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INTRODUCTION TO TOPOLOGICAL QUANTUM 
NUMBERS 

D.J. Thouless 

Preface 

These lecture notes were prepared rather soon after I completed my book 
on Topologica[ quantum numbers in nonrelativistic physics, which was pub­
lished by World Scientific Publishing Co. Pte. Ltd., Singapore, in early 
1998. I have not attempted to make a completely fresh presentation, but 
have cannibalized the text of my book to produce something shorter, with 
a different ordering of topics. I wish to thank the publishers for allowing 
me to do this self-plagiarization. 

1 Winding numbers and topologica! classification 

1.1 Precision and topologica/ invariants 

High precision work generally depends on two ingredients. These are repro­
ducibility, and the reduction of a measurement to a counting procedure. A 
ruler is a device for comparing a length with the number of marks along the 
ruler, and a vernier allows interpolation between marks on the main scale 
also to be done by counting. A pendulum clock and its successors are devices 
for comparing a time interval with the number of ticks that occur in the 
interval. Such devices are not completely reproducible, and may vary when 
conditions change. The earth's rotational and orbital motion provide time 
standards that can be used for calibration, but they are difficult to measure 
with very high precision, and we know that the rotational motion is subject 
to random as well as to systematic changes. Cesium atoms and ammonia 
molecules are reproducible, and they can form the hasis for length measure­
ments in which interference fringes are counted, or as time standards by 
driving the system in resonanance with with a standard atomic or molec­
ular transition and counting beats against some uncalibrated frequency. 

This work was supported in part by the U.S. National Science Foundation, grant number 
DMR-9528345. 
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The measurement of g for the electron to parts in 1011 is achieved, in part, 
by measuring the frequency difference between the spin and twice the orbital 
resonance frequency in a magnetic field. 

Counting can be made very precise because, although any particular 
counter may make mistakes, comparison between the outputs of several 
independent counters can reduce the error rate to an extremely low value. 

Over the past 30 years several devices have been developed for use in 
high precision work where the devices themselves are manifestly not re­
producible, but nevertheless give fantastically reproducible results. Among 
such devices are the SQUID magnetometer, which compares magnetic flux 
in a superconducting ring with the quantum of flux h/2e for a superconduc­
tor, the Josephson voltmeter, which compares the frequency of a microwave 
device with the frequency 2 e V/ h generated by a voltage V across a su­
perconducting weak link, and a quantum Hall conductance standard, which 
compares electrica! conductance with the quanta e2 / h for conductance in 
a quantum Hall device. In none of these cases does the fabrication of the 
device have to be very tightly controlled, but there are good theoretical rea­
sons and very strong experiments to show that different devices, even those 
made of different materials, give measurements that are essentially identi­
ca!. This insensitivity to details is a characteristic of topologica! quantum 
numbers that is one of the themes of my next three lectures. 

We are used to thinking of quantum numbers like angular momentum 
which are related to invariance principles, and which can be studied from the 
algebra of the generators of the symmetry group. Such quantum numbers 
are sensitive to breaking of the symmetry, and are generally not useful in 
environments that are poorly controlled, such as interfaces between solids. 

1.2 Winding numbers and line defects 

The simplest type of topologica! quantum number that I discuss is the 
winding number of an angle such as the phase of a condensate wave function 
in a superfluid or superconductor. If a neutra! superfluid with a complex 
scalar order parameter, such as superfluid 4 He, is contained in the interior of 
a torus, or if a superconductor is made in the form of a ring, the condensate 
wave function has the form 

w(r) = jwj exp(iS). (1.1) 

Single-valuedness of the condensate wave function W implies that the phase 
S is locally single valued, but it may change by a multiple of 27r on a closed 
path that goes round the hole in the middle of the ring. The winding number 

W = _!_ fgradS · dr, 
211" 

(1.2) 
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where the path of the integral is a simple loop round the hole, is an integer. 
This just depends on the topology of the region containing the superfluid 
or superconductor, and on the nature of the order parameter, and is inde­
pendent of detailed geometrical features such as symmetry, or of detailed 
material properties such as homogeneity. 

I have given a description of the mathematical definition of a winding 
number, but ha ve not yet said why it is relevant to physics. In the case of 
a neutral superfluid equation (1.2) defines the quantum number associated 
with superfluid circulation, whose quantization was argued by Onsager [1]. 
This is a quantity that can be measured, and this was first done by Vinen 
[2]. Measurement of the circulation of a neutral superfluid is difficult, and 
there are some real problems with its definition. The winding number for a 
superconductor counts the number of quanta of magnetic flux, and this can 
be measured with very high precision, thanks to the Josephson effects. 

Winding numbers are not only of importance in nonsimply connected 
systems, such as the interior of a torus. In superfluids and superconductors 
the order parameter can go to zero along curves that either run across the 
system or form closed loops within the system. Around such line singu­
larities there may be nonzero integer winding numbers. Quantized vortex 
loops were detected in superfluid 4 He by Rayfield and Reif [3]. In Type II 
superconductors flux lines are line singularities which carry one quantum of 
magnetic flux. 

A nonzero winding number assures the topological stability of the line 
singularity. Consider some small cylindrical region with its axis close to 
part of a curve along which the order parameter goes to zero. If the winding 
number is nonzero around some loop on the boundary of the region, there 
is no continuous change of the order parameter which can be made that 
will remove the singularity, since the winding number, with integer values, 
cannot be changed continuously, and must remain nonzero. If the winding 
number is zero the interior of the cylinder can be filled in with a continuous 
order parameter which is nonzero everywhere inside, so that the line singu­
larity has two disconnected ends. This cylinder can then be expanded in 
the perpendicular along the line defect in such a way that the whole defect 
is replaced by a continuous nonzero value of the order parameter. 

In 1931, Dirac [4, 5] gave an argument for the quantization of electric 
charge in which a similar winding number appears, essentially the integral of 
the magnetic vector potential round a closed circuit. This winding number 
appears in the phase of the wave function when you try to write a quan­
tum theory for an electrically charged partide in the presence of a magnetic 
monopole. The singularitiy that the circuit encloses is not a physical sin­
gularity, but a line singularity of the vector potential in the chosen gauge. 
Although magnetic monopoles have not been experimentally detected, and 
may not exist, there is no doubt that electric charge is quantized with a 
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very high precision. Already in 1925 Piccard and Kessler [6] had shown 
that the charge of co2 molecules was sufficiently low that electrons and 
protons must have charges whose magnitudes differ by less than one part in 
1020 , and later work has improved on this bound by more than an order of 
magnitude [7]. 

The quantum Hall effect provides another example of a topologica! quan­
tum number which corresponds to a physical variable that can be measured 
with high precision - the Hall conductance. In this case the simplest sys­
tem on which a measurement can be made is a two-dimensional electron gas 
with two pairs of leads - one pair to pass the current through the system, 
and another pair to measure the voltage. Such a circuit has the topology 
of a torus with a single hole in it, as I discuss later. It turns out that the 
Hall conductance can be related to a Chern number, a number associated 
with a torus, rather than a winding number associated with a loop. This is 
another example of a topologica! quantum number which is quantized with 
high precision, although the precision has not been established as accurately 
as flux quantization and charge quantization have been. 

1.3 Homotopy groups and defect c/assification 

For systems in which the line defects are characterized by winding numbers, 
such as superfluids characterized by a complex scalar order parameter, or 
magnets with a preferred plane of magnetization, there is an obvious way 
of combining defects. The winding number round a path that encloses 
several defects is the algebraic sum of the winding numbers of associated 
with each of the defects that goes through a simply connected surface that is 
bounded by this path. One can easily show this by continuously deforming 
the path until it is broken up into a sum of loops which each contain only 
one singularity. Conversely one can combine paths round individual defects, 
expanding them in a continuous way, and gluing together the separate paths 
to form a big path surrounding more than one defect. The algebra of this 
process is just the algebra of addition of signed integers. 

The assignment of a phase angle to each point on a path round one or 
more singularities can be regarded as a mapping of the loop onto a circle. 
Such a mapping has a single topologica! invariant, the winding number. The 
law of combination of mappings of different loops, by the process of contin­
uous deformation and gluing together, defines a group, the first homotopy 
group 1r1, which in this case is just the group Z of integers. 

Other types of order parameter can give different homotopy groups. For 
the Heisenberg ferromagnet, in which the magnetization can be oriented 
in any direction, the mapping of a loop surrounding a line defect will be 
onto the surface of the 2-sphere corresponding to the possible directions of 
magnetization. The mapping of a loop onto the surface of a sphere can 
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always be contracted to a single point, so the homotopy group 71"1 in this 
case is just the trivial group which has only the identity element. 

In the A phase ofsuperfluid 3 He and in some ofthe liquid crystal phases 
the homotopy groups are finite, so there are only a finite number of different 
topologica! states of such systems. For example, for a uniaxial nematic liquid 
crystal, with the order parameter specified by a director on the surface of a 
projective sphere (a sphere in which opposite points are equivalent) rather 
than by a vector on the surface of a sphere, there is a topologica! invariant 
for a system confined to the interior of a torus. This invariant takes the value 
zero if the director passes through the equator of the projective sphere an 
even number of times on a path round the system, and unity if the director 
passes through the equator of the projective sphere an odd number of times. 
The homotopy group 71"1 in this case is just the group Z2 with two members. 
For biaxial nematics and for cholesterics the symmetry group of the order 
parameter is noncommutative, and this gives some extra complications to 
the theory of defects in such materials. 

For these systems in which the homotopy group is finite we cannot expect 
a measurable physical variable to be quantized in the way that circulation 
in 4He and flux in superconductors are quantized. The superfluid phases of 
liquid 3He illustrate this point. Whereas circulation in the B phase is quan­
tized in much the same way as the circulation in 4He, there is no quantized 
circulation in the A phase. There is a topologica! quantum number, but it 
has only the values O and 1, and does not correspond in any direct way to 
the circulation of the fluid. Such quantum numbers are useful for classifying 
defects, and for determining whether two apparently different states of the 
system can actually be continuously changed from one to the other. 

I use the term topologica! quantum numbers regardless of whether the 
topologica! invariant actually has anything to do with quantum mechan­
ics. I have already mentioned the examples of magnets and liquid crystals, 
where the order parameters have little connection with Planck's constant. 
A crystalline solid is another case of a system with topologica! quantum 
numbers. There are two important order parameters in a solid, which are 
the position of the actual unit cell with respect to an ideal unit cell, and the 
orientation of the unit cell. Long range correlation of the positional order is 
required for the observation of the sharp Bragg peaks which are measured 
in an X-ray diffraction experiment - the Debye-Waller factor gives the re­
duction in magnitude of this long range order. Elasticity theory deals with 
the effects of slow modulation of positional and orientational order. Crystal 
dislocations are the topologica! defects associated with the positional order. 
Orientational changes are less important in solids than positional changes, 
because they are costly in the elastic energy associated with the accompany­
ing changes in positional order, but disclinations are the defects associated 
with orientational order. 
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For defect surfaces and for point defects there are other types of ho­
motopy groups 7ro and 1r2 that determine the topologica! stability of the 
defects. If the order parameter is singular everywhere on a surface, then it 
is singular at some point on any short line segment that crosses the surface. 
Such a singularity on a line segment can only be topologically stable if the 
order parameter has two disconnected values on the two sides of the surface. 
The homotopy group 7ro is therefore nontrivial only when the order param­
eter has values lying in distinct regions, as it does in the Ising model of 
magnetism, or in the Potts model. In some of Onsager's early discussions of 
the circulation of a superfluid [8] the idea was suggested that regions of dif­
ferent quantized circulation should be nested inside one another, separated 
by singular surfaces - vortex sheets. Such vortex sheets are topologically 
unstable, as the order parameter can be made continuous across the sheet 
in small regions, which then can be expanded until the vortex sheet has bro­
ken up into an array of vortex lines. Only when the order parameter space 
breaks up into distinct regions, which it does in the A phase of 3He [10, 11], 
can a vortex sheet be stable. 

A point defect can be surrounded by a spherical surface, and the behavior 
of the order parameter on this sphere defines the homotopy group 1r2 which 
describes the topologica! properties of a point defect. If the order parameter 
is an angle the order parameter space is a circle. All continuous maps of a 2-
sphere onto a circle are trivial, and can be shrunk to a single point, so 1r2 for 
superfluid 4He or for a planar magnet is trivial. For the Heisenberg model 
the direction of the order parameter lies on a sphere, and the mapping of 
one sphere onto another can be characterized by the topologica! invariant 
known to Euler 

1 r27r r a(e cp ) 
47r Jo dc/Js Jo d()ssin()d â(e::cp:) 
1 f 27r r , aa. aa. 

47r Jo dc/Js Jo d()sd. â()s X âc/Js ' (1.3) 

where a is the direction of the order parameter and ()d, c/Jd its polar angles, 
while ()8 , c/Js are the polar angles of points on the sphere relative to the point 
defect. This quantity has integer values, and an example of a defect whose 
quantum number is· +1 is shown in Figure 1. Point defects of this sort 
can be combined according to the rules of integer addition. A defect with 
quantum number -1 would be obtained by reversing the direction of the 
magnetization everywhere. 

In addition to these topologically stable line and point defects there is 
considerable interest in extended defects, domain walls, textures or soli­
tons, which can also be characterized by a topologica! quantum number. A 
domain wall between two oppositely aligned domains of a ferromagnet is 
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Fig. 1. Magnetization pointing outwards in the space between two spherical en­

closing surfaces. This is known as a hedgehog. 

an example of such a structure, and a number of other cases occur in the 
context of superfiuid 3 He and liquid crystals. Such textures may be sta­
bilized by the effect of boundary conditions, although they are not topo­
logically stable defects. For example, if the magnetization at two ends of 
an ideal isotropic magnetic bar are constrained to point in different direc­
tions there will be a domain wall dividing the two different directions of 
magnetization. 

2 Superfluids and superconductors 

2.1 Quantized vortices and flux lines 

The superfiuid component of a neutral superfiuid is supposed to fiow with 
a velocity determined by the phase S of the condensate wave function, so 
that for 4 He the superfiuid velocity is 

n 
V 8 = -gradS, (2.1) 

m4 

where, if the fiow is incompressible, S satisfies the Laplace equation. 
The fiow is therefore potential fiow, except where there are singularities. 
The normal component can be envisaged as a gas of excitations moving 
in the medium determined by the condensate wave function. On a large 
scale the motion of superfiuid helium is not really irrotational even when 
the density of the normal component is very small. Rotation of a beaker 
of superfiuid brings the surface into much the same parabolic shape that 
rotation of a normal fluid would produce. This led Onsager [1] to argue 
that the curl of the superfiuid velocity should be concentrated into singular 
lines - quantized vortices. 

Since the phase S of the order parameter has to be single-valued mod­
ulo 21r, the circulation round one or more of these singularities must be a 
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multiple of ~o= hjm4: 

f vs · dr = !!:..._ fgradS · dr = 21rn1i = n~o, 
m4 m4 

(2.2) 

which is just the form given in equation (1.2). Rigid body rotation with 
angular velocity w is simulated by a density 2w /~o per unit area of these 
quantized vortices. At a speed of one revolution per second this leads to a 
concentration of vortex lines of about 1.25 mm-2 • 

These vortex lines behave in many ways like the vortices of classical 
hydrodynamic theory, and much of the relevant theory can be found in 
Lamb's book on Hydrodynamics. Vortices are carried along by the local 
potential flow velocity, produced generally by a combination of externally 
imposed flow and the flow produced by vortex lines themselves. Vortex lines 
have an energy per unit length which is p~2 times a logarithmic factor, where 
p is the mass density of the fluid and ~ is the circulation round the vortex. 
The argument of the logarithm is the ratia of two length scales, a large 
length which is the size of the container or the distance between vortices, 
and a small distance cut-off a0 which gives the size of the vortex core, the 
distance at which potential flow no longer occurs. Straight vortices in an 
infinite container, or along the axis of a cylindrical container, are stable, and 
have normal modes of circularly polarized vibration. Circular vortex rings 
of radius R are also stable, and propagate in a direction perpendicular to 
their planes at a speed proportional to ~1 R, also multiplied by a logarithm 
of R/ao. 

In Feynman's description the wave function lliv for a system with a 
vortex line centered on the axis of cylindrical coordinates r, cjJ, z has the 
form 

Wv"' exp [in~~;- ~a(r;)l Wo, (2.3) 

where lli0 is the ground state. The velocity is n1i/m4r in the azimuthal 
direction. The factor exp[-a(r)] is designed to reduce the density near 
the vortex core where the velocity is high. Similar results are obtained 
in the work of Pitaevskii [12] and of Gross [13], who studied a nonlinear 
Schrodinger equation in detail. In most models the energy is lowest if the 
vortices carry a single quantum of circulation, so n is ±1. In general the 
vortex will not be straight, but will follow some curving, time-dependent 
path, but in principle the theories can be modified to allow for this, although 
the practica! difficulties are great. 

The phase S of the order parameter will change by a multiple of 27r 
when it goes round a closed path that surrounds vortex lines. The order 
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parameter goes to zero on the vortex lines themselves, where the topologica! 
singularity resides. As I have argued in Section 1, such a singularity is 
topologically stable. This quantization of circulation is sometimes regarded 
as a manifestation of a quantization of angular momentum of n per helium 
atom, but this is not appropriate, as the quantization of circulation is much 
more robust than quantization of angular momentum. 

Quantized vortex lines not only sol ve the paradox of apparent rigid body 
rotation in terms of a uniform density of vortex lines, but they play many 
other important roles. Phonons and rotons do not transfer energy directly 
to or from the superfluid, but they can scatter off the vortex lines, giving 
up energy and momentum to vortex waves, so that there is mutual friction 
between the ·normal fluid and the vortices. This was used by Hall and 
Vinen [14, 15] to detect the vortex array. 

Vortices provide one plausible mechanism for relaxation of superfluid 
flow around a ring. A direct transition between two states with different 
circulation would have an incredibly small matrix element, but a unit of 
circulation can be lost in a continuous manner by a vortex moving from one 
side to the other of the ring, in the manner shown in Figure 2. The energy 
and the average circulation are both reduced as the vortex moves in such a 
direction that its own circulation enhances the flow velocity ahead of it and 
reduces the flow velocity behind it. In general there will be a barrier to the 
initial formation of a vortex, which must be overcome by thermal activation 
or by quantum tunneling, but then the vortex moves across the circulating 
superfluid, losing energy to the normal fluid. This is discussed in work by 
Vinen [16], Langer and Fisher [17], Muirhead et al. [18], and in the book 
by Donnelly [19]. The other plausible method for decay of circulation is by 
phase slip, in which the magnitude of the order parameter temporarily goes 
to zero on a cross-section of the ring, and the phase slips by a multiple of 
2n across that cross-section. 

It was suggested by Onsager [1], and later by Feynman [20], that the 
A-transition from superfluid to normal fluid might be due to the thermal nu­
cleation of indefinitely long vortices rather than to the complete destruction 
of the order parameter. This is not widely believed to be correct for bulk 
helium, because the superfluid transition seems to have critical exponents 
close to those expected for a standard planar spin model in which the order 
parameter goes continuously to zero at the critical point. However, a phase 
transition analogous to the one suggested by Onsager and Feynman occurs 
in helium films, as is discussed in Section 5. 

Finally, vortex cores are regions of low pressure and density, and they 
act as sites for the trapping of impurities such as ions and 3He atoms. Ions 
trapped on vortices provide some of the best tools for studying vortices. 
The trapping of 3He atoms has important consequences for the energetics of 
vortex nucleation, since such impurities uslially occur in helium unless care 
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Fig. 2. A vortex moving across a persistent current. When it crosses the ring 
(from the outside to the inside in the case shown) it reduces the circulation round 
the ring by "'o. 

is taken to remove them, and the trapped impurities lower the nucleation 
energy for vortices. 

The B phase of superfluid 3 He is similar to superfluid 4 He in many 
ways. Like the superconductors which are discussed below, the condensate 
is made up of weakly bound pairs of fermions, so the transition temperature 
is much lower, and there is a long correlation length. The pairs are in a 
triplet P state, but in the B phase spin and orbita! angular momenta are 
combined in such a way that the square modulus of the gap parameter is 
isotropic. One possible way of doing this is to form a J = O combination of 
the orbita! and spin angular momentum, but relative rotation of spin and 
orbita! space does not affect the pairing energy, and only changes the very 
small hyperfine energy. If this variable orientation between spin and orbita! 
axes is ignored the order parameter is essentially a complex scalar, and the 
superfluid velocity is proportional to the gradient of its phase. Circulation 
is therefore quantized, with a quantum of circulation h/2m3 , since the basic 
units are pairs of atoms of mass m3. 

There are many parallels between superfluidity in liquid 4 He and super­
conductivity in metals, but there are also some important differences. The 
order parameter is a complex scalar in both cases, so there are analogs to 
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quantization of circulation and to vortex lines. The differences come under 
three heads: 

1. Electrons are fermions while 4 He atoms are bosons, so that the Bose 
condensation that occurs in superconducting metals is of very weakly 
bound electron pairs, rather than of the well-separated bosons of liquid 
4He. 

2. Electron pairs are charged, so there is an important coupling with the 
electromagnetic field. 

3. Electron pairs are in intimate contact with the periodic potential 
formed by the lattice of positive ions, and also with the impurities 
in that lattice. 

For some other systems these differences can come in different combinations. 
For example, liquid 3He and neutron stars give fermion pairing without 
electric charge or background effects (lattice and fixed impurities). In thin 
helium films the disorder of the substrate potential is important. In thin 
film superconductors the background potential is important, but the electric 
charge is much less important. 

Understanding of superconductors is based on the BCS (Bardeen, 
Cooper and Schrieffer) theory of superconductivity [21], which involves a 
sort of Bose condensation of pairs of electrons whose binding energy is much 
less than the Fermi energy. In the standard BCS superconductor the pair 
is in a rather large (~100 nm) singlet state, and the pairing energy is a 
very small fraction of the Fermi energy, typically a millivolt or less. The 
core of a vortex behaves in some ways like a normal metal, although there 
is an energy gap of order ~ 2 / Ep in the core, where Ll is the energy gap 
of the superconductor and Ep is the Fermi energy. This is very small for 
conventional superconductors. 

The electric charge is very important, and leads to a number of conse­
quences. Firstly, currents in superconductors are easy to detect, because 
they produce magnetic fields, whereas supercurrents are hard to detect in 
superfluid 4 He. As a result of this, very accurate measurements can be 
made. It was known very early to Kammerlingh-Onnes that supercurrents 
in a metal ring can have a negligible decay rate, whereas neutral superfluid 
flow escaped detection for twenty five years. 

The most important result of the coupling of the electromagnetic field to 
the order parameter from the theoretical point of view is the Meissner effect 
-magnetic flux is expelled from superconductors. The Meissner effect was 
explained by London in terms of the rigidity of the superconducting wave 
function. Since the current density operator is 

(e/m)(ingrad- 2eA), (2.4) 
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a rigid wave function that does not respond to changes in the vector 
potential gives a current density equal to 

( eli e2 ) j=- -gradS+-A n 8 , 

2m m 
(205) 

where n8 is the superconducting electron density, S is the phase of the 
superconducting wave function, and n 8 /2 is its square moduluso The curl 
of this equation gives 

(206) 

The curl of this equation, comhined with Ampere's law curl B = p,0j and 
the charge conservation law div j =O, gives the London equation 

2 
" 2 0 e P,o • 
v J = --nsJo 

m 
(207) 

This shows that the current density j has exponential decay over a distance 

(208) 

the London penetration deptho The conclusion of this argument is that all 
supercurrents are concentrated into the surface of a superconductor, and 
the current density in the interior of a sample falls off exponentially with 
the ratio of the distance from the surface to the London penetration deptho 
From equation (206) it is clear that the flux density is also zero in the interior 
of the superconductor, and the Meissner effect is obtainedo 

This gives a good description of a strongly Type II superconductor. For 
a Type I superconductor the same qualitative effects occur, but there is 
more adjustment of the condensate wave function to the magnetic field, so 
that the expression (208) for the penetration depth is alteredo 

Multiplication of equation (205) by mfe2n 8 and integration round a 
closed loop inside the superconductor gives 

-n!!:_ = ...!!!:_ fj o dR + fA o dR = ...!!!:_ fj o dR + fr { B o dS o (209) 
2e e2ns e2n 8 } 

The quantity on the right hand side of this equation is known as the fluxoid, 
and it is the quantized quantityo Deep in the interior of the superconductor 
the current density is zero, apart from terms exponentially small in the 
ratio of the depth in the sample to the penetration depth, and so the flux 
through a surface whose edge lies well inside the superconductor is h/2e 
times the winding number of the phaseo In the case of low density n 8 of 
superconducting electrons, where the penetration depth is very large, the 
first term on the right hand side of this equation dominates, and it reduces 
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to the quantization of circulation for a neutral superfluid given by equation 
(2.2). This result, without the factor of 2 in the electron pair charge, was 
obtained by London [22]. 

This expression, like the expression for the circulation of a neutral super­
fluid, stiH involves the winding number of the phase of a condensate wave 
function. However, it results from an integral round a loop of the canonica! 
momentum density, so that the integrand is gauge-dependent, although the 
integral is not. Where the integral of the current density is negligible, which 
it is inside the superconductor at depths greater than a small multiple of the 
penetration depth, except for Type II superconductors in fields greater than 
Bel, the quantized quantity is magnetic flux, and this is something that can 
be measured far more readily than the circulation of a neutral fluid. 

In Type I superconductors magnetic flux is completely expelled for weak 
fields, and when it begins to penetrate the positive interface energy between 
the flux-free superconductor and the flux-carrying normal metal causes the 
magnetic field to be aggregated in domains carrying many quanta of flux. 
For a Type II superconductor the magnetic field begins to penetrate the 
superconductor at fields above Be1 , and the negative interface energy favors 
singly quantized flux lines each carrying flux h/2e. It is this mixed state of 
the Type II superconductor, with uniformly spaced flux lines, that closely 
resmbles a rotating superfluid with a uniform array of singly quantized 
vortex lines. 

2.2 Detection of quantized circu/ation and flux 

There are three techniques that have been used to show quantized circula­
tion and the properties of quantized vortices in superfluid 4He directly. The 
first was developed by Vinen [2]. In this experiment there is a straight wire 
under tension along the axis of a cylinder filled with liquid helium. The 
helium is set into rotation by initially rotating the whole system abov.e the 
A-point, cooling the helium through the transition to the superfluid state, 
and then bringing the apparatus to rest, leaving the superfluid circulating 
around the wire. The circulation is measured by using the Magnus force 
that the circulating superfluid exerts on the wire. A derivation of this is 
given in the book by Putterman [23]. The component of the force transverse 
to the direction of motion has the form, very similar to the form known from 
classical hydrodynamics, 

(2.10) 

where p8 , Pn are the superfluid density and normal fluid density respec­
tively, v 8 , Vn are the velocities with which the superfluid and normal fluid 
components are flowing past the wire, VL is the velocity of the wire, dlL 
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an element of its length, aud K-8 , K-n are the circulations of the two compo­
nents around the wire. The superfluid circulation should have its quantized 
value K-o = h/m, while normal fluid viscosity should reduce the normal fluid 
circulation to zero, so the expected form of the Magnus force would be 

(2.11) 

In addition there is a dissipative force in the direction of motion if Pn is 
nonzero. There is, however, dispute about the correct form of the Magnus 
force when the normal fluid density is non-negligible; a recent summary of 
the situation has been given by Sonin [24]. 

The Magnus force breaks the degeneracy of the two fundamental vibra­
tional modes of the wire, giving a splitting of the circularly polarized modes 
proportional to PsK-o, so that a direct measure of this quantity is made. 
Vinen's experiments showed a splitting that agreed with the expected value 
with a precision of about 3%. 

In one later version of this experiment, Whitmore aud Zimmermann 
[25] worked at relatively high temperatures, where Pn is significant, aud 
confirmed that the transverse force is proportional to Ps· Zieve et al. [26] 
recently repeated Vinen's experiment, with somewhat higher precision, aud 
used the 4 He measurements as a calibration for a similar experiment on the 
B phase of superfluid 3He [27], for which they confirmed that the quantum 
of circulation is indeed h/2m3 . 

Rayfield aud Reif [3, 28] used the trapping of ions on vortex rings to 
detect single vortex rings. The total momentum associated with a ring is 

(2.12) 

where the double integral is over an area bounded by the vortex ring. For a 
circular ring of radius R aud a vortex core of radius a, this gives p8 K-o1r(R­
a)2 in the direction normal to the plane of the ring. The expression for the 
speed of the ring is analogous to the expression for the magnetic field acting 
on a circular loop due to a current flowing round the loop, aud is 

v = ~ (ln 8R - ~) · 
4nR a 4 

(2.13) 

The expression for the energy is analogous to the expression for the magnetic 
energy of a current-carrying loop, aud is 

1 2 ( 8R 7) E = 2K-oPsR ln ~- 4: + eonst. (2.14) 

The equations for energy, momentum aud velocity are of the form that make 
the area of the ring aud the position of the plane of the ring conjugate vari­
ables. This was exploited by Volovik [29] in his discussion of the quantum 
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tunneling of vortex rings. This Lagrangian formulation of vortex dynamics 
goes back more than a hundred years to Kirchhoff. 

Rayfield and Reif worked at relatively low temperatures, around 
0.5 K, and found that at such temperatures ions could flow without las­
ing energy to the phonon system, apparently because they were trapped on 
vortex rings. The energies of the ions could be changed by known amounts 
by passing them through voltage drops, and the speed could be measured 
by a resonance technique that involved the coherent voltage pulses applied 
as they moved. The results show that the energy and speed are roughly 
reciprocals of one another, as larger energy means a larger vortex ring and 
so a lower speed. In terms of current-voltage relations this means that the 
product of current and voltage is roughly constant. The quantity obtained 
most directly is 

vE = K5Ps (ln 8R _ ~) (ln 8R _ ~) , 
81r a 4 a 4 

(2.15) 

but more careful fitting gives the best value of the vortex core radius a 
( apparently somewhat less than the interatomic spacing at those tempera­
tures), and so gives K5Ps· The precision with which Ko is determined in these 
experiments is comparable with the precision of the Vinen experiments. 

Although it is much easier to detect magnetic flux than circulating su­
perfluid, direct measurements of quantized flux in superconductors were not 
particularly easy. Two experimental measurements were published in 1961, 
by Deaver and Fairbank [30] and by Doll and Năbauer [31]. These had an 
accuracy of about 20%. A short time later, measurements of the fluxoid, 
as given in equation (2.9), were made by Parks and Little [32]. Modern 
measurements are somewhat more precise, and a measurement of the flux 
quantum for copper oxide superconductors by Gough et al. [33] showed that 
changes in flux were quantized to a value of h/2e with a precision of about 
4%. One reason for the poor precision is that a direct measurement of flux 
usually depends on a detailed knowledge of the geometry of the sample, and 
the position of the magnetometer. 

Abrikosov's [34] prediction that the magnetic flux should penetrate a 
Type II superconductor as a regular lattice of flux lines was first verified 
by Cribier et al. [35] using neutron diffraction. Essmann and Trăuble [36] 
developed a technique of decor ating the regions of strong magnetic field with 
magnetic particlcs to show the flux lattice, which usually has dislocations 
and other defccts. directly. These measurements were also used to compare 
the flux density with thc number of lattice points per unit area, to confirm 
the magnitude of the flux quantum in this context. Recent work on the 
copper oxide superconductors using neutron scattering can be found in the 
work of Cubitt et al. [37], and using the decoration method can be found in 
the work of Bishop et al. [38]. In these materials the very large anisotropy 
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between directions normal to and parallel to the copper oxide planes is 
important, and vortices that are well localized to lattice points within a 
plane may wander between planes. 

The flux lattice is extremely important for understanding the electrica! 
resistance of Type II superconductors in the mixed state. In a nearly per­
fect material the flux lattice would flow with the electric current, just as 
vortices in superfluid 4He are carried along by the superfluid flow. Irregu­
larities would then cause the vortices to lower their energy by drifting tran­
seversely to the current direction, and such transverse motion can be shown 
to generate a voltage in the direction of the current, so that the motion is 
dissipative. Increased disorder pins the vortex lattice, so that the current 
can flow through it without dissipation. Thus the flux flow resistivity is 
decreased by increasing disorder, and good materials for superconducting 
magnets are highly disordered. 

Use of the decoration method for detecting vortex lines in rotating su­
perfluids, and took many years of work by by Packard et al. [39,40]. The 
method involved trapping ions on the equilibrium ( or steady state) vortices 
of a rotating cylinder of superfluid, and then ejecting the ions to get a pho­
tographic image of the positions of the vortices. The structure of neutral 
superfluid rotation is much more difficult to stabilize and to display than 
the structure of magnetized superconductors. 

2.3 Precision of circulation and flux quantization measurements 

Theoretical arguments suggest that the only limit to the precision with 
which flux is quantized in a ring of superconductor below the critical field 
(Bel in the case of a Type II superconductor) is set by the magnitude of the 
term f j · dR on the right side of equation (2.9). Since the current density 
is governed by the London equation (2.7), it becomes exponentially small 
in the interior of a sample large compared with the penetration depth. 

The Josephson effects [41-43] depend essentially on the quantization of 
flux. The SQUID magnetometer gives a response which is periodic in the 
fluxoid, which is almost equal to the flux except for a small contribution 
from the current density in the neighborhood of the weak link itself. I am 
not aware of any very precise absolute calibration of a SQUID, or of precise 
comparison between SQUIDs made of different materials. A less direct 
application of flux quantization is provided by the use of the ac Josephson 
effect to measure voltages by the relation 

h 
V=-V 

2e 
(2.16) 

between voltage and frequency. The connection of this with flux quanti­
zation is that the emf ( electromotive force) round a circuit can be written 
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as 

f E · dr = -(d/dt) fA· dr (2.17) 

in a gauge in which the scalar potential vanishes, which is the rate of change 
of flux, as is immediately apparent from Faraday's law. The equation gives 
a connection between the number of flux quanta per unit time as given by 
Faraday's law and the ac frequency generated. This has been used for high 
precision measurements. The Josephson voltage standard is the best voltage 
standard that there is, whose adoption led to revisions of the accepted 
values offundamental constants [44,45]. Voltage balance between Josephson 
junctions made from different materials have shown a relative precision of 
a few parts in 1017 [46--48]. 

In a neutra! system the circulation of the superfluid velocity is a topo­
logica! quantum number, and is therefore exact in principle. However, there 
is a sense in which this is tautologous, at nonzero temperatures or in thin 
films, since the superfluid velocity is defined as the gradient of a phase angle. 
Physically measurable variables are the total fluid density, the average mass 
flow, and the normal fluid velocity, which is set by the physical boundaries. 
Superfluid density is determined by combining these variables together, for 
example by equating the mass flow to PnVn +p8 V 8 • In the Vinen experiment 
it is not the circulation of the superfluid velocity itself which is measured, 
but, if equation (2.10) is accepted, it is the circulation of mass flow (momen­
tum density). Since this question is the focus of much of our current work, 
it is discussed separately in Section 3. Since the vortex ring experiments 
also depend on the energy-momentum relations of vortex rings, I think that 
they are dependent on the same sort of relation. 

Even at low temperatures in a bulk system it is not clear with what 
precision this type of experiment could be used to determine it even if the 
experimental difficulties could ali be overcome. The results seem to depend 
not only on the quantized circulation, but also on rather specific details of 
the two-fluid dynamics. It is nota fundamental problem that the superfluid 
density is needed in equation (2.11), since this can be measured indepen­
dently, and, for superfluid 4He, it rapidly approaches the mass density at 
low temperatures. A more serious problem is that the frequency shift is 
proportional to the ratio of the superfluid density to the effective mass per 
unit length of the wire, and this effective mass includes the hydrodynamic 
mass of the surrounding fluid. This hydrodynamic mass is not simply the 
mass of fluid displaced by the wire, as it is for an ideal incompressible clas­
sical fluid, but there are uncertain corrections due to boundary layer effects, 
and, as has been pointed out by Duan [49] and Demircan et al. [50], there 
is a correction due to the compressibility of the fluid that is logarithmically 
divergent for low frequencies and large systems. Since helium has a much 
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lower density than the wire this is not a major correction, but it is one 
factor that makes it difficult for the experiment to be very precise. 

Another possible source of imprecision is due to the effects of the bound­
ary on the flow in the interior. Under ideal geometrica! conditions, with a 
very small wire at the axis of a cylinder of radius R, displacement of the 
wire by a small distance a from the axis of the cylinder produces an effect 
that can be represented by an image of the vortex at a distance R 2 /a, so 
there is a backflow of magnitude Koa/2n R 2 , which leads to a correction of 
the Magnus force on the wire whose relative magnitude is hT jm4 R 2 , where 
T is the period of oscillation of the wire. For the conditions of Vinen's 
experiment this gives a correction of a few parts in 105 • Such effects are 
due to the fact that the controling equation for S is the Laplace equation 
in a neutral system, whereas for a superconductor long range effects are 
exponentially reduced for distances larger than the penetration depth. 

3 The Magnus force 

3.1 Magnus force and two-fluid model 

This section is largely based on work that my collaborators and 1 have done 
in recent years. There is a brief review of this work contained in a paper 
written by five of us in the autumn of 1997 [51]. 

Before discussing the details of the theory 1 want to give a brief review of 
the theory of the Magnus force in classical hydrodynamics, and then discuss 
the modifications which may be needed as a result of the two-fluid picture 
of superfluidity. 

It is an old paradox of classical hydrodynamics that potential flow around 
an object gives no drag in the direction of the fluid flow and no lift perpen­
dicular to it. Drag is provided by the effects of viscosity and by the creation 
of turbulence, and is very complicated, but lift is produced by the interac­
tion of circulation of the fluid round the object with its motion, and has, 
to lowest order, a very simple form. A partial explanation is given in many 
textbooks of elementary physics, and is applied to problems like the lift on 
the wing of an airplane or the curved trajectory of a spinning ball. The 
usual explanation is given in terms of the different Bernoulli pressures on 
the two sides of the abject. Actually a rather more detailed explanation is 
needed, and a detailed explanation shows that the result is very general, and 
quite independent of details of the fluid such as whether it is compressible 
or incompressible. 

Consider a cylinder, perhaps a solid cylinder, or perhaps the hollow 
core of a vortex, with circulation K around it, held in a fixed position with 
fluid flowing past it with asymptotic velocity v0 in the x direction. At 
a large distance R from the cylinder the components of velocity will be 
(vo- Ksin0/2nR, Kcos0/2nR, 0). This gives a Bernoulli pressure which is 
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approximately 
-pv5f2 + pvo"'sinB/27rR, (3.1) 

which gives a net force per unit length -pvo"'/2 in the y direction, acting 
on the fluid inside a cylinder of radius R. The total force acting on the 
cylindrical volume of fluid is this Bernoulli force plus the force which must 
be applied to keep the cylinder or vortex stationary, and this total force must 
equal the rate of change of momentum of the fluid which is instantaneously 
in the cylinder of radius R. The downward momentum density P"' cos() /27r R 
on the left side of the cylinder is replaced by upward momentum density on 
the right side as the cylinder of fluid moves from left to right with speed v0 , 

so the rate of change of momentum per unit length is 

.!_ dP = { 2
1f P"'Vo cos2 () d() = K,V 12 . 

L dt } 0 27r R p 0 
(3.2) 

Comparison of this with the Bernoulli force shows that an additional force 
P"'Vo must be applied in the y direction, or, alternatively, that the moving 
fluid exerts force -pK,Vo on the vortex. The Galilean invariant form of this 
lS 

(3.3) 

The argument depends only on the asymptotic properties of the flow, and 
on momentum conservation. 

Despite its generality, this argument cannot be directly taken over to 
the case of a superfluid. A superfluid is described, both hydrodynamically 
and thermodynamically, by the two-fluid picture of Landau and Tisza. The 
phase ofthe condensate wave function determines the superfluid velocity V 8 

through equation (2.1). At nonzero temperature there will be excitations 
from the condensate, phonons with a linear energy-momentum relation, 
and, in the case of 4 He, rotons with a nonzero wavenumber of the order of 
the reciprocal of the interatomic spacing, and an energy around 8 K. These 
excitations interact with one another to form a local equilibrium, and all the 
entropy of the system is concentrated in this normal fluid component. The 
spectrum is determined by the local value of v 8 , but the average velocity is 
not, but is determined by the boundary conditions. In particular, there can 
be an equilibrium state in which the normal fluid velocity Vn is zero because 
the boundaries are static, even when the superfluid velocity is nonzero. 
This was actually the situation in the experiment of Vinen [2] described in 
Section 2.2, where, in equilibrium (before the wire was made to vibrate) the 
normal fluid was at rest, but the superfluid was circulating around the wire 
down the axis of the cylinder. 

The velocities v 8 and Vn are essentially deduced from the boundary 
conditions rather than being directly measured. Since v 8 is defined as the 
gradient of a phase it does not make much sense to ask if its integral round 
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a closed loop deviates slightly from an integral multiple of hjm4 . Quantities 
that can be directly measured are the total fluid density 

p=ps+Pn, (3.4) 

and the total momentum density (mass flow) 

P=PsVs+PnVn, (3.5) 

and quantities such as the free energy density 

F = Fo + PsV~/2 + PnV~/2, (3.6) 

and the entropy flow. From measurements of such quantities the variation 
of Ps and Pn with temperature and pressure can be deduced, and then the 
equation of state can be used to analyse other measurements. 

The essential feature of two-fluid hydrodynamics that should be used 
to generalize equation (3.3) to the superfluid case is that the two fluids 
coexist without interfering with one another, as is shown by equation (3.6). 
Therefore if the superfluid and normal fluid circulations round a vortex are 
/'i,8 and /'i,n, while the asymptotic superfluid and normal fluid velocities are v 8 

and Vn, the two components will contribute independently to the transverse 
force, and give the result quoted from Putterman's book [23] in equation 
(2.10). Furthermore, the theory suggests that the superfluid circulation 
/'i,8 should be quantized, and the normal fluid circulation /'i,n should not be 
stable, but should eventually be dissipated by the normal fluid viscosity. 

3.2 Vortex moving in a neutra/ superfluid 

The Magnus force itself provides some interesting connections between 
quantized variables. In classical mechanics such a nondissipative force lin­
ear in the velocity can be represented by a term in the Lagrangian which 
is linear both in the velocity and in the displacement. There is a lot of 
ambiguity in the definition of such a Lagrangian, since any total derivative 
of the form r · '\lf(r,t) + âf(r,t)jât can be added to it, but there is no 
ambiguity in the action round a closed path. This ambiguity is very similar 
to that introduced by a choice of gauge in electrodynamics. In quantum 
mechanics such a term in the Lagrangian translates into a Berry phase [52], 
a phase that depends on the path of the system but not on the speed with 
which the path is traversed - again, this phase depends on a choice of gauge, 
but the phase associated with a closed path is gauge independent. It was 
observed by Haldane and Wu [53] that the Berry phase associated with a 
vortex in a two-dimensional superfluid is an integer multiple of 27r when the 
vortex is taken on a closed path that surrounds an integer number of atoms. 
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This can be seen from equation (2.11), which gives a force derivable from a 
Lagrangian of the form 

(3.7) 

where Ps is now the superfluid density per unit area. Integration of this 
round a closed loop in the superfluid (where I take for simplicity V 8 = O) 
gives an action equal to Ps"'o times the area ofthe loop, or, using "'o= hjm4, 
h times the number of atoms enclosed, rescaled by the factor Psl p. Since 
the Berry phase is the action divided by n this gives a Berry phase equal to 
27r times the number of atoms enclosed. There is a similar relation between 
the Lorentz force on an electron in a magnetic field and the magnetic flux 
quantum hje. The Berry phase associated with taking an electron on a 
closed path is equal to 27r times the number of flux quanta which the path 
surrounds. 

These connections between different quantum numbers, circulation and 
number of atoms in one case, electric charge and magnetic flux in the other, 
have led my collaborators, Ao and Niu, and me to look more closely into 
the question [54]. The two-dimensional result of Haldane and Wu has an 
obvious generalization to three dimensions, where the vortex is defined not 
just by a point in two-dimensional space, but as a curve in three-dimensional 
space. When such a curve is moved around and then returned to its original 
position it sweeps out a two-dimensional surface, and the Berry phase should 
be equal to 27r times the number of atoms surrounded by this surface. This 
simple statement hides a number of difficulties that we have tried to address. 
We think we understand what is meant by the path of an electron, but what 
is meant by the path of a vortex, an object whose microscopic definition is 
obscure? The number of atoms inside a geometrica! surface is not fixed, but 
is a quantity subject to zero-point as well as thermal fluctuations, so what 
number should be used in this context? The density of the superfluid is 
reduced at the vortex core by the Bernoulli pressure, so does this reduction 
in density reduce the Berry phase? 

In a more recent pa per, Thouless et al. [55] ha ve tried to sharpen some 
of the questions by considering the effect of pinning the vortex core to a cer­
tain curve x0 (z, t), y0 (z, t) by centering a short-ranged potential (repulsive 
to the atoms) on this curve- the reduced density at the core should cause 
the core to be attracted to the curve. This has enabled us to study the dy­
namics of the vortex cleanly by studying the effects of moving the pinning 
potential. To determine the coefficient of vv, we consider an infinite sys­
tem with superfluid and normal fluid asymptotically at rest (vn =O= V 8 ) 

in the presence of a single vortex which is constrained to move by mov­
ing the pinning potential. For simplicity we describe the two-dimensional 
problem of a vortex in a superfluid film, but the three-dimensional gener­
alization is straightforward. Also we restrict this discussion to the ground 
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state of the vortex, but the generalization to a thermal equilibrium state is 
straightforward. The reaction force on the pinning potential is calculated 
to lowest order in the vortex velocity vv. This can be studied as a time­
dependent perturbation problem, but this can be transformed into a steady 
state problem, with the perturbation due to motion of the vortex written 
as ivv · grad0 . The force in the y direction on a vortex moving with speed 
vv in the x direction can then be written as 

where P projects off the ground state of the vortex. Since âV 1 âxo is the 
commutator of H with the partial deriva ti ve â 1 âx0 , the denominator cancels 
with the H in the denominator, and so the expression is equal to the Berry 
phase form 

. ( âii! âii! ) . ( âii! âii! ) Fy = -zvv -1- +zvv -1- · 
âxo âyo âyo âxo 

(3.9) 

Since the Hamiltonian consists of kinetic energy, a translation invariant in­
teraction between the partides of the system, and the interaction with the 
pinning center, which depends on the difference between the pinning cen­
ter coordinates and the partide coordinates, the derivatives âlâxo, âlâyo, 
can be replaced by the total partide momentum operators - "E â 1 âx j, 
- "E âlâYi· This gives the force as a commutator of components, Px, Py 
of the total momentum, 

(3.10) 

At first sight one might think that the two different components of mo­
mentum commute, but this depends on boundary conditions, since the 
momentum operators are differential operators. Actually this expression 
is the integral of a curl, and can be evaluated by Stokes' theorem to get 

(3.11) 

where the integral is taken over a loop at a large distance from the vortex 
core. This gives the force in terms of the circulation of momentum density 
(mass current density) at large distances from the vortex. 

There is actually a striking resemblance between the expression (3.10) 
for the coeffi.cient of the Magnus force and the expression for the Hall con­
ductance in terms of a Chern number which is discussed in Section 4.4. 

Our result, that the transverse force is equal to vv times the line integral 
of the mass current, is independent of the nature or size of the pinning 
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potential. The general form of this is 

(3.12) 

where Kn represents the normal fluid circulation, in agreement with the 
vv-dependent part of equation (2.10). 

Since our result is controversial, Tang and I have checked the method 
that we use by using it also to calculate the dissipative part of the force, 
the component in the direction of motion [56]. Although we are not able 
to evaluate this in the general case, we find that for symmetrical potentials 
acting on noninteracting particles the method gives the usual expression for 
the longitudinal force on a moving potential in terms of the transport cross 
section. 

By using this technique we verify part of equation (2.10) without using 
any specific model of a vortex, independently of whether its core is a solid 
cylinder or the consequence of a mathematical singularity in the pure fluid. 
We find that the coefficient of "'oVV is indeed p8 , the asymptotic value of 
the superfluid density at large distances from the vortex core. Only the 
coherent part of the wave function contributes to the Magnus force, so at 
nonzero temperatures the Berry phase is reduced by a factor Ps/ p. 

The other half of equation (2.11), which gives the coefficient of "'ov8 , has 
been verified in recent work by Wexler [57]. Wexler considers superfluid 
contained in a ring, scuh as the one shown in Figure 2 with n quanta of cir­
culation trapped in the ring, so that the superfluid velocity is Vs = hnjm4L, 
where L is the perimeter of the ring. If an additional vortex is greated on 
the outer edge of the ring, dragged slowly across the ring by a pinning force, 
and annihilated on the inner edge, the number of trapped quanta of cirula­
tion is increased ton+ 1, changing the superfluid velocity by hjm4L. This 
leads to an increase in the free energy of the superfluid circulating aroung 
the ring by 

(3.13) 

where A is the area of cross section of the ring, since the superfluid density 
Ps is defined in terms of the dependence of the free energy on superfluid ve­
locity. The work done against the transverse force in moving a vortex across 
the ring is equal to the force per unit length times the area of cross-section 
A. Comparison of this with equation (3.13) shows that the transverse force 
per unit length acting on a nearly stationary vortex when superfluid flows 
past it with velocity Vs has magnitude Ps"'ov., in agreement with equation 
(2.10). 

This argument has considerable analogies with the argument given by 
Laughlin for the integer quantum Hall effect [58], which is discussed in 
Section 4.3. In that argument the flux through a ring is changed, and 
electrons are moved from one edge of the ring to the other. Comparison is 
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made between the work done by the transverse force on the flux produced 
by the electric current and the energy change of the electrons moving from 
one edge to the other. 

The surprising feature of these results is that the normal fluid component 
does not seem to enter into the expression for the transverse force on a 
vortex. If the coeffi.cients of K 8 Vy and K 8 V8 are respectively ±p8 , Galilean 
invariance shows that the coefficient of KsVn for the transverse force must 
be zero. Volovik [59] argues that we are wrong, and the coefficient of K 8 Vy 

should be p rather than p8 , which then gives the coeffi.cient of K 8 Vn as -pn, 
again from Galilean invariance. Our result is in contradiction with widely 
accepted results, going back to the work of Iordanskii [60], which show 
a transverse force, proportional to the normal fluid velocity, due to the 
scattering of phonons or rotons from a vortex. Sonin [24] has given a recent 
survey of this argument. 

The arguments developed by us suggest that the integral of momentum 
density round a closed loop is actually the topologica! quantum number 
that can be measured, rather than the integral of superfluid velocity. The 
superfluid density, the factor by which these two quantities differ, is, how­
ever, a quantity that can itself vary, not only with temperature, but also 
with velocity, so the quantization of this quantity is not very precise. 

3.3 Transverse force in superconductors 

The problem of how to generalize to a superconductor our arguments about 
the transverse force on a moving vortex in a neutral superfluid raised some 
difficulties. Translation invariance plays an essential part in the result of 
Thouless, A o and Niu [55], and there are various features of superconduc­
tivity that make translation invariance difficult to apply. The regular lattice 
of ions even in a perfect metal has only discrete translation invariance, not 
the continuous translation invariance that is needed for this argument. The 
impurities that exist in any real metal, and are essential for getting a fi­
nite conductivity in the normal state, destroy even the discrete translation 
invariance. Finally, magnetic effects, which are essential for understanding 
properties of superconductivity such as the Meissner effect, are usually put 
in by means of a vector potential, and a choice of gauge for this hides the 
fundamental translation invariance, even if it does not destroy it. 

We generalized the argument for an unrealistic model in which impu­
rities and disorder are ignored, and in which the background of a regular 
array of positive ions is replaced by a uniform positive background, and 
some short-ranged pairing interaction between the electrons is put in to 
give superconductivity at low temperatures [61]. The magnetic field is not 
put in explicitly, but, in addition to the Coulomb interaction between the 
electrons, and between the electrons and the background, the current-
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current interaction is included in the form 

This gives a complete account of electromagnetic effects, apart from the 
spin-orbit interaction and the relativistic mass correction, up to second order 
in v2 j c2 . It is interesting to note that this approach was taken by Dirac 
et al. [62] in responding to criticism by Eddington of the relativistic theory 
of the hydrogen atom - of course they also included spin-orbit effects and 
the second order mass correction, since it was the Dirac equation which was 
in question. We can ignore the mass correction and spin-orbit interaction 
because they are not important for superconductivity theory. We have 
shown that such an approach to superconductivity theory, without explicit 
introduction of magnetic fields produced by the electrons, does lead to the 
Meissner effect and to magnetic screening with the usual penetration depth. 

Just as we do for the neutral superfluid, we introduce a pinning poten­
tial to control the position of the flux line. This is the only part of the 
Hamiltonian that breaks translation symmetry. The argument for the force 
on the pinning potential goes through as before, and we get the same result 
that the transverse force on a moving vortex is equal to the vortex velocity 
times the asymptotic value of the circulation of momentum density. 

The magnitude of this transverse force for a vortex moving in an idealized 
superconductor is not surprising. It is equal and opoposite to the transverse 
Lorentz force which is obtained when a supercurrent flows past a stationary 
vortex. The value of the Lorentz force due to a supercurrent can be derived 
by an adaptation of Wexler's argument for the force due to flow past a 
vortex in a neutral superfluid [57], but there has been no serious doubt of 
this result. In combination these results tell us that in the absence of other 
forces, such as pinning and frictional forces, the vortices will flow with the 
average velocity of the supercurrent. 

The form of the result is surprising, since at large distances the circu­
lation of canonical momentum density does not correspond to any current 
density, and there is no Bernoulli pressure imbalance or net momentum 
flux which could be used to explain this force, in the way that the classical 
Magnus force is explained. The explanation was given thirty years earlier in 
a paper by Nozieres and Vinen [63]. At distances small compared with the 
penetration depth the moving magnetic flux line does behave like a vortex, 
and the forces are mostly hydrodynamic. The magnetic flux that moves 
with the line does, however, generate an electric field, a dipolar field, which 
exerts a net force on the rigid positive substrate. Therefore this transverse 
force, which was hydrodynamic close to the vortex core, is transmitted to 
large distances as an elastic stress in the positive background. 
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In fact the arguments and results of Nozieres and Vinen are very close 
to ours. Like us they assumed that the positive background was uniform. 
We have not had to assume, as they had to, that the superconductor is very 
strongly Type Il. 

4 Quantum Hali effect 

4.1 lntroduction 

The quantum HaU effect was discovered in 1980 by von Klitzing et al. 
[64]. Systems which display the quantum HaU effect are generaUy two­
dimensional electron systems such as are found at the interface between 
silicon and silicon dioxide in an MOS (metal-oxide-semiconductor) device, 
or at the interface of a heterojunction such as the GaAs-AlxGa1-xAs sys­
tem. A strong magnetic field (5 Tor more) and low temperatures (helium 
temperatures or less) are needed to observe the effect. 

One of the striking things about this initial report is that quantization 
of the HaU conductance I /VH was observed to be an integer multiple of e2 / h 
with very high precision, better than o ne part in 105 . Later measurements 
have shown an absolute precision of 1 part in 107 [65]. A comparison in 
which the HaU voltage generated in a silicon MOS device against the HaU 
voltage generated by the same current in a GaAs-AlxGa1_xAs device has 
shown consistency between different devices of a few parts in 1010 [66]. The 
quantum HaU effect is sufficiently reproducible that it provides the best 
available secondary standard of electrica! resistance, and its value is included 
in the adjustments of fundamental constants [67]. This precision suggests 
that a topologica! explanation of the quantum Hali effect is appropriate. 

The earliest theoretical interpretations of the observed quantization 
showed that the plateaus in the HaU conductivity carne from fiUed Laudau 
levels, and that the Fermi level was pinned between Laudau levels by local­
ized states produced by the disorder of the substrate; these localized states 
make no contribution to the low-temperature conductivity. The quantized 
value is unaltered by disorder and interactions to ali orders in perturba­
tion theory [68-70]. These arguments, although sound, do not connect the 
quantum HaU effect with other phenomena that have a very high precision, 
but Laughlin [58] gave an argument which is much more general, and which 
revealed a topologica! hasis for the integer quantization. Later work [71-75] 
has interpreted the topologica! aspects of the effect differently, but Laugh­
lin's argument remains one of the most powerful ways of understanding the 
quantum Hali effect. 

As soon as the reasons for integer quantization of the Hali conductance 
were understood clearly, experiments by Tsui et al. [76] showed that the HaU 
conductance could be a fractional multiple of e2 jh. The initial work was 
not very precise, but later the fractional values were shown very clearly as 
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plateaus in the HaU conductance, whose precision was less well determined 
than that of the integer effect only because lower temperatures and higher 
magnetic fields were needed. 

4.2 Proportionality of current density and electric field 

The proportionality of electric field and electric current density perpendic­
ular to the field for a two-dimensional electron system can be explained in 
a simple and straightforward manner, and should have led to a prediction 
of the quantum Hall effect before it was discovered experimentally. For a 
system of noninteracting electrons in the absence of a substrate potential 
the Hamiltonian can be written as 

H = 1 ( a ) 2 1 ( a ) 2 

2m -i1i ax + eAx + 2m -i1i ay + eAy + V(x, y) 

= 
1i2 a2 1 2 

- 2m ax2 + 2m (1iky + eBx) + eex, (4.1) 

where the Landau gauge Ax = O, Ay = Bx has been used, the electric field is 
e in the x-direction, and the y-dependence of the wave function is taken to 
be exp(ikyy). The y-component of the current density operator is e(fiky + 
eBx), and so this Hamiltonian leads to a current density corresponding 
to an electron drift velocity -e j B in the y-direction, just as is found in 
the classical theory of charged partide motion. For n full Landau levels the 
electron density is nB e / h, n times the density of single electron flux quanta, 
so the current density is 

}y = (nBejh)(eejB) = (ne2 jh)e. (4.2) 

This gives the right result, but is not yet an adequate explanation of the 
observed quantization of the Hall conductivity O'xy, because it does not give 
plateaus as the magnetic field is varied for fixed electron density, since there 
is a partially filled Landau level for general values of the magnetic field B. 
Under some conditions, such as in silicon MOS devices, it is the chemical 
potential rather than the electron density that is controlled, but in other 
systems, such as optically excited GaAs systems, the recombination time is 
very long, and the electron number is kept constant. 

A refinement of this argument [68-70] shows that weak disorder makes 
no change in this result, to all orders in perturbation theory. The disorder 
produces localized states, lying between the mobile states associated with 
each Landau level, and these localized states serve to pin the Fermi energy 
between Landau levels without changing the Hall current associated with 
the mobile states. 

The Kubo formula [77, 78], which relates the conductivity of a material 
to its current-current correlation function, can be used to display this result 
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in a form in which its insensitivity to perturbations is made manifest. For 
the longitudinal conductivity in the de limit the Kubo formula involves a 
delta-function on the Fermi surface, and is rather sensitive to the order of 
limits, but the result for the Hall conductivity is less sensitive. In a many­
electron state IW"o) of energy E in which no current fiows, the electron 
current in the y-direction induced by the perturbation eEX is, to lowest 
order in perturbation theory, 

A p A A p A 
Ee(W"oiJY--A XIW"o) + Ee(W"oiX--A Jyl'llo) , (4.3) 

E-H E-H 

where P is the operator that projects offthe eigenstate l'~~o) of ÎI. Since the 
current operator Jx is given by the commutation relation [ÎI, X] = -i1i]xf e, 
this gives the current in the form 

-i1iE(W"ol [jy pA Jx- Jx pA JY]I'~~o) 
(E - H)2 (E - H)2 

TiE! 1 A 1 A 1 
- dzTr--A-Jy--A-Jx--A-, 
27r z - H z - H z - H 

( 4.4) 

where the integral over the complex variable z goes round only the lowest 
of the eigenvalues of the Hamiltonian ÎI, the ground state and neighbor­
ing states that involve localized excitations from the ground state. The 
integrand is closely related to a Green function at energy z, and such a 
Green function is exponentially localized both when the imaginary part of 
z is nonzero, and when z lies in a gap in the spectrum or in a region of 
the spectrum where eigenstates are localized by disorder [79] (in a mobility 
gap). This argument, or a simple modification of it, shows that the result 
is unchanged by local perturbations that are not strong enough to push 
extended states through the Fermi surface, and that the current density is 
a local function of the applied field when the Fermi energy lies in a mobility 
gap. 

4.3 8/och 's theorem and the Laughlin argument 

In the early 1930s Bloch proved a result that he claimed showed that all 
existing theories of superconductivity were wrong - this was just before the 
Meissner effect was discovered. Bloch's theorem states that the free energy 
F of the equilibrium state for a loop or other nonsimply connected piece 
of conductor is a periodic function of the flux <I> enclosed by the loop, with 
period hje, so that the current âFjâ<I> is periodic and has zero average. 
This result was widely known, but was never published by Bloch, and one 
of the best discussions was given by Bohm in 1949 [80]. The oscillations 
about zero of the equilibrium current are generally expected to be small, 
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but the example of the SQUID magnetometer shows that such oscillatory 
equilibrium currents can be relatively large under certain circumstances. 

Laughlin's argument for the quantization of HaU conductance is com­
pact and powerful, but perhaps too compact to be readily understood. A 
more transparent version of Laughlin's argument was given by Halperin [81]. 
I have rephrased Laughlin's argument as a generalization of Bohm's version 
of the Bloch theorem [82]. I consider an annulus of two-dimensional con­
ductor in a uniform magnetic field, with a strength such that the Fermi 
energy lies in a mobility gap. The Bloch theorem tells us that in equilib­
rium the only current flowing is the mesoscopic current which averages to 
zero when the flux threading the annulus is varied. In Laughlin's argument 
the electrochemical potentials at the two edges of the annulus are allowed 
to have slightly different values, f.Li on the inner edge and f.Lo on the outer 
edge. Because there are no mobile electron states with energies close to the 
range between f.Li and J.L0 , this nonequilibrium state can be maintained. I 
suppose that the electrochemical potentials are defined by keeping reservoirs 
of electrons with Fermi energies f.Li and f.Lo in contact with the two edges. 
If the flux <I> threading the annulus is now changed by one quantum unit 
J<I> = h/ e the annulus returns to its former state, apart from trivial gauge 
changes of the electron states by the factor 

exp [ -i(e/'h) J JA(r) · dr] · (4.5) 

Such a gauge change is allowed even for electron states that extend round 
the annulus, since the wavefunction remains single valued. Since the annulus 
has returned to its original state, apart from this gauge change, the only 
significant thing that could have happened is that an integer number n of 
electrons might have passed across the system from the inner reservoir to the 
outer. The change in free energy of the system is therefore n(J.Lo- f.Li)· The 
work done is the time integral of the current times the voltage around the 
annulus, and this voltage is d<I> / dt, by Faraday's law, so that the equality 
of these two gives 

J J~~ dt = J Jd<I> = n(J.Lo- f.Li). ( 4.6) 

The left hand side is J(hje), where J is the current round the ring, aver­
aged over the fractional part of the flux, and the right side is ne V, where 
V = (J.Lo - f.Li) / e is the voltage between the two edges, so the conclusion of 
Laughlin's argument is that 

- e2 
J=n-V 

h 

and the conductance is quantized as an integer multiple of e2 / h. 

(4.7) 
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At first sight it is surprising that electrons can be moved across the 
system in the absence of any mobile states close to the Fermi energy, but a 
more detailed explanation is given in Halperin's paper [81]. Each occupied 
Landau level has edge states that are close to the Fermi energy, and there is 
a quasicontinuum of mobile states between the two edges, with the states in 
the interior well below the Fermi energy. The effect of changing the vector 
potential is to make an adiabatic change that maps this continuum of states 
into one another in such a way that n states on the inner edge are emptied 
and n states on the outer edge are filled. For example, if we take the case of 
an ideal annulus and use the symmetric gauge centered on the center of the 
annulus, the states of the lowest Landau level can be written in the form 

'1/J(x, y) = jx + iyj-e<I>fh(x + iyy exp ( -jx + iyj 2 :~) , (4.8) 

where s is an integer. This wave function is concentrated around a circle of 
radius r 8 , where 

B1rr; =-el>+ shje; (4.9) 

this is a good wave function provided the value of r 8 lies between the inner 
and outer radii of the annulus. Decrease of el> by h/e pushes each wave 
function out to the former position of the next one, and so moves one 
electron from the inner edge to the outer edge. A similar argument holds 
for higher occupied Landau levels. 

This argument is very general, and all it seems to require is that the 
Fermi energy lies in a mobility gap. It does not, for example, require that 
the voltage difference between the two edges should be vanishingly small. 
All that is required is that the voltage difference should be small enough that 
there is no appreciable tunneling of electrons between the two edges or to 
higher unoccupied levels. The only unsatisfactory feature of the argument 
is that it gives only the current J averaged over the flux in the annulus, 
whereas the actual current could include a mesoscopic contribution. Such 
a mesoscopic contribution could only come from the edge states, since the 
bulk Green functions are exponentially localized at the Fermi energy. In the 
edges of typical devices used for studying the quantum Hall effect there are 
many levels contributing to ~dge currents and to diamagnetic susceptibility, 
and there is no reason to expect strong interference effects that could give 
rise to a significant mesoscopic correction to equation ( 4. 7). 

Because one does not expect corrections to be propagated over long 
distances, o ne also expects that the details of the geometry should not affect 
the current-voltage relation. The same relation that Laughlin showed for 
the annulus should also hold for a more typical arrangement where current 
is fed into a Hall bar at one end and removed from it at the other. 

An important aspect of this argument is that it suggests sources for 
departures from exact quantization, as well as the order of magnitudes 
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to be expected for them. Firstly, there are processes that lead to cur­
rents between the edges as well as round the annulus, and these can alter 
the estimates of free energy changes used in equation (4.6). These lon­
gitudinal currents can be produced by thermally activated hopping of lo­
calized electrons, thermal activation of electrons in unfilled Landau levels 
or of holes in filled Landau levels, or by quantum tunneling. The last of 
these will fall exponentially as the width of the annulus increases, and the 
others fall exponentially as the temperature is lowered, so these effects can 
be made exponentially small by increasing the width of the system and re­
ducing the temperature. The other obvious source of deviations from exact 
quantization is that the actual current may deviate from its value J aver­
aged over a flux period. There is no reason to expect such deviations to 
be large, as they are in a Josephson junction, and the simplest picture of 
them is that they come about as the closely spaced edge levels move across 
the Fermi energy under the influence of changing values of the flux <I>. The 
energy spacing between such edge levels should be inversely proportional 
to the circumferences of the edges, and might give rise to corrections in­
versely proportional to the circumference at zero temperature, but 1 would 
expect thermal broadening to reduce these corrections to something expo­
nential once the temperature exceeds the mean energy spacing between edge 
states. 

This argument contains the essential features as the more explicitly topo­
logica! argument which is presented in the next subsection. It uses the gauge 
covariance of quantum mechanics in regions that are not simply connected, 
together with the quantization of electron charge in the reservoirs. It is 
clearly invariant under small perturbations, so long as they do not bring 
the energies of mobile electrons in the interior close to the electrochemical 
potential range. It also has some features similar to the argument for the 
force on a vortex in a supercurrent which was presented in Section 3.2 [57]. 
A charge carrier in the theory of the quantum Hall effect plays much the 
same role as a vortex in a superfluid. 

4.4 Chem numbers 

The first expression for the Hall conductance which gave explicitly a topolog­
ica! invariant was obtained for the case of electrons moving simultaneously 
in a uniform magnetic field and a periodic potential [71]. This is a problem 
for which very interesting results had previously been obtained by Azbel [83] 
and Hofstadter [84]. A weak periodic potential splits each Landau level into 
q subbands, where there are q flux quanta for every p unit cells of the peri­
odic potential. Each of these subbands carries an integer Hall conductance, 
and these integers can be different from unity. For example, when pf q = 3/5 
the Hall conductances of the 5 subbands alternate between -1 and 2. 
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(a) 
V 

Fig. 3. The Hall bar, with current and voltage leads, shown in (a) can be replaced 
by the arrangement shown in (b), where the voltage is supplied by changing flux 
<Pv through one loop, and the current is monitored by observing changes of the 
flux <PJ through the other loop. 

The quantum number characterizing the Hall conductance of a subband 
turns out to be the topologica! invariant known as the Chern number. 

Later work showed that this method could be extended to a much more 
general situation. In order to observe the Hall effect in the usual way one 
takes a bar of the two-dimensional electron system in a strong magnetic 
field, passes a fixed current through it from a pair of current leads, and 
measures the voltage across the sample by connecting two voltage leads on 
opposite edges of the sample to a voltmeter. This is the set-up shown in 
idealized form in Figure 3a. in the work of A vron and Seiler [73], and of Niu 
and Thouless [85], the leads connected to current source and voltmeter are 
replaced by leads of the same material as the Hall bar, connected in pairs as 
shown in Figure 3b. Through the voltage loop there passes a solenoid which 
has a variable flux <I>v, while there is another solenoid with flux c'f> J passing 
through the current loop. If the flux c'f>v is changed at a uniform rate, the 
solenoid will maintain a constant electromotive force d <I>v / dt around the 
voltage loop, and the other solenoid can be used as a pick-up to monitor 
the current that is generated around the current loop. One may notice 
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that while experimentalists like to measure the voltage resulting from the 
passage of a fixed current, theorists prefer to ask about the current that will 
be generated by a given voltage. The current operators in the current and 
voltage leads are âHjâif!J and âHjâif!v. 

The Hall conductance can be calculated from the Kubo formula [77, 78] 
for the conductivity, which gives, by means of standard perturbation theory, 
the current density which is the linear response to an applied electric field or 
electrochemical potential gradient. The result can be written in terms of a 
current-current correlation function, as it was in equation (4.4). For the Hall 
conductance we want the Jx, Jy correlation function for the many-electron 
ground state wave function 1 \[! 0 ( if! J, if!v)), and so the Hall conductance can 
be written as 

(4.10) 

where H is the hamiltonian for the system, depending on the parameters 
il! J and if!v, and E is the corresponding energy of the ground state. The 
operator P projects off the ground state. Perturbation theory for the wave 
function gives 

(4.11) 

and the corresponding equation for the perturbation due to the flux through 
the current loop, so the the equation for the Hall conductance is 

8 (il! if! ) = .li (( âwo l âwo) _ ( âw0 l âw0 )) . 
H J' v z âif!v âif! J âif! J âif!v 

( 4.12) 

This must be periodic in each of the fluxes with period hje, and the fluxes 
have the effect of changing the phase of quasiperiodic boundary conditions 
round each of the current and voltage loops. 

The quantities that appear in this equation can be written in terms 
of the Green function for the many-body system, integrated over the two 
spatial coordinates of the system, and integrated around a contour in the 
complex energy plane which surrounds a part of the real axis that includes 
no mobile excited states. Since the Fermi energy lies in a mobility gap, we 
expect the Green function to fall off exponentially with distance at a rate 
that depends on the localization length at the Fermi energy, except at the 
edge of the system where there will be extended electron edge states [81]. In 
this system the edge states cannot contribute to the total current around the 
current loop, since there is only one edge, and any current that flows along 
the edge goes in opposite directions on the two edges of the current leads. 
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The system with its two sets of leads looping around has the topology of a 
torus pierced by a single hole. I do not think that this argument has been 
properly worked out in detail, but it suggests that the expression ( 4.12) is 
independent of the quasiperiodic boundary conditions determined by q? J, 

q?v, up to corrections exponentially dependent on the ratio of the width ( or 
length) of the Hall bar to the localization length at the Fermi energy. If this 
is the case we can write the Hall conductance as 

(4.13) 

The wave function 1 \li 0 ( q? J, q?v)) gives a mapping of the torus defined by 
q? J, q?v (physical quantities are periodic in these variables) onto the complex 
projective space of normalized wave functions with arbitrary phase. The 
integral is 21r times the integer invariant that defines the first Chern class 
of this mapping [86]. 

For a physicist, a more familiar way of getting the desired result is to 
argue that the integrand is the curl of the vector whose components in 
q? J, q?v space are 

(4.14) 

which is-i times the gradient of the phase ry of l\11 0 ) in this flux space. This 
therefore gives 

(4.15) 

where the integral is taken round the boundary of the two-dimensional inte­
gration in equation ( 4.13). The phase, which is very like a Berry phase [52], 
must be defined in some unambiguous way, such as by parallel transport, 
or by fixing the phase of the wave function to be zero at some point in the 
space of electron coordinates - but then ambiguities arise at those values of 
q? J, q?v which give a zero at this chosen point. However the phase is defined, 
it must return to the same value around the path in equation (4.15) up to a 
multiple of 21r. It is this winding number of the Berry phase that gives the 
integer n on the right side of the equation. Various implementations of the 
phase have been discussed by Thouless [87], Kohmoto [88], and by Arovas 
et al. [89]. 

Although the result can be reduced to the winding number of a Berry 
phase round the perimeter of a unit cell in two-dimensional flux space 
( q? J, q?v), yet the argument seems to be intrinsically two-dimensional, in­
volving simultaneously what is happening in the current leads and in the 
voltage leads. The same could be said of the Laughlin argument [58], where 



D.J. Thouless: Introduction to Topologica! Quantum Numbers 803 

there needs to be a simultaneous consideration of the change in vector po­
tential around the annulus and the transfer of electrons across the annulus. 

Again there is some analogy between the two-form in equation (4.14) 
that gives the Hall conductance and the expectation value of a commutator 
in equation (3.10) that gives the transverse force on a vortex moving in a 
superfluid in Section 3.2. 

4.5 Fractional quantum Hal/ effect 

The arguments that have been presented in the last two subsections show 
that the Hall conductance is an integer multiple of e2 /h if the Fermi en­
ergy lies in a mobility gap, and if the ground state wave function is unique. 
The discovery of fractional values of the Hall conductance number by Tsui 
et al. [76] was therefore surprising. Subsequent work has shown that many 
different simple odd-denominator fractions occur, and that the fractional 
quantization is fairly precise. Simple modifications of the theory for non­
interacting or weakly interacting electrons did not seem to give this effect, 
and Laughlin [90] argued that it must be due to the existence of a new sort 
of correlated many-electron ground state, and proposed the sort of ground 
state that should reduce the repulsive Coulomb energy of the electrons and 
display fractional quantization with odd-denominator fractions. 

In the central gauge, with the vector potential equal to A = ( -By/2, 
Bx/2), the degenerate many-body ground state wave function for N non­
interacting electrons all in the lowest Landau level has the form 

( 4.16) 

where Zi represents Xi + iyi, f is any multinomial antisymmetric in the 
variables, and l0 is the magnetic length fi/eB. If f has the form 

N 

f = IT(zj- zi), 
i<j 

( 4.17) 

the particles are concentrated in a disk whose area is approximately 21rNl~, 
and this represents a fully occupied Landau level with a density, inside the 
disk, of one electron per flux quantum. Laughlin [90] suggested that the 
wave function obtained by setting the multinomial equal to 

N 

j(z1,z2, ... ZN) = IT(zj- zi)q, (4.18) 
i<j 

with q an odd integer, would be particularly effective at keeping the electrons 
apart and so reducing the Coulomb energy. It gives a uniform one-electron 
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density within the disk, and has no pairs of electrons whose relative angular 
momentum is less than q1i. Haldane and Rezayi [91] have shown that the 
generalization of this wave function to spherical geometry gives the true and 
unambiguous ground state for a model interaction similar to the Coulomb 
interaction. It is also in very close agreement with finite system calculations 
for the Coulomb interaction. 

For such a wave function, given by equations (4.16) and (4.18), the 
highest power of Zj in the multinomial is (N - 1)q, so the area of the 
disc is increased by a factor of q, and the density of electrons is now 1/ q 
per flux quantum. This ground state is separated from excited states by 
an energy gap for the creation of quasiparticle excitations. The lowest 
energy quasiparticles are presumably localized by the substrate disorder, 
so the filling does not have to be exactly 1/ q for the Hall conductance to 
be determined by the properties of this ground state. This fractionally 
occupied Landau level will give a HaU conductance equal to e2 / qh whether 
or not there are additionallocalized quasiparticles present. Laughlin showed 
that there should be a hole-like quasiparticle with fractional charge ej q 
formed at the point z0 by adding an extra flux line at that point; this can 
be done by multiplying the ground state wave function by a constant times 
IJi(zi - zo). Similarly a quasiparticle with charge -ejq can be formed 
by removing a flux line, which can be represented approximately by the 
operator ITi(Ojozi- qz0 jl§) acting on the multinomial f. 

Jain [92-94] has generalized this idea in the composite fermion model. 
Start with the wave function for p full Landau levels in some magnetic 
field, then attach ±2m flux quanta to each electron, multiplying the wave 
function by IT (Zi - Zj) ± 2m. Pro ject the result back onto the lowest Landau 
level. This gives a filling factor, the number of electrons per flux quantum, 
equal to pj(2mp ± 1). For m = 1 this gives the two sequences tending to 
1/2 which are prominent in the experimental data, 1/3, 2/5,3/7, ... and 
its particle-hole conjugate. For m = 2 the sequences of odd-denominator 
fractions tend to 1/4. Further manipulation with particle-hole conjugation 
gives other fractions like the sequences tending to 3/4. 

The arguments that explain the integer quantum Hall effect are rather 
general, and have to be reconciled with the widespread occurrence of the 
fractional effect. After Laughlin's [90] explanation ofthe fractional quantum 
Hall effect was generally accepted, it was suggested that the ground state 
should ha ve a discrete broken symmetry [7 4, 95, 96]. If there are q equivalent 
ground states, then, in Laughlin's argument for the integer effect [58], q 
flux quanta have to be introduced before the wave function returns to its 
original form. If only one flux quantum is introduced a different ground 
state is obtained. 

This seemed to be contradicted by the apparent nondegeneracy of 
Laughlin's tria! wave function for electrons confined to a disk [90], and by 
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the proved nondegeneracy of the wave function for electrons on a sphere [91]. 
However, one cannot do a measurement of the quantum Hall effect on the 
sphere without introducing probes of some sort through the surface, even 
if magnetic monopoles are available to provide a uniform magnetic field 
through the surface, and once probes are introduced one must worry about 
boundary effects. We have analysed this problem for the sphere [97] and 
the annulus [98]. For an annulus threaded by flux <I> the wave function takes 
the form 

(4.19) 

which is a superposition of determinants made up from one-electron wave 
functions of the form given in equation (4.8). The powers of lzil in the 
prefactor of the exponential range from n 1 - <I>e / h to n1 - <I>e / h + q( N - 1), 
and so the electrons are concentrated in the range 

(4.20) 

The effect of increasing <I> adiabatically by hje is to pull the whole electron 
distribution inwards, producing a state which is different from, and inacces­
sible from, the new quasiequilibrium state, which is obtained from equation 
(4.19) by simultaneously increasing <I>ejh and n 1 by unity. It is only when <I> 
has been increased by q that the new quasiequilibrium state can be reached 
by transferring one electron from the inner edge to the reservoir and one 
electron from the outer edge to the reservoir. 

In this picture, whether applied to the annulus connected to two differ­
ent reservoirs, or to the torus which was used to related Hall conductance 
to Chern numbers, the fractionally charged quasiparticles serve as point 
topologica} defects whose migration across the system can enable transi­
tions to occur between these different ground states [98, 99]. An excitation 
with fractional charge ejq (quasihole) located at z0 can be generated for 
the annulus by multiplying the wave function (4.19) by A(zo) ft(zi- zo), 
where A is a normalization factor. When z0 is very large, A is 1/(-zo)N, 
and this factor does not change the wave function. For zo = O it increases 
n1 by unity, pushing the electron distribution outwards, so that there is an 
extra charge ejq on the inner edge and -ejq on the outer edge. This state 
can be reached by moving z0 continuously from the outside of the annulus 
to the inside. While z0 is in the interior of the annulus there is a quasihole 
of charge ejq crossing the annulus with some compensating charge density 
on each of the edges. 
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4.6 Skyrmions 

In most of the discussion of the fractional quantum Hall effect up to this 
point it has been assumed that there is a single Laudau level involved, with a 
single spin orientation. In certain systems this assumption is inappropriate, 
and two or more coupled Laudau levels have to be considered. In most 
systems the Zeeman energy is relatively small, and in some systems it can 
be made particularly small, so the assumption that the spins of the electrons 
are completely polarized is inappropriate. A similar situation arises when 
the Zeeman energy is large, but a bilayer consisting of two adjacent layers 
of electrons is formed. In this case a pseudospin can be used to describe in 
which layer an electron lies. 

Halperin [100] introduced a modification of Laughlin's wave function 
( 4.18) which allows for equal occupation of the two spin or peseudospin 
states. This has the form 

(4.21) 

where the unprimed variables are the coordinates of spin up electrons and 
the the primed variables are the coordinates of spin down particles. Power 
counting shows that this gives the occupation number v, the ratio of the 
total number of electrons to the number of flux quanta in the area they 
occupy, as v = 2/(m + n). The exponents of (z1 - zi) and (zj' -Zi') must 
be the same, or else the spin up and spin down electrons will be occupying 
different areas, so this cannot be used to describe partial spin polarization. 

States of the form { m, m, m} in equation ( 4.21) are particularly interest­
ing. For m = 1 this gives a singly occupied Laudau level rotated by 1r /2 in 
pseudospin space, and for m = 3, 5, ... it gives the Laughlin wave functions 
( 4.18) rotated by 1r /2 in pseudospin space. All the pseudospins are aligned, 
so this is a pseudospin, or, for the case of vanishing Zeeman splitting, real 
spin ferromagnet. In regular Heisenberg ferromagnets, in two dimensions 
or in three, the lowest-lying part of the excitation spectrum consists of spin 
waves, in which a single spin is reversed. In two dimensions a skyrmion 
excitation is possible. This is a texture in the r, e plane such as 

Sx =sin /(r) cos e, Sy =sin /(r) sine, Sz =cos f(r), ( 4.22) 

with f(r) a function that is zero at infinity and goes smoothly to 1r at 
the origin. This texture gives a mapping of the plane (plus the point at 
infinity) onto the sphere of spin directions that wraps round the sphere 
and has a unit topological quantum number. The winding number is given 
by equation (1.3), with the integral over the unit sphere replaced by an 
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integral over the infinite plane. In the case given in equation ( 4.22) the 

winding number is Nw = 1. For the Heisenberg model the skyrmions have 

rather a high energy, but it has been argued that for the quantum Hall 

systems that are being considered in this section the skyrmion should give 

the lowest excitations for v = 1 [101-104]. As is shown in the work ofFertig 

et al. [105], the topologica! charge, the winding number, gives the electric 

charge of the excitation. 
Several experimental groups have seen effects that seem to be due to 

such skyrmions at v = 1. Barrett et al. [106] and Aifer et al. [108] found a 

strong peak in the spin polarizability at v = 1 Schmeller et al. [107] found 

multiple spin flips (as many as 7) accompanying elementary excitations for 

v = 1, but not for v = 1/3 or 1/5. Bayot et al. [109] found an enhancement 

of the specific heat, which are attributed to the skyrmion excitations at 

v = 1. Maude et al. [110] made electrica! transport measurements, and 

found an enhanced spin gap even for g = O, as would be expected if the 
excitations were skyrmionic. 

5 Topologica! phase transitions 

5.1 The vortex induced transition in superfluid he/ium films 

In the conventional phase transitions there is usually some order parameter 
which has a nonzero value in the low temperature phase and is zero in 

the high temperature phase. The susceptibility associated with this order 

parameter diverges at a critical point, and this gives singularities in other 

quantities such as the specific heat. The two-dimensional Ising model was 

the first model solved in these terms, but renormalization group allowed 

good accounts of three-dimensional models such as the Ising, planar spin and 
Heisenberg models to be given. Also the theory of conformal invariance gave 

results for critical exponents in other discrete two-dimensional models such 

as the three-state Potts model. In such conventional continuous (second 

order) phase transitions, fluctuations away from the equilibrium value of the 
order parameter decay exponentially with a negative exponent whose value 

is the ratio of the distance to a temperature-dependent correlation length. 

At the critical point where the phase transition occurs the correlation length 

is infinite, and the correlations fall off as a power of the distance, rather than 

as an exponential function. 
It was known from the work of Laudau and Peierls [111] in the 1930s 

that two-dimensional systems with continuous order parameters could not 

have conventionallong range order, and this was established rigorously by 
Mermin and Wagner [112] and by Hohenberg [113]. The possibility of some 

other type of order was not ruled out - it was known, for example, that a 
solid could have algebraic divergence of its X-ray peaks at the Bragg angles 
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[114], or it might have orientational long-range order without positional 
long-range order. 

Onsager [1] and Feynman [20] suggested that the phase transition in bulk 
4He from the superfluid to the normal state might not be 
characterized by the disappearance of the magnitude 1 W o 1 of the condensate 
wave function, but rather by a loss of phase coherence produced by a tangle 
of vortex lines. This does not fit well with modern renormalization group 
ideas, whereas the observed critical exponents of this transition do fit the 
renormalization group results for a two-component vector order parame­
ter rather well. The results for a three-dimensional system with a two­
component vector lie smoothly between the results for the Ising model and 
the Heisenberg model. Also it is technically diflicult to handle a phase tran­
sition driven by vortex lines, because it involves a model like a directed 
polymer with a long-range interaction. 

In two dimensions the situation is much simpler, since vortices are just 
point defects with a long-ranged interaction between them. We refer to 
a phase transition driven by such defects as a topologica! phase transition. 
Helium films provide the simplest example of a topologica! phase transition. 
The order parameter, the condensate wave function, is a single complex 
function of the two-dimensional position, so the system is equivalent to a 
planar spin model in two dimensions. The singularities of this system, the 
vortices, which play a vital role in this theory, are simply point singularities 
where the order parameter goes to zero, and around which the phase changes 
by ±2n. This type of system was studied in the work of Berezinskii [115, 116] 
and of Kosterlitz and Thouless [117, 118]. 

The development of the theory is simplified if we consider a lattice gas 
model of the superfluid, in which there is a magnitude IWil and a phase ()i 

of the order parameter associated with each site i of the lattice. At low 
temperatures there will only be small fluctuations of the magnitude IWil, 
and the phase fluctuations will be controlled by an energy term of the form 

1l - = - K '"""'cos(O· - () ·) 
kT L..; ' 1 ' 

B (ij) 

(5.1) 

where ( ij) denotes a pair of nearest neighbor sites. In the Gaussian approx­
imation, the cosine in this formula is replaced by its quadratic approxima­
tion, to get the exponent of the Boltzmann factor as 

_ _li_=- 1lo - ~K'"'(O·- 0·)2 
kT kT 2 L...;• J· 

B B (ij) 

(5.2) 

The angles 03 are then written as their Fourier transforms, proportional to 
J d2 k c(k) exp(ik· R 3), so that equation (5.2) becomes a diagonal quadratic 
form in the Fourier components c(k). The correlation function for cos ()i can 



D.J. Thouless: Introduction to Topologica! Quantum Numbers 809 

then be expressed in terms of an integral of an exponential whose exponent 
is quadratic and linear in these Fourier components, and the evaluation of 
this integral gives the correlation function as 

( ) 1 [ a2 jj 2 1-cos(q.Rij) l ( ) cosllicosllj =-2 exp - 4 2 d q 2 ( ) 2 ( ) , 5.3 
7r 4 - cos qxa - cos qya 

where I have taken the lattice to be a square lattice of side a, and Rij is 
the vector between the sites i and j. For large values of Rij the integrand 
is of order 1/q2a2 for q between 1/Rij and 1/a, so the integral depends 
logarithmically on the ratio of these two quantities, and the result 

with 
1 

ry(T) = 2rr K' 

(5.4) 

(5.5) 

is obtained. This power law behavior of the correlation function at all low 
temperatures was discussed by Wegner [119] and by Jancovici [120], and 
means that the whole low-temperature region can be regarded as a critical 
line. For the superfl.uid the energy associated with variation of the phase 
can be written as 

(5.6) 

and comparison of equations (5.1, 5.5) and (5.6) shows that the correlation 
exponent is given by 

(5.7) 

where Ps is the superfl.uid density per unit area. This algebraic fall-off of 
the correlation function implies that the usual order parameter, related to 
the infinite distance limit of the correlation function, must be zero. 

In accordance with the discussion of superfl.uid fl.ow in Section 2.1, the 
unbounded fl.uctuation of the relative phase at large distances implied by 
equation (5.4) will not be enough to destroy superfl.uid fl.ow in an annulus, 
which is represented by a texture of the phase in which the phase changes 
by a multiple of 2rr round the annulus. The phase can only lose this twist by 
the passage of vortices across the system, and it turns out that, in the ther­
modynamic limit, there is an infinite barrier to the creation of the necessary 
vortices. The energy of an isolated vortex in a system of linear dimension 
Lis 

(5.8) 
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where a0 is the vortex core radius. There is also an entropy associated with 
the possible positions of a vortex. If the number of possible positions in a 
system of area L 2 is L 2 j na~, then the entropy per vortex is 

(5.9) 

At low temperatures the free energy per vortex is positive, and depends 
logarithmically on the size of the system, so the concentration of free vor­
tices is zero in the thermodynamic limit at low temperatures. Above the 
temperature given by kBT = np.n2 /2m2 the logarithmic termin the free 
energy of a vortex changes sign, so free vortices appear, and supercurrents 
are unstable. This argument leads to the conclusion obtained by Nelson and 
Kosterlitz [121] that a necessary condition for the stability of superfluid flow 
is 

(5.10) 

or, from equation (5.7), 
ry(T) ::; 1/4 . (5.11) 

In the more detailed theory this inequality becomes an equality at the tran­
sition temperature, and the criticalline ends at TJ = 1/4. 

We described this type of phase transition as a topologica[ phase tran­
sition because the most prominent feature of the ordered low-temperature 
phase is the absence of topologica! defects and the stability of states with 
nonzero topologica! quantum number in the thermodynamic limit, rather 
than the existence of a conventional order par am eter. 

In the detailed theory [118], the effect of creation of bound pairs of posi­
tive and negative vortices on the superfluid density was takeninto account. 
The energy of interaction of two vortices with quantum numbers n 1, n2 , 

giving phases 01(r),02 (r), is 

2np.n2 1Rl2 dr 
---2-nln2 -

m ao r 

2np.n2 R12 
---n1n2ln -· (5.12) 

m2 ao 

The vortices therefore behave like a Coulomb gas ( with a two-dimensional 
Coulomb interaction) of classical charges.The bound vortex pairs are like 
classical molecules. The Hamiltonian for this classical Coulomb gas can be 
written in lattice gas form as 

H L ri - ri Il L 2 L L -- = -nK n·n·ln-- + -- n- +nK n·n·ln- · (513) kT ZJ kT z ZJ T . 
B if-j T B i i,j 

Here K is p8 n2 jm2 kBT, T is the lattice spacing, of order a0 , Il is a chemical 
potential to represent the short-range contributions to the vortex energy, 
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and the final term represents the long range contributions to the energy 
in a system of linear dimension L when 2..:: ni is nonzero. The effective 
dielectric constant K is assumed to be a function of distance, because the 
smaller vortex pairs are polarized by the fields acting between more distant 
pairs. A crude treatment of the polarizability gives it as 

(5.14) 

This diverges at K = 2/7r, where ry(T) = 1/4, which is the bound given in 
the expression (5.11); with divergent polarizability there is no barrier to the 
dissociation of vortex pairs. 

Renormalization arguments originally developed by Anderson and 
Yuval [122] were applied by Kosterlitz [123] to this problem of interact­
ing vortices or interacting charges in two dimensions. This method was 
developed further by Jose et al. [124]. The basic idea of this method is to 
renorma1ize the free vortex (or free charge) fugacity y(L) = exp(-p,/kBT) 
at each length scale L in terms of the dimensionless superfluid density ( or 
reciproca! of the dielectric constant) K(L). The dielectric constant on the 
length scale L is determined by those dipoles whose size is less than L, so 
the change of the dielectric constant when the length scale is varied is pro­
portional to the square of the concentration of free charges found on length 
scales L. This leads to the first of the Kosterlitz equations 

(5.15) 

The self-energy of a charge ( or vortex) on a length scale L depends on the 
polarizability of the medium on that length scale and on the concentration 
of free vortices, so that leads to the second Kosterlitz equation 

L d~~) = [2- 1rK(L)]y(L) + O(y3 ). (5.16) 

More detailed derivations of these equations can be found in the review by 
Nelson [125]. 

If the concentration y of defects ( charges or vortices) is sufficiently small 
that higher order terms in y can be ignored, the two equations can be 
combined to get 

dK(L) 
dy(L) 

(5.17) 

which can immediately be integrated to get the relations between K(L) and 
y(L) 

(5.18) 
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y 

K 

Fig. 4. Flow diagram for the renormalization of K and y from equations (5.15) 
and (5.16). 

where a is a constant of integration. These solutions, which represent the 
renormalization flow of K and y, are shown in Figure 4. Those curves for 
which a is positive flow into solutions for large L with y tending to zero, 
whereas if a is negative the flow may initially be to smaller concentrations 
y, but eventually goes to larger concentrations, so that there are free defects 
on a large length scale. The explicit equation (5.18) for y as a function of 
K can be substituted back into equation (5.15) to get a set of expressions 
for K as a function of L. 

To use this scaling relation to obtain long-range properties it is neces­
sary to start with known properties at length scales of order a0 , the vortex 
core radius. The superfluid density K(a0 ) and the vortex fugacity y(a0 ), un­
modified by the specific two-dimensional properties we have been discussing, 
will both be functions of temperature, as will the core radius itself. From 
where this trajectory K(a0 (T), T), y(a0 (T), T) cuts the flow lines (5.18), 
the long-range superfluid density K( oo, T) for T < Te and the transition 
temperature Te can be read off. The most striking result is the one al­
ready mentioned [121], that, at the temperature where free vortices first 
appear and the superfluidity is destroyed, K( oo, Te) is always 2/7f, and the 
superfluid density always has the value 

(5.19) 

This relation was verified by Rudnick [126] studying the propagation of third 
sound, the waves which propagate on superfluid films, and by Bishop and 
Reppy [127, 128] using an Andronikashvilii oscillator constructed of a roll 
of mylar film with a thin coating of liquid helium. Both these experiments 
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use a nonzero measuring frequency; this also implies a finite length scale of 
the order of the wavelength of third sound at that frequency. The theory 
used to interpret such measurements at nonzero frequency measurements 
was developed by Amegaokar et al. [129]. At such nonzero frequencies the 
transition is rounded and pushed up to higher temperatures, and a good fit 
to the experimental data was obtained with this theory, and an extrapola­
tion can be made to the discontinuity of superfluid density and the transi­
tion temperature at zero frequency or infinite length scale. Later work by 
McQueeney et al. [130] on solutions of 3 He in 4 He carried this relation down 
to rather low temperatures. 

5.2 T wo-dimensional magnetic systems 

Theoretical studies of critica! phenomena usually relate the universality class 
to an equivalent magnetic model. The liquid-vapor critica! point and the 
magnetic system with a single preferred axis of magnetization both are in 
the same universality class as the Ising model. The superfluid transition, 
with an order parameter that is a complex scalar quantity, resembles a 
magnetic system with a preferred plane of magnetization but no preferred 
direction in the plane. This is the planar spin model. 

The three-dimensional planar spin model is similar in many ways to other 
three-dimensional magnetic models, intermediate in its critica! exponents 
between the Ising model with a single preferred axis and the Heisenberg 
model with no preferred direction of magnetization. In two dimensions, 
however, the planar spin model has very special properties. There is no 
net magnetization in zero field, and the spin-spin correlation function tends 
to zero at large distances except at zero temperature. However, below the 
critica! tempera ture for vortex pair unbinding the spin-spin correlation func­
tion decays algebraically with distance, rather than exponentially, and the 
spin-wave stiffness is nonzero. For spins on a lattice one can define vortices 
uniquely, as points on the duallattice around which the adjacent spins rotate 
through an angle of ±27r, if one defines the angle between two neighboring 
spins tobe in the range from -1r to 1r. Isolated vortices have an energy that 
depends logarithmically on the size of the system, and vortex-antivortex 
pairs have an energy that depends logarithmically on their separation. The 
phase transition is driven by the dissociation of vortex-antivortex pairs, and 
is precisely analogous to the superfluid transition discussed in the previous 
subsection. The spin-wave stiffness is the quantity that is analogous to the 
superfluid density. 
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When the rotational symmetry in the plane is broken various thing can 
happen. If there is a two-fold symmetry- two equivalent minima in the 
energy at an angle 1r apart - the magnetic system has the critical behavior 
of the Ising model. With a three-fold symmetry axis, so that the minima 
in energy are at an angle 27r /3 apart, the critical behavior is that of the 
three-state Potts model. If the symmetry axis perpendicular to the plane 
has five-fold or higher symmetry, as it will if the anisotropy is due to crystal 
fields in a triangular lattice, then the anisotropy can be shown to lock the 
magnetization into one of the preferred directions at sufficiently low temper­
atures, but at intermediate temperatures the anisotropy becomes irrelevant, 
so that the system behaves like an isotropic planar spin system, with alge­
braically decaying long-range order, whose exponent changes continuously 
with temperature until it reaches the critical value at which free vortices 
can form spontaneously [124]. The case of anisotropy with four equivalent 
axes in the plane lies on the boundary between these two types of behavior, 
and algebraically decaying order occurs only at one temperature, but the 
exponent at this temperature has a nonuniversal value. 

The topologica! nature of the planar spin transition is shown also by 
considering what happens in the Heisenberg model in two dimensions, with 
the spin free to point in any direction in space [118, 131]. In this case there 
is no longer a metastable vortex, a singular point around which the spin 
rotates by an angle 27r, because the spin is free to be directed anywhere on 
the sphere. This allows the vortex to be replaced by a texture in which the 
spins near the center of the texture are tilted out of the xy plane towards 
the z direction, so that the direction of the spins is a smooth function 
of position. The energy of this texture, instead of being proportional to 
ln(L/ao), where a0 is of the order of the lattice spacing, is proportional to 
ln(L/~0 ), where ~o is the length scale ofthis central region in which the spins 
are tilted out of the plane. Since ~o is continuously variable this energy is 
continuously variable down to zero, and so there is no energy barrier to the 
creation or annihilation of vortex pairs. There is no phase transition for the 
two-dimensional Heisenberg model at nonzero temperature. 

5.3 Topologica/ order in solids 

A solid can be characterized in a number of different ways. It has positional 
long-range order which is characterized by the existence of a reciproca! 
lattice and shown up by the sharp Bragg peaks in X-ray scattering. It has 
orientational long range order, in that the directions from one atom to its 
nearest neighbors in one part of the crystal are- correlated with those in 
some other part of the crystal. It is rigid, in the sense that it resists a 
shearing stress and has infinite viscosity- it may yield to a shearing stress, 
but the rate of yield in an ideal solid rises much slower than linearly with 
the applied stress. 
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Associated with the symmetry breaking from continuous to discrete 
translational symmetry there is an order parameter which is the local 
displacement of the actual lattice from the ideal lattice, which is the quan­
tity whose Fourier transform determines the sharpness of the Bragg peaks. 
In a two-dimensional system the peaks become algebraic rather than 8-
function peaks [114], because thermal fluctations of this order parameter 
grow logarithmically with distance. 

The topologica! defects associated with this order parameter are dislo­
cations. A typical edge dislocation in a square lattice is shown in Figure 5. 
In three dimensions this can be formed by the Volterra process, in which a 
half-plane of atoms bounded by the dislocation core is removed, aud then 
the atoms are rejoined across the cut. If we detine the vector u to be the 
displacement of the local lattice relative to the closest point of the ideal 
lattice, then the gradient of u round a closed loop gives a lattice vector, 
which is the Burgers vector of the dislocation. In the case of an edge dislo­
cation this vector is in the plane perpendicular to the core. One can find the 
Burgers vector by mapping a closed path round the dislocation core onto 
an ideallattice; the Burgers vector is the amount by which the map of the 
path fails to close. The dislocation is known as a screw dislocation if the 
Burgers vector is parallel to the dilocation core, but this is not relevant to 
the two-dimensional case, where the core is a point defect, and the Burgers 
vector must lie in the plane. The topologica! description of dislocations has 
been given in a paper by Kleman [132] . 

• • • • • 
• • • • • • • • • • • • • • • 

Fig. 5. Edge dislocation formed by the Volterra process. A Burgers circuit is 
shown, and the Burgers vector is the amount by which it fails to close. 
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The rigidity of a solid is unrelated to the sharpness of the Bragg peaks 
or the thermal fluctuations of the order parameter, but depends on the ab­
sence of dislocations in the crystallattice [133]. Dislocations can move under 
the influence of shearing stress to relieve the stress, and if this process is 
thermally activated under conditions of low shearing stress it will lead to a 
viscous flow with a rate of strain proportional to stress. The dislocation pro­
duces a strain field, both longitudinal and transverse, which falls off linearly 
with the reciprocal of the distance from the core. As a result, the energy 
of a single dislocation depends logarithmically on the size of the system in 
two dimensions, and the interaction between two dislocations also depends 
logarithmically on the distance between them. However, this interaction 
also depends on the Burgers vectors of the dislocations; the logarithmic in­
teraction is proportional to the scalar product of the two Burgers vectors, 
but there is an additional term independent of distance that is proportional 
to the projection of the Burgers vectors in the direction of the displacement 
of one dislocation relative to the other. 

The theory of dislocation mediated melting in two dimensions was 
worked out by Young [134] and by Halperin and Nelson [135]. The the­
ory is superficially similar to the theory of superfluidity in two dimensions, 
but there are important differences introduced by the vector character of 
the Burgers vector that characterizes the dislocations. For example, in place 
of equation (5.10) there is the more complicated relation 

p,(p, +.X) 41rksT 
~'----'- > ---

2p, +A a5 ' (5.20) 

where p,, A are the elastic moduli characterizing transverse and isotropic 
strain and ao is the lattice constant. This gives a lower bound on the rigid­
ity modulus JL in the solid phase, just as equation (5.10) gives a lower bound 
for the superfluid density in the superfluid phase. The same combination 
of elastic moduli is involved in the generalization of the Kosterlitz scaling 
relations (5.15) and (5.16) [134, 136]. Instead of a single exponent ry charac­
terizing the algebraic decay of correlations there is a set of exponents, one 
for each Bragg peak. 

Above the dislocation unbinding temperature there may stiU be orienta­
tional order [136], but it now has an algebraic decay with distance, instead 
of having a nonzero long-range limit as it has below the transition tem­
perature. Orientational order can also be defined in terms of a topological 
property. At each point in the dislocated crystal, except very close to the 
dislocation cores, the short range order of the atoms definies a local set of 
crystal axes. A parallel translation of these local axes can be made along 
a long closed path, and this defines a continuous mapping of the path on 
the space of axis orientations. If this mapping cannot be shrunk to a point 
there must be a singularity enclosed by the path. Such singularities are 
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disclinations, similar to the disclinations found in liquid crystals and in the 
A phase of superfluid 3He. They can be constructed from the ideallattice by 
removing or adding a slice of atoms, for example a 1r /3 sector in a triangular 
lattice, or a 1r /2 sector in a square lattice, and rejoining the edges smoothly. 
At the center of a disclination in a triangular lattice a lattice site has five or 
seven nearest neighbors instead of the six which is usual. In a normal solid 
the elastic energy of a disclination is very high, proportional to the area 
of the system, but once the dislocation unbinding transition has occurred 
this energy depends logarithmically on the size of the system, so that the 
statistica! mechanics of disclinations in this region is very similar to the sta­
tistica! mechanics of vortices in a superfluid. Nelson and Halperin [135, 136] 
called this phase hexatic. Dislocations can be regarded as tightly bound 
pairs of disclinations of opposite sign, and the transition to an unoriented 
liquid goes by the process of unbinding of disclination pairs. In the hexatic 
phase the orientational order falls off algebraically with an exponent T/6, and 
the transition occurs when ry6 has the critica! value 1/4, in agreement with 
equation (5.11). 

The most commonly studied form of two-dimensional solid is a ph­
ysisorbed layer, such as a noble gas adsorbed on a graphite or other solid 
surface. In this case the. substrate provides orientational ordering at all 
temperatures. The adsorbate may be in registry with the substrate, but 
it may also form its own crystal lattice incommensurate with that of the 
substrate. In this case it can undergo a dislocation unbinding transition to 
a fluid state, and this has been studied by Young [134]. 

Most systems studied by experiment or in computer simulations actually 
undergo a first order phase transition to a fluid state before they reach the 
bound given by equation (5.20). A possible exception is the two-dimensional 
Coulomb solid, which was first found in experiments by Grimes and Adams 
[137] .. At least both experimental [138] and theoretical [139] studies have 
shown a rigidity which comes very close to the theoretical bound given by 
equation (5.20). A review both of the theory and of its possible applications 
has been given by Strandburg [140]. 

5.4 Superconducting films and /ayered materials 

The vortices in a charged superfluid generate a magnetic field, so that, as 
we have seen in Section 2.1, it is not the circulation which is quantized 
but the fluxoid, a combination of the circulation round a loop and the 
magnetic flux enclosed by it. On length scales small compared with the 
London penetration depth the vortices in a superconducting thin film are 
very similar to those in a neutral superfluid thin film, but on length scales 
larger than the penetration depth they are quantized flux lines. One result of 
this is that the logarithmic interaction between a vortex and an antivortex is 
cut off at a distance of the order of the penetration depth, to be replaced by 
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an interaction that falls off as the inverse cube of the distance, characteristic 
of the interaction between localized magnetic dipoles. 

Since the logarithmic interaction cuts off at the penetration depth we 
supposed that vortex pair unbinding would occur at arbitrarily low tem­
peratures, and that there should be no phase transition in superconducting 
thin films [118]. In fact, however, the London penetration depth in very 
thin films is inversely proportional to the film thickness, and can be rather 
large, comparable with the size of the sample. Therefore, as was argued by 
Beasley et al. [141] and by Doniach and Huberman [142], there can be a 
vortex unbinding transition in superconducting thin films. It will not be a 
sharp transition, but will have a rounding determined by the penetration 
depth or by the sample size, whichever is smaller. The resistivity and surface 
impedance of such superconducting films have properties which are charac­
teristic of the vortex-unbinding transition, such as a current-voltage rela­
tion with an exponent that passes through the value 1/3 at the transition, 
and this behavior has been observed in a number of experiments [143-145]. 
There is a review of the theory and its applications to superconductivity by 
Minnhagen [146]. 

For a superconducting film in a magnetic field a number of issues arise, 
which were first discussed by Huberman and Doniach [147] and by Fisher 
[148]. In an ideal superconductor the flux lines will form a lattice at low 
temperatures, but this lattice should either melt when it becomes unstable 
to the dissociation of dislocation pairs, or should have a first order phase 
transition at a lower temperature. Once the lattice is melted it may be in a 
hexatic phase, which would tlien become isotropic at higher temperatures, 
or it may go directly into an isotropic fluid phase if there is a first order 
transition. 

The vortex-driven transition from the superconducting state has also 
been extensively studied in two-dimensional arrays of Josephson junctions. 
One way of fabricating such a device is to deposit a regular array of su­
perconducting islands on a normal metal substrate, such as copper. At low 
temperatures, in the absence of an external magnetic field, not only will 
all the islands be superconducting, but their phases will be locked together 
by Josephson tunneling through the normal metal substrate. If an external 
magnetic field is applied normal to the plane of the array there will be dia­
magnetic currents in the superconducting array which will cause vortices to 
form in the junction array. Energetically it is far more favorable for a vortex 
to form in a normal region between neighboring superconducting islands, a 
point in the lattice dual to the lattice of islands, than in the superconducting 
islands themselves. Only the small Josephson currents between the islands 
are affected by the vortex, whereas a vortex in one of the superconducting 
islands would lead to suppression of the superconductivity in that island. 
Even in the absence of an external magnetic field vortex-antivortex pairs 
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can form on neighboring or close sites of the dual lattice. The phase of 
the superconducting order parameter provides an order parameter similar 
to that of the planar spin model, so the energy of a vortex pair depends 
logarithmically on the separation of the vortex from the antivortex. In 
principle there is a London penetration distance for the network, beyond 
which the magnetic field is screened, and the interaction between vortices is 
power law rather than logarithmic, but in practice the Josephson currents 
are too small for this to be important. The thermally driven dissociation 
of the vortex pairs therefore leads to a zero-field phase transition with the 
same properties as the other transitions discussed in this chapter, such as 
the superfluid transition in 4He films and the melting of the hexatic phase 
in two dimensions. 

At temperatures below this vortex-unbinding transition, current can be 
passed from one side of the network to the other with no resistance just 
as it can in a bulk superconductor. Above the unbinding transition there 
is a voltage generated when a current is passed. This voltage is produced 
by the free vortices moving to one edge of the array, across the current, 
and the antivortices moving to the other edge. These vortices that move to 
one edge of or the other are replaced by thermally excited vortex-antivortex 
pairs. Although the network cannot pass a supercurrent free of dissipa­
tion above this transition temperature, the islands of which it is composed 
still have the usual properties of small superconducting regions. Thus the 
superconducting order parameter still exists locally, although its phase is 
not locked across the sample. This is the same picture which is used to 
describe the vortex-driven transition in superconducting films and in su­
perfluid films. This transition in superconducting networks was observed 
by Abraham et al. [149], who reported that when they studied the voltage­
current relation they found V oc [ 01 , where the exponent a is greater than 3 
in the superconducting phase, and drops sharply to unity at the transition 
temperature. This is the same behavior that was observed in superconduct­
ing films. 

6 The A phase of superfluid 3 He 

6.1 Vortices in the A phase 

The atoms of 3He are fermions, with nuclear spin 1/2, and the superfluid 
condensate is formed from a P-state, which implies that the nuclear spins 
must also be coupled together in a triplet state. This P-state pairing results 
in a very rich behavior of the order parameter, with far more possibilities 
than exist in superfluid 4 He or in conventional superconductors. The triplet 
pairing of the nuclear spins also allows nuclear magnetic resonance to be 
used as a tool to explore details of this behavior. 
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The A phase of the superfluid is stable in a region that extends along 
the solidification pressure (33 atm.) from 2.7 mK to 2.1 mK, and down to a 
point at 20 atm. and 2.5 mK on the phase boundary between normal fluid 
and superfluid. In this A phase the orbital state of the pair is described by 
a state with ML = 1 along some axis which is denoted by l. The spin state 
of the pair has Ms = O along some other axis which is denoted by d. The 
hyperfine magnetic coupling between the nuclear spins tends to align the 
vectors l and d parallel or antiparallel to one another, but this hyperfine 
coupling is relatively weak, and under many circumstances they can take 
up directions which are independent of one another. This superfluid phase 
is therefore anisotropic in space, with two distinguished axes, or one axis if 
the directions of l and d coincide. 

Early treatments of the topologica! properties of the A phase of 3He, 
together with discussions of liquid crystals, were given in the papers of 
Toulouse and Kh~man [150] and of Volovik and Mineev [151]. There is a 
detailed treatment in the book by Volovik [152]. 

To understand how this type of order parameter affects the topologica! 
properties of the phase we will first of all neglect the spin part of the order 
parameter. The axis of quantization of the orbit al angular momentum of the 
pair can be chosen in any direction in space. Since this is an ML = 1 state, 
rotation about this axis changes the phase, and we can represent phase and 
direction together by taking an element of the group S0(3); in concrete 
terms by choosing three Euler angles to set direction and phase. The group 
S0(3) is not simply connected, since a path which gives a rotation by 2Jr 
cannot be shrunk to zero. It is more convenient therefore to work with the 
simply connected group SU(2) which gives a twofold covering of S0(3). 
There are two convenient ways of representing the topology of SU(2). One 
is in terms of the surface of a 3-sphere - a unit vector in the faur-dimensional 
space of real coefficients of the unit matrix and the three Pauli matrices. 
Another way is in terms of a point in the interior of a sphere of radius 2n. 
The distance of the point from the center of the sphere gives the angle of 
rotation about an axis whose direction is given by the vector from the center 
to the point; in this representation all points on the surface of the sphere 
are equivalent to a 2n rotation. 

Each possible orientation of the l axis and phase is represented by two 
points in SU(2), in accordance with the double covering of S0(3). One is 
separated from the other by a rotation of 2n, so they are represented by 
points lying on the same diameter of the 2-sphere separated by a distance 
2n. Closed paths in this space can either be trivial loops in the space, or 
paths leading from one point to its equivalent point. The homotopy group 
Jrl is therefore equivalent to the group z2, the group given by multiplication 
of ±1, or addition of the integers O and 1 modulo 2. 
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Fig. 6. This shows the continuous unwinding of a 1r twist in the order parameter 
for the A phase of 3 He by rotation about the tangential direction. In (a) and (c) 
the directions of twist are reversed, and in the intermediate case (b) it is obvious 
that there is no superfl.uid circulation. 

It is clear that such a quantum number, with values O and 1, cannot 
correspond to a classical variable like circulation. For the A phase the 
superfluid velocity is given by 

3 

Vs = ('h/2m3) L:e)1lgradej2), 

j=l 

(6.1) 

where eCll, e(2) are the two coordinate axes perpendicular tol. When l has 
constant direction this corresponds to equation (2.1), with m4 is replaced 
by 2m3. Anderson and Toulouse [153] argued that circulation can always 
be changed in a continuous way. An example of how this can be done is 
shon in Figure 6. Figure 6a shows the variation of the orientation of the 
axis-system when there is unit circulation round a channel. The direction 
of l is shown as out of the plane. If the orientation of the axis-system is 
slowly rotated, for example about the tangential direction, the circulation 
is reduced and can be reversed. Figure 6b shows the situation when a 1r /2 
rotation has been roade, so that l is along the inward radius and eCll is in 
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Fig. 7. Possible orientation ofthe order parameter for a nonsingular doubly quan­
tized vortex in the A phase of 3 He. The directions of e(l) and eC 2) are shown with 
solid and hollow arrowheads, and of l with a broken line. 

the axial direction. In this case equation (6.1) shows that the flow velocity 
is zero. With the further rotation by 1r /2 shown in Figure 6c the circulation 
has been reversed. This process shows why the topologica! quantum number 
-1 is not distinct from 1 for the A phase. 

Two important consequences follow from this. The first is that circula­
tion is not quantized around channels unless some constraint is placed on 
the direction of l by the boundaries, as it is, for example in a thin film 
where l is constrained to be perpendicular to the film. The second is that 
when vortices do occur, for example in a rotating system, they can form 
an array of nonsingular doubly quantized vortices, where the circulation is 
2h/2m3 around a path far from the vortex, where the path in the angle-axis 
space is a diameter of the 2-sphere or an equator of the 3-sphere. Closer in 
to the axis the path followed by th~ axis-system can shrink, so there is no 
singularity at the axis, where this path in order parameter space has shrunk 
to a point. An isolated doubly quantized vortex could have the three axes 
represented by the columns of the matrix 

( 
cos2 <jJ + sin2 <P cos f 
sin <P cos </J(1 - cos!) 

- sincpsin f 

sin <jJ cos </J(1 - cos!) 
cos2 <P cos f + sin2 <P 

cos cpsin f 

sin cpsinf ) 
- cos <P sin f , 

cosf 
(6.2) 
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where <P is the azimuthal angle measured from the vortex center, and f(r) is 
a function of the distance r from the vortex center that goes smoothly from 
O at r = O to 1r for r > a0 • In such a configuration the axis system rotates 
by an angle 21r when one goes between two points on opposite sides of the 
vortex, but the rotation is about the z-axis for a path that avoids the vortex 
center, while it is about an axis in the xy plane for a path that goes straight 
through the center. Such a nonsingluar double vortex is illustrated in 
Figure 7. These textures are characterized by topologica! quantum numbers, 
but the quantum numbers are stabilized not by their topologica! structure, 
but by the external symmetry-breaking perturbation such as the imposed 
rotation. Recent work by Parts et al. [154] has shown regions of singly 
and doubly quantized vortices coexisting in the same rotating containers of 
A-phase superfl.uid. 

The nuclear spin of the pair adds an extra complication to the clas­
sification of line defects in the A phase. If the direction of quantization 
of the spin is rotated by an angle 1r about a perpendicular axis, the spin 
wave function changes sign. This sign change can compensate for the sign 
change which occurs for a ±1r rotation about the 1 direction. There are 
therefore two more equivalent points for each pair of equivalent points in 
SU(2). Since the combination of two ±1r rotations of the orbital system 
about l and two 1r rotations of the real vector d gives a zero or 21r rotation 
of the orbital angle-axis system and zero rotation of the nuclear system, the 
homotopy group is isomorphic to the group z4, the group of multiplications 
of fourth roots of unity. The topologica! quantum numbers of linear defects 
can take on the four values, which are assigned the numbers O, ±1/2, 1. This 
assignment of the quantum numbers ensures that the familiar single vortex, 
in which the phase of the order parameter changes by 21r round the vortex, 
has quantum number unity. 

The half-integer quantum numbers can correspond to vortices with cir­
culation ±h/4m3 , combined with disclinations in the direction of d by an 
angle 1r. Such a half-integer vortex is shown in Figure 8. As it is shown 
there, l is out of the plane, and the phase rotates by 1r on a path round the 
vortex. At the same time the direction d of spin quantization also rotates 
by 1r, so that the apparent discontinuity across the half-plane is removed 
by two factors of -1. The hyperfine energy of such a defect will be large, 
because d cannot match the direction of 1 at large distances. 

A survey of the properties of vortices in superfl.uid 3He can be found in 
a paper by Krusius [155]. 

6.2 Other defects and textures 

In accordance with the discussion in Section 1.3, topologically stable inter­
face defects exist only when the states on the two sides of the defect have 
a difference in discrete symmetry. At the A - B phase boundary the two 
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Fig. 8. Half-integer vortex for the A phase, with a 1r rotation of the orbita! angular 
momentum or phase variable combined with a 1r disclination of the spin axis. 

phases have the same free energy, but different and incompatible discrete 
symmetries, such that one symmetry cannot pass smoothly into the other. 
The interface between them is therefore topologically stable. 

One example of such a phase coexistence is provided by rotating B phase 
3 He. It may be energetically favorable for the vortex cores to take advantage 
of the breaking of time reversal symmetry produced by the rotation to 
undergo a transition to the A phase. There have been both theoretical 
[156, 157] and experimental [158] studies of this. 

In general a vortex sheet, separating two regions of the same superfl.uid 
with different uniform velocities, is both topologically and energetically un­
stable, and will break up into a row of vortex lines, separated by smoothly 
joined regions between them. As was mentioned in Section 1.3, there is an 
exception to this in the A phase of 3He, which has been the subject of the­
oretical and experimental work recently [10, 11]. The vortex sheet that this 
work describes is stabilized by the locking of the orbital vector l to the spin 
orientation d parallel and antiparallel on the two sides of the vortex sheet, 
so that l· d has the values ±1 on the two sides of the vortex sheet, and both 
of these orientations minimize the dipolar hyperfine energy. This is topo­
logically stable, because the two different orientations of the orbital angular 
momentum relative to the spin give two disjoint stable regions for the order 
parameter. A texture that joins two regions of opposite orbital angular mo­
mentum, each with different flow velocities v1 = 1ikl/2m3, v2 = 1ik2/2m3, 
across a planar vortex sheet, could have the unit vectors eC1l, eC2l given by 
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the column vectors 

( 
(1- p) cos(k1x) + pcos(k2x) ) 
-(1- p) sin(k1x) + psin(k2x) , 
-2Jp(1- p) sin[!(k2 + k1)x] 

( 
(1- p) sin(k1x) + psin(k2x)) 
(1- p) cos(k1x)- pcos(k2x) . 
2Jp(1- p) cos[!(k2 + k1)x] 

(6.3) 
Here p is a parameter that interpolates smoothly from zero to unity on the 
two sides of the vortex sheet, and the spin axis d is the same on the two 
sides of the sheet. The orbital anglular momentum vector l is the vector 
product of these two vectors, and reverses its direction as p goes from zero 
to unity. In the rotating systems that have been studied experimentally 
there seems to be a single vortex sheet that spirals through the system in 
such a way as to make the circulation density almost uniform, just as a 
vortex array gives an almost uniform circulation density in the more usual 
situation. 

Point defects are characterized by the way the order parameter behaves 
on a closed surface, with the topology of a sphere, surrounding the defect. 
The possible topologies are characterized by the homotopy group n2, which 
classifies the different mappings of the order parameter on the surface of a 
sphere 82 • The mappings of the surface of the sphere onto the interior of 
the sphere representing rotations 80(3) of three-dimensional axes, for the 
combination of orbital order parameter and phase in the A phase, are all 
trivial. The only nontrivial topology arises when the sphere surrounding 
the point defect is mapped onto the sphere that represents the orientation 
of the spin axis d in the A phase. Such a mapping can be classified in terms 
of the winding number defined in equation (1.3), which describes how many 
times one sphere is wrapped around the other. 

Boundary conditions can stabilize defects and textures which are unsta­
ble in a uniform medium. One obvious example of this is that 4He in a 
rotating container has a vortex array as its equilibrium state. Similarly in 
the A phase of 3He in a rotating container the equilibrium state either has 
an array of single vortices, ora texture made up of doubly quantized vortices 
like the one shown in Figure 7. The singly quantized vortices have a higher 
core energy than the texture, but the doubling of the circulation increases 
the energy contribution from regions a little further from the center of the 
texture. 

A particularly interesting case of a texture imposed on the A phase by 
boundary conditions was discussed by Mermin [159]. In the A phase the 
orbital order parameter l tends to be lined up normal to the walls of the 
container. However, if one considers a simple container with the topology 
of a sphere there is no continuous way of arranging the axes e(l), e(2) so 
that they are always parallel to the surface of the sphere. Singularities 
of some sort have to be introduced on the surface. If there is a single 
singularity on the surface of the sphere, the rest of the surface, apart from 
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the immediate neighborhood of the singular point, can be opened up into 
a disk, and constant directions of eCll, eC2l corresponds to a rotation of 
these axes by 47r about the singularity. Alternatively one can have two 
singularities, opening up the sphere into something which is topologically 
equivalent to a finite cylinder, and parallel axes on this cylinder gives a phase 
change of 27r around each of the singularities, like the compass bearings we 
use on the earth's surface, with their singularities at each pole. 

If there are two singly quantized vortices on the surface these must 
extend into the interior of the container. The two surface singularities must 
be connected by a line singularity. These two singularities on the surface 
can approach one another and merge, to form a single doubly quantized 
vortex on the surface, with no singular lines in the interior, only a texture 
which is known as a boojum [159]. Close to the surface the axes eCll and 
eC2l rotate through an angle 47r, as they do in the outer parts of the texture 
shown in Figure 7. Further away from the surface the orientation of the 
vectors will change round a loop in the kind of way that they do on one of 
the inner loops round the center of this figure. 

7 Liquid crystals 

7.1 Order in liquid crysta/s 

Liquid crystals, or mesophases, have some of the properties of solids and 
some of liquids. Typically they are anisotropic in space, but lack the rigid­
ity of crystals, and can flow more or less like liquids. The molecules of a 
liquid crystal are generally quite complicated, but a physicist usually thinks 
of them as inflexible rod-like or disk-like objects whose two ends are in­
distinguishable - this is not because the two ends of the molecule are in 
fact indistinguishable, but because, although the molecules are aligned with 
their axes parallel to a certain direction, they are randomly pointing in two 
opposite directions. A survey of the properties of liquid crystals can be 
found in the book of de Gennes and Prost [160]. 

The simplest liquid crystal phase is known as the nematic phase. In 
nematics there is a preferred direction for the orientation of the molecular 
axis, but the order is otherwise like that of a liquid, with no ordering in 
space. The order parameter of the nematic phase is known as a director, 
which is like a vector, but with the two opposite directions equivalent. The 
space in which a director lives is a projective 2-sphere, a sphere with an 
equivalence relation between any two diametrically opposite points. In the 
equilibrium state of a bulk nematic the director is aligned everywhere in the 
same direction, but boundary conditions may impose other conditions on the 
director, such as that it should make a fixed angle with the boundary. Such 
boundary conditions mean that there will in general be a space-dependence 
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of the director, and there will usually be some sort of surface or interior 
defects asociated with changes in the director. 

For the nematic phase the free energy density depends on the rate of 
change of the director n, according to the formula 

1 2 1 2 1 2 F = '2K1(V' · n) + 2K 2 (n ·V' x n) + '2K3 [n x (V' x n)] , (7.1) 

where the three Frank constants K 1 , K 2 , K 3 control the free energies of 
splay, twist and bend respectively. 

Most nematics are uniaxial, but there have been recent experimental 
studies of biaxial nematics, and these are particularly interesting from the 
topologica! point of view. We can think of the molecules of these as like 
rectangular disks, which, under suitable conditions, get stacked in such a 
way that both the normal to the disk and the orientation of the disk within 
the plane are determined. Their orientation is therefore defined by a triplet 
of axes, but with equivalence between those orientations that differ by a 7r 

rotation about one of the three axes. The order parameter therefore lives in 
the space 50(3)/ D 2 , where D 2 is the dihedral group of 7r rotations about 
the coordinate axes. 

In the equilibrium state of a cholesteric liquid crystal the molecules are 
aligned along a direction that varies periodically. There are planes in which 
the director is constant, lying in the plane, but the director rotates uniformly 
around the axis perpendicular to these planes, maintaining a 7r /2 angle with 
the axis. Thus the director can be written as 

n(r) = i cos(2nr · k/lo) + j sin(2nr · k/lo) , (7.2) 

where i,j, k form a triplet of mutually perpendicular unit vectors. There is 
therefore a finite period l0 /2 in space between planes where the molecules 
are similarly oriented; the factor 1/2 arises because we are dealing with adi­
rector, nota vector. The cholesteric has a broken U(1) symmetry associated 
with this changing angle of orientation, as well as the director order param­
eter. From a practical point of view the cholesterics are particularly useful, 
as the periods of rotation can be comparable with optical wavelengths and 
can give dramatic optical interference effects which can be controlled by 
external electric fields or varying temperatures. 

Blue phases of cholesteric liquid crystals appear to have a three­
dimensional ordering of the director, generally in a cubic lattice. 

Smectic phases of liquid crystals have some sort of spatial order as well 
as the orientational order of nematics. In the two phases I discuss here, 
smectic A and smectic C, the molecules lie on planes with a regular spacing 
between them, but there is no regular ordering of the molecules within 
the planes. The molecules therefore have one-dimensional ordering but no 
ordering in the other two dimensions. In smectic A the director along which 
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the molecules are preferentially aligned is normal to the planes on which the 
molecules lie, but in the smectic C phase the molecules are tilted relative 
to the normal to the planes in which the molecules lie. 

There are also columnarphases ofliquid crystals, in which there is spatial 
order in two dimensions, with the disk-like molecules stacked in columns. 
There is no long-range order within the columns, but the columns are ar­
ranged in a regular two-dimensional array. 

7.2 Defects and textures 

There are many similarities between the topologica! theory of defects in liq­
uid crystals and the theory of defects in superfluid 3He, which was discussed 
in Section 6. These theories were developed in parallel about twenty years 
ago in a series of papers by Toulouse et al. [132, 150, 161] and by Volovik 
and Mineev [151, 162]. A review of the topologica! study of defects in liquid 
crystals has been written by Kh-;man [163], and there is a more recent review 
by Kurik and Lavrentovich [164]. Defects in liquid crystals can be seen with 
a polarizing microscope, and so they have been studied for a long time. In 
fact the nematics get their name from the worm-like structures which can 
be seen threading them - these are simply disclinations. 

The director, the order parameter of uniaxial nematic liquid crystals, lies 
on the surface of a projective sphere, a 2-sphere on which opposite points 
are regarded as identical. The only closed paths that cannot be shrunk to 
a point in this space are those paths that join two opposite points of the 
sphere. The homotopy group 1r1 of this space is therefore the group Z2 with 
two elements. There is one single type of line defect in a uniaxial nematic, 
which is a disclination around which the director rotates by an angle 1r. A 
disclination of this sort was shown for the spin of the A phase of superfluid 
3 He in Figure 8. 

The energy of a disclination in a nematic liquid crystal is much smaller 
than the energy of a disclination in a solid, because there is no regular 
arrangement of molecules to be disturbed by a strain field. Instead, equation 
(7.1) shows that the energy density depends on fields that fall off at least as 
fast as the reciproca! of the distance from the disclination core, so the energy 
of a disclination in a nematic liquid crystal, like the energy of a dislocation 
in a solid, is proportional to the length of the system in the direction of the 
disclination times the logarithm of the width of the system. 

The point defects for a uniaxial nematic are defined by the mappings of 
a sphere surrounding the defect onto the projective sphere that represents 
the director. The situation is rather similar to that discussed for the A 
phase of superfluid 3 He discussed in Section 6.2, and the only difference 
that the sign ambiguity of the director makes is that the quantum numbers 
are ambiguous in sign. The quantum number is given again by equation 
(1.3), apart from this sign ambiguity, and the simplest form of defect is 
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again the hedgehog, with quantum number unity, with, for example, the 
director normal to the surface of the sphere at all points. The energy of a 
hedgehog is proportional to the radius of the system, as can be seen from 
equation (7.1), since the divergence of n is 2/r for this simple configuration 
of the hedgehog. 

The order parameter for biaxial nematics defines a set of axes in space, 
as does the order parameter for the A phase of superfluid 3He, but with 
the vital difference that rotation by JT about any of the axes produces an 
equivalent orientation of the order parameter. This was discussed in by 
Poenaru and Toulouse [165]. This is particularly interesting, as it turns out 
that the residual symmetry of the order parameter is described by a non­
commutative group, and the noncommutativity has some important con­
sequences. In the previous subsection I referred to the space of this order 
parameter as 80(3)/ D 2 , but actually the topology of paths in 80(3) is 
better described in terms of the covering group 8U(2), since 80(3) does 
not distinguish rotation by 2JT about an axis from no rotation, yet they are 
topologically distinct. There are equivalences of the order parameter given 
by the subgroup which is generated by the JT rotations about the axes of the 
molecular ordering. This is the quaternion group Q, which is isomorphic 
to the eight elements e, -e, ±io-x, ±io-y, ±ia-z, where the o-s are the Pauli 
matrices and e is the 2 x 2 identity matrix. Because this is a nonabelian 
group, with noncommuting elements, the defects behave in a different way 
from those we have discussed earlier. The space of the order parameter 
is 8U(2)/Q, and the topologically distinct closed paths in this space are 
those that go from e to each of the five classes of this group. Rotations by 
±JT about the same axis are in the same class, because they are related by 
unitary transformations such as 

(7.3) 

Therefore a path from the identity element e to ia-z is not distinct from a 
path from e to -ia-z, but it is distinct from paths from e to io-x or from e 
to io-y. 

The linear defects for a biaxial nematic are therefore of four sorts, corre­
sponding to the four classes of the quaternion group apart from the identity. 
Three are disclinations of strength 1/2, corresponding to a JT rotation about 
each of the three symmetry axes of the molecules, and one is a disclina­
tion of strength 1 corresponding to a 2JT rotation about any axis. One 
possible way the molecular orientation can change on a loop round the de­
fect is shown in Figure 9. These may look quite different if the molecules 
are differently oriented relative to the defect, but the different appearances 
can be continuously transformed into one another. For example, if each of 
the molecules shown in the figure is rotated by JT about an axis through its 
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Fig. 9. Possible form for a disclination in which the orientation of molecules in a 
biaxial nematic rotates by 1r about the normal to the plane of the molecule. 

centre in a fixed direction in the plane of the figure, the sense of rotation 
about the molecular axis is reversed. 

The law of combination of such defects is given by the class multiplica­
tion law of the group. Two disclinations from the class {±O" z} can combine 
together either to annihilate one another, giving the group element e, or 
can combine to give a disclination of strength 1, corresponding to the group 
element -e. The same pair of defects can therefore be combined together in 
two completely different ways. O ne disclination from the class {±O" x} and 
one from the class {±O"y} will combine to give one from the class {±O"z}. 
Another result of this special behavior of disclinations in biaxial nematics 
was pointed out by Toulouse [166]. Two different 1r disclinations cannot 
cross one another without generating a linking 2n disclination, as a careful 
examination of the changes generated by going round loops will show, so 
the disclinations give biaxial nematics a topologica! stiffness. 

The topology of cholesterics is similar to that of biaxial nematics. The 
director at a given point is determined, in equation (7.2), by the triplet of 
vectors i, j, k, and this is invariant under sign reversal of any two of the 
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Fig. 10. Disclinations in a cholesteric liquid crystal. The dashes show curves in 
which the director is in the plane, while the dots show where the director is normal 
to the plane; in between the director is at an intermediate angle. A >. + is shown 
in (a), ar+ in (b), a .x-in (c) and ar- in (d). One particular plane normal to 
the k axis has the director oriented as shown in (e) for the x disclination, and 
the director rotates steadily as one moves out of the plane, so that the surfaces of 
constant direction form a screw dislocation. In ( f) a 2?T disclination dissociated 
into two >. disclinations is shown. 

three vectors, so the space in which the order parameter lives is 80(3)/ D2, 
for which the covering space describing the topology is SU(2)/Q. There 
are again four topologically distinct types of line defects corresponding 
to the four classes of the quaternion group Q distinct from the identity. 
Disclinations in a cholesteric liquid crystal were analysed by Kleman and 
Friedel [167] in terms of Volterra processes, and their classification is widely 
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(a) (b) 

Fig. 11. A 7r disclination for a smectic A is shown in (a). When a disclination of 
opposite sign is added to this with a displacement of one lattice vector from the 
original disclination, the dislocation shown in (b) is obtained. 

used. The disclinations r+, A+ are made by removing all the material 
beyond a certain plane normal to the k plane (so that the director in 
that plane is everywhere in the same direction, which we identify as the 
:X direction). If the remaining material is folded about an axis parallel 
to the director so that the exposed surfaces are rejoined smoothly, a A+ 
disclination is obtained, as shown in Figure lOa. In this case the director 
is continuous even at the core of the disclination. If the remaining mate­
rial is folded about an axis perpendicular to the director and the exposed 
surfaces are rejoined smoothly the r+ disclination shown in Figure lOb is 
obtained. In this case the director has singular behavior at the disclination 
core, and, as a result, the T disclination core has a higher energy than the 
A disclination core. The A-, T- disclinations can be constructed by the 
Volterra process in which a semi-infinite cut is made in a plane of constant 
director. If the cut terminates on an axis parallel to the director the A­
disclination is obtained, but if it terminates on a line perpendicular to the 
director a r- disclination is obtained. The two faces exposed by the cut 
are then opened up by a 7r rotation until they form a plane, the remaining 
space is filled smoothly with undeformed material, then the system is al­
lowed to relax until the angle is 21!" /3. The resulting disclinations are shown 
in Figures lOc and d. Again, the director is continuous at the core for the 
A disclination and discontinuous at the core for the T disclination. This is a 
manifestation of the fact that the A± disclinations both belong to the class 
{±ia x} of the homotopy group 1!"1 (a rotation of the pattern about the direc­
tion of the director), while the r± disclinations belong to the class {±iay} 
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(rotation about an axis in the plane of constant director perpendicular to 
the director). Different patterns may be obtained if the disclination bends, 
or if there are other disclinations in its neighborhood, but the assignment 
to the class of this group is invariant. 

The x disclination could be formed by making a cut normal to the planes 
of constant phase and introducing a twist 1r of the director in any circle that 
goes round the core of the disclination. One of these planes, originally of 
constant director, is shown in Figure lOe. This defect could also be regarded 
as a screw dislocation with Burgers vector Zo/2, since surfaces of constant 
direction of the director ha ve the form that one gets by introducing a screw 
dislocation into a set of parallel planes. It belongs to the class {±ilTz}, 
since the rotation is about k, the normal to the planes of constant director. 
Like the T disclination this has singular behavior of the director at the core. 
In principle it could dissociate into a A - T pair of disclinations, and the 
direction of the 1r change in angle can be reversed by bends in the line or 
the presence of other defects in the neighborhood. 

Figure lOf shows a defect belonging to the class { -e }, a 27r disclination, 
in this case dissociated into a A+ - A- pair, so that there is no singular 
behavior of the director at the core. This pair of disclinations half a period 
apart forms the same pattern that one would get with an edge dislocation, 
an extra period of the pattern inserted to the right of the position of the A-. 

Neither biaxial nematics nor cholesterics have topologically stable point 
defects, since the mappings of a sphere onto 80(3) are all trivial. 

In the smectic A phase the direction of the molecules and the normal to 
the planes on which the molecules lie are the same, so the director has similar 
properties to the director of a uniaxial nematic. In the smectic C phase there 
is a pair of directions defined by the normal to the plane and the direction 
of the molecules. This is unchanged by a 1r rotation about the normal 
to the two, so the space of the directional order parameter is SU(2)/Z2. 
Because the molecules are arranged on approximately planar surfaces there 
is a complicated interplay between directional order and positional order of 
these surfaces. Both disclinations and dislocations can exist. 

In a regular solid the energy per unit length of a dislocation is propor­
tional to the logarithm of the cross sectional area of the material, while the 
energy per unit length of a disclination is proportional to the cross-sectional 
area. In a smectic liquid crystal the positions of molecules can adjust to 
remove strain energy, but the spacings between surfaces must remain con­
stant. As a consequence, the normal to one surface must also be normal to 
the neighboring surfaces. The splay \7 · n of a smectic A is given by the 
derivatives of the director in the plane of the surface. For a dislocation the 
splay falls off like 1/r2 , while for a disclination it falls off like 1/r, and so 
the energy per unit length of a dislocation is independent of the sample size, 
and the energy per unit length of a disclination depends logarithmically on 
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the cross-sectional area of the sample. 
Figure lla shows a n disclination in a smectic A liquid crystal. If a 

second disclination of opposite sign is formed by cutting away everything to 

the right of the middle of the surface of atoms immediately to the right of 
the disclination core, and then rejoining the two halves of this surface, the 
edge dislocation shown in Figure llb is formed. Thus an edge dislocation 
can be regarded as the sum of two opposite disclinations displaced by a 
lattice spacing from one another. There is therefore an interplay between 
the algebras of dislocations and of disclinations. 

The condition that the surfaces on which the molecules lie should have 
common normals, and, indeed, common centers of curva ture, imposes severe 
restraints on the nature of point defects for A phase of a smectic. The only 
form of a true point defect is a hedgehog surrounded by spherical surfaces. 
More complicated structures may have terminating lines of defects. The C 
phase of -a smectic cannot ha ve isolated point defects, since there are no 
nontrivial mappings of a sphere onto the order parameter. 
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