantum Hall state of
composite fermions. The complete set of operations generating the CF states is thus:

(i) Landau level addition: ν → ν + 1

(ii) flux attachment: ν−1 → ν−1 + 2

(iii) LLL projection (preserves N): Ψ → Π0Ψ

(iv) particle-hole conjugation (LLL states only): ν → 1− ν .

3.5 Chern-Simons Ginzburg-Landau Theory

The understanding that the Laughlin states and their hierarchical descendants were especially
stable gapped phases of matter with peculiar topological properties (e.g. FQHE, quasiparticle
excitations obeying fractional exchange statistics) naturally led researchers to think of these
states as some sort of novel condensates. If so, what is the corresponding order parameter and
continuum field theory? In fact, today it is known that topological phases of matter such as the
FQHE phases do not possess an order parameter of the usual sort and do not break any global
symmetries. Nevertheless, a compelling field-theoretic description of the FQHE, due to Zhang,
Hansson, and Kivelson62, based in part on earlier work by Girvin and MacDonald63 has proven
extremely useful and influential. I especially recommend the pellucid review by Zhang64.

61Red typeface indicates observed FQH fractions; blue typeface indicates fractions already present at the first
level of the CF hierarchy.

62S.-C. Zhang, H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989).
63S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).
64S.-C. Zhang, Int. Jour. Mod. Phys. B 6, 25 (1992).
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Figure 3.11: Experimental observation of second level composite fermion states: ν = 4
11

, 5
13

, 7
11

,
4
13

, 6
17

, and 5
17

. From W. Pan et al., Phys. Rev. Lett. 90, 016801 (2003).

3.5.1 Superfluids, vortices, and duality

As a warm-up, we will first consider the case of a 2 + 1-dimensional superfluid. The Chern-
Simons Ginzburg-Landau (CSGL) theory establishes a connection between the field theory of
the superfluid and that of the FQHE. Of course, superfluidity is a phenomenon of bosonic
systems, whereas the constituent particles of the FQHE are electrons, which are fermions. In
superconductors, the electrons first pair before condensing, as do the helium atoms in liquid
3He65. But this is not what happens in the Laughlin states, for example. Rather, in order to
describe the FQHE in terms of a bosonic field theory of an order parameter field, we will have
to manufacture fermions from bosons – a trick known as statistical transmutation. As we shall
see, at a mean field level, the implementation of the statistical transmutation, which is effected
using a fictitious gauge field, can cancel with the physical magnetic field, leaving behind a
purely bosonic theory in zero field, but with telltale fluctuation terms. The vortices of the
bosonic superfluid then correspond to quasiparticles of the FQHE! But all good things to those
who wait; first let’s examine the case of superfluidity in (2 + 1)-dimensions66.

65The fact that electrons are charged, whereas 3He atoms are neutral, entails some essential corrections to the
simplistic description of a superconductor as a Bose condensate.

66V. N. Popov, Sov. Phys. JETP 37, 341 (1973); M. P. A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); G. E.
Volovik, JETP Lett., 62, 65 (1995); E. S̆imánek, Inhomogeneous Superconductors (Oxford, 1994); D. P. Arovas and
J. A. Freire, Phys. Rev. B 55, 1068 (1997).
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Start with the Euclidean action

SE =

∫
dτ

∫
d2x

{
~ ψ̄ ∂τ ψ +

~2

2m

∣∣∇ψ
∣∣2
}
+ 1

2

∫
dτ

∫
d2x

∫
d2x′ v(x− x′) δn(x) δn(x′) , (3.263)

where
δn(x) ≡ n(x)− n0 . (3.264)

We write ψ =
√
n eiφ, in which case

∂τψ =

(
∂τn

2
√
n
+ i

√
n ∂τφ

)
eiφ.

∣∣∇ψ
∣∣2 =

(
∇n
)2

4n
+ n

(
∇φ
)2

.

(3.265)

Setting aside the interaction term for the moment, the Lagrangian density, other than the v
term, is then given by

L0 = i~n ∂τφ+
~2n

2m

(
∇φ
)2

+
~2

8mn

(
∇n
)2

−→
HST

i~n ∂τφ+ i~Q·∇φ+
mQ2

2n
+

~
2

8mn

(
∇n
)2

,

(3.266)

where Q is a Hubbard-Stratonovich field. We now separate φ = φ
SW

+ φ
V

into the smooth
spin-wave and singular vortex contributions. Integrating over φ

SW
yields the constraint

∂τn +∇·Q = 0 , (3.267)

which is solved by writing

n− n0 = n0

(
∂Wx

∂y
− ∂Wy

∂x

)
≡ −n0 B

Qx = n0

(
∂Wy

∂τ
− ∂Wτ

∂y

)
≡ −un0 Ey

Qy = n0

(
∂Wτ

∂x
− ∂Wx

∂τ

)
≡ +un0 Ex ,

(3.268)

where we have defined the dimensionless analog electromagnetic fields (E,B) and where u is
an as-yet undetermined constant with dimensions of speed. We also define the background
gauge feld wµ(x, τ) = −x ŷ. Regarding the vortex part, we have

i~n ∂τφV
+ i~Q ·∇φ

V
= −2πi~n0 J

µ
(
Wµ + wµ

)
+ ∂ ( · ) , (3.269)
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where

Jµ(x, τ) =
1

2π
ǫµνλ ∂ν∂λφV

=
∑

i

qi

{
1

Ẋi

}
δ
(
x−Xi(τ)

)
, (3.270)

where qi ∈ Z is the integer vorticity of vortex i, and xµ = (τ, x, y) for µ = 0, 1, 2. There is no
difference between raised and lowered indices here. Thus, dropping total derivatives, we have

L0 =
~2

8mn
(∇n)2 +

mQ2

2n
− 2πi~n0 J

µ
(
Wµ + wµ

)
+ ∂ ( · ) (3.271)

We now expand to quadratic order in δn and Q. Including the v term in the potential, we
have

SE =

∫
dω

2π

∫
d2k

(2π)2

{
m

2n0

∣∣Q̂(k, ω)
∣∣2 +

(
1
2
v̂(k) +

~2k2

8mn0

) ∣∣δn̂(k, ω)
∣∣2
}

− ihn0

∫
dτ

∫
d2x Jµ

(
Wµ + wµ

)

= 1
2
n0mu

2

∫
dω

2π

∫
d2k

(2π)2

(∣∣Ê(k, ω)
∣∣2 +

ω2
p(k)

u2k2

∣∣B̂(k)
∣∣2
)
− ihn0

∫
dτ

∫
d2x Jµ

(
Wµ + wµ

)
(3.272)

where h = 2π~ and the phonon dispersion is

ω2
p(k) =

n0

m
k2 v̂(k) +

~2|k|4
4m2

. (3.273)

Thus if v̂(0) is finite, we may define u =
√
n0v̂(0)/m , which is the phonon velocity at long

wavelengths. The Euclidean Lagrangian density in the long wavelength limit is then

LE = 1
2
n0mu

2
(
E

2 − B2)− 2πi~n0J
µ(Wµ + wµ) , (3.274)

which is to say (2 + 1)-dimensional electrodynamics in the presence of a background magnetic
field b = ǫij∂iwj = −1 . Note that the Fourier transform of the vortex 3-current is

Ĵµ(k, ω) =

∫
dτ
∑

i

qi

{
1

Ẋi

}
eiωτ e−ik·Xi(τ) . (3.275)

Note also that

− 2πi~n0

∞∫

−∞

dt Jµwµ = 2πi~n0

∑

i

qi

∫
dτ Xi(τ) Ẏi(τ) (3.276)

gives the geometric phase for vortices winding about the condensate. If v̂(0) diverges, as is
the case for the Coulomb potential v(r) = e2/ǫr, for which v̂(k) = 2πe2/ǫ|k|, then there is no
long-wavelength low-frequency effective Lorentz invariance with speed u. For v(r) = e2/ǫr,
one has v̂(k) = 2πe2/ǫ|k| and the phonon disperses as |k|1/2 as k → 0.
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Charged bosons

If the bosons have a charge ẽ, this may be accommodated by the substitutions

∂τφV
→ ∂τφV

+ ẽA0 , ∇φ
V
→ ∇φ

V
+ ẽ

c
A , (3.277)

where Aµ is the electromagnetic vector potential and c is the speed of light. Note that c ≫ u.
One may now define

Kµ ≡ Jµ +
ẽ

2π
ǫµνλ∂νAλ =





J0 − ẽB/2πc

Jx − ẽEy/2π

Jy + ẽEx/2π ,

(3.278)

where Aµ ≡ (A0, c−1A), and replace Jµ by Kµ, also including the Maxwell term (E2 −B2) d/8π
in the (2+1)-dimensional Euclidean Lagrangian density, where d is the thickness of the system.

Integrating out the gauge field

Next we integrate out the gauge field Wµ. We define the fields W‖ and W⊥ by

Wx(k, ω) = ik̂x W‖(k, ω)− ik̂y W⊥(k, ω)

Wy(k, ω) = ik̂y W‖(k, ω) + ik̂xW⊥(k, ω) ,
(3.279)

where k̂ = k/|k|. We then have

δn̂(k, ω) = n0

(
ikyWx − ikxWy

)
= n0 |k|W⊥(k, ω) (3.280)

and

Q̂x(k, ω) = n0

(
− iωWy − ikyW0

)

= n0

(
− ikyW0(k, ω) + ωk̂yW‖(k, ω) + ωk̂xW⊥(k, ω)

) (3.281)

and

Q̂y(k, ω) = n0

(
iωWx + ikxW0

)

= n0

(
ikxW0(k, ω)− ωk̂xW‖(k, ω) + ωk̂yW⊥(k, ω)

)
.

(3.282)

Thus,

∣∣δn̂(k, ω)
∣∣2 = n2

0 k
2
∣∣W⊥(k, ω)

∣∣2
∣∣Q̂(k, ω)

∣∣2 = n2
0 ω

2
∣∣W⊥(k, ω)

∣∣2 + n2
0

∣∣∣ωW‖(k, ω)− i |k|W0(k, ω)
∣∣∣
2

.
(3.283)
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Next, we write
∫
dτ

∫
d2x JµWµ =

∑

i

qi

∫
dτ

∫
dω

2π

∫
d2k

(2π)2
e−iωτ eik·Xi(τ)

{
ik̂ × Ẋi · ẑW⊥(k, ω)

+W0(k, ω) +
(
ik̂xẊi + ik̂yẎi

)
W‖(k, ω)

}

=
∑

i

qi

∫
dτ

∫
dω

2π

∫
d2k

(2π)2
e−iωτ eik·Xi(τ)

{
ik̂ × Ẋi · ẑW⊥(k, ω) (3.284)

+
i

|k|
(
ωW‖(k, ω)− i |k|W0(k, ω)

)}
.

In obtaining the last line above we have used

(
ik̂xẊi + ik̂yẎi

)
eik·Xi(τ) =

1

|k|
∂

∂τ
eik·Xi(τ) , (3.285)

and then integrated by parts. We now integrate out the fields W⊥(k, ω) and the combination
ωW‖(k, ω) − i|k|W0(k, ω) . Integrating out the latter yields a frequency-independent kernel

|k|−2 and an instantaneous logarithmic Coulomb interaction among the vortices. Thus,

SE = 2πi~n0

∑

i

qi

∫
dτ Xi(τ) Ẏi(τ)−

π~2n0

m

∑

i,j

qi qj

∫
dτ ln

∣∣Xi(τ)−Xj(τ)
∣∣ (3.286)

+
π~2n0

m

∑

i,j

qi qj

∫
dτ

∫
dτ ′
∫
dω

2π

∫
d2k

(2π)2
k̂ ∧ Ẋi(τ) k̂ ∧ Ẋj(τ

′)

ω2 + ω2
p(k)

e−iω(τ−τ ′) eik·(Xi(τ)−Xj(τ
′)) ,

where a ∧ b ≡ a× b · ẑ.

Thus, we end up with a theory of logarithmically interacting vortices, whose dynamics are
equivalent to those of electrons in the lowest Landau level due to the Xi Ẏi term in the La-
grangian, plus a retarded interaction described by the last term. This is (2 + 1)-dimensional
electrodynamics, where vortices play the role of charges, and phonons play the role of pho-
tons.

3.5.2 Statistical transmutation

One usually does not think of quantum statistics as a continuous parameter, like a coupling
constant. We are accustomed to the notion that many-particle wavefunctions are either sym-
metric or antisymmetric, i.e. Ψ (· · · j · · · i · · · ) = eiθ Ψ (· · · i · · · j · · · ) with θ = 2nπ for bosons and
θ = (2n + 1)π for fermions. Other values of θ, such as θ = 1

2
π , seem to make no sense because

iterating the relation twice gives Ψ (· · · i · · · j · · · ) = e2iθ Ψ (· · · i · · · j · · · ), and thus e2iθ 6= 1 contra-
dicts single-valuedness of Ψ . One concludes that Bose and Fermi statistics exhaust all possible
values of θ.
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What happens, though, if we relax the single-valuedness constraint and allow the wavefunc-
tion Ψ

(
{rj}

)
to be a multivalued function of its arguments? One example of a multivalued

function is the complex function f(z) = zα, which changes by a factor e2πiα when z moves
counterclockwise around a circle enclosing the origin. Paths which wind around the origin n
times accumulate a phase factor of e2πinα. If α is not an integer, then f(z) returns to its original
value multiplied by a phase. Although it may seem strange to consider multivalued wavefunc-
tions, there is nothing that prevents us from doing so. The Schrödinger equation is a differential
equation and thus only requires that Ψ be locally well-defined. In addition, physical quantities,
such as probability densities, always depend on |Ψ |2 and are appropriately single-valued, as
the multivaluedness we consider will always be in the phase of the wavefunction.

In the example f(z) = zα, z takes its values in the complex plane. In the case of many-particle
quantum mechanics, the argument R ≡ {r1, . . . , rN} of Ψ (R) lives in a more complicated space,
called configuration space. It is the space of allN-tuples R together with the equivalence relation
R ∼= σR, where σ ∈ SN is any element of the permutation group, so that σR = {rσ(1), . . . , rσ(N)}.
The equivalence of R and σR means that the particles are indistinguishable. For technical pur-
poses, it is necessary to impose the restriction that no two particles ever lie at the same position
– this is necessary for the multivaluedness to be meaningful. This is analogous to the situation
in our simple example of f(z) = zα above, in which paths that intersect the origin cannot be
assigned a definite winding number. Physically, the restriction that no two particles lie atop
one another can be accomplished by imposing an infinitely repulsive hard core potential of
vanishingly small range; this has no effect on any physical properties.

We now ask what sorts of multivalued functions can be defined on this configuration space.
Recall that in the case of the simple example f(z) = zα that paths could be classified by an
integer winding number n; paths which have the same winding number are equivalent to one
another in the sense that they can be smoothly deformed into each other without crossing the
origin. Associated to each path of winding number n was a phase e2πinα. If we append one
path of winding number n′ onto a path of winding number n, the resultant path has winding
number n + n′. Thus, we can think of the space of paths as a mathematical group, and in this
simple case, group addition of two paths of winding numbers n and n′ produces a third path
of winding number n+ n′. Mathematically, this result is succinctly stated as

π1
(
R

2 \ {0}
) ∼= Z , (3.287)

which means that the group of paths (under the operation of path addition) on the punctured
plane (the plane minus the origin) is isomorphic to the group of integers (under the operation
of addition). Mathematicians refer to the group of paths π1(M) as the fundamental group, or
‘first homotopy group’ first homotopy group of the manifold M. The fundamental group of the
punctured plane is isomorphic to the integers.

The configuration space for N identical particles living on a base manifold M is

XN(M) =
(
MN −D

)
/SN , (3.288)
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where D =
{
(r1, . . . , rN) | ri = rj for some i 6= j

}
. Note as with the punctured plane, we

exclude certain subspaces from our manifold, in this case corresponding to coincidences of the
positions of at least two particles. This space is more complicated than the punctured plane.
The difference is that rather than classifying paths by how they wind around the origin, we
classify paths by how the particles wind around other particles. If the base space M is d-
dimensional, then dimXN(M) = dN . Consider a closed path in this configuration space from a
point R to an equivalent point σR. If d ≥ 3, it is easy to see that any two paths from R to σR
are deformable into one another. Just as loops in R3 cannot be classified by a winding number
(they can be shrunk to a point without ever crossing the origin), any two configuration space
paths R to σR are homotopically equivalent, i.e. they can be deformed into one another. The paths
are then classified by σ alone. The mathematicians would say that

π1
(
XN (M)

) ∼= SN (dim(M) > 2) . (3.289)

The phases associated with the paths form a unitary one-dimensional representation of the
fundamental group π1

(
XN (M)

)
, and so for d = dim(M) > 2, we are left with unitary one-

dimensional representations of SN , of which there are only two: the symmetric (Bose) repre-
sentation, eiθσ = +1, and the antisymmetric (Fermi) representation, eiθσ = sgn σ.

In two space dimensions, the notion of relative winding of particles becomes well-defined. As
a consequence, the space of loops in configuration space becomes more complicated. Indeed, a
path in which a particle winds completely around another particle can no longer be deformed
to a point without crossing that particle. The fundamental group of configuration space is no
longer SN , but rather is an infinite nonabelian group, known as the N-string braid group67 on
M, i.e. BN (M) . As its name suggests, the algebra of this group is associated with the weaving
of ‘braids’, which are world-lines for our particles. The phases associated with the paths in
configuration space now form a unitary one-dimensional representation of the braid group: to
each pairwise exchange of particles one associates a factor eiθ. If we let zj = xj + iyj be the
complex coordinate for particle j, the wavefunction takes the form

Ψ (r1, . . . , rN) =
∏

i<j

(zi − zj)
θ/π Φ(r1, . . . , rN), (3.290)

where Φ(R) is a totally symmetric function. Note that θ = π leads to a function which satisfies
Fermi statistics68. Intermediate values of θ ∈ (0, π) correspond to fractional statistics, first
clearly discussed by Leinaas and Myrheim in 197769. The above configuration space analysis
is due to Laidlaw and DeWitt70, who were mostly concerned with d = 3, and to Wu71, who
considered the case d = 2 in detail.

67The braid groups were first introduced by E. Artin in 1928. For a review, see R. Fox and L. Neuwirth, Math.
Scand. 10, 119 (1962).

68It should be noted that conventional wavefunctions satisfying Fermi statistics are multivalued in configuration
space, since their sign changes depending on the parity of the permutation associated with a given closed path
connecting a point R to σR ∼= R.

69For a pedagogical review, see R. MacKenzie and F. Wilczek, Int. Jour. Mod. Phys. A 3, 2827 (1988).
70M. G. G. Laidlaw and C. M. DeWitte, Phys. Rev. D 3, 6 (1971)
71Y.-S. Wu, Phys. Rev. Lett. 52, 2103 (1984); Y.-S. Wu, 53, 111 (1984).
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In general, if q is a coordinate on a multiply connected space M, the propagatorK(q2, t2 | q1, t1)
may be written as

K(q2, t2 | q1, t1) =
∑

µ∈π1(M)

Kµ(q2, t2 | q1, t1)

=
∑

µ∈π1(M)

χ(µ)
∑

q(t)∈µ
eiS[q(t)]/~ ,

(3.291)

where the sum over µ is over all homotopy sectors in π1(M) , and where χ(µ) is a unitary one-
dimensional representation of π1(M)72. Thus χ(µ′ ◦µ) = χ(µ′)χ(µ) . In general, q1 6= q2 and q(t)
is therefore not a closed loop. But by defining a standard set of paths from an arbitrary point
q0 ∈ M (assuming M is connected) to every other point73, one can append one of these paths
or its inverse to the path q(t) to create a closed path. In this way, each path q(t) from q1 to q2 can
be identified with a homotopy sector.

Paths in configuration space enter the Feynman path integral description of the many-particle
propagator, viz.

K(R′, t2 |R, t1) =
1

N !

∑

σ∈SN

σR′∫

R

DR(t) exp





i

~

t2∫

t1

dt

(
L(R, Ṙ, t) + ~

θ

π

∑

i<j

ϕ̇ij

)

 , (3.292)

where the boundary conditions in the σ sector are given by R(t1) = R = {r1, . . . , rN} and
R(t2) = σR′ = {r′σ(1), . . . , r′σ(N)}. Here, ϕij = arg(zi − zj) = tan−1[(yi − yj)/(xi − xj)] is the
relative angle between particles i and j. The ϕ̇ij term in the Lagrangian keeps track of the
relative winding of particles, associating a phase factor eiθ to each interchange ∆ϕij = π. Thus,
to shift the statistical angle by θ one must alter the many-particle Lagrangian:

L(θ) = L(0) + ~
θ

π

∑

i<j

ϕ̇ij . (3.293)

Since the additional term is a total time derivative, the angle θ does not appear in the equations

of motion. However, the quantity ϕ̇ij dt cannot be regarded as an exact differential, because it is
not the differential of a single valued function of the coordinates R. Thus, the ‘statistical’ part of
the action leads to additional phase interference between paths of differing winding number.
This is the essence of statistical transmutation.

Charge-flux composites

A compelling realization of fractional statistics was proposed by Wilczek74 who noted that a
composite object consisting of a particle of charge e and a flux tube of strength φ = θ~c/ewould

72Since all one-dimensional representations are abelian, it is really only the abelianized π1(M) which matters
here. This is called the first homology group, H1(M).

73Such a construction is known as a standard path mesh.
74F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
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possess fractional statistics. Recall that when a quantum-mechanical particle of charge q encir-
cles a fixed solenoid of flux φ, its wavefunction accrues a phase eiqφ/~c – this is the celebrated
Aharonov-Bohm effect. The same phase would result from a quantum-mechanical solenoid
orbiting around a fixed charge. Now consider two of Wilczek’s charge-flux composites and
compute the phase they generate upon interchange, which is half a complete revolution. There
are two contributions to the accumulated phase. A factor eieφ/2~c = eiθ/2 is generated from the
charge of particle 1 moving in the field of the flux of particle 2, and an identical factor arises
from the flux of particle 1 moving in the field of the charge of particle 2. The net accrued phase
is thus eiθ.

A generic Lagrangian L = 1
2
mṘ2 − V (R), altered to account for fractional statistics as in Eqn.

3.293, results in the many-body Hamiltonian

H =
∑

i

1

2m

(
pi − ~

θ

π

∑

j

′ ẑ × (ri − rj)

|ri − rj |2

)2
+ V (r1, . . . , rN) , (3.294)

where the prime on the sums indicates that the j = i term is to be excluded. The θ-dependent
term resembles a ‘statistical vector potential’

Ai(R) =
θ

π
· φ0

2π

∑

j

′ ẑ × (ri − rj)

|ri − rj |2
=
θ

π
· ~c
e

∑

j

′
∇i ϕij , (3.295)

where φ0 = hc/e is the Dirac flux quantum. The form of the statistical vector potential is the
same as the vector potential of a flux tube of strength φ = 2θ~c/e, which is twice the flux of
Wilczek’s composite. The reason for this is that the statistical vector potential accounts for both
the charge-flux and the flux-charge interactions. Note that

pi −
e

c
Ai(R) = exp

(
+ i

θ

π

∑

j

′
ϕij

)
pi exp

(
− i

θ

π

∑

j

′
ϕij

)
, (3.296)

indicating that the statistical vector potential is a pure gauge, although a topologically nontrivial
one, because the gauge factor is not single-valued as a function of the coordinates R. Applica-
tion of this singular gauge transformation to a symmetric wavefunction yields a multivalued
wavefunction of the kind in Eqn. 3.290.

There are thus two equivalent ways to formulate the implementation of fractional statistics in
d = 2 space dimensions. We can work with single-valued wavefunctions and include a statisti-
cal vector potential in our many-body Hamiltonian. This leads to long-ranged two- and (from
the A

2 term) three-body interactions. Equivalently, we can employ a singular gauge trans-
formation to ‘gauge away’ the statistical vector potential at the cost of requiring multivalued
wavefunctions, as in Eqn. 3.290. Wilczek named particles obeying fractional statistics anyons,
presumably because they can have any statistics.
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Statistical transmutation in field theory

Suppose we have a theory with a conserved current jµ, which means ∂µj
µ = 0. Here we

use the Minkowski metric ηµν = (+,−,−) to raise and lower indices, with xµ = (t, x, y) and
d3x = dt dx dy . Given a field theory with a conserved matter current jµ, one can transmute
statistics to the matter field by coupling this current to a U(1) gauge field aµ and adding a
Chern-Simons term75 to the action, viz.

Smat(θ) = Smat(0) +
e

c

∫
d3x jµ aµ +

e2

4θ~c2

∫
d3x ǫµνλ aµ ∂ν aλ . (3.297)

Although the bare aµ field is present in the Chern-Simons term, and not only its field strength
fµν = ∂µaν − ∂νaµ , the action remains gauge-invariant because J µ = ǫµνλ aµ∂νaλ is a conserved
current. Thus, if we make the gauge transformation aµ → aµ + ∂µf , the change in the Chern-
Simons term is

SCS → SCS +
e2

4θ~c2

∫
d3x ǫµνλ ∂µ(f ∂νaλ) , (3.298)

which vanishes if taken over a closed surface. When taken over a manifold with boundary, an
extra contribution must be included at the edge in order to render the action gauge-invariant.
We shall discuss this feature further on below.

For example, with nonrelativistic particles we have

Smat

∫
d3x

{ N∑

i=1

1
2
mẋ2

i − V (x1, . . . ,xN)

}

jµ(x) =

∫
dτ

N∑

i=1

δ(3)
(
x− xi(τ)

) dxµi
dτ

.

(3.299)

Since the action in Eqn. 3.297 is quadratic in the aµ fields, they can be integrated out simply by
solving the equations of motion,

c

e

δS

δaµ
= jµ +

e

4θ~c
ǫµνλfνλ = 0 . (3.300)

Thus,

j0 = − e

2θ~c
f12 =

eb

2θ~c
=
π

θ

b

φ0

, (3.301)

where b = ∂2a1 − ∂1a2 = ∂xa
y − ∂ya

x. One can now integrate out the aµ fields by manipulating
Eqn. 3.300 to obtain

ǫµνλ j
λ =

e

2θ~c
(∂νaµ − ∂µaν) . (3.302)

75S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 975 (1982); J. Schonfeld, Nucl. Phys. B185, 157
(1981).
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Working in the Lorentz gauge ∂µa
µ = 0, we can invert the above relation to yield

� aµ =
2θ~c

e
ηµνλ ∂

νjλ , (3.303)

where � = c−2 ∂2t −∇
2 is the wave operator76. When substituted into the action, this yields

Seff(θ) = Smat(0) + ~ θ

∫
d3x ηµνλ j

µ(x)
∂ν

�
jλ(x)

= Smat(0) + 2~θNlink ,

(3.304)

where Nlink is the linking number of the particle trajectories. For a complete revolution of one
particle around another, Nlink = 1, and thus we associate θ with the statistical angle for particle
interchange (i.e. half a complete revolution).

An explicit calculation is instructive. Define the formally nonlocal operator

Kµ(x− x′) =
∂µ

�
, (3.305)

which satisfies ∂̃νK
ν(x− x′) = δ(3)(x − x′) , where ∂̃µ = (c−2 ∂t ,∇) . Gauge freedom allows us

to take K0 = 0 and Ki(x− x′) = ki(x− x′) δ
(
x0 − x′0

)
, with

ki(x− x′) =
1

2π

xi − x′i

|x− x′| . (3.306)

The function ki(x−x′) is recognized as the vector potential of a flux tube of unit strength. Now
let’s wind one particle (X) around another which stays fixed at the origin. The particle currents
are then

j0(x) = δ(x) + δ(x−X)

j(x) = δ(x−X) Ẋ ,
(3.307)

where X = X(τ). The linking number term in Eqn. 3.304 then gives

−
∫
d3x

∫
d3x′ jµ(x) ǫµνλK

ν(x− x′) jλ(x′) = −2

∫
dτ ηij k

i(−X) Ẋj = 2ǫij

∮
dXj X

i

X2
(3.308)

which is indeed 2Nlink. Another way to see it: the geometric flux enclosed by X(τ) as it winds
around the origin is

φ =

∮
dl · a =

∫
dS b =

2θ~c

e

∫
dS j0 =

νθ

π
φ0 , (3.309)

76We have to be a bit careful here since ∂0 = ∂t and ∂1,2 = ∂x,y don’t have the same units. The wave operator

should be written as � = c−2 ∂2t −∇
2. The symbol ηµνλ in Eqn. 3.303 is given by η012 = −η021 = η120 = −η210 = 1

and η201 = −η102 = c−2, with all other elements vanishing. The simplest way to make everything work out is to
pour yourself a nice glass of bourbon and measure space and time in the same units, i.e. take c = 1.
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where the charge is taken to be νe. The Aharonov-Bohm phase is then e2πiνφ/φ0 = e2iν
2θ, which

is just what we expect.

Another example comes from the (2 + 1)-dimensional O(3) nonlinear sigma model, with

Smat =
1

2g

∫
d3x (∂µn

a)(∂µna)

jµ(x) =
1

8π
ǫabc ǫ

µνλ na ∂νn
b ∂λn

c ,

(3.310)

where n̂(x) is a unit vector lying along the surface of a two-dimensional sphere. For this model,
which possesses a Lorentz invariance, we define xµ = (ct,x) , ∂µ = ∂/∂xµ , and d3x = c dt dx dy .
The conservation of jµ licenses us to write

jµ =
1

8π
ǫabc ǫ

µνλ na ∂νn
b ∂λn

c ≡ ǫµνλ∂νAλ , (3.311)

where Aµ[j] is a gauge field. Integrating out the CS gauge field by its equations of motion, we
obtain aµ = −(e/2θ~c)Aµ, and hence Seff(θ) = Smat(0) + θSHopf , where

SHopf/~ = −
∫
d3x jµ(x)Aµ

[
j(x)

]
= −

∫
d3x ǫµνλAµ ∂ν Aλ , (3.312)

which is the so-called Hopf term. Note that it is nonlocal in the na fields because Aµ[j] is a
functional of its argument. At any fixed time t, we may demand that the field n̂(x, t) approaches
the same value n̂(∞) as |x| → ∞. This compactifies R2 → S2. Now consider the function n̂(x, t)
as a function of t for t ∈ [0, T ]. Everywhere along this time interval, n̂(x, t) takes its values on
the unit sphere S2 (we assume n̂(∞, t) = n̂(∞) is fixed as a function of t). The function n̂(x, t)
with t fixed may be regarded as a map taking the compactified real space S2 to the internal n̂
space S2. The space of such maps is called Q = Map0(S

2, S2). Now there is a general result
which says that77

πk(Q) ∼= πk+2(S
2) (3.313)

for all nonnegative integers k. Recall that πk(M) is the group of equivalence classes of maps
from Sk to M. In particular, π0(Q) ∼= π2(S

2) ∼= Z, which says that the configuration space of
the (2 + 1)-dimensional nonlinear sigma model is disconnected, and separates into individual
soliton sectors Qn where n ∈ Z. We also have that π1(Q) ∼= π3(S

2) ∼= Z, which says that we can
associate a phase einθ in the configuration space path integral of Eqn. 3.291 to paths of winding
number n. This is precisely what the Hopf term accomplishes.

Many-body theory of the anyon gas

The field theory of the many anyon problem is then given by the Lagrangian density

L = ψ̄ (i~D0 − µ̃)ψ − ~2

2m
D∗ψ̄ ·Dψ − v(ψ̄ψ) +

e2

4θ~c2
ǫµνλ aµ ∂ν aλ −

1

16π
Fµν F

µν , (3.314)

77T. R. Govindarajan, R. Shankar, N. Shaji, and M. Sivajumar, Int. Jour. Mod. Phys. A 8, 3965 (1993).
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where Dµ = ∂µ − i (e/~c)(Aµ + aµ) is the covariant derivative, Aµ is the physical electromag-
netic vector potential, v(ψ̄ψ) is the potential energy, and µ̃ is the chemical potential for the ψ
field, which may be either fermionic or bosonic. The statistics of the bosons are transmuted
to anyons of statistical angle θ (or π + θ) by the CS term. With fermionic ψ, the above action
serves as a point of departure for the study of the anyon gas. If the physical electromagnetic
fields are weak, one may separate the statistical vector potential aµ = aMF

µ +δaµ into a mean field
contribution satisfying ǫji ∂i a

MF

j = (θ/π)nφ0, where n is the bulk density, and a fluctuating part
δaµ . One then integrates out the fermion fields ψ and ψ̄, generating an effective action in terms
of Aµ and δaµ . Finally, one may attempt to integrate out the δaµ fields, generating an effective
action in terms of the physical Aµ fields alone, from which one can directly obtain the electro-
magnetic response functions of anyon gases. These developments are clearly discussed in the
article by Fradkin78. A particularly interesting conclusion is that the anyon gas for statistical
angle θ 6= 0, π should be a superconductor79!

To peek just a little bit into how the sausage is made, consider the case of statistical angle
θ = π + π/q where q ∈ Z . We now consider Eqn. 3.314 with fermionic fields ψ and ψ̄, and with
θ = π/q . At the mean field level we have b = nφ0/q where n is the number density of anyons.
In the absence of any external field B, we have a gas of fermions (ψ particles) in a uniform
magnetic field b, hence the cyclotron frequency and magnetic length are given by

~ωc =
~eb

mc
=

2π~2

m

n

q
, ℓ =

√
~c

eb
=

√
q

2πn
. (3.315)

The LL filling fraction is then ν = 2πℓ2n = q, which means we have an integer number q of
filled LLs. So far, so good.

The ground state energy is then80

E0 = Nφ

N
φ
−1∑

k=0

(k + 1
2
) ~ωc = A

π~2

m
n2 , (3.316)

where A is the area and Nφ = bA/φ0 . Note that the ground state energy per particle is ε0 =
E0/N = π~2/mv where v = 1/n is the specific volume (i.e. the area per particle). This result is
identical to that of a free Fermi gas of the same density. We thus obtain a finite bulk modulus
B and velocity c of first (thermodynamic) sound:

B = v
∂2ε0
∂v2

=
2π~2

m
n2 , c =

√
B
mn

=
~

m

√
2πn . (3.317)

Note that these expressions are independent of q and are identical to the corresponding free
Fermi gas values. What is missing here is a description of the compressional sound wave;

78E. Fradkin, Phys. Rev. B 42, 570 (1990).
79A. Fetter, C. Hanna, and R. B. Laughlin, Phys. Rev. B 39, 9679 (1989); Y. Chen, F. Wilczek, E. Witten, and B. I.

Halperin, Int. Jour. Mod. Phys. B 3, 1001 (1989).
80We assume our anyons are spinless.
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our single particle energy spectrum has a gap of ~ωc. The sound wave appears in a more
sophisticated random phase approximation (RPA) treatment, as first shown by Fetter, Hanna,
and Laughlin (1989).

A simple calculation, due to Chen, Wilczek, Witten, and Halperin (1989), shows that despite
the breaking of time-reversal symmetry for θ = π + π/q (and for all θ 6= 0, π), the anyon gas
wants to expel magnetic flux. To this end, consider our anyon gas in the presence of an external
applied magnetic field B (now parallel to the statistical field b). At the mean field level, the
effective field strength is b + B, and as B is increased, the LL degeneracy Nφ = (b + B)A/φ0

increases. Since the particle number N remains constant, a fraction x of the states in the qth LL,
i.e. with LL index q − 1, will be empty. Number conservation then gives (q − x)(b + B) = qb,
which determines x. Summing the single particle energies, we obtain

E0(B > 0) = A
π~2n

m

[
1 +

B

qb
−
(
1− 1

q

)
B2

b2

]
(3.318)

WhenB < 0 and the external field is anti-aligned with b, the effective field strength is b+B < b.
Now the LL degeneracy Nφ is smaller, and number conservation requires that a fraction y of

states in the (q+1)th LL (i.e. with LL index q) are occupied, with (n+ y)(b+B) = nb . Summing
once again the single-particle energies, one finds

E0(B < 0) = A
π~2n

m

[
1− B

qb
−
(
1 +

1

q

)
B2

b2

]
. (3.319)

Thus for general B we have

E0(B) = A
π~2n

m

[
1 +

|B|
qb

−
(
1− 1

q
sgnB

)
B2

b2

]
(3.320)

and any finite B initially increases the total energy. Thus the system always wants to expel a
weak external field, despite the fact that time-reversal symmetry is explicitly broken!

To demonstrate the Meissner effect, one must perform substantially more refined calcula-

tions. RPA calculations yield a London penetration depth of λL =
√
mc2d/4πne2 , where d is

the distance between two-dimensional planes, and a sound wave velocity of c = ~

m

√
2πn, ex-

actly as found above. Thus, the excitation spectrum of the θ = π + π/q anyon gas for q ∈ Z+

is qualitatively different from the spectrum of a Fermi liquid. While the latter exhibits a gap-
less sound mode, it also exhibits a continuum of particle-hole excitations extending down to
zero energy, and which are responsible for various dissipative processes. In the anyon gas, the
particle-hole continuum begins at a finite energy ~ωc = 2π~2n/qm, which properly tends to
zero in the fermion limit q → ∞, and the only gapless excitation is the density wave. This den-
sity wave is a Goldstone mode which in an uncharged superconductor (i.e. a superfluid) would
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correspond to phase fluctuations of the order parameter in the phase where U(1) is sponta-
neously broken. When minimally coupled to electromagnetism, this mode is ”eaten”81 via the
Anderson-Higgs mechanism, and the photon becomes massive (i.e. the Meissner effect).

3.5.3 Cultural interlude

Essentially we have done all the work to derive the CSGL action, which is given in Eqn. 3.314
for a particular choice θ = qπ where q is an odd integer and where ψ is a bosonic field. The CS
term then transmutes the bosons into fermions, and different choices of odd q, while represent-
ing the same theory at the level of L, yield different theories at the mean field level, as we shall
soon see. Before engaging with the CSGL theory of the FQHE, though, we take a stroll down
memory lane to recall two highlights of the Heroic Era of the FQHE.

Girvin-MacDonald order

It was first suggested by Girvin and MacDonald82 that Laughlin’s wavefunction could be un-
derstood as a condensate of composite objects consisting of both charge and flux. Specifically,
Girvin and MacDonald showed that if one were to adiabatically pierce each electron in the
ν = 1/q state with a flux tube of strength qφ0 , the resulting off-diagonal density matrix,

ñ1(r, r
′) =

∫
d2r2 · · ·

∫
d2rN Ψ∗

q (r, r2, . . . , rN) exp

(
− ie

~c

r′∫

r

ds ·A(s)

)
Ψq(r

′, r2, . . . , rN)

=

∫
d2r2 · · ·

∫
d2rN Ψ̃∗

q (r, r2, . . . , rN) Ψ̃q(r
′, r2, . . . , rN)

(3.321)

where A(s) = (q~c/e)
∑N

j=2∇ϕ(s− rj) and

Ψ̃q(r, r2, . . . , rN) = exp
(
−iq

N∑

j=2

ϕ(r − rj)
)
Ψq(r, r2, . . . , rN) , (3.322)

decays only algebraically at long distances, as |r− r′|−q/2. This follows from the plasma analogy
applied to the product

Ψ̃∗
q (r, r2, . . . , rN) Ψ̃q(r

′, r2, . . . , rN) ≡ exp
[
−βH̃(r, r′; r2, . . . rN)

]
, (3.323)

81Om nom nom. See E. S. Abers and B. W. Lee, Phys. Rep. 9, 1 (1973).
82S. M. Girvin in The Quantum Hall Effect, R. Prange and S. M. Girvin, eds. (Springer, 1986); S. M. Girvin and A.

H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).
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again with β = 1/m. One has

H̃(r, r′; r2, . . . rN ) = −2q2
N∑

2≤i<j

ln |ri − rj |+
q

2ℓ2

N∑

i=2

r2i +
q

4ℓ2
(
r2 + r′

2)

− q2
N∑

i=2

(
ln |r − ri|+ ln |r′ − ri|

)
.

(3.324)

This corresponds to a system of (N + 1) logarithmically interacting charges, and a uniform
background with the (N −1) charge

√
2 q particles at positions {r2, . . . rN}, and two charge 1√

2
q

particles at positions r and r′ which do not interact with each other. Adding back this interaction
gives the desired result,

ñ1(r, r
′) = C |r − r′|−q/2 , (3.325)

where C is a dimensionful constant proportional to exp(−βF ), where F is the classical free
energy of the fully interacting (N+1)-particle system, i.e. where we include the −2 (1

2
q)2 ln |r−r′|

interaction between charge 1√
2
q test particles at r and r′. Note that the Girvin-MacDonald

result establishes power-law, or quasi-long-ranged order. By contrast, the off-diagonal one-
body density matrix in the Laughlin state Ψq is given by

n1(r, r
′) = 〈Ψq |ψ†(r), ψ(r′) |Ψq 〉 =

ν

2πℓ2
G(r, r′) , (3.326)

where G(r, r′) is given in Eqn. 3.242. This follows from the relation 〈c†m cn〉 = ν δm,n in any
homogeneous state, where m and n are angular momentum indices. Thus, n1(r, r

′) falls off as
a Gaussian in the Laughlin state Ψq, which is very different from the quasi-ODLRO exhibited

by ñ(r, r′) in the state Ψ̃q .

Read’s order parameter

Nicholas Read83 proposed the order parameter operator

φ†(r) = ψ†(r)U q(z) (3.327)

for the Laughlin state Ψq, where ψ†(r) is an electron creation operator in second quantized form

and U(z) =
∏N

i=1(z− zi) is the quasihole creation operator in first quantized form. Defining the
(N + 1)-particle state,

|Φq[N + 1] 〉 =
∫
d2r e−r2/4ℓ2 ψ†(r)U q(z) |Ψq[N ] 〉 , (3.328)

83N. Read, Phys. Rev. Lett. 62, 86 (1989).
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Now let’s calculate the overlap Φq(r1, . . . , rN+1) = 〈 r1, . . . rN+1 |Φq[N + 1] 〉 . We note that

ψ(r) | r1, . . . , rN+1 〉 =
1√

(N + 1)!
ψ(r)ψ†(rN+1) · · ·ψ†(r1) | 0 〉

=
1

2πℓ2
√

(N + 1)

{
G(r, rN+1) | r1, . . . , rN 〉 (3.329)

−G(r, rN) | r1, . . . , rN−1, rN 〉+ . . .+ (−1)N G(r, r1) | r2, . . . , rN+1 〉
}

,

where G(r, r′) =
{
ψ(r), ψ†(r′)

}
is given in Eqn. 3.242. Recall that G(r, r′) is the Girvin-Jach

reproducing kernel for analytic functions, viz.

∫
d2r′ G(r, r′) f(z′) e−|z′|2/4ℓ2 = f(z) e−|z|2/4ℓ2 . (3.330)

Thus,

Φq(r1, . . . , rN+1) =
1√

(N + 1)

∫
d2r e−r2/4ℓ2

{
G(r, rN+1) Ψq(r1, . . . , rN)

N+1∏

i=1
(i6=N+1)

(z − zi)
q

−G(r, rN) Ψq(r1, . . . , rN−1, rN+1)

N+1∏

i=1
(i6=N)

(z − zi)
q + . . .

}

= (N + 1)−1/2





N+1∏

i=1
(i6=N+1)

(zN+1 − zi)
q Ψq(r1, . . . , rN) e

−r2
N+1/4ℓ

2

(3.331)

−
N+1∏

i=1
(i6=N)

(zN − zi)
q Ψq(r1, . . . , rN−1, rN+1) e

−r2
N
/4ℓ2 + . . .





= (N + 1)1/2 Ψq(r1, . . . , rN+1) .

This says that the Laughlin state may be written as

|Ψq[N ] 〉 = 1√
N !

(∫
d2r e−r2/4ℓ2 ψ†(r) U q(z)

)N
| 0 〉 , (3.332)

which is a condensate of the composite φ†(r), which creates q quasiholes and fills them with
one electron, thus increasing the electron number by 1. What makes Read’s operator so natural
is that it is truly a boson and thus can condense. Let’s compute the statistical angle Θ resulting
from the interchange of two Read composites. There are four contributions:

Θ = π + qπ + qπ + q2θ = (q + 1) π mod 2π . (3.333)
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The first of these contributions arises from the exchange of the fermions created by the electron
creation operators ψ†. Next, there is a phase accrued by the fermions moving in the field of the
flux tubes effectively added by the U q operators. A single electron encircling q Dirac flux tubes
accrues a phase angle of 2πq, and so an exchange gives us half this value, or qπ. However, there
is an equal phase arising from the flux of one composite orbiting the charge of the other. Finaly,
there is the statistical angle due to the exchange of the quasiparticles themselves. Since each
composite consists of an electron plus q quasiholes, this last contribution to the statistical angle
is q2(π/q) = qπ since θ = π/q. The net statistical angle is thus Θ = (q + 1)π, which is bosonic
when q is odd84.

3.5.4 The CSGL action

Read’s order parameter φ†(r) = ψ†(r)U q(z) describes an electron bound to q flux quanta. We
may now define a fictitious gauge field a(r) whose curl, b = ẑ·∇×a , satisfies ∇×a = qφ0 n(r)ẑ,
hence

b(r) = qφ0

N∑

i=1

δ(r − ri) ẑ . (3.334)

We thus arrive at the cartoon sketched in Fig. 3.12. Suppose Ṅ is the number current of charge-
flux composites moving across the surface Σ. From Faraday’s law ∇×E = −1

c
∂B
∂t

, we have

∫

Σ

dl · E = −1

c

∂Φ

∂t
= −φ

c
Ṅ = VH (3.335)

with φ = qφ0. We conclude that the Hall conductance is quantized:

GH =
Ic
VH

=
−eṄ

−q(h/e)Ṅ
=
e2

qh
. (3.336)

The binding of flux to charge also qualitatively explains why the FQH system is incompressible:
if the wavefunction Ψ condenses into a superconducting state, excess ‘magnetic’ flux is expelled.
But the magnetic flux is proportional to the particle density, hence there must be a fixed uniform
density of particles.

The CSGL action functional is given by

SCSGL[Ψ, Ψ
∗, Aµ, aµ] = Smat[Ψ, Ψ

∗, Aµ, aµ] + SCS[a
µ] , (3.337)

84Note that the generalization of Read’s order parameter to the even denominator bosonic FQHE gives Θ = qπ
with q even, because the field operator ψ† then creates a boson. So again the order parameter is bosonic.
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where

Smat[Ψ, Ψ
∗, Aµ, aµ] =

∫
dt

∫
d2x

{
Ψ ∗(i~ ∂t + e

c
A0 + e

c
a0
)
Ψ − 1

2m∗

∣∣∣
(
~

i
∇+ e

c
A+ e

c
a
)
Ψ
∣∣∣
2
}

− 1

2

∫
dt

∫
d2x

∫
d2x′

(
|Ψ (x, t)|2 − n0

)
v(x− x′)

(
|Ψ (x′, t)|2 − n0

)
(3.338)

and

SCS[a
µ] =

πe

2θcφ0

∫
dt

∫
d2x ǫµνλ aµ∂νaλ . (3.339)

The CS term transmutes the statistical angle of the Ψ field from bosonic to the value θ, which
we may choose as suits our nefarious purposes. For fermionic statistics, we require θ = qπ with
q an odd integer. The background number density is n0 , and the terms linearly proportional
to n0 determine the chemical potential µ = n0

∫
d2x v(x) = v̂(0)n0 ; in Coulomb systems where

v̂(0) diverges, the average number density 〈 |Ψ |2 〉 must be n0 in order to enforce global charge
neutrality. Note that the variation of the CS term is given by

δSCS[a
µ] =

πe

θcφ0

∫
dt

∫
d2x

(
−b δa0 + c ey δax − c ex δay

)
, (3.340)

where

e = −1

c

(
∇a0 +

∂a

∂t

)
, b = ẑ ·∇×a =

∂ay

∂x
− ∂ax

∂y
(3.341)

are the fictitious electric and magnetic field strengths associated with the CS gauge field. Note
that we have chosen our factors such that e and b have the same dimensions as the physical
electromagnetic field strengths E and B (in cgs units85).

The bosonic number density and number current are given by

n(x, t) = +
c

e

δS

δA0(x, t)
= |Ψ (x, t)|2

j(x, t) = −c
e

δS

δA(x, t)
=

~

m∗ Im
[
Ψ ∗(x, t)∇Ψ (x, t)

]
+

e

m∗c
|Ψ (x, t)|2

(
A(x, t) + a(x, t)

) (3.342)

Thus the functional variation of the complete CSGL action with respect to the components of
the gauge field aµ is given by

c

e

δS

δa0(x, t)
= n(x, t)− π

θ

b(x, t)

φ0

−c
e

δS

δa(x, t)
= j(x, t)− π

θ

c e(x, t)×ẑ

φ0

,

(3.343)

85Which are God’s units.



76 CHAPTER 3. FRACTIONAL QUANTUM HALL EFFECT

Figure 3.12: Schematic picture of transport for charge-flux composites. The charge current
across the surface Σ is Ic = −e ∂tN while the vortex current is Iv = φ ∂tN .

We may also vary the action with respect to the field Ψ ∗(x):

δS

δΨ ∗(x, t)
=

[
i~

∂

∂t
+
e

c
(A0 + a0)− 1

2m∗

(
~

i
∇+

e

c
(A+ a)

)2 ]
Ψ (x, t)

−
[∫

d2x′v(x− x′)
(
|Ψ (x′, t)|2 − n0

)
]
Ψ (x, t) .

(3.344)

3.5.5 Mean field solution

We now write aµ = aMF

µ + δaµ and Ψ = ΨMF + δΨ . The mean field level solution is obtained by
setting ΨMF =

√
n0 e

iφ where φ is an arbitrary phase, and setting Aµ + aMF

µ = 0 . In the Ginzburg-
Landau theory of superconductivity, φ would be the phase of the superconducting condensate.
We are free to choose a gauge in which A0 = aMF

0 = 0 , but for the spatial components the
condition A + aMF = 0 requires that B + bMF = 0 , i.e. the Chern-Simons magnetic field b cancels
the applied magnetic field −B . Note that we are again taking the applied field as B = −Bẑ ,
whereas b = +b ẑ . So bMF = B. But we also have the condition from the first of Eqns. 3.343,
which demands that

b = B =
θ

π
n0 φ0 = qn0 φ0 , (3.345)

where θ = πq for Fermi statistics, with q odd. Note that in the original field theory, the CS
term attaches an infinitely narrow flux tube to each point particle. Therefore the Aharonov-
Bohm flux is only sensitive to θmod 2π, and all odd integer q are equivalent. Not so at the mean
field level! Each odd q results in a different mean field solution, with Nφ = BA/φ0 = qN , i.e.
ν = N/Nφ = q−1.

Suppose the condensate field Ψ (x) contains a vortex centered at the origin. Asymptotically,
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as r = |x| → ∞, we must then have Ψ (r, ϕ) =
√
n0 exp(±iϕ) and δa(r, ϕ) = ±(~c/e) ϕ̂/r, where

ϕ is the azimuthal angle. But this corresponds to a variation in the total CS flux Φ
CS

, with

δΦ
CS
= δ

∫
d2x b(x) =

∮

r=∞

dl · δa = φ0 . (3.346)

But then the first of Eqns. 3.343 says that there is a concomitant change in particle number, with

δN =
π

θ

δΦ
CS

φ0

=
1

q
. (3.347)

This is the fractionally charged quasiparticle! The antivortex corresponds to the quasihole.

3.5.6 Fluctuations about the mean field

Let us write Aµ = Āµ + δAµ where Āµ is the electromagnetic 3-vector potential corresponding
to uniform magnetic field B = −Bẑ and electric field E = 0, with B fixed by the condition
ν = nφ0/B = 1/q with q an odd integer. Similarly we write aµ = āµ+ δaµ with āµ = −Āµ = aMF

µ .
The action is then

S =

∫
d3x

{
~Ψ ∗(i∂t + e

~c
δa0
)
Ψ − ~

2

2m

∣∣∣
(
i∇− e

~c
δ~a
)
Ψ
∣∣∣
2
}

− 1

2

∫
dt

∫
d2x

∫
d2x′

(
|Ψ (x, t)|2 − n0

)
v(x− x′)

(
|Ψ (x′, t)|2 − n0

)

+
πe

2θcφ0

∫
d3x ǫµνλ

[
(δaµ − δAµ) ∂ν (δaλ − δAλ)− 2 δaµ ∂ν Āλ

]
,

(3.348)

where δaµ ≡ δaµ + δAµ . We now follow the method outlined in §3.5.1, now in real rather than
Euclidean time, writing Ψ =

√
n eiφ, which results in the matter component of the action

Smat =

∫
d3x

{
− ~n

(
∂tφ− e

~c
δa0
)
− ~

2n

2m∗
(
∇φ+ e

~c
δ~a
)2 − ~

2

8m∗n
(∇n)2

}

− 1

2

∫
dt

∫
d2x

∫
d2x′

(
n(x, t)− n0

)
v(x− x′)

(
n(x′, t)− n0

)
.

(3.349)

We again use a Hubbard-Stratonovich transformation to replace

− ~2n

2m∗
(
∇φ+ e

~c
δ~a
)2 −→ m∗Q2

2n
− ~Q ·

(
∇φ+ e

~c
δ~a
)

(3.350)

Integrating by parts, the contribution from φ
SW

in the Lagrangian density is ~(∂tn + ∇ ·Q)φ
V

,
hence integrating out φ

V
results in the constraint ∂tn+∇·Q = 0 , which we solve by writing

Kµ ≡ (n,Q) ≡ n0 ǫ
µνλ ∂ν (Wλ + wλ) . (3.351)
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Here n, Qx, and Qy are the three components of the 3-vector Kµ.86 Here wµ = (0, 0,−x) is a
background vector potential corresponding to electric field e = 0 and magnetic field b = −1
which will help us keep track of the Berry phase as a vortex in the Ψ field moves in the presence
of the background condensate, as in §3.5.1. We may write

n− n0 = n0 (∂xWy − ∂yWx) ≡ −n0 B
Qx = n0 (∂yWt − ∂tWy) ≡ −n0 u Ey
Qy = n0 (∂tWx − ∂xWt) ≡ +n0 u Ex ,

(3.352)

where u, to be determined, has dimensions of speed. The dimensionless quantities E and B are
the ”electric” and ”magnetic” fields derived from the vector potential Wµ.

Again we separate φ = φ
SW

+ φ
V

into a smooth ’spin-wave’ part and a singular vortex part,
where

Jµ
V
=

1

2π
ǫµνλ ∂ν ∂λ φV

=
∑

i

qi

{
1

Ẋi

}
δ
(
x−Xi(τ)

)
. (3.353)

The matter component of the action may now be written

Smat =

∫
d3x

{
en0

c
ǫµνλ δaµ ∂ν (Wλ + wλ) +

1
2
n0m

∗u2
E

2

1− B − ~
2n0

8m∗
(∇B)2
1− B (3.354)

− 2π~n0 J
µ
V
(Wµ + wµ)

}
− 1

2
n2
0

∫
dt

∫
d2x

∫
d2x′ B(x, t) v(x− x′)B(x′, t) .

If the Fourier transform of the potential v̂(k) is finite at k = 0, the constant u may be defined by

u ≡
√
n0 v̂(0)/m

∗, as in §3.7. The term proportional to (∇B)2 is fourth order in derivatives of
Wµ; this term of course yields the crossover to a ballistic dispersion in the phonon spectrum of
the superfluid in the ultraviolet regime. In the infrared, we may neglect it, and we have

Smat =

∫
d3x

{
1
2
n0m

∗u2
(
E

2 − B2
)
+
en0

c
ǫµνλ δaµ ∂ν (Wλ + wλ)− 2π~n0 J

µ
V
(Wµ + wµ)

}

SCS =
πe

2θcφ0

∫
d3x ǫµνλ

{
(δaµ − δAµ) ∂ν (δaλ − δAλ)− 2 δaµ ∂ν Āλ

}
(3.355)

We now integrate out the gauge field δaµ using the equations of motion, which yield

δaµ = δAµ −
θ

π
n0 φ0 (Wµ + wµ) + Āµ

= δAµ −
θ

π
n0 φ0Wµ ,

(3.356)

86On spatial 2-vectors like Q and the electric field E, we do not distinguish between raised and lowered indices,
hence Qx = Qx etc. We shall endeavor to always use lowered indices for such 2-vectors.
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since B = θ
π
n0 φ0 yields Āµ = θ

π
n0 φ0wµ . Substituting this back into the action, we obtain the

Lagrangian density

Leff = 1
2
n0m

∗u2
(
E

2 − B2
)
− ~θ n2

0 ǫ
µνλ Wµ∂νWλ +

en0

c
ǫµνλ δAµ∂νWλ − 2π~n0 J

µ
V
(Wµ + wµ) .

(3.357)
Note that there are two quantities here with dimensions of speed: c and u, with u≪ c.

If v̂(0) diverges, which is indeed the case when v(r) = e2/ǫr and v̂(k) = 2πe2/ǫk, then there is
no effective Lorentz symmetry in the superfluid component of the matter Lagrangian. In this
case we have

Seff =

∫
d3x

{
1
2
n0m

∗(
∇W0 + ∂tW

)2 − ~θ n2
0 ǫ

µνλ Wµ∂νWλ +
en0

c
ǫµνλ δAµ∂νWλ

− 2π~n0 J
µ
V
(Wµ + wµ)

}
− 1

2
n2
0

∫
dt

∫
d2q

(2π)2
v̂(q)

∣∣ q × Ŵ(q)
∣∣2 . (3.358)

At this point, we may integrate out the gauge field Wµ. Since the Maxwell term in Eqn.
3.357 or its corrected version in Eqn. 3.358 both involve one higher derivative than the induced
Chern-Simons term WdW , we will ignore the former. Varying with respect to Wµ , we obtain

ǫµνλ ∂νWλ = − π

θn0

(
Jµ

V
− 1

2φ0

ǫµνλ δFνλ

)
, (3.359)

where δFνλ = ∂ν δAλ − ∂λ δAν is the field strength tensor corresponding to δAµ . Thus

Wµ =
π

θn0

(
1

φ0

δAµ − ηµνλ
∂ν

�
Jλ

V

)
. (3.360)

Inserting this into Leff yields our final result87,

L(J
V
, δA) = −2π~n0 J

µ
V
wµ −

π

θ

e

c
Jµ

V
δAµ +

e2

4θ~c2
ǫµνλ δAµ ∂ν δAλ + ~

π2

θ
ηµνλ J

µ
V

∂ν

�
Jλ

V
. (3.361)

Thus, we find:

• The vortices of the CSGL condensate accrue a Berry phase in traversing a loop C of
γC = −2π N0(C), where N0(C) = n0A(C) is the condensate number density times the
area enclosed by the loop, which is to say the average number of condensate particles
encircled.

• The vortex current Jµ
V is minimally coupled to fluctuations δAµ in the physical electro-

magnetic field, with an effective charge e∗ = πe/θ = e/q in the Laughlin state at ν = 1/q.

87Recall that � = c−2 ∂2t −∇
2 and η012 = −η021 = η120 = −η210 = 1 with η201 = −η102 = c−2.
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• There is an induced Chern-Simons term in the physical electromagnetic vector potential.
Varying with respect to the physical electromagnetic field, we have88

Jµ = −c δS

δAµ

= −π
θ
eJµ

V
+

e2

2~c
ǫµνλ ∂µ δAλ , (3.362)

and with the physical electric field given by E = −c−1(∇δA0 + ∂0 δA
)

, we obtain

J =
e2

qh
ẑ × E − e

q
J

V
. (3.363)

This tells us that in the absence of vortices (i.e. quasiparticles) there is a quantized Hall
effect σyx = e2/qh. Since vortices are charged, when present they carry an electrical cur-
rent. However, the random potential from the displaced dopant ions produces many
pinning sites for vortices, and a pinned vortex, which remains spatially localized, carries
zero current.

• Comparing with Eqn. 3.304, we see that the vortices of our theory are anyons with a
statistical angle ϑ = π2/θ . Thus for θ = qπ we have ϑ = π/q, exactly as the adiabatic
calculation of §3.3.6 concluded. Had we included the Maxwell term, the combination of
CS and Maxwell terms would have attached a smeared flux tube to each of the vortices,
where the length scale of the smearing is d = m∗u2/θ~n0c .

What we don’t have here is the 1/r Coulomb interaction between the vortices, which as we have
seen possess finite charge ±e/q. In fact, this is indeed included in the last term of the action of
Eqn. 3.355, but we have neglected the long range part of v(r− r′) in deriving Eqn. 3.361. More
on this below in §3.5.8.

Remarks on units

In our units, xµ = (t, x, y) and d3x = dt dx dy . The units for the components of particle 3-current
and vector potentials are

[n] = [j0] = L−2 , [j] = L−1T−1 , [eA0] = ELT−1 , [eA] = E , (3.364)

where L stands for length, T for time, and E for energy. Thus
[
e
c
jµA

µ
]
= EL−2, i.e.energy

density. Since α−1 = ~c/e2 ≈ 137.036 is the inverse fine structure constant, we have

[e2] = [~c] = EL ⇒ [e] = E1/2L1/2 . (3.365)

Note that the physical electric and magnetic fields have dimensions [E] = [B] = EL−3, which
agrees with

EL−3 = [B2] = [n]2 [φ0]
2 = L−4 · [hc]

2

[e2]
=
E2L−2

EL
= EL−3 . (3.366)

88Note that Jµ = −ejµ is the electrical current of the Chern-Simons bosons, while Jµ
V is the number current of the

vortices.
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3.5.7 Superfluid response and CSGL theory

The action Smat in Eqn. 3.338 corresponds to the (first quantized) Hamiltonian

H(δa) =
1

2m∗

N∑

i=1

(
pi +

e

c
δ~ai

)2
− e

c

N∑

i=1

δa0i +
∑

i<j

v(ri − rj) . (3.367)

Here we are invoking the shifted CS gauge potential, δaµ = δaµ + δAµ and Aµ = Āµ + δAµ , as
in §??. The CS action in terms of δa and δA is given by

SCS =
πe

2θcφ0

∫
d3x ǫµνλ

{
(δaµ − δAµ) ∂ν (δaλ − δAλ)− 2 δaµ ∂ν Āλ

}
. (3.368)

Thus, we have

H(δa) = H(0)− e

c

∫
d2x jpµ(x) δa

µ(x) +
e2

2m∗c2

∫
d2x n(x)

[
δ~a(x)

]2
, (3.369)

where jpµ is the paramagnetic current. A review of the linear response formalism is given in
§3.8 below.

The effective action, once matter fields are integrated away, is given by89

Seff[δa, δA] =
1

8π

∫
d3x

∫
d3x′ δaµ(x, t)Kµν(x− x′, t− t′) δaν(x′, t′) + SCS[δa, δA]

=
1

8π

∫
d3q

(2π)3
(
δaµ(−q) δAµ(−q)

)(K̂µν(q) + L̂µν(q) −L̂µν(q)

−L̂µν(q) L̂µν(q)

)(
δaν(q)
δAν(q)

) (3.370)

where Kµν(x − x′, t − t′) is the electromagnetic response tensor derived in §3.8, and where
we retain only finite wavevector components of the gauge fields. Here it proves useful to
redefine δa0 → δa0/c and δA0 → δA0/c so that all the components of δaµ and δAµ have the same
dimensions. Similarly, we take xµ = (ct,x) and qµ = (c−1ω, q). Then

K̂µν(q) =

(
(c2q2/ω2) K̂‖(q) (cqj/ω) K̂‖(q)

(cqi/ω) K̂‖(q) q̂i q̂j K̂‖(q) + (δij − q̂i q̂j) K̂⊥(q)

)
(3.371)

and

L̂µν(q) =
2πiα

θc




0 −cq2 +cq1
+cq2 0 +ω
−cq1 −ω 0


 , (3.372)

where α = e2/~c is the fine structure constant. Note that both matrices are Hermitian.

89We only include fields at nonzero wavelength and/or frequency.
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Now we integrate out δaµ, resulting in the new reduced effective action

Sred[δA
µ] =

1

8π

∫
d3q

(2π)3
δAµ(−q)

(
L̂(q)− L̂(q)

[
K̂(q) + L̂(q)

]−1
L̂(q)

)
µν
δAν(q) . (3.373)

To inver the matrices K̂µν and L̂µν , it is convenient to work solely with components of q with
lowered indices, since these matrices are expressed above in those variables. We define the
orthonormal triad,

ψ0,µ =
1√

ω2 + c2q2




ω
−cq1
−cq2


 , ψ1,µ =

1

|q|




0
−q2
+q1


 , ψ2,µ =

1

|q|
√
ω2 + c2q2



cq2

ωq1
ωq2


 ,

(3.374)
which satisfy the orthogonality relations

∑
µ ψa,µ(q)ψb,µ(q) = δab and the completeness relations∑

a ψa,µ(q)ψa,ν(q) = δµν for all q . Suppressing q, one readily obtains

K̂ | 0 〉 = 0 , K̂ | 1 〉 = K̂⊥ | 1 〉 , K̂ | 2 〉 = K̃‖ | 2 〉 , (3.375)

where

K̃‖(q, ω) ≡
(
c2q2

ω2
+ 1

)
K̂‖(q, ω) = −

(
1 +

ω2

c2q2

)
4πe2 χ̂(q, ω) , (3.376)

where χ̂(q, ω) is the scalar susceptibility of the corresponding neutral superfluid (see §3.8.3);
note that χ̂(q → 0, 0) = n2κT is finite. We also have

L̂ | 0 〉 = 0 , L̂ | 1 〉 = iβ | 2 〉 , L̂ | 2 〉 = −iβ | 1 〉 , (3.377)

where

β(q, ω) =
2πα

θ

√
ω2

c2
+ q2 . (3.378)

Note that | 0 〉 is annihilated by both K̂ and L̂ – this is a consequence of gauge invariance. We
may now write

K̂ = K̂⊥ | 1 〉〈 1 |+ K̃‖ | 2 〉〈 2 |
L̂ = iβ

(
| 2 〉〈 1 | − | 1 〉〈 2 |

)
.

(3.379)

Thus, in the truncated |a〉 basis (a = 1, 2), we have

K̂ + L̂ =

(
K̂⊥ −iβ
+iβ K̃‖

)
. (3.380)

We may now construct the pseudo-inverse

(K̂ + L̂)−1 =
1

K̂⊥K̃‖ − β2

(
K̃‖ iβ

−iβ K̂⊥

)
, (3.381)
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and we find

Q̂ ≡ L̂− L̂(K̂ + L̂)−1L̂ = − β2

K̂⊥K̃‖ − β2
K̂ +

K̂⊥K̃‖

K̂⊥K̃‖ − β2
L̂ . (3.382)

In the low frequency, long wavelength limit, K̂⊥(q → 0, 0) and K̃‖(q → 0, 0) are both constant

and dominate over β2 ∝ c−2ω2 + q2. Thus Q̂→ L̂ and we obtain the long wavelength action

Sred[δA
µ] =

e2

4θ~c

∫
d3x ǫµνλ δAµ ∂ν δAλ , (3.383)

exactly as in Eqn. 3.361.

Now you may ask: where are the vortices? Our description of superfluid response doesn’t
include them! To account for vortices, consider the vortex 3-current,

Jµ
V
=

N
V∑

i=1

qi

{
1

Ẋi(t)

}
δ
(
x−Xi(t)

)
. (3.384)

Conservation of vorticity means ∂µJ
µ
V = 0, which licenses us to define a gauge field Vµ whose

curl is the vortex current, viz.

Jµ
V
= ǫµνλ ∂νVλ . (3.385)

We now add a term to the Lagrangian for the superfluid particles,

∆L = 2π~

∫
d2x jpµ Vµ , (3.386)

which in the action provides a Berry phase of 2πqi for each time a bosonic particle of the super-
fluid executes a closed path encircling the ith vortex90. In the Hamiltonian description of the
superfluid, this amounts to the replacement

δaµ −→ δaµ − φ0Vµ . (3.387)

With this refinement, all the terms in Eqn. 3.361 are recovered91. Ta da!

Why do we need to mess with this tedious response function formalism? Because the interac-
tion potential v(r−r′) may be very strong at short distances. The correlations of the underlying
superfluid may not be adequately described by a simple Gross-Pitaevskii |Ψ |4 interaction.

90See D. P. Arovas and J. A. Freire, Phys. Rev. B 55, 1068 (1997).
91See if you can trace the appearance of the first term on the RHS of Eqn. 3.361, which accounts for the Berry

phase of each vortex as it winds around the background condensate.
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3.5.8 Kohn mode and collective excitations

If we hold the field fixed at B = qnφ0 and set δAµ = 0, then the action of Eqn. 3.370 is given by

Seff[δa] =
1

8π

∫
d3q

(2π)3
δaµ(−q)

[
K̂µν(q) + L̂µν(q)

]
δaν(q) . (3.388)

The frequencies of the elementary excitations are given by solving the equation

0 = det
[
K̂ + L̂

]
= K̂⊥K̃‖ − β2

= −K̂⊥(q, ω)

(
1 +

ω2

c2q2

)
4πe2χ̂(q, ω)−

(
2πα

θ

)2(
q2 +

ω2

c2

)
,

(3.389)

which says

4πe2 K̂⊥(q, ω) χ̂(q, ω) +

(
2πα

θ

)2
q2 = 0 . (3.390)

At T = 0, there is no normal component to the superfluid to produce a transverse response,
and we have

lim
q→0

K̂⊥(q, 0) =
4πe2n

m∗c2
. (3.391)

For the density response function, we will use the SMA formula,

χ̂
SMA

(q, ω) =
nq2/m

ω2(q)− (ω + iǫ)2
. (3.392)

If ω(q) = c|q| , we obtain the dispersion relation

ω2 = c2q2 +

(
4πne2

m∗

)2(
θ

2πα

)2
= ω2

c + c2q2 , (3.393)

where ωc = eB/m∗c is the cyclotron frequency. We have found the Kohn mode.

However, the presumption of a long-wavelength dispersion ω(q) = c|q| for the phonons of
the superfluid is not correct here, due to the long range of the interaction potential v(r). As we
derive in §3.7 below, the long-wavelencth phonon dispersion is rather given by

ω(q) =

√
n0 v̂(q)

m∗ |q| , (3.394)

which for v̂(q) = 2πe2/ǫ|q| behaves as |q|1/2. This, you may recall, is the form for the L-phonon
in the two-dimensional Wigner crystal with 1/r Coulomb interactions. Thus, we should expect

ω2 = ω2
c +

2πn0e
2

ǫm∗ |q| (3.395)
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for the Kohn mode at long wavelengths.

In the original Zhang-Hansson-Kivelson paper on the CSGL theory, this inter-LL Kohn mode
was misidentified as an intra-LL collective mode. This interpretation was subsequently re-
visited by Lee and Zhang92, who provided a revised understanding of the intra-LL collective
mode in the CSGL theory in terms of vortex-antivortex pairs and quadrupoles. If we add the
long-ranged instantaneous Coulomb interaction between vortices to the theory of Eqn. 3.361,
i.e. a term

∆SCS = − π2

2θ2

∫
dt

∫
d2x

∫
d2x′ J0

V
(x, t) v(x− x′) J0

V
(x′, t) , (3.396)

where v(r) = e2/ǫr , then with δAµ = 0 we obtain a theory of vortices and antivortices confined
to the lowest Landau level, since there is no vortex mass term to set a scale for a vortex cyclotron
energy. Interpreting the first term as measuring the enclosed area swept out by each vortex
in units of l2, where l is a vortex ”magnetic length”, we have l = (2πn0)

−1/2 = ν−1/2ℓ , since
the number density is given by n0 = ν/2πℓ2. The remaining terms are the Coulomb interaction
from ∆SCS, and the topological term proportional to the vortex linking numbers which endows
the vortices with fractional exchange statistics. As the linking number is always an integer, this
can only change discontinuously due to the crossing of vortex world lines, and cannot affect
the vortex equations of motion. Thus, the Lagrangian is93

Svor =
ν

2ℓ2

N
V∑

i=1

qi ǫabX
a
i Ẋ

b
i −

ν2e2

ǫ

N
V∑

i<j

qi qj
|Xi −Xj|

−
N

V∑

i=1

qi U(Xi)− ε̃QEN
QE
− ε̃QHN

QH
, (3.397)

where we have also included a one-body potential U(r) for the vortices which reflects the
random potential coupling to the density n = n0 + δn , recognizing that each vortex pro-
duces a local surplus or deficit of physical electrons. Recall from §3.3.7 that a quasielectron-
quasihole pair is an exciton whose wavevector k is related to the qe-qh separation r according
to k = νẑ×r/ℓ2. The energy of a single exciton is ∆

EX
= ε̃QE+ ε̃QH+v(r) where for Coulomb inter-

actions v(r) = (νe)2/ǫr . To create an excitation at zero wavevector, one can make a quadrupole
with zero net dipole moment. This suggests that the k = 0 magnetophonon is a quadrupole
with energy ∆(0) should be on the order of 2ε̃QE + 2ε̃QH, whereas the magnetoroton, which is a
finite k excitation, is a dipole with energy on the order of ε̃QE + ε̃QH. Indeed, whereas the dipoles
have a definite energy-momentum relationship, k = 0 quadrupoles are available in a contin-
uum of states. Consider a configuration with two quasielectrons at positions ±(x, y) and two
quasiholes at positions ±(x,−y). For every choice of (x, y) the net dipole moment is zero, and
the energy is

∆
QUAD

= 2ε̃QE + 2ε̃QH + 2v
(
2
√
x2 + y2

)
− 2v(2x)− 2v(2y) . (3.398)

From numerical calculations, the q = 0 portion of the collective excitation spectrum is indeed a
continuum, the bottom edge of which lies above the magnetoroton minimum (see Fig. 3.10).

92D.-H. Lee and S.-C. Zhang, Phys. Rev. Lett. 66, 1220 (1991).
93For a more general interaction potential, replace e2/ǫr with v(r).
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Read’s version of the CSGL theory has the virtue of describing only LLL physics. His coef-
ficient of the covariant derivative squared term is proportional to the Laplacian of a Hartree-
type potential whose energy scale is set by e2/ǫℓ. In the CSGL theory of ZHK, the coefficient is
~2/2m∗. The electron mass m∗ enters nowhere within Read’s theory, which is apposite since in
any LLL-projected theory we should be able to set m∗ → 0. However, the theory is unwieldy
for other reasons and in fact does not yield a magnetoroton minimum in its collective excitation
branch94.

3.5.9 Quasi-LRO and CSGL theory

Recall that by varying the action in Eqn. 3.348 with respect to the gauge field δA0 we obtain
the condition δn = πb/θφ0, where b is the magnetic field strength corresponding to the shifted
gauge field δ~a. Since the action is linear in δa0, this result is exact, and we may substitute it
back into the remaining terms of the action with no approximations. In Fourier space, we have,
taking θ = πq = π/ν,

δâi(k) =
~c

e

2π

νk2
iǫij k

j δn̂(k) , (3.399)

where, following Zhang (1992), we work in the transverse gauge ~∇·δ~a = 0 . We substitute the
above result into the rest of the Lagrangian density,

L = −~ δn ∂tφ− ~
2

2m
(n0 + δn)

(
(∇φ)2 +

2e

~c
∇φ · δ~a+ e2

~2c2
(
δ~a
)2)

− ~
2

8m(n0 + δn)
(∇δn)2 − νe2

4π~c2
ǫij δa

i ∂t δa
j − 1

2
δn v δn ,

(3.400)

where Ψ =
√
n eiφ and where the last term is shorthand for what is in the action written as a

double integral over x and x′, with potential v(x− x′), as previously. We assume that no vortices
are present and thus that φ = φ

SW
. In the transverse gauge, this means that ∇φ · δ~a = 0 . We also

neglect terms cubic in the density. The result of the substitution is then

L̂ = i~ω δn̂(−k) φ̂(k)− ν

4π
~ωc k

2 |φ̂(k)|2 − 1

2

(
v̂(k) +

~2k2

4mn0

+
2π

ν

~ωc

k2

)
|δn̂(k)|2 . (3.401)

We now integrate out the density fluctuations, using their equation of motion. Varying with
respect to δn̂(−k) yields

δn̂(k) =
i~ω φ̂(k)

v̂(k) + ~2k2

4mn0
+ 2π

ν
~ωc

k2

, (3.402)

which results in the effective Fourier space Lagrangian density for the φ field,

L̂(φ) = ν

4π
~ωc k

2

(
ω2 −Ω2

K
(k)

Ω2
K(k)

)
|φ̂(k)|2 , (3.403)

94Read obtains, correctly, a magnetophonon gap on the order of e2/ǫℓ , but upwardly dispersing as a function
of wavevector.
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where

ΩK(k) =

[
ω2
c +

n0

m
v̂(k) k2 +

(
~k2

2m

)2 ]1/2
(3.404)

is the frequency of the Kohn mode derived in §3.5.8 above95.

We may now compute the expectation of the phase fluctuations at T = 0 :

〈
|φ̂(k)|2

〉
= ~

∞∫

0

dω

2πi

2π

ν

1

~ωc k
2

Ω2
K
(k)

(ω + iǫ)2 −Ω2
K(k)

=
π

ν

Ω
K
(k)

ωc k
2

≈ π

ν k2
. (3.405)

Thus,

〈Ψ ∗(r)Ψ (r′)
〉
≃ n0

〈
eiφ(r

′) e−iφ(r)
〉

= n0 exp
[
− 1

2

〈[
φ(r)− φ(r′)

]2〉]
,

(3.406)

and with
〈[
φ(r)− φ(0)

]2〉
=

2π

ν

∫
d2k

(2π)2
1− eik·r

k2
= ν−1 ln r , (3.407)

we recover the algebraic Girvin-MacDonald order96,

〈Ψ ∗(r)Ψ (r′)
〉
∝ n0 |r − r′|−1/2ν . (3.408)

(Compare with Eqn. 3.325.)

3.6 Global Phase Diagram of the Quantum Hall Effect

Finally, we discuss the issue of phase transitions between different quantum Hall phases, fol-
lowing the ”global phase diagram” picture of Kivelson, Lee, and Zhang (KLZ)97 As we saw in
chapter 2 (§2.1,7), for weak disorder, the extended single-particle states at the center of each
disorder-broadened Landau level are separated in energy by a mobility gap in which all states
are localized. This provided a quantum percolation picture of the IQH transition, which could
be investigated via the Chalker-Coddington network or disordered Hoftstadter models, and
when disorder is increased, the extended states ”float up” in energy. Still, within this picture
all direct IQH transitions involve ∆σxy = ±e2/h . Despite some problems with noninteracting

95We have included the term proportional to |k|4 in Ω2
K
(k) here for completeness. This arises from the (∇δn)2

term in the original Lagrangian.
96The integral in Eqn. 3.407 diverges in the ultraviolet and a cutoff at k ≈ ℓ−1 must be imposed.
97S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev. B 46, 2223 (1992).
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models of the IQHE98, if we ignore LL mixing then the transition between ν = n and ν = n+ 1
plateaus occurs for ν = n+ 1

2
, i.e. in the center of each disorder-broadened LL. The transition is

marked by a crossing of σxy(B, T, L) curves at the value σxy = (n+ 1
2
) e2/~ . Recall the relations,

valid in isotropic systems,

ρ =

(
ρxx ρxy
−ρxy ρxx

)
=

1

σ2
xx + σ2

xy

(
σxx −σxy
σxy σxx

)
= σ−1 (3.409)

and

σ =

(
σxx σxy
−σxy σxx

)
=

1

ρ2xx + ρ2xy

(
ρxx −ρxy
ρxy ρxx

)
= ρ−1 . (3.410)

Thus the n → n + 1 IQH transition lying at σxy = (n + 1
2
) e2/~ entails a relation between the

longitudinal and transverse components of the resistivity, ρxx ≡ r h/e2 and ρyx ≡ s h/e2 :

n to n + 1 : r2 +

(
s− 1

2n+ 1

)2
=

1

(2n+ 1)2
. (3.411)

In the quadrant (s > 0, r > 0) of the (s, r) plane, for each n the above equation describes a
half-circle, centered at (s, r) =

(
1

2n+1
, 0
)
, of radius 1

2n+1
. The maximum value for each n occurs

at the center, and is given by r∗ = 1
2n+1

.

The KLZ picture is based on a ”law of corresponding states” which posits that the physics of
a QH state at filling fraction ν is related to that at other fillings related by the operations of LL
addition (ν → ν+1), particle-hole transformation within the LLL (ν → 1−ν), and flux addition
(ν−1 → ν−1 + 2). We discussed these operations toward the end of §3.4.4, and one can define
explicit mappings at the level of wavefunctions for each of them. KLZ provide a nonrigorous
but well-motivated argument for this based on the CSGL theory. It is important to note that
their procedure accommodates disorder as well.

It is convenient to define the dimensionless components of the conductivity tensor u and v
according to σxx ≡ u e2/h and σxy ≡ v e2/h. Thus,

r =
u

u2 + v2
, s =

v

u2 + v2
, u =

r

r2 + s2
, v =

s

r2 + s2
. (3.412)

Suppose a phase boundary between QH states at fillings ν and ν ′ is expressed as a relation
between r and s as F (ν , ν ′ | r , s) = 0 , with λF (ν , ν ′ | r , s) ∼= F (ν , ν ′ | r , s), i.e. multiplication
by a constant does not change the condition F (ν , ν ′ | r , s) = 0 . Eqn. 3.411 may be written as

F
(
n , n+ 1 | r , s

)
= r2 + s2 − 2s

2n+ 1
, (3.413)

From this expression we may derive the phase boundaries for all other QH transitions within
the KLZ scheme via a combination of the following operations:

98Recall that such noninteracting descriptions apparently don’t properly recover the experimentally observed
value for the correlation length exponent ν ≈ 2.35 and instead give ν ≈ 2.58; the difference is now large enough to
rule out the noninteracting theory, which also fails to give z = 1 for the dynamic critical exponent, which is what
experimental scaling analysis supports.
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(i) Landau level addition : Under LL addition, one has ν = ν0 + 1, u = u0, and v = v0 + 1.
Suppose we do this n times, so ν = ν0 + n, u = u0 and v = v0 + n. Then with

u0 = u =
r

r2 + s2
, v0 = v − n =

s− n(r2 + s2)

r2 + s2
, (3.414)

we have

rLLA

0 (r, s) =
r(r2 + s2)

r2 +
[
s− n(r2 + s2)

]2

sLLA0 (r, s) =

[
s− n(r2 + s2)

]
(r2 + s2)

r2 +
[
s− n(r2 + s2)

]2

(3.415)

and we may write

F
(
ν + n , ν ′ + n | r , s

)
= F

(
ν , ν ′ | rLLA

0 (r, s) , sLLA0 (r, s)
)

. (3.416)

If we start with the 0 → 1 transition, where we may take F0(r, s) = r2 + s2 − 2s, then we
obtain

F
(
n , n+ 1 | r , s

)
=

r2 + s2

r2 +
[
s− n(r2 + s2)

]2
[
(2n+ 1)(r2 + s2)− 2s

]
, (3.417)

which is congruent to the form in Eqn. 3.413.

(ii) Particle-hole conjugation : Under the PHC operation, assuming ν < 1, one has ν = 1−ν0 ,
u = u0, and v = 1− v0. Suppose we do this n times, so ν = ν0 + n, u = u0 , and v = v0 + n.
Thus

rPHC

0 (r, s) =
r(r2 + s2)

r2 +
[
s− r2 − s2)

]2

sPHC0 (r, s) =

[
r2 + s2 − s

]
(r2 + s2)

r2 +
[
s− r2 − s2

]2

(3.418)

and we may write

F
(
1− ν ′ , 1− ν | r , s

)
= F

(
1− ν ′ , 1− ν | rPHC

0 (r, s) , sPHC0 (r, s)
)

(3.419)

(iii) Flux attachment : Under the flux attachment operation, one has ν−1 = ν−1
0 + 2 , r = r0 ,

and s = s0 + 2. Suppose we do this p times, so ν = ν0/(2pν0 + 1), r = r0 , and s = s0 + 2p.
Then

F

(
ν

2pν + 1
,

ν ′

2pν ′ + 1

∣∣∣∣ r , s
)

= F
(
ν , ν ′ | r , s− 2p

)
. (3.420)
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Figure 3.13: Conjectured global phase diagram of the quantum Hall effect.

Thus, we have

F

(
n

2pn+ 1
,

n+ 1

2p(n+ 1) + 1

∣∣∣∣ r , s
)

= r2 +
(
s− sn,p

)2 − a2n,p (3.421)

with

sn,p = 2p+
1

2n+ 1
, an,p =

1

2n + 1
. (3.422)

It is a useful exercise to compute the effect of the PHC operation on the ν = n/(2np+1). After
a straightforward but slightly tedious calculation, one obtains

F

(
(2p− 1)(n+ 1) + 1

2p(n+ 1) + 1
,
(2p− 1)n+ 1

2pn+ 1

∣∣∣∣ r, s
)

= r2 +
(
s− s̃n,p

)2 − ã2n,p , (3.423)

where

s̃n,p =
2p(2p− 1)(2n+ 1) + 4p− 1

(2p− 1)
[
(2p− 1)(2n+ 1) + 2

] (3.424)

and

ã2n,p = s2n,p −
4p
[
p(2n+ 1) + 1

]

(2p− 1)
[
(2p− 1)(2n+ 1) + 2

] . (3.425)
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For the case n = 1 and p = 1, for example, we find

F
(
3
5
, 2

3

∣∣ r, s) = r2 +
(
s− 9

5

)2 − 1
25

. (3.426)

A few iterations of the various operations yields the phase diagram shown in Fig. 3.13.

As KLZ stress, one should not take the details of Fig. 3.13 too seriously. Each of the three
transformations results in a different effective disorder potential. Rather, it is the topology
of the global phase diagram which is alleged to be robust. This tells us that there are direct
IQH transitions only from n → n ± 1 and never with ∆n > 1. Similarly, one may observe
the transitions 1

3
↔ 2

5
↔ 3

7
, but not 1

3
↔ 3

7
. Another feature of the global phase diagram is

the singularities at even denominators, where there is a confluence of an infinite number of
phases. In general, disorder will kill off all but a relatively small number of these phases, but
rather than the insulating state extending down to the r = 0 axis in Fig. 3.13 at even values of
s, at some point the Fermi liquid like physics of the ν = 1

2
etc. states sets in. We shall discuss

the half-filled Landau level in the next chapter.

The insulating phase in Fig. 3.13 is identified as a Hall insulator, in which σxx → 0, σxy → 0,
ρxx → ∞, but ρyz < ∞ is a constant value roughly given by B/nec. It differs from the band
insulator and Mott insulator phases, where ρyx → ∞. The disordered Wigner crystal phase
with finite size Imry-Ma domains could be a Hall insulator.

3.7 Appendix I: Density Correlations in a Superfluid

As a model of a vanilla superfluid, consider the Gross-Pitaevskii field theory, with Euclidean
Lagrangian density

LE = ~ ψ̄ ∂τ ψ +
~2

2m

∣∣∇ψ
∣∣2 + 1

2
g
(
|ψ|2 − n0

)
(3.427)

in d = 2 space dimensions. Write ψ =
√
n exp(iφ), so that

LE = i~n ∂τφ+
~2n

2m
(∇φ)2 +

~2

8mn
(∇n)2 + 1

2
g (n− n0)

2 . (3.428)

We write n = n0+ δn and expand in the small quantities δn, ∇δn, and ∇φ , and adding a source
term j with respect to which we may differentiate. Thus,

LE = i~n0 ∂τφ+ i~ δn ∂τφ+
~2n0

2m
(∇φ)2 +

~2

8mn0

(∇δn)2 + 1
2
g (δn)2 + j δn , (3.429)

which is valid to quadratic order in small quantities. The first term on the RHS is important
when vortices are present. Else, since it is a total derivative, in the action it integrates to zero.
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We shall be interested in the case when there are no vortices, so we will drop this term. Going
now to Fourier space, we have

L̃E =
(
~ω φ̂(k, ω) + ̂(k, ω)

)
δn̂(−k,−ω) + n0 εk

∣∣φ̂(k, ω)
∣∣2 +

(
εk
4n0

+ 1
2
g

)∣∣δn̂(k, ω)
∣∣2 (3.430)

where εk = ~2k2/2m. Now vary the action with respect to δn̂∗(k, ω) = δn̂(−k,−ω) to obtain
(
εk
2n0

+ g

)
δn̂(k, ω) +

(
~ω φ̂(k, ω) + ̂(k, ω)

)
= 0 . (3.431)

Integrating out the density fluctuations using the above equation of motion, we obtain the
Lagrangian density

L̃E = n0

(
(~ω)2

εk + 2gn0

+ εk

)∣∣φ̂(k, ω)
∣∣2 − n0 |̂ (k, ω)|2

εk + 2gn0

+
~ωn0

εk + 2gn0

(
φ̂∗(k, ω) ̂ (k, ω)− φ̂(k, ω) ̂∗(k, ω)

)
.

(3.432)

From the coefficient of the |φ̂|2 term we can read off the phonon dispersion,

ω(k) =
1

~

√
εk (εk + 2gn0) , (3.433)

which shows up as a pole in the φ̂ propagator at ω = iω(k)99. As k → 0 we obtain ω(k) = u|k|
with a phonon velocity u =

√
gn0/m . As expected, in the ultraviolet limit k → ∞ we recover

the ballistic dispersion ω(k) = εk/~ .

We can now integrate out the phase fluctuations φ̂(k, ω) using the same method to obtain the
Euclidean action as a function of the source ̂(k, ω):

SE[j] = −
∞∫

−∞

dω

2π

∫
d2k

(2π)2
n0 εk

(~ω)2 + εk(εk + 2gn0)

∣∣̂(k, ω)
∣∣2 . (3.434)

In essence we have just done two Gaussian functional integrals. As a sanity check, note that
setting m→ ∞ and then ~ → 0 kills off all but the last two terms on the RHS of Eqn. 3.429, and
accordingly in this limit the integrand becomes |̂|2/2g .

Differentiating now with respect to the source, we obtain the equal-time correlator for density
fluctuations

s(k) =
1

n0

∫
d2r eik·r

〈
δn(r, 0) δn(0, 0)

〉
(3.435)

= − ~

n0

∞∫

−∞

dω

2π

δ2S[j]

δ̂∗(k, ω) δ̂(k, ω)
=

∞∫

−∞

dω

2π

2~ εk
(~ω)2 + εk(εk + 2gn0)

=

√
εk

εk + 2gn0

.

99Had we been working in real time, rather than Euclidean time, the pole would have been at ω = ω(k).
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At long wavelengths we have s(k) = 1√
2
kλ where λ = ~/mu is the Compton wavelength (with

u the speed of sound in the superfluid). In the ultraviolet limit, s(k) → 1 as is always the case100.
Note that there is no superfluidity at any finite temperature T > 0 in d = 2, as a consequence
of the Hohenberg-Mermin-Wagner theorem. Rather, for a model with O(2) symmetry, there
is a Kosterlitz-Thouless phase transition at a critical temperature TKT , below which thermally
excited vortices and antivortices are bound. For T < TKT , there is a finite superfluid stiffness
ρs , but the condensate fraction n0 is rigorously zero, in accordance with the HMW theorem101.
For T > TKT, there is a vortex-antivortex plasma.

As we’ve seen, the dispersion ω(k) in the Gross-Pitaevskii model crosses over from the acous-
tic phonon behavior u|k| in the infrared to the ballistic ~2k2/2m in the ultraviolet. It is thus a
convex function of k and shows no hint of a roton dip. The reason is that the contact interac-
tion v(r − r′) = g δ(r − r′) is purely repulsive. If we replace it with a more general interaction
potential g(r − r′), then we can accommodate a roton in our model through the behavior of its
Fourier transform ĝ(k). The GP dispersion and structure factor are then given by

ω(k) =
1

~

√
εk (εk + 2 ĝ(k)n0) , s(k) =

√
εk

εk + 2 ĝ(k)n0

. (3.436)

Thus, a phonon-roton dispersion curve is modeled if ĝ(k) has a pronounced dip in the vicinity
of k ≈ kR.

3.8 Appendix II: Linear Response and Correlation Functions

We now present a litany of useful definitions and results which are applied to CSGL theory of
the FQHE in §3.5.7. The Hamiltonian for a system of particles of charge (−e) is given by

H(Aµ) =
1

2m∗

N∑

i=1

(
pi +

e

c
Ai

)2
− e

c

N∑

i=1

A0
i +

∑

i<j

v(ri − rj) . (3.437)

We begin with the definitions

jp0(x) = n(x) =

N∑

i=1

δ(x− xi)

jp(x) =
1

2m∗

N∑

i=1

[
pi δ(x− xi) + δ(x− xi) pi

]
,

(3.438)

100Recall s(k) = N−1
∑

i,j〈eik·ri e−ik·rj 〉. For k → ∞, only terms with i = j contribute and s(k) → 1.
101The superfluid stiffness ρs(T ) vanishes for T > TKT , but rather than vanishing as a power law, as in conven-

tional second order phase transitions, it exhibits a universal jump such that ρs(T
−
KT) = 2k

B
TKT/π .
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where jpµ is called the paramagnetic number current102. For charged systems in the presence of an
electromagnetic field with vector potential Aµ(x, t), there is also a diamagnetic number current,

jd0 = 0 , jd(x) =
e

m∗c
n(x)A(x) , (3.439)

where the particle charge is (−e), and the gauge-invariant current operator is given by

jµ = −c
e

δH

δAµ = jpµ + jdµ . (3.440)

3.8.1 Linear response theory

Consider a quantum Hamiltonian H(t) = H0 −
∑

iQi φi(t) where {Qi} are operators and the
{φi(t)} are fields or potentials103. From first order perturbation theory, one derives the linear
response relation

〈
Q(t)

〉
=

∞∫

−∞

dt′ χij(t− t′)φj(t
′) +O

(
φ2
)

, (3.441)

where the response functions χij(t− t′) are given by

χij(t− t′) =
i

~

〈[
Qi(t), Qj(t

′)
]〉

Θ(t− t′) , (3.442)

where 〈 · · · 〉 denotes a thermal average. Thus, the Fourier transform χ̂ij(ω) is given by

χ̂ij(ω) =
i

~

∞∫

0

dt
〈[
Qi(t), Qj(0)

]〉
eiωt

=
1

~Z

∑

m,n

e−βEm

{
〈m |Qj |n 〉 〈n |Qi |m 〉
ω − Em + En + iǫ

− 〈m |Qi |n 〉 〈n |Qj |m 〉
ω + Em −En + iǫ

}
.

(3.443)

At T = 0, with ωn ≡ En −E0 , we have

χ̂ij(ω) =
1

~

∑

n

{
〈 0 |Qj |n 〉 〈n |Qi | 0 〉

ω + ωn + iǫ
− 〈 0 |Qi |n 〉 〈n |Qj | 0 〉

ω − ωn + iǫ

}
. (3.444)

102Note that with our (+−−) metric that V 0 = V0 for any 3-vector V µ, and hence (jp)0 = jp0 .
103We also assume that 〈Qi〉 = 0 when all the φi are set to zero.
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3.8.2 Electromagnetic response

In the case of electromagnetic response for charge (−e) objects, we define Jp
µ ≡ −ejpµ . In the

presence of an electromagnetic vector potential Aµ we have

H(A) = H(0) +
1

c

∫
d2x Jp

µ Aµ − e

2m∗c2

∫
d2x Jp

0 A
2 . (3.445)

Linear response theory then says

〈
Jµ(x, t)

〉
=

c

4π

∫
d2x′ Kµν(x− x′, t− t′)Aν(x′, t′) , (3.446)

where the electromagnetic response tensor is

Kµν(x−x′, t−t′) = 4π

i~c2
〈[
Jp
µ(x, t), J

p
ν (x

′, t′)
]〉

Θ(t−t′)+ 4πe

m∗c2
〈Jp

0 (x)〉 gµν (1−δµ0) δ(x−x′) δ(t−t′) ,

(3.447)
where, recall, the metric is g = diag(+,−,−) . Taking the Fourier transform,

K̂µν(q, ω) =
4πe2

i~c2

∞∫

0

dt
〈[
̂pµ(q, t), ̂

p
ν(−q, 0)

]〉
eiωt +

4πe2

c2
n

m∗ δµν(1− δµ0) . (3.448)

Linear response says 〈
Jµ(q, ω)

〉
=

c

4π
K̂µν(q, ω)Aν(q, ω) . (3.449)

Gauge invariance requires that the physical current Jµ is unchanged if Aµ → Aµ+∂µf . Charge
conservation requires ∂µJµ = 0. These two conditions therefore guarantee

qµ K̂µν(q, ω) = K̂µν(q, ω) q
ν = 0 , (3.450)

with qµ = (ω, q) . In fact, these two conditions are equivalent, as a consequence of Onsager
reciprocity, which guarantees

Re K̂µν(q, ω) = +Re K̂νµ(−q,−ω)
Im K̂µν(q, ω) = −Im K̂νµ(−q,−ω) .

(3.451)

Furthermore, spatial isotropy requires that

K̂ij(q, ω) = K̂‖(q, ω) q̂i q̂j + K̂⊥(q, ω) (δij − q̂i q̂j) , (3.452)

where q̂ = q/|q| . We may now invoke gauge invariance and charge conservation to establish

K̂0j(q, ω) = K̂j0(q, ω) =
qj
ω
K̂‖(q, ω)

K̂00(q, ω) =
q2

ω2
K̂‖(q, ω) .

(3.453)
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If we choose the gauge A0 = 0, then E = −c−1Ȧ = iωc−1A and the conductivity tensor is
given by

σ̂ij(q, ω) =
c2

4πiω
K̂ij(q, ω) . (3.454)

If σ̂(q, 0) is not to diverge, when we must have K̂ij(q, 0) = 0, which implies the following sum
rule:

i

~

∞∫

0

dt
〈[
Jp
i (x, t), J

p
j (0, 0)

]〉
= −ne

2

m∗ δ(x) δij , (3.455)

where n = 〈n(x)〉 is presumed constant. This sum rule is violated in superconductors.

3.8.3 Neutral systems

In neutral systems, linear response theory may be applied to the particle 3-current, jµ = (n, j),
and we define the susceptibility matrix χµν(x, t) as

χµν(x, t) =
i

~

〈[
jµ(x, t), jν(0, 0)

]〉
Θ(t) =

(
χ00 χ0j

χi0 χij

)
. (3.456)

The component χ00(x, t) ≡ χ(x, t) describes the density response to a potential U(x, t), with
perturbing Hamiltonian H1 = −

∫
d2x n(x)U(x, t) . The Fourier transform is written as

χ̂µν(q, ω) =

∞∫

−∞

dt

∫
d2x χµν(x, t) e

−iq·x eiωt . (3.457)

Note that

κT = − 1

V

(
∂V

∂p

)

T

=
1

n2

(
∂n

∂µ

)

T

= n−2 χ̂(q → 0, 0) . (3.458)

Spatial isotropy says that we may write the spatial tensor

χ̂ij(q, ω) ≡ χ̂‖(q, ω) q̂i q̂j + χ̂⊥(q, ω) (δij − q̂i q̂j) . (3.459)

Continuity ∂t n+∇·j = 0 then guarantees

χ̂00(q, ω) ≡ χ̂(q, ω) =
q2

ω2

(
χ̂‖(q, ω)−

n

m∗

)

χ̂0j(q, ω) = χ̂j0(q, ω) =
qj
ω
χ̂‖(q, ω) .

(3.460)

Note that at T = 0 we have

χ̂(q, ω) =
1

~A

∑

j

[
〈 0 | ρ−q | j 〉 〈 j | ρq | 0 〉

ω + ωj + iǫ
− 〈 0 | ρq | j 〉 〈 j | ρ−q | 0 〉

ω − ωj + iǫ

]
(3.461)
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where ρq =
∑N

i=1 e
−iq·xi is the Fourier component of the density. If the (normalized) SMA state,

| q 〉 ≡
[
Ns(q)

]−1/2
ρq | 0 〉 (3.462)

is an eigenstate, this means that |q〉 saturates all the oscillator strength at this wavevector, in
which case χ̂(q, ω) = χ̂

SMA
(q, ω) , with

χ̂
SMA

(q, ω) =
n

~
s(q)

{
1

ω + ω(q) + iǫ
− 1

ω − ω(q) + iǫ

}
=

nq2/m

ω2(q)− (ω + iǫ)2
, (3.463)

where ω(q) = 〈q|H|q〉 −E0 is the SMA energy.

Relation between charged and neutral system response

If we endow each of our neutral particles with a charge (−e), then

K̂µν(q, ω) =
4πe2

c2

(
n

m∗ δµν(1− δµ0)− χ̂µν(q, ω)

)
. (3.464)

Thus,

K̂00(q, ω) =
4πe2

c2
q2

ω2

(
n

m∗ − χ̂‖(q, ω)

)
= −4πe2

c2
χ̂(q, ω)

K̂0i(q, ω) = K̂i0(q, ω) =
4πe2

c2
qi
ω

(
n

m∗ − χ̂‖(q, ω)

)

K̂‖(q, ω) =
4πe2

c2

(
n

m∗ − χ̂‖(q, ω)

)
=
ω2

q2
K̂00(q, ω)

K̂⊥(q, ω) =
4πe2

c2

(
n

m∗ − χ̂⊥(q, ω)

)
.

(3.465)

3.8.4 Meissner effect and superfluid density

Suppose the electric field is E and the magnetic field is B = ∇×A in three space dimensions.
In d = 2 space dimensions, the magnetic field is a scalar B = ẑ · ∇×A, but we can also for
convenience define B = Bẑ. We may work in the A0 = 0 gauge, in which case E = −c−1∂tA ,
which entails ∇·A = 0 at any finite frequency. We now have

∇×A =
4π

c
J +

1

c

∂E

∂t
= ∇(∇·A)−∇2

A

= −K̂⊥(−i∇, i∂t)A− 1

c2
∂2A

∂t2
,

(3.466)
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which is valid for d = 3, but for d = 2 we must replace K̂⊥ → K̂⊥/dz where dz is the thickness

of the sample in the ẑ direction. One has that the units of K̂ij(q, ω) are L1−d. Thus

∇2
A− 1

c2
∂2A

∂t2
= K̂⊥(−i∇, i∂t)A , (3.467)

again with K̂⊥ replaced by K̂⊥/dz in two space dimensions. Setting ω = 0 and taking the limit
q → 0, we obtain the formula for the London penetration depth,

λ−2
L =

{
d−1
z

1

}
× lim

q→0
K̂⊥(q, 0) . (3.468)

For a purely two-dimensional system, the distance between consecutive layers is dz = ∞, and
we have λL = ∞, which says that a purely two-dimensional system cannot screen a three-
dimensional electromagnetic field. In three-dimensions, the superfluid density is defined by

ns ≡
m∗c2

4πe2λ2L
= n−m∗ lim

q→0
χ̂⊥(q, 0) . (3.469)

In the three-dimensional ideal Bose gas, for example, one finds

χ̂ij(q → 0, 0) =
n0

m∗ q̂i q̂j +
n− n0

m∗ δij , (3.470)

where n0(T ) is the number density of condensed bosons and n′ ≡ n−n0 is that of uncondensed
bosons. Thus χ̂‖(q → 0, 0) = n/m∗ and χ̂⊥(q → 0, 0) = n′/m∗. The superfluid number density

is ns(T ) = n0(T ). In fact, as Landau first showed, an ideal Bose gas is in fact not a superfluid
because its excitation spectrum, which follows the ballistic dispersion ω(q) = ~q2/2m is too
’soft’, and any nonzero superflow is unstable to decay into single particle excitations.
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