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From Luttinger liquid to non-Abelian quantum Hall states
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We formulate a theory of non-Abelian fractional quantum Hall states by considering an anisotropic system
consisting of coupled, interacting one-dimensional wires. We show that Abelian bosonization provides a simple
framework for characterizing the Moore-Read state, as well as the more general Read-Rezayi sequence. This
coupled wire construction provides a solvable Hamiltonian formulated in terms of electronic degrees of freedom,
and provides a direct route to characterizing the quasiparticles and edge states in terms of conformal field theory.
This construction leads to a simple interpretation of the coset construction of conformal field theory, which is
a powerful method for describing non-Abelian states. In the present context, the coset construction arises when
the original chiral modes are fractionalized into coset sectors, and the different sectors acquire energy gaps due
to coupling in “different directions.” The coupled wire construction can also can be used to describe anisotropic
lattice systems, and provides a starting point for models of fractional and non-Abelian Chern insulators. This
paper also includes an extended introduction to the coupled wire construction for Abelian quantum Hall states,
which was introduced earlier.
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I. INTRODUCTION

The search for non-Abelian states in electronic materials
is an exciting frontier in condensed matter physics [1].
Motivation for this search is provided by Kitaev’s proposal [2]
to use such states for topological quantum computation. The
quantum Hall effect is a promising venue for non-Abelian
states. There is growing evidence that the Pfaffian state
introduced by Moore and Read [3,4] describes the quantum
Hall plateau observed at filling ν = 5

2 [5–8]. The Moore-Read
state gives the simplest non-Abelian state, with quasiparticles
that exhibit Ising non-Abelian statistics [9,10]. While the
observation and manipulation of Ising anyons is an important
goal, Ising anyons are not sufficient for universal quantum
computation [11]. The Z3 parafermion state introduced by
Read and Rezayi [12] is a candidate for the quantum Hall
plateau at ν = 12

5 . The quasiparticles of the Read-Rezayi state
are related to Fibonacci anyons [13,14], which have a more
intricate structure that in principle allows universal quantum
computation [11,15].

There is currently great interest in realizing quantum Hall
physics in materials without an external magnetic field or
Landau levels. This possibility was inspired by Haldane’s
realization [16] that a zero-field integer quantum Hall effect
can occur in graphene, provided time-reversal symmetry is
broken. Although such an anomalous quantum Hall effect has
not yet been observed, related physics occurs in topological
insulators [17,18], which have been predicted and observed in
both two- and three-dimensional systems. Recently, there have
been suggestions for generalizations of this idea to zero-field
fractional quantum Hall states [19–22], as well as fractional
topological insulators [23–26]. The question naturally arises
as to whether it is possible to engineer zero-field non-Abelian
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quantum Hall states [27,28], which exhibit the full Ising or
even Fibonacci anyons.

A difficulty with answering this question is a lack of meth-
ods for dealing with strongly interacting systems. Moore and
Read, and later Read and Rezayi, built on Laughlin’s idea [29]
and constructed trial many-body wave functions as correlators
of nontrivial conformal field theories [3,12]. This allowed most
properties of the quasiparticles and edge states to be deduced,
and it had the virtue of allowing the construction of interacting
electron Hamiltonians with the desired ground state. However,
since this approach relied on the structure of the lowest Landau
level, it is not clear how it can be applied to a lattice system.
Effective topological quantum field theories [30–34] and
parton constructions [35–37] provide an elegant framework
for classifying quantum Hall states and provide a description
of their low-energy properties. However, since the original
electronic degrees of freedom are replaced by more abstract
variables, these theories provide little guidance for what kind
of electronic Hamiltonian can lead to a given state.

In this paper, we introduce a method for describing non-
Abelian quantum Hall states by considering an anisotropic sys-
tem consisting of an array of coupled one-dimensional wires.
Study of the anisotropic limit of quantum Hall states dates back
to Thouless et al. [38], who used this limit to evaluate the Chern
invariant in the integer quantum Hall effect. The Chalker-
Coddington model [39] for the integer quantum Hall effect also
has a simple anisotropic limit, which is closely related to the
coupled wire model. A coupled wire construction for Abelian
fractional quantum Hall states was introduced in Ref. [40]
following earlier construction for the integer quantum Hall
effect by Sondhi and Yang [41]. Here, we build on that work
and show how the coupled wire construction can be adapted
to describe the Moore-Read Pfaffian state, as well as the more
general Read-Rezayi sequence of quantum Hall states.

The coupled wire construction has a number of desirable
features. First, it allows for the definition of a simple Hamil-
tonian, expressed in terms of electronic degrees of freedom,
that can be transformed, via Abelian bosonization, into a form
that for certain special parameters can be solved essentially
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exactly. The quasiparticle spectrum as well as the edge-state
structure follow in a straightforward manner. The coupled wire
construction thus provides a direct link between a microscopic
electron Hamiltonian and the low-energy conformal field
theory description of the edge states. As such, it provides an
intermediate between the wave-function approach to quantum
Hall states and the effective field-theory approach.

The coupled wire construction also provides a simple
picture for the quantum entanglement present in quantum Hall
states [42–44]. When the electron Hamiltonian is transformed
via Abelian bosonization, it becomes identical to a theory of
strips of quantum Hall fluid coupled via electron tunneling
between their edge states. It thus provides a concrete setting
for the more abstract coupled edge-state models considered
by Gils et al. [45]. The coupled wire model is also similar in
spirit to the Affleck-Kennedy-Lieb-Tasaki (AKLT) model of
quantum spin chains [46], which provides a similarly intuitive
and solvable model for understanding fractionalization in one
dimension. For the non-Abelian quantum Hall states, the
coupled wire construction provides a concrete interpretation
for the coset construction, which is a powerful (albeit abstract)
mathematical tool for describing non-Abelian quantum Hall
states [47].

A final virtue of the coupled wire construction is that it can
be applied to zero-field anisotropic lattice models. The effect
of the magnetic field in the coupled wire model is to modify
the momentum conservation relations when electrons tunnel
between wires. A similar effect could arise due to scattering
from a periodic potential. The coupled wire construction may
thus provide some guidance for the construction of lattice
models for the fractional and non-Abelian quantum Hall states.
Note that our construction is somewhat different from the
proposals for Chern insulators (Refs. [19–22]) because we do
not require nearly flat bands with a nonzero Chern number.

The outline of the paper is as follows. We will begin
in Sec. II with an extended introduction to the coupled
wire construction for Abelian quantum Hall states. Much of
this material was contained either explicitly or implicitly in
Ref. [40]. Here, since we are free from the constraints of a short
paper, we will fill in some details that were absent in Ref. [40].
In particular, we will explain the generalization of the coupled
wire construction to describe systems of bosons, we will
demonstrate the Abelian fractional statistics of quasiparticles
described in our approach, and we will explicitly construct
second-level hierarchical fractional quantum Hall states.

Section III is devoted to the Moore-Read state. We will
begin with a construction of this state for bosons at filling
ν = 1. This leads to a bosonized model that can be solved
via fermionization. We will then show that for a special set of
parameters, the model has a particularly simple form, which
can be interpreted in the framework of the coset construction of
conformal field theory. We will conclude Sec. III by showing
how to construct the more general Moore-Read state at filling
ν = 1/(1 + q) for q even (odd) for bosons (fermions).

In Sec. IV, we will generalize our construction to describe
the Read-Rezayi sequence at level k. Again, the formulation
is simplest for bosons at filling ν = k/2, where the coupled
wire model is closely related to the coset construction of
these states. We show that the coupled wire model leads
to a bosonized representation of the critical point of a Zk

statistical mechanics model, which for k = 3 reduces to the
three-state Potts model. This bosonized representation allows
us to identify the Zk parafermion primary fields and fully
characterize the edge states of the Read-Rezayi states. Finally,
as in Sec. II, we conclude by generalizing our results to
describe bosonic (fermionic) level k Read-Rezayi states at
filling k/(2 + qk) for q even (odd).

Some of the technical details are presented in the Appen-
dices. Appendix A gives a careful treatment of Klein factors,
while Appendices B and C contain some of the conformal field
theory calculations discussed in Sec. IV.

II. ABELIAN QUANTUM HALL STATES

A. Coupled wire construction for fermions

In this section, we review the coupled wire construction
for fermions introduced in Ref. [40]. We begin by considering
an array of identical uncoupled spinless noninteracting one-
dimensional wires, as shown in Fig. 1(a), with a single-particle
electronic dispersion E(k), which we can take to be parabolic

FIG. 1. (Color online) (a) An array of coupled wires in a perpen-
dicular magnetic field. (b) Energy bands for noninteracting electron
in a magnetic field, which shifts the momentum of the wires. Landau
level gaps, as well as the integer quantum Hall effect edge states,
are apparent. (c) At special fractional filling factors, there exist
momentum-conserving correlated tunneling processes that lead to
fractional quantum Hall states. The process shown describes the
Laughlin state at filling ν = 1

3 .
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k2/2m. A perpendicular magnetic field, represented in the
Landau gauge A = −Byx̂, shifts the momentum of each wire,
leading to the displaced parabolas shown in Fig. 1(b). Coupling
between neighboring wires lifts the degeneracies where the
bands cross, opening gaps in the bulk that can be identified as
Landau level gaps. Placing the Fermi energy in one of those
gaps leads to the integer quantum Hall effect [41]. The chiral
edge states associated with the integer quantum Hall effect can
be clearly seen.

At a fractional filling ν < 1, the lowest Landau level is
partially filled, and the electronic states on the wires are filled
to the Fermi energy EF . We assume each wire is filled to the
same density, characterized by a zero magnetic field Fermi
momentum k0

F . The two-dimensional electron density is then
ne = k0

F /πa, where a is the separation between wires. In a
perpendicular magnetic field, the right- and left-moving Fermi
momenta of the j th wire are shifted to

k
R/L

Fj = ±k0
F + bj, (2.1)

where b = |e|aB/�. The filling factor hne/|e|B is then

ν = 2k0
F /b. (2.2)

The low-energy Hamiltonian, linearized about the Fermi
momenta, is

H0 =
∑

j

∫
dx v0

F

(
ψ

R†
j

(−i∂x − kR
Fj

)
ψR

j

−ψ
RL†
j

(−i∂x − kL
Fj

)
ψL

j

)
, (2.3)

where ψ
R/L

j describe the fermion modes of the j th wire in the

vicinity of the Fermi points k
R/L

Fj .
We next bosonize by introducing bosonic fields ϕj (x) and

θj (x) that satisfy

[∂xθj (x),ϕj ′ (x ′)] = iπδjj ′δxx ′ , (2.4)

where we use the shorthand notation δxx ′ = δ(x − x ′). ϕj (x) is
a bosonic phase field, while θ (x) describes density fluctuations.
The long-wavelength density fluctuations on the j th wire are

ρj (x) =
∑

a

ψ
a†
j (x)ψa

j (x) = ∂xθj (x)/π. (2.5)

The electron creation and annihilation operators may be
written as

ψR
j (x) = κj√

2πxc

ei[kR
Fj x+ϕj (x)+θj (x)],

(2.6)
ψL

j (x) = κj√
2πxc

ei[kL
Fj x+ϕj (x)−θj (x)],

where xc is a regularization-dependent short-distance cutoff
and κj is a Klein factor that assures the anticommutation of the
fermion operators on different wires. Equation (2.4) hides the
zero-momentum parts of θj and φj , which must be accounted
for in order to correctly treat the Klein factors. Since this issue
tends to obscure the simplicity of our construction, we will
not dwell on it in the text of the paper. Appendix A contains a
careful discussion of the zero modes and Klein factors, which
shows when they can be safely ignored.

In terms of the density and phase variables, the Hamiltonian
for noninteracting electrons is

H0
nonint = vF

2π

∑
j

∫
dx[(∂xϕj )2 + (∂xθj )2]. (2.7)

Interactions between electrons as well as electron tunneling
between the wires can be added. In general, there are
two classes of terms: forward scattering and interchannel
scattering. The forward scattering terms conserve the number
of electrons in each channel and can be expressed as the
interactions between densities and currents. This leads to a
Hamiltonian that is quadratic in the boson variables:

H0
SLL[θ,ϕ] =

∑
jk

∫
dx(∂xϕj ∂xθj )Mjk

(
∂xϕk

∂xθk

)
. (2.8)

Here, the 2 × 2 matrix Mjk = δjkIvF /2π + Ujk , where Ujk

describes the forward scattering interactions. H0
SLL describes

a gapless anisotropic conductor in a sliding Luttinger liquid
phase [41,48–50]. The sliding Luttinger liquid theory is
an anisotropic gapless phase of coupled one-dimensional
Luttinger liquids that has only forward scattering interactions.
It exhibits power-law correlations along the wires, but short-
range correlations between the wires, which “slide” relative to
one another. It is closely related to the sliding phase of classical
coupled XY models, which was introduced earlier [51].

Symmetry-allowed interchannel scattering terms must be
added to H0

SLL. They can open a gap and lead to interesting
phases. The simplest such term is shown in Fig. 1(c), which
describes the ν = 1

3 Laughlin state. In general, the allowed
terms are built from products of single-electron operators, and
have the form

O{sL
p ,sR

p }
j (x) =

∏
p

ψR
j+p(x)s

R
p ψL

j+p(x)s
L
p , (2.9)

where s
R/L
p are integers such that ψ

R/L

j+p (ψR/L†
j+p ) appears |sR/L

p |
times for s

R/L
p > 0 (<0). It is convenient to write s

R/L
p in terms

of a new set of integers

sR
p = (np + mp)/2, (2.10)

sL
p = (np − mp)/2. (2.11)

Expressed in terms of these variables, O{mp,np}
j (x) takes the

form

O{mp,np}
j = cκ̃jR exp i

[∑
p

npϕj+p + mpθj+p

]
, (2.12)

where c is a nonuniversal constant. The product of Klein
factors is

κ̃
{mp,np}
j =

∏
p

κ
np

j+p. (2.13)

The oscillatory factor describing the net momentum ofO{mp,np}
j

is

R{mp,np}(x) = exp i

(∑
p

bpnp + k0
F mp

)
x. (2.14)
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The operators O{mp,np}
j define a term in the Hamiltonian

V {mp,np} =
∑

j

∫
dx

(
v{mp,np}O{mp,np}

j (x) + H.c.
)
. (2.15)

There are physical constraints on the allowed {mp,np}.
Since s

R/L
p must be integers, we require

mp = np mod 2. (2.16)

Charge conservation requires that∑
p

np = 0. (2.17)

Momentum conservation implies∑
p

(bpnp + kF mp) = 0, (2.18)

so that the oscillatory term in (2.14) vanishes.
The Hamiltonian

H = H0
SLL +

∑
{mp,np}

V {mp,np} (2.19)

can be studied perturbatively using the standard renormaliza-
tion group (RG) analysis. The lowest-order RG flow equation
for v{mp,np} is

dv{mp,np}/d� = (2 − 
{mp,np})v{mp,np}. (2.20)

The scaling dimension 
{mp,np} depends on the forward
scattering interactions Mjk in H0

SLL. When 
{mp,np} > 2
the operator O{mp,np} is irrelevant and v{mp,np} does not
destabilize the gapless sliding Luttinger liquid fixed point.
When 
{mp,np} < 2, O{mp,np} is relevant and v{mp,np} grows
at low energy, destabilizing the sliding Luttinger liquid. In
principle, Mjk can be parametrized given an underlying model
of the electron-electron interactions. However, Mjk may be
renormalized by irrelevant and/or momentum-nonconserving
operators, so it may not resemble the bare interactions. Here,
we follow the approach of Ref. [40] and assume that Mjk

have values such that a particular operator (or set of operators)
O{mp,np} is relevant. Our object is to characterize the resulting
nontrivial strong coupling phases. There are special values of
Mjk that lead to particularly simple boson Hamiltonians that
can be solved exactly. These solvable points provide a powerful
way to characterize the resulting strong coupling phases.

As shown in Ref. [40], a number of nontrivial two-
dimensional (2D) phases can be analyzed using this approach,
including Abelian fractional quantum Hall states, supercon-
ductors, and crystals of electrons, quasiparticles, or vortices.
In particular, Abelian quantum Hall states are described by
a single relevant operator {mp,np} satisfying

∑
p np �= 0.

From (2.2) and (2.18), this corresponds to a filling factor

ν = 2

∑
p pnp∑
p mp

. (2.21)

In Sec. II C, we will review this construction for the Laughlin
states and the Abelian hierarchy states. But first, we will show
that the coupled wire construction can also be straightfor-
wardly applied to systems of bosons.

B. Coupled wire construction for bosons

We now consider coupled wires of one-dimensional bosons.
The low-energy excitations of a single wire can be described
by “bosonizing the bosons,” to express them in terms of a
slowly varying phase ϕ(x) and a conjugate density variable
θ (x) satisfying (2.4). The density fluctuations have important
contributions near wave vectors qn = 2πnρ̄ that are multiples
of the average 1D density ρ̄:

ρ(x) = ρ̄ +
∑

n

ρn(x). (2.22)

As with the fermions, the long-wavelength density fluctuation
is ρ0(x) = ∂xθ (x)/π . The density wave at q ∼ 2πρ̄n is

ρn(x) ∝ ein[2kF x+2θ(x)]. (2.23)

Here and in the following, we will denote the 1D density ρ̄ in
terms of “2kF ” ≡ 2πρ̄. This allows us to proceed analogously
with the fermions and use formulas (2.2) and (2.18) for the
filling factor.

The Hamiltonian for bosonic wires coupled only by
long-wavelength interactions has exactly the same form as
H0

SLL. The only difference is that the noninteracting Pauli
compressibility term H0

nonint is absent. Tunneling a boson
between wire j and j + p in the presence of a magnetic field
is described by the operator

�
†
j+p(x)�j (x)eibpx, (2.24)

where �
†
j (x) ∝ exp iϕj (x) is the boson creation operator. Due

to interactions, this process can involve scattering from the
2kF n density fluctuations of the bosons. The most general
coupling term thus has the form

O{mp,np}
j = cR{mp,np} exp i

(∑
p

npϕj+p + mpθj+p

)
,

(2.25)

where R is given in (2.14). This is almost identical to
the interchannel scattering terms for fermions. The only
differences are the absence of Klein factors and the constraints
on the allowed values of {mp,np}. Charge and momentum
conservation still require (2.17) and (2.18), but unlike for
fermions, where mp and np obey (2.16), the corresponding
constraint for bosons is

mp = 0 mod 2. (2.26)

The analysis of bosonic states then follows in exactly the same
manner as fermionic states, as described in Eqs. (2.19)–(2.21).

C. Laughlin states ν = 1/m

Here, we will examine the coupled wire construction for
the Laughlin states in some detail. We include the details here
because the Laughlin states provide the simplest nontrivial
application of the coupled wire construction. We begin by
introducing the relevant interaction term, and then characterize
the bulk quasiparticles and edge states.

1. Tunneling Hamiltonian

The Laughlin sequence of quantum Hall states at filling
ν = 1/m is characterized by the correlated tunneling operators
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FIG. 2. (Color online) (a) Schematic representation of the corre-
lated tunneling processes in (2.27) that lead to the Laughlin state.
Vertical arrows represent φ and circular arrows represent θ . After
the change of variables (2.28), the model describes strips of ν = 1/m

quantum Hall fluid coupled by tunneling electrons between their edge
states.

involving two neighboring wires. The relevant operator is
associated with a link � ≡ j + 1/2 between wires j and j + 1:

O� = exp i[ϕj − ϕj+1 + m(θj + θj+1)]. (2.27)

Using (2.21) it can readily be seen that this term is allowed
for magnetic fields b corresponding to ν = 1/m. Moreover,
from (2.16) and (2.26), it is clear that m odd (even) corresponds
to a fermionic (bosonic) state, as is expected for the Laughlin
state. In Eq. (2.27), we have suppressed the Klein factors,
which are necessary for fermions. They are treated carefully
in Appendix A. This term is represented schematically in
Fig. 2(a), and in Fig. 1(c) for ν = 1

3 . The notation for this
diagram is slightly different from the one used in Ref. [40].
The vertical arrows describe the tunneling of charge between
the wires (represented by φj+1 − φj ), while the circular arrows
describe backscattering within a wire (represented by θj,j+1).
Note that the number of θ ’s is constrained by (2.16) or (2.26).

The tunneling operators defined above have the special
property that they all commute with each other. In particular,
[Oj+1/2,Oj−1/2] = 0. This means that the components from
wire j in Oj±1/2, given by ϕj ± θj , commute with one another
(up to an unimportant constant; see Appendix A). This invites
us to introduce right- and left-moving chiral fields on wire j

that distinguish these two contributions to Oj±1/2. We thus
write

φ̃R
j = ϕj + mθj ,

(2.28)
φ̃L

j = ϕj − mθj .

The decoupling can be explicitly seen from the commutation
algebra [

∂xφ̃
p

j (x),φ̃p′
j ′ (x ′)

] = 2πimpδpp′δjj ′δxx ′ . (2.29)

The interaction term is now Oj+1/2 = exp i(φ̃R
j+1 − φ̃L

j ). The
charge density is ρj = (∂xφ̃

R
j − ∂xφ̃

L
j )/(2πm).

It is also convenient to introduce new density and phase
variables defined on the links � = j + 1/2 between wires,

θ̃� = (
φ̃R

j − φ̃L
j+1

)/
2,

(2.30)
ϕ̃� = (

φ̃R
j + φ̃L

j+1

)/
2.

These satisfy [∂xθ̃�(x),θ̃�′ (x ′)] = [∂xϕ̃�(x),ϕ̃�′ (x ′)] = 0 and

[∂xθ̃�(x),ϕ̃�′(x ′)] = iπmδ��′δxx ′ . (2.31)

The charge density associated with the link � can be written as

ρ̃� = ∂xθ̃�/(mπ ). (2.32)

In terms of the new variables, the Hamiltonian becomes

H = H̃0
SLL[θ̃ ,ϕ̃] +

∑
�

∫
dx v cos 2θ̃�, (2.33)

where without loss of generality we have assumed v is real.
As shown in Appendix A, there is no Klein factor, provided
the zero-momentum component of θ̃� is correctly defined.

Provided the forward scattering interactions defining H0
SLL

are such that v is relevant, the system will flow at low energy to
a gapped phase in which θ̃� is localized in a well of the cosine
potential. As argued in Ref. [40], it is always possible to find
such interactions. In particular, consider a simple interaction
such that H̃0

SLL has the decoupled form

H̃0
SLL = v0

2π

∑
�

∫
dx

(
1

g
(∂xθ̃�)2 + g(∂xϕ̃�)2

)
. (2.34)

The scaling dimension of cos 2θ̃� is 
 = mg. It follows that for
g < 2/m, v is relevant. It should be emphasized that H0

SLL can
be expressed in terms of the original fermion operators, which
includes a specific four-fermion forward scattering interaction.
For special values of g, this model can be solved exactly.
In the limit g → 0, the variable θ̃� becomes a stiff classical
variable, so that the approximation of replacing − cos 2θ̃� by
2θ̃2

� becomes exact. For larger g, we rely on our understanding
that g is renormalized downward by v, so that at θ̃ stiffens
at low energy. For g = 1/m, there is another exact solution
because it is possible to define new variables such that the
Hamiltonian has precisely the form of (2.7). The problem can
then be refermionized and expressed in terms of noninteracting
fermions which have a single-particle energy gap. We will not
dwell on these exact solutions any further in this paper. We will
be content with our understanding that any g < 2/m leads to
a gapped state. The gapped phase is the Laughlin state [29].
This can be seen by examining the quasiparticle excitations
and the edge states.

2. Bulk quasiparticles

Quasiparticles occur when θ̃�(x) has a kink where it jumps
by π . From (2.32) it can be seen that such a kink is associated
with a charge e/m. This makes the charge fractionaliza-
tion in the fractional quantum Hall effect appear similar
to the fractionalization that occurs in the one-dimensional
Su-Schrieffer-Heeger (SSH) model [52]. However, there is
a fundamental difference. The solitons in the SSH model
occur at domain walls separating physically distinct states.
This prevents solitons from hopping between wires via a
local operator. In contrast, the states characterized by θ̃�

and θ̃� + π are physically equivalent. They are related by a
gauge transformation in which, say, ϕj → ϕj + 2π , which
takes θ̃j±1/2 to θ̃j±1/2 ∓ π . This allows quasiparticles to hop
via a local operator without the nonlocal string. Although
SSH solitons and Laughlin quasiparticles are distinct, they
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become equivalent on a cylinder with finite circumference.
The Tao-Thouless “thin torus” limit [53–55] can be described
as the extreme case in which the “cylinder” consists of a single
wire with electron tunneling “around” the cylinder. In this
case, our theory maps precisely to an m-state version of the
SSH model.

The local operator that hops quasiparticles between links
j + 1/2 and j − 1/2 is simply the backscattering of a bare
electron on wire j , ψL†

j ψR
j (or equivalently for bosons the 2kF

density operator). Using the transformations (2.28) and (2.30),
it is straightforward to show that

χj (x ′) ≡ ψ
L†
j ψR

j

= e2iθj (x ′) = ei[φ̃R
j (x ′)−φ̃L

j (x ′)]/m

= ei(ϕ̃j+1/2−ϕ̃j−1/2+θ̃j+1/2+θ̃j−1/2)/m. (2.35)

From (2.31) it can be seen that this operator takes ∂xθ̃j±1/2 to
∂xθ̃j±1/2 ∓ πδ(x − x ′), transferring a quasiparticle from j +
1/2 to j − 1/2. The operator that transfers a quasiparticle
along wire from x to x ′ along wire link � is

ρ�(x,x ′) = ei[ϕ̃�(x)−ϕ̃�(x ′)]/m = ei
∫ x

x′ dx ∂x ϕ̃�/m, (2.36)

which can also be expressed in terms of the bare electron
densities and currents.

A quasiparticle operator may be defined as

�
R/L

QP,j+1/2(x) = eiφ̃
R/L

j/j+1/m = ei(ϕ̃j+1/2+/−θ̃j+1/2)/m. (2.37)

In the bulk, since θ̃ is gapped, we have �R
QP,� = �L

QP,�e
2i〈θ̃�〉.

Of course, since �
R/L

QP,� can not be locally built out of bare
electron operators, it is not by itself a physical operator.
However, the operator that transfers a quasiparticle from one
location to another can be built from a string of local operators
such as (2.35) and (2.36). This allows the fractional statistics
of the quasiparticles to be seen quite simply.

To move a quasiparticle from x1 to x2 on link �1 and then
to x2 on �2, use the operator

ρ�1 (x1,x2)
�2−1/2∏

j=�1+1/2

χj (x2). (2.38)

Since θ̃ is gapped, this can be written as

�
R†
QP,�2

(x2)�L
QP,�1

(x1)
�2−1∏

�=�1+1

e2i〈θ̃�(x2)〉/m. (2.39)

The string of 〈θ̃〉 is responsible for the fractional statistics.
Consider moving a quasiparticle through a closed loop. The

operator that takes a quasiparticle around the rectangle formed
by x1, x2, �1, and �2 can be constructed by doing (2.38) twice,
which eliminates the quasiparticle operators. This then gives
a phase

�2−1∏
�=�1+1

e2i[〈θ̃�(x2)〉−〈θ̃�(x1)〉]/m = e2πiNQP/m, (2.40)

where NQP is the number of quasiparticles enclosed by
the rectangle. Here, we have used the fact that [〈θ̃�(x1)〉 −

〈θ̃�(x2)〉]/2π simply counts the number of quasiparticles on
link � between x1 and x2.

3. Edge states

For a finite array of wires with open boundary conditions,
the edge states are apparent since there are extra chiral modes
left over on the first and last wires. From (2.29), it can be seen
that these modes have precisely the chiral Luttinger liquid
structure of ν = 1/m edge states [56]

Hedge = mv0

4π

(
∂xφ̃

L
1

)2
(2.41)

with [∂xφ
R
1 (x),φR

1 (x ′)] = 2πiδxx ′ . The electron operator on
the j = 1 edge is

�e
1 = eiφ̃L

1 . (2.42)

It is straightforward to show that this operator has the expected
dimension 
 = m/2, characteristic of the chiral Luttinger
liquid.

One can view the change of variables (2.28) as a trans-
formation between a sliding Luttinger liquid built out of bare
electrons and a sliding Luttinger liquid built out of ν = 1/m

edge states. The correlated tunneling term for the bare electrons
becomes the electron tunneling operator coupling the edge
states. The array of wires then becomes an array of strips of
ν = 1/m quantum Hall fluid coupled by electron tunneling,
as shown in Fig. 2. When the electron tunneling is relevant,
the strips merge to form a single bulk ν = 1/m fluid, leaving
behind chiral modes at the edge.

The quasiparticle operator at the j = 1 edge is

�L
QP,1 = eiφL

1 /m. (2.43)

As discussed above, since �QP can not be made out of bare
electron operators, it is not by itself a physical operator. How-
ever, quasiparticle tunneling from the top to the bottom edge
can be built from a string of backscattering operators (2.35).
When the gapped bulk degrees of freedom are integrated out,
this string of operators becomes

N∏
j=1

χj ∼ �
L†
QP,1�

R
QP,N . (2.44)

D. Hierarchy states

In this section, we show how the coupled wire con-
struction describes hierarchical Abelian fractional quantum
Hall states [57,58]. We restrict ourselves to second-level
states, which are characterized by a 2 × 2 K matrix [34].
Generalization to higher levels is straightforward.

Second-level hierarchy states arise from an interaction term
that involves three coupled wires. A generic term is shown in
Fig. 3, and can be described by the operator

Oj = exp i[n(ϕj−1 − ϕj+1) + 2m0θj + m1(θj+1 + θj−1)].

(2.45)

Here, n and m0 are any integers, while m1 (m1 + n) is an even
integer for bosons (fermions). Again, we defer discussion of
the Klein factors to Appendix A. From (2.21), this interaction
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FIG. 3. (Color online) (a) Schematic of tunneling processes
in (2.45) that lead to second-level Abelian hierarchy states. (b)
After the transformation (2.47), the model describes coupled strips of
ν = 2n/(m0 + m1) quantum Hall state coupled by tunneling electrons
between the two channels of edge states.

conserves momentum at a filling factor

ν = 2n

m0 + m1
. (2.46)

This set of states corresponds to the standard Haldane-Halperin
hierarchy states at filling (p0 + 1/p1)−1 [p0 is even (odd) for
bosons (fermions) and p1 is even] for the choice n = p1/2,
m0 = p0p1/2, and m1 = p0p1/2 + 1.

To analyze this state, we group the wires into pairs j = 2k

and 2k + 1. Pair k is connected to pair k + 1 by two tunneling
terms O2k and O2k+1. As in (2.28), we define new variables
that decouple right- and left-moving modes on the pairs of
wires:

φ̃R
k,1 = nϕ2k−1 + m1θ2k−1 + 2m0θ2k,

φ̃L
k,1 = nϕ2k−1 − m1θ2k−1,

φ̃R
k,2 = nϕ2k + m1θ2k, (2.47)

φ̃L
k,2 = nϕ2k − m1θ2k − 2m0θ2k−1.

The new fields obey the commutation algebra[
∂xφ̃

p

k,a(x),φ̃p′
k′,b(x ′)

] = 2πipδpp′δkk′Kabδxx ′ , (2.48)

where the K matrix is

Kab = n

(
m1 m0

m0 m1

)
. (2.49)

The charge density is

ρk =
∑

a

ta∂x

(
φR

k,a − φL
k,a

)/
2π (2.50)

with

ta = 1

m0 + m1

(
1
1

)
. (2.51)

We next define variables on links � = k + 1/2:

θ̃a,�=k+1/2 = (
φR

k,a − φL
k+1,a

)/
2, (2.52)

ϕ̃a,�=k+1/2 = (
φR

k,a + φL
k+1,a

)/
2. (2.53)

These satisfy [∂xθ̃�,a,θ̃�′,b] = [∂xϕ̃�,a,ϕ̃�′,b] = 0 and

[∂xθ̃�,a,ϕ̃�′,b] = iπKabδ��′δxx ′ . (2.54)

In terms of these new variables, the Hamiltonian in the
presence of the correlated n-electron tunneling operators
becomes

H = H0
SLL[θ̃�,a,ϕ̃�,a] +

∑
�

∫
dx v(cos 2θ̃�,1 + cos 2θ̃�,2).

(2.55)

If v flows to strong coupling, we have a gapped bulk, describing
a ν = 2n/(m0 + m1) quantum Hall fluid characterized by the
K matrix (2.49). As in Sec. IIC3, this can be interpreted as
quantum Hall strips with edge states coupled by the charge ne

tunneling operators

�
ne,R/L

k,a = eiφ
R/L

k,a . (2.56)

Quasiparticles, given by π kinks in θ̃�,1 or θ̃�,2, are created by

�
R/L

QP,a,k+1/2 = ei
∑

b K−1
ab φ

R/L

k/k+1,b . (2.57)

They have charge e/(m0 + m1). The bare electron backscat-
tering operator corresponds to quasiparticle tunneling

χk,a ≡ e2iθ2k−2+a = �
L†
QP,a,k−1/2�

R
QP,a,k+1/2. (2.58)

At the edge of a semi-infinite system, there will be two
chiral modes left over described by φ̃R

1,a . From (2.48), it can be
seen that these give precisely the chiral Luttinger liquid edge
states characterized by the K matrix (2.49).

III. MOORE-READ STATE

We now generalize the coupled wire construction to de-
scribe the Moore-Read state [3]. Our approach was motivated
by the observation by Fradkin, Nayak, and Shoutens [47]
that the Moore-Read state for bosons at filling ν = 1 has
a simple interpretation in terms of two coupled copies of
bosons at ν = 1

2 . Each copy is described by a SU (2)1 Chern
Simons theory, and the coupling between them introduces the
symmetry breaking SU (2)1 × SU (2)1 → SU (2)2 [59].

We therefore first consider the problem of coupled wires
of bosons at filling ν = 1, where the bosons on each wire
have two flavors, each at ν = 1

2 . The allowed boson tunneling
and backscattering terms in our construction have a simple
representation in the low-energy bosonized theory. Moreover,
by fermionizing the bosons, the Majorana fermions associated
with the Moore-Read state [4] emerge naturally.

There is a special set of values for the interactions in
which the problem is particularly simple. In this case, the
Hilbert space associated with the two right- (left-) moving
chiral modes on each wire decouples into two sectors. One
of the sectors is coupled to the corresponding sector of the
left- (right-) moving modes on the same wire, while the other
sector is coupled to the corresponding sector of the left-
(right-) moving modes on the neighboring wire. Both of these
couplings introduce gaps, but the two sectors are gapped in
“opposite directions.” This gives a kind of hybrid between the
insulating phase, in which all chiral modes are paired on the
same wire, and the quantum Hall states, in which all the chiral
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modes are coupled on neighboring wires. What gets left behind
on the edge is a fraction of the original chiral modes.

This fractionalization of the original chiral modes is
described mathematically in terms of the coset construction
in conformal field theory [60,61]. The original pair of chiral
modes is described by a SU (2)1 × SU (2)1 theory with
central charge c = 2. These modes decompose into three
sectors: SU (2)1 × SU (2)1/SU (2)2, SU (2)2/U (1), and U (1)
with c = 1

2 , 1
2 , and 1, respectively. The independent sectors

are then gapped “in different directions.” We will describe
this construction in Sec. III B. This, in effect, gives a concrete
and somewhat more explicit implementation of the Fradkin,
Nayak, Shoutens construction.

After establishing the Moore-Read state for ν = 1 bosons,
we will go on to generalize our construction to account for
fermions, and the q-Pfaffian state at filling ν = 1/(q + 1),
where q is even (odd) for bosons (fermions).

A. Bosons at ν = 1

We begin with a Hamiltonian H = H0
SLL + V describing

coupled wires of two-component bosons, which can be viewed
as a double-layer system, as in Fig. 4(a). Each component has
a density corresponding to filling ν = 1

2 .H0 has the same form
as (2.8), except now each wire has two bosons, θj,a and ϕj,a ,
for a = 1,2, which satisfy

[∂xθj,a(x),ϕj ′,a′ (x ′)] = iπδjj ′δaa′δxx ′ . (3.1)

FIG. 4. (Color online) (a) A two-component coupled wire model,
viewed as a bilayer. (b) Schematic of tunneling processes in (3.3)–
(3.5) that lead to the Moore-Read state for bosons at filling ν = 1. (b)
After the transformations (3.6), (3.7), and (3.12), the model describes
coupled strips of ν = 1 Moore-Read state coupled by tunneling
electrons between the edge states, which are characterized by a c = 1
chiral charge mode and a c = 1

2 chiral Majorana fermion mode.

The interaction terms V consist of boson tunneling and
backscattering operators that are consistent with momentum
conservation. We consider three such terms, depicted in Fig. 4:

V =
∑

j

∫
dx

(
2∑

ab=1

tabOt
j,ab+uOu

j + vOv
j

)
+ H.c. (3.2)

The first term involves coupling between channel a on one
wire and channel b on the neighboring wire:

Ot
j ;ab = ei[ϕj,a−ϕj+1,b+2(θj,a+θj+1,b)]. (3.3)

This term is similar to (2.27). The coefficient 2 of the θ terms is
fixed by the filling factor. In addition, there are allowed terms
that couple the two channels on a single wire. These include a
Josephson-type coupling between the two channels

Ou
j = ei(ϕj,1−ϕj,2), (3.4)

as well as an interaction that locks the “2kF ” densities of the
two channels

Ov
j = ei(2θj,1−2θj,2). (3.5)

These three terms (as well as combinations of them) are the
only allowed interaction terms at ν = 1

2 that include up to
first-neighbor coupling.

It is now useful to introduce right- and left-moving chiral
fields

φ̃R
j,a = ϕj,a + 2θj,a,

(3.6)
φ̃L

j,b = ϕj,a − 2θj,a,

as well as “charge” and “spin” fields

φ̃
p

j,ρ = (
φ̃

p

j,1 + φ̃
p

j,2

)/
2,

(3.7)
φ̃

p

j,σ = (
φ̃

p

j,1 − φ̃
p

j,2

)/
2.

The latter fields satisfy[
∂xφ̃

p

j,μ(x),φ̃p′
j ′,μ′(x ′)

] = 2πipδpp′δμμ′δjj ′δxx ′ (3.8)

for μ = ρ,σ .
For simplicity, we will first focus on the case in which

tab = t , independent of a and b, and t, u, and v are real. We
will comment on the more general case later. In this case, in
terms of the new variables, we have∑

ab

itabOt
j,ab + H.c.

= 8t cos
(
φ̃R

j,ρ − φ̃L
j+1,ρ

)
cos φ̃R

j,σ cos φ̃L
j+1,σ (3.9)

and

uOu
j + H.c. = 2u cos

(
φ̃R

j,σ + φ̃L
j,σ

)
= 2iu

(
sin φ̃R

j,σ sin φ̃L
j,σ − cos φ̃R

j,σ cos φ̃L
j,σ

)
.

(3.10)

vOv
j + H.c. = 2v cos

(
φ̃R

j,σ − φ̃L
j,σ

)
= 2iv

(
sin φ̃R

j,σ sin φ̃L
j,σ + cos φ̃R

j,σ cos φ̃L
j,σ

)
.

(3.11)
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Note that in passing between the first and second lines of
(3.9)–(3.11), getting the factors of i right requires care in
splitting the exponential. This is explained in Appendix A3,
where the zero-momentum components of φ̃

R/L

j,σ are properly
taken into account.

Since the interaction term V is a sum of noncommuting
terms, analysis of this state is more complicated than it was
for the Abelian quantum Hall states. However, a tremendous
simplification occurs when the forward scattering interactions
in H0

SLL are such that φ̃
R/L

j,ρ and φ̃
R/L

j,σ are decoupled, and

the Hamiltonian for φ̃
R/L

j,σ has the noninteracting form H0
nonint

in (2.7). In this case, the operator exp(iφ̃j,σ ) has precisely
the form of a bosonized Dirac fermion. This allows us to
fermionize, by writing

ψ
R/L

j,σ = ξ
R/L

j,σ + iη
R/L

j,σ = κj,σ√
2πxc

eiφ̃
R/L

j,σ , (3.12)

where ψσ is a Dirac fermion operator, and ξj,σ , ηj,σ are
Majorana fermion operators. For the charge sector, we define

θ̃j+1/2,ρ = (
φ̃R

j,ρ − φ̃L
j+1,ρ

)/
2,

(3.13)
ϕ̃j+1/2,σ = (

φ̃R
j,ρ + φ̃L

j+1,ρ

)/
2.

They satisfy [∂xθ̃�,ρ(x),θ̃�′,ρ(x ′)] = [∂xϕ̃�,ρ(x),ϕ̃�′,ρ(x ′)] = 0
and

[∂xθ̃�,ρ(x),ϕ̃�′,ρ(x ′)] = iπδ��′δxx ′ . (3.14)

The Hamiltonian may now be written as

H = H0
SLL[θ̃�,ρ,ϕ̃�,ρ] + H0

M[ησ ] + H0
M[ξσ ] + V, (3.15)

where H0
SLL[θj,ρ,φj,ρ] has the form (2.8). For a special value

of the interactions in the charge sector it is also possible to
fermionize θ̃j,ρ and ϕ̃j,ρ , although that is not necessary for
our purposes. The free-fermion Hamiltonian for the Majorana
fermion η

R/L

j,σ is

H0
M[ησ ] =

∑
j

∫
dx i

(
ηR

j,σ ∂xη
R
j,σ − ηL

j,σ ∂xη
L
j,σ

)
, (3.16)

with a similar expression for H0[ξj,σ ]. The interaction term is

V =
∑

j

∫
dx

[
t̃ cos 2θ̃j+1/2,ρ iξR

j,σ ξL
j+1,σ

+ (ũ − ṽ)iξR
j,σ ξL

j,σ + (ũ + ṽ)iηR
j,σ ηL

j,σ

]
. (3.17)

We now assume H0
SLL[θ̃�,ρ,ϕ̃�,ρ] is in a regime such

that t̃ is relevant, and θ̃�,ρ is pinned in a self-consistent
minimum of cos θ̃�,ρ . H then describes independent free-
fermion problems for ξj,σ and ηj,σ . The η sector has a gap

with a ky-independent dispersion E = ±
√

v2k2
x + (ũ + ṽ)2.

The ξ sector has dispersion E = ±
√

v2k2
x + |t̃ eiky + ũ − ṽ|2

with a gap that closes at a point when t̃ = ±|ũ − ṽ| signaling
a quantum phase transition. The phase diagram is shown in
Fig. 5(d).

We identify the t̃ > |ũ − ṽ| phase with the Moore-Read
state [3,4]. Its physics is most transparent at the special point
ũ = ṽ where the chiral Majorana modes η

R/L

j,σ and ξ
R/L

j,σ pair up
with a pattern shown in Fig. 5(a). In this case, it is clear that it

FIG. 5. (Color online) The upper panels are schematic diagrams
depicting the coupling of the chiral edge modes. The solid lines
represent the charge modes φ̃

R/L

j,ρ . The dashed lines represent the chiral

Majorana modes ξ
R/L

j,σ and η
R/L

j,σ . Solid (dashed) arcs represent stronger
(weaker) coupling. (a) Describes the Moore-Read (MR) state, with
c = 3

2 edge states. (b) Describes a strong pairing (SP) state with c = 1
edge states, and (c) describes a bilayer (B) state with c = 2 edge states.
The lower panels are ternary phase diagrams as a function of t , u,
and v in the cases where (d) tab = t , independent of a and b and
(e) tab = tδab. The dashed line in (d) is the solvable line, where the
decoupling of the chiral modes is perfect.

has a leftover gapless chiral charge mode φR
1,ρ and a single

chiral Majorana mode ξR
1,σ . This is precisely the structure

of the edge of the ν = 1 bosonic Moore-Read state [62].
Similar to the Abelian case, we may view the change of
variables (3.6), (3.7), and (3.12) as transforming a SLL of
coupled bosonic wires to a SLL of strips of ν = 1 Moore-Read
states coupled by their edge states. In this case, however,
the coupling of the edge states goes in “both directions”:
the ηR

j,σ ηL
j,σ couples the edge states on a single strip, leaving

behind the gapless edge states, while the cos θ̃j+1/2,ρξR
j,σ ξL

j+1,σ

term couples the edge states on neighboring strips, leading to
the bulk Moore-Read state.

As in the case of the Abelian quantum Hall states, bulk
quasiparticle excitations are associated with kinks in θ̃�,ρ(x).
The present case is slightly different, though, because the
transformation ϕj,1 → ϕj,1 + 2π (which connects equivalent
states) translates to φ

R/L

j,ρ/σ → φ
R/L

j,ρ/σ + π . It then follows
that the transformation θ̃j,ρ → θ̃j,ρ + π/2, (ξj,σ ,ηj,σ ) →
−(ξj,σ ,ηj,σ ) connects equivalent states. The elementary quasi-
particle is thus associated with a kink in which θ̃�,ρ(x) jumps
by π/2, corresponding to a charge e/2. This introduces a
domain wall where the mass term coupling ξR

j,σ and ξL
j+1,σ

changes sign. This binds a zero-energy Majorana bound state,
as is expected for the charge e/2 quasiparticles of the bosonic
Moore-Read state. As in Sec. II C 2, the quasiparticle tunneling
operators can be related to the backscattering of bare electrons.
We defer the discussion of this to Sec. IVC.
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The t̃ < |ũ − ṽ| phase corresponds to a strongly paired
quantum Hall state of charge 2e bosons at filling ν = 1

4 . It
is most easily understood in the limit t̃ � |ũ − ṽ|. In this case,
the Majorana modes pair up with the pattern in Fig. 5(b), so
that there are no gapless Majorana modes at the edge. In this
limit, individual bosons can not tunnel between wires because
it excites the gapped ξj,σ modes. However, a pair of bosons
can tunnel without disturbing the ξj,σ sector. The charge modes
thus pair up, leaving a single gapless chiral charge mode at the
edge.

We now briefly discuss the case in which we relax our
assumption about the equality of the different tab. In this case,
the tab terms will have the general structure

∑
ab

tabOt
j,ab + H.c. = i

(
ξR
j,σ ηR

j,σ

)
T

(
ξL
j+1,σ

ηL
j+1,σ

)
, (3.18)

where the 2 × 2 matrix Tnm = t̃nm cos(2θ̃�,ρ + βab) is charac-
terized by a magnitude t̃nm and a phase βnm, which depend
on tab. When θ̃ρ is stiff, we may again analyze the problem
by putting θ̃ρ in a self-consistent minimum and solving the
noninteracting fermion problem.

It is clear that due to the existence of a bulk energy gap,
the phases discussed above will persist for a finite range in
the more general parameter space. However, another possible
phase is possible where the neutral Majorana modes pair up
in the manner shown in Fig. 5(c). In this case, the edge has
a gapless charge mode and two gapless Majorana modes or,
equivalently, two gapless bosonic modes.

To see this, consider another special limit where tab = tδab,
with t real. It then follows that t̃nm = t̃ δnm cos 2θ̃�,ρ , so that the
V has a term t̃ cos 2θ̃�,ρ(ξR

j,σ ξL
j+1,σ + ηR

j,σ ηL
j+1,σ ). The phase

diagram for this case is shown in Fig. 5(e). When ũ = ṽ, the ξ

sector is gapped by t̃ , while the η sector involves competition
between t̃ and ũ + ṽ. For t̃ < ũ + ṽ, we have the pairing in
Fig. 5(a), giving the Moore-Read state, while for t̃ > ũ + ṽ,
we have the pairing in Fig. 5(c), which has two bosonic edge
modes. This is most easily understood when tab = tδab and
ũ = ṽ = 0, which simply corresponds to two decoupled ν = 1

2
bosonic quantum Hall states.

B. Coset construction

The results of the previous section can be understood
within the framework of the coset construction in conformal
field theory [60,61]. This is useful because it helps us make
contact with the work of Fradkin, Nayak, and Shoutens [47]
as well as subsequent generalizations. It also introduces a
framework that will allow us to generalize our construction
to the Read-Rezayi [12] sequence of quantum Hall states.
Here, we give a brief introduction to this well-developed, but
somewhat abstract, mathematical construction that emphasizes
its physical meaning in the context of our coupled wire theory.

Our construction began with the SLL fixed point, which has
bosonic modes φ̃

R/L

j,a on each wire. The two right-moving chiral
modes on each wire define a conformal field theory with central
charge c = 2. Through the sequence of transformations,
the Hilbert space of these two modes was split into three
pieces, described by φ̃R

j,ρ , ξj,σ , and ηj,σ . The bosonic mode
corresponds to c = 1, while each of the Majorana modes has

FIG. 6. (Color online) Coupling of edge states at the decoupled
point described by the dashed line in Fig. 5(d). The right- and left-
moving U (1) charge modes and the SU (2)2/U (1) Majorana fermion
(Z2 parafermion) modes are coupled on neighboring wires, while the
right- and left-moving SU (2)1 × SU (2)1/SU (2)2 modes are coupled
on the same wire. This pattern leaves U (1) and SU (2)2/U (1) chiral
modes at the edge. This provides a concrete interpretation for the
coset construction for the Moore-Read state.

c = 1
2 . At the point u = v > 0 and tab = t , the decoupling

is perfect. The decomposition of the Hilbert space can be
summarized by

2 = 1/2 + 1/2 + 1. (3.19)

The coupling terms we introduced allow the modes in the
different sectors to pair up in different directions, as shown in
Fig. 6. This leads to a bulk gap, but leaves behind edge states
in some of the sectors. The Moore-Read state thus has c = 3

2
at the edge.

To understand this decomposition more generally, it is
important to realize that at the special filling factor ν = 1

2
the original chiral modes φR

a have an extra symmetry because
exp(iφ̃R

a ) has scaling dimension 
 = 1. It follows that the
operators

JR
a,± = e±iφ̃R

a

/
(2πxc), (3.20)

JR
a,z = ∂xφ̃

R
a

/
(2π ) (3.21)

generate an SU (2) symmetry. Each channel is thus described
by an SU (2)1 Wess-Zumino-Witten model. The two channels
together have SU (2)1 × SU (2)1 symmetry. SU (2)1 × SU (2)1

has a diagonal subgroup SU (2)2 generated by JR = JR
1 + JR

2 .
In terms of the boson operators, we have

JR
± = e±iφR

ρ cos φR
σ

/
(2πxc), (3.22)

JR
z = ∂xφ

R
ρ

/
(2π ). (3.23)

SU (2)2, in turn, has a subgroup U (1) generated by JR
z .

The coset construction allows a Wess-Zumino-Witten
(WZW) model described by a group G with subgroup H to
be divided into two pieces described by G/H and H . This
means that the Hamiltonian can be written as the sum of
two commuting terms HG = HG/H + HH , so that the Hilbert
space of eigenstates factorizes. In the language of conformal
field theory, the energy momentum tensor can be written
TG = TG/H + TH , and the components TG/H and TH have no
singularities in their operator product expansion. It follows
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that the central charge of a coset theory given simply by
cG/H = cG − cH . Applied to the present problem, we have

TSU (2)1×SU (2)1 = TSU (2)1×SU (2)1/SU (2)2 + TSU (2)2/U (1) + TU (1).

(3.24)

Using the fact that cSU (2)k = 3k/(k + 2), it is simple to see
that (3.24) is equivalent to (3.19).

Consider the hopping term between wires, which for tab = t

can be written as

t
∑
ab

Ot
j,ab + H.c. = 8tJ R

+j J
L
−j+1. (3.25)

This term acts only in the SU (2)2 sector for the pair of chiral
modes, and leads to an energy gap in that sector. Thus, if that
were the only term (i.e., u = v = 0), then the SU (2)2/U (1)
and U (1) sectors would both be gapped, but each wire would
retain c = 1

2 chiral modes from the SU (2)1 × SU (2)1/SU (2)2

sector.
On the other hand, the term (ũ + ṽ) sin φ̃R

j,σ sin φ̃L
j,σ acts

only in the SU (2)1 × SU (2)1/SU (2)2 sector. Thus, if this
is the only term (i.e., t = u − v = 0), then the SU (2)1 ×
SU (2)1/SU (2)2 is gapped, while there will be c = 3

2 chiral
modes associated with the SU (2)2/U (1) and U (1) sectors.
While this fact is clear from fermion representation (3.12),
we will defer the proof that sin φR

j,σ acts only in the
SU (2)1 × SU (2)1/SU (2)2 sector to Sec. IV B, where it will
be demonstrated in a more general context.

To summarize, the coset construction provides a way to
fractionalize a c = 2 Luttinger liquid into nontrivial pieces.
When those pieces pair up in “different directions,” as in
Fig. 6, the resulting fully gapped phase is a quantum Hall
state with edge states that reflect the nontrivial coset conformal
field theory. In the following section, we will generalize this
to develop a coupled wire construction for the Read-Rezayi
sequence of quantum Hall states, described by an SU (2)k
theory. Before doing that, though, we will conclude this section
by generalizing the coupled wire construction of the bosonic
Moore-Read state to describe fermions.

C. Generalization to fermions

We now consider coupled wires of fermions. Unfortunately,
for a uniform magnetic field there is no simple coupled wire
construction for the ν = 1

2 fermionic Moore-Read state. The
tunneling terms that are allowed by momentum conservation
either lead to a strongly paired Abelian quantum Hall state of
charge 2e bosons, or they involve pairs of noncommuting terms
that can not be easily analyzed using the present methods.
Evidently, the Moore-Read state is not sufficiently “close” to
the SLL fixed point for uniform field.

However, we found that if the magnetic field is staggered,
so that the flux between neighboring wires alternates between
two values, then a construction similar to the preceding section
can be developed. One can view this as a generalization of
the two-channel construction in the preceding section, where
instead of having the two layers directly on top of one another,
one layer is slid over relative to the other. Equivalently, this
can be viewed as a single-layer system with a staggered field
as in Fig. 7(a). The system in Fig. 4(a) has a magnetic flux
per unit length in units of the flux quantum b = eaB/� that

FIG. 7. (Color online) (a) Coupled wire construction with a
staggered magnetic field. For δb = b̄, the theory is equivalent to
the two-component boson system shown in Fig. 4(a). (b) Schematic
diagram showing the coupling of the edge states, similar to Fig. 4(b).

alternates between b and 0. Our more general construction
then corresponds to sliding one layer relative to the other,
so that the flux per length in units of the flux quantum
alternates between two values b1 = b̄ + δb and b2 = b̄ − δb.
The average flux b̄ is related to the filling factor ν = 2kF /b̄.
The two-channel bosonic problem then corresponds to δb = b̄,
while the uniform field corresponds to δb = 0. We will show
that when δb = 2kF the allowed tunneling terms have a
structure similar to that in (3.3)–(3.5). This construction gives
the ν = 1

2 fermionic Moore-Read state for b̄ = 4kF , as well
as the more general “q-Pfaffian” state at ν = 1/(1 + q) for
b̄ = 2kF (1 + q), where q is even (odd) for bosons (fermions).
The state in this series with q = −1 is special, and corresponds
to a p + ip superconductor in zero net magnetic field. In our
construction, the modification of the state by changing the
uniform component of the field b̄ is reminiscent of modifying
the Moore-Read wave function by including a Jastrow factor
that compensates the change in magnetic field [3].

1. q-Pfaffian state

Consider an array of wires with alternating magnetic flux,
shown in Fig. 7. We parametrize the two fluxes as 2kF (2 + q)
and 2kF q. We group the wires into pairs, indexed by j and
a = 1,2. The interaction terms then have a form similar to
(3.3)–(3.5):

V =
∑

j

∫
dx

(
2∑

ab=1

tabOt
j,ab + uOu

j + vOv
j

)
+ H.c.

(3.26)
There are four terms coupling pair j to j + 1:

Ot
j,ab = ei[(ϕj,a−ϕj+1,b)+(q+2)(θj,a+θj+1,b)]Qj,ab (3.27)
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with

Qj =
(

ei2qθj,2 ei2q(θj,2+θj+1,1)

1 ei2qθj+1,1

)
. (3.28)

Two terms operate within a single pair: the first involving
tunneling an electron between the two wires

Ou
j = ei[ϕj,1−ϕj,2+q(θj,1+θj,2)], (3.29)

and the second giving an interaction between the 2kF densities

Ov
j = ei(2θj,1−2θj,2). (3.30)

From (2.16) and (2.26), it is clear that these interactions are
appropriate for bosons (fermions) when q is even (odd).

We can write the first term as

Ot
j,ab = eiφ̃R

j,a−φ̃L
j+1,b (3.31)

with

φ̃R
j,1 = ϕj,1 + (q + 2)θj,1 + 2qθj,2,

φ̃L
j,1 = ϕj,1 − (q + 2)θj,1,

φ̃R
j,2 = ϕj,2 + (q + 2)θj,2, (3.32)

φ̃L
j,2 = ϕj,2 − (q + 2)θj,2 − 2qθj,1.

We next define the sum and difference variables

φ̃
R/L

j,ρ = (
φ̃

R/L

j,1 + φ̃
R/L

j,2

)/
2,

(3.33)
φ̃

R/L

j,σ = (
φ̃

R/L

j,1 − φ̃
R/L

j,2

)/
2.

These variables obey the commutation relations[
∂xφ̃

p

j,ρ(x),φ̃p′
j ′,ρ(x ′)

] = 2πi(1 + q)pδpp′δjj ′δxx ′ , (3.34)

[
∂xφ̃

p

j,σ (x),φ̃p′
j ′,σ (x ′)

] = 2πipδpp′δjj ′δxx ′ . (3.35)

Note that the commutation relation for the σ sector is identical
to (3.8). This allows us to proceed in the same manner as
Sec. IIIA. For the σ sector to be unaltered, it was essential that
the staggered field satisfy δb = 2kF . The charge sector, on the
other hand, is modified and resembles that of the Laughlin
state with m = 1 + q.

As in Sec. III A we focus on the case where tab = t ,
independent of a and b. Then,∑

ab

Ot
j,ab = ei(φ̃R

j,ρ−φ̃L
j+1,ρ ) cos φ̃R

j,σ̃ cos φ̃L
j+1,σ , (3.36)

along with

Ou
j = ei(φ̃R

j,σ +φ̃L
j,σ ), (3.37)

Ov
j = ei(φ̃R

j,σ −φ̃L
j,σ ). (3.38)

From this point, the analysis proceeds exactly as in
Sec. III A and will not be repeated. The only difference is that
the charge sector has a modified structure constant in (3.34).
This changes the exponents for tunneling electrons into the
edge states, as well as the charge of the bulk quasiparticles.
As expected, for the ν = 1

2 Moore-Read state (q = 1), the
quasiparticles have charge e/4.

2. p + ip superconductor

The special case q = −1 in the previous section corre-
sponds to a fermion system with b̄ = 0. This is not a quantum
Hall state, but rather a p + ip superconductor [4], and the
analysis is slightly different. For q = −1, the transformation
in (3.32) breaks down because φ̃

R/L

j,1/2 become linearly depen-
dent. This can be seen from the fact that φ̃R

j,ρ and φ̃L
j,ρ , defined

in (3.33), are in fact the same operator.
We proceed by defining φ̃R

j,σ and φ̃L
j,σ as in (3.32), but

replacing φ̃R
j,ρ and φ̃L

j,ρ by

ϕ̃j,ρ = [ϕj,1 + ϕj,2 + q(θj,2 − θj,1)]/2,
(3.39)

θ̃j,ρ = θj,1 + θj,2.

These satisfy [∂xθ̃j,ρ(x),ϕ̃j ′,ρ(x ′)] = iπδjj ′δxx ′ . It follows that
φ̃

R/L

j,ρ = ϕ̃j,ρ ± (1 + q)θ̃j,ρ . For q = −1, the analysis is then
the same, except that (3.36) becomes∑

ab

Ot
j,ab = eϕ̃j,ρ−ϕ̃j+1,ρ cos φ̃R

j,σ cos φ̃L
j+1,σ . (3.40)

This term has precisely the form of the tunneling of
electrons between the edge states of strips of p + ip su-
perconductor. When Ot

j,ab flows to strong coupling, the a

Josephson coupling cos 2(φ̃j,σ − φ̃j+1,σ ) will be generated,
and the phases ϕj,ρ on neighboring wires will lock together.
However, unlike the quantum Hall case, there will be a
gapless bulk collective mode associated with slowly varying
fluctuations in ϕj,ρ . The neutral sector is identical to that of the
Moore-Read state, however, for the charge mode, the gapless
edge mode in the quantum Hall case is replaced by a gapless
bulk collective mode.

IV. READ-REZAYI SEQUENCE

In this section, we will generalize the coupled wire con-
struction to describe the Read-Rezayi sequence of states [12].
This sequence includes the Moore-Read state for k = 2, as
well as other states, which are described in terms of the Zk

parafermion conformal field theory [63]. As in the previous
section, the analysis is simplest for bosons. Following the
analysis of Fradkin, Nayak, and Shoutens [47], we thus
consider k channels of bosons, which are each at filling ν = 1

2 ,
so that the total filling factor is k/2. At the end of this section,
we will briefly describe the generalization, similar to Sec. III C,
which gives the known Read-Rezayi states at ν = k/(2 + kq),
where q is even (odd) for bosons (fermions).

A. Bosons at ν = k/2

Consider coupled wires of k channel bosons. The analysis is
similar to Sec. III A, except now each wire is characterized by
θj,a and ϕj,a satisfying (3.1) for a = 1, . . . ,k. The Hamiltonian
is again H0

SLL(θ,φ) + V with

V =
∑

j

∫
dx

(
k∑

ab=1

tabOt
j,ab

+
k∑

a<b=1

uabOu
j,ab + vabOv

j,ab

)
+ H.c. (4.1)
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The interaction coupling neighboring wires

Ot
j ;ab = ei[ϕj,a−ϕj+1,b+2(θj,a+θj+1,b)] (4.2)

is the same as before, while the interactions operating within
a single wire come in more varieties,

Ou
j,ab = ei(ϕj,a−ϕj,b), (4.3)

as well as an interaction that locks the “2kF ” densities of the
two channels,

Ov
j,ab = ei(2θj,a−2θj,b). (4.4)

As in Sec. IIIA, we first define chiral boson modes

φ̃R
j,a = (ϕj,a + 2θj,a)/

√
2,

(4.5)
φ̃L

j,a = (ϕj,a − 2θj,a)/
√

2.

For later convenience, this definition differs by a factor of√
2 from the modes defined in Eq. (3.6). We then introduce a

charge mode φ̃
R/L

j,ρ and k − 1 neutral modes 
φR/L

j,σ by writing

φ̃
R/L

j,μ =
(

φ̃
R/L

j,ρ


φR/L

j,σ

)
μ

, (4.6)

with

φ̃
R/L

j,μ =
k∑

a=1

Oμaφ̃
R/L

j,a . (4.7)

Oμa is an orthogonal matrix that has the form

Oμa =
(

1/
√

k


da

)
μ

, (4.8)

where 
da are a set of k vectors with k − 1 components that
satisfy ∑

a


da = 0, (4.9)

∑
a

dα
a dβ

a = δαβ, (4.10)


da · 
db = δab − 1/k. (4.11)


da may be viewed as the unit vector in the a direction projected
into the plane perpendicular to (1,1, . . . ,1). For example, for
k = 3 they form three planar vectors oriented at 120◦:


d1 =
⎛
⎝ 1√

2

1√
6

⎞
⎠ , 
d2 =

⎛
⎝ −1√

2

1√
6

⎞
⎠ , 
d3 =

(
0
−2√

6

)
. (4.12)

The transformation then has the explicit form

φ̃
R/L

j,ρ = 1√
k

k∑
a=1

φ̃
R/L

j,a , 
φR/L

j,σ =
k∑

a=1


daφ̃
R/L

j,a (4.13)

along with

φ̃
R/L

j,a =
(

1√
k
φ̃

R/L

j,ρ + 
da · 
φR/L

j,σ

)
. (4.14)

For k = 2, the charge and spin modes φ̃
R/L

j,μ are identical to
the corresponding modes defined in Eq. (3.7) in Sec. IIIA
(although φ̃

R/L

j,a differ by
√

2). The charge and neutral modes
satisfy [

∂xφ̃
p

j,μ(x),φ̃p′
j ′,μ′ (x ′)

] = 2πipδpp′δμμ′δjj ′δxx ′ . (4.15)

Expressed in these variables, the interaction terms have the
form

Ot
j,ab = ei

√
2/k(φ̃R

j,ρ−φ̃L
j+1,ρ )ei

√
2( 
da · 
φR

j,σ −
db · 
φL
j+1,σ ), (4.16)

Ou
j,ab = ei( 
da−
db)·( 
φR

j,σ +
φL
j,σ )/

√
2, (4.17)

Ov
j,ab = ei( 
da−
db)·( 
φR

j,σ −
φL
j,σ )/

√
2. (4.18)

We will now focus on the special case in which tab = t are
independent of a and b. Then,

V =
∑

j

∫
dx tei

√
2/k(φ̃R

j,ρ−φ̃L
j+1,ρ )�R

j �L
j+1

+
∑
ab

(uab + vab)iϒR
j,abϒ

L
j,ab

+ (uab − vab)i�R
j,ab�

L
j,ab, (4.19)

where

�
R/L

j =
∑

a

exp
[
i
√

2 
da · 
φR/L

j,σ

]
(4.20)

and

ϒ
R/L

j,ab = sin

[
1√
2

( 
da − 
db) · 
φR/L

j,σ

]
, (4.21)

�
R/L

j,ab = cos

[
1√
2

( 
da − 
db) · 
φR/L

j,σ

]
. (4.22)

In the following, we will show that at the special point u = v

a decoupling similar to what occurred in Sec. III B occurs. To
establish this, we will first use the coset construction to show
how the k chiral modes on each wire decouple into separate
sectors. We will then show that �

R/L

j acts only in one sector,

while ϒ
R/L

j acts only in the other. The coupling terms in (4.1)
then lead to gaps in which the different sectors are paired
in different directions, leaving behind nontrivial edge states.
�

R/L

j will be identified as a Zk parafermion operator. The
coupling term ϒR

j,abϒ
L
j,ab, on the other hand, leads to a theory

on an individual wire which can be identified with the critical
point of a Zk model, which is a particular k state generalization
of the Ising and three-state Potts model.

B. Coset construction and primary fields

Each wire is characterized by k right- and left-moving chiral
modes, which individually are described by a SU (2)1 WZW
model. As in the previous section, [SU (2)1]k can be decoupled
by considering the diagonal subalgebra SU (2)k . This leads to
the following decomposition of the energy-momentum tensor:

T[SU (2)1]k = T[SU (2)1]k/SU (2)k + TSU (2)k/U (1) + TU (1). (4.23)
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FIG. 8. (Color online) Along the solvable line uab = vab, the
right- and left-moving U (1) charge modes and the SU (2)k/U (1)
Zk parafermion modes are coupled only on neighboring wires, while
the right- and left-moving [SU (2)1]k/SU (2)k modes are coupled only
on the same wire. This pattern leaves U (1) and SU (2)k/U (1) chiral
modes at the edge. This provides a concrete interpretation for the
coset construction for the Read-Rezayi state.

In terms of the central charge, this is equivalent to

k = k(k − 1)

k + 2
+ 2(k − 1)

k + 2
+ 1. (4.24)

Clearly, k = 2 reduces to (3.19). For k = 3, we have
3 = 6

5 + 4
5 + 1. The SU (2)k/U (1) sector is precisely the

Zk parafermion theory introduced by Zamolodchikov and
Fateev [63]. The c = k theory thus decomposes into a U (1)
charge sector, a SU (2)k/U (1) parafermion sector, and a third
sector described by the coset [SU (2)]k/SU (2)k (see Fig. 8).

To show this decoupling explicitly, and to demonstrate that
� and ϒ are primary fields that act only in the decoupled
sectors, we explicitly construct the energy-momentum tensors.
Here, we consider the right-moving chiral sector on a single
wire j and omit the superscript R and subscript j . The chiral
channel is described by the Hamiltonian

H =
∫

dx
vF

4π
((∂zφ̃ρ)2 + (∂z


φσ )2). (4.25)

In order make contact with the conformal field theory
literature, we focus on the energy-momentum tensor, which
is closely related to the Hamiltonian density,

T[SU (2)1]k = − 1
2 ((∂zφ̃ρ)2 + (∂z


φσ )2). (4.26)

The translation between the Hamiltonian formulation and the
conformal field theory is briefly reviewed in Appendix B,
where we also show that T[SU (2)1]k decomposes into three terms,
according to (4.23), with

TU (1) = −1

2
(∂zφρ)2, (4.27)

TSU (2)k/U (1) = 1

k + 2

⎛
⎝−(∂z


φσ )2 +
∑
a �=b

ei
√

2( 
da−
db)· 
φσ

⎞
⎠ ,

(4.28)

and

T[SU (2)1]k/SU (2)k = 1

k + 2

⎛
⎝−k

2
(∂z


φσ )2 −
∑
a �=b

ei
√

2( 
da−
db)· 
φσ

⎞
⎠ .

(4.29)

The nontrivial content of this decoupling is that the three
energy-momentum tensors have no singular terms in their
operator product expansion. In a Hamiltonian formalism, this
means that the Hamiltonian (4.25) splits into three commuting
pieces H = HU (1) + HSU (2)k/U (1) + H[SU (2)1]k/SU (2)k . This de-
coupling has also appeared in a somewhat different context in
Ref. [64].

We now show that � and ϒ act only in a single sector.
This is done by computing the operator product expansion
with the T ’s. Details of the calculation are in Appendix C. We
find that for z → w, the singular terms in the operator product
expansion (OPE) are

TSU (2)k/U (1)(z)�(w) = 1 − 1/k

(z − w)2
�(z) + 1

(z − w)
∂z�(z),

(4.30)

TU (1)(z)�(w) = T[SU (2)1]k/SU (2)2�(w) = 0. (4.31)

Equations (4.30) and (4.31) show that � is the primary field
of the SU (2)k/U (1) theory with scaling dimension 1 − 1/k,
known as a Zk parafermion operator. � is a generalization
of the Majorana fermion, which can be regarded as a Z2

parafermion. The fact that there are no singular terms in the
OPE for the other two sectors means that � acts only in the
SU (2)k/U (1) parafermion sector. In a Hamiltonian formu-
lation, we would have [�,HU (1)] = [�,H[SU (2)1]k/SU (2)k ] = 0.
A mass term �R†�L has scaling dimension 2 − 2/k, and is
relevant. It leads to an energy gap in the parafermion sector.

For ϒab, we find

T[SU (2)1]k/SU (2)k (z)ϒab(w)

= 1/2

(z − w)2
ϒab(z) + 1

(z − w)
∂zϒab(z), (4.32)

TU (1)(z)ϒab(w) = TSU (2)k/U (1)(z)ϒab(w) = 0. (4.33)

This shows that ϒab are primary fields of the [SU (2)]k/SU (2)k
sector with scaling dimension 1

2 , and do not act in the
SU (2)k/U (1) or the U (1) sectors. A mass term ϒRϒL has di-
mension 1 and leads to an energy gap in the [SU (2)]k/SU (2)k
sector.

We have also computed the OPE’s for �ab, defined in (4.22).
Unlike � and ϒ , though, � is not primary and acts nontrivially
in both the [SU (2)]k/SU (2)k and the SU (2)k/U (1) sectors.
Thus, unlike the k = 2 case, it is not clear how �R�L competes
with the other terms. Nonetheless, on the special line uab =
vab, tab = t the �ab term is absent, and we have the decoupling
shown in Fig. 9, in which the U (1) and SU (2)k/U (1) sectors
are gapped across wires, while the [SU (2)]k/SU (2)k sector is
gapped within a wire. This gives the Read-Rezayi state, which
has a leftover gapless edge state with a U (1) charge mode and
a SU (2)k/U (1) Zk parafermion mode.

C. Quasiparticle operators

To construct quasiparticle operators, we follow the logic of
Sec. IIC2 and consider the 2kF backscattering of bare particles
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FIG. 9. (Color online) Lattice of minima of the periodic potential
−∑

ab cos
√

2 
dab · 
θσ as a function of 
θσ . The shaded region shows
the set of distinct values of 
θσ , which is compactified to a torus due to
the vortices created by exp i

√
2 
dab · 
ϕσ . There are thus three distinct,

but equivalent, minima, labeled A, B, and C.

on channel a of wire j :

χj,a = e2iθj,a (4.34)

= e
√

2/k(φ̃R
j,ρ−φ̃L

j,ρ )+√
2 
da ·( 
φR

j,σ −
φL
j,σ ). (4.35)

We thus define

�
R/L

QP,j+1/2,a = ei
√

2/kφ̃
R/L

j/j+1,ρ �
R/L

j/j+1,a, (4.36)

where

�
R/L

j,a = exp
[
i
√

2 
da · 
φR/L

j,σ

]
. (4.37)

�
R/L

QP,j+1/2,a creates a quasiparticle with charge 1
2 with a

nontrivial action in the neutral sector.
Like �ab, the operators �a are not primary, and acts

in both the [SU (2)]k/SU (2)k and SU (2)k/U (1) sectors.
Nonetheless, in the next section, we will argue that when the
[SU (2)]k/SU (2)k sector is gapped, �a acts as a primary field
projected into the parafermion sector, which corresponds to
the spin operator σ .

D. Relation to Zk statistical mechanics model

On a single wire, the mass term (uab + vab)ϒR
abϒ

L
ab opens

a gap and leaves behind a SU (2)k gapless edge state with
a charge mode and a Zk parafermion. The Zk parafermion
conformal field theory is known to describe the critical point
of a Zk generalization of the Ising model [63]. For k = 3,
it is the three-state Potts model. Similarly, for k > 3, it is
a particular version of a Zk symmetric k state generalized
Potts model. In this section, we show that our bosonized
representation provides a simple and intuitively appealing way
to understand this connection. This allows us to identify the
projected operators �a with the primary fields σ of the Zk

parafermion model.
We begin by rewriting the mass term by introducing new

variables for the single wire


ϕσ = ( 
φR
σ + 
φL

σ

)/
2, 
θσ = ( 
φR

σ − 
φL
σ

)/
2. (4.38)

These variables satisfy[
∂xθ

α
σ (x),ϕβ

σ (x ′)
] = iπδαβδxx ′ . (4.39)

The Hamiltonian for the neutral sector of a single wire then
has the form

H = v

2π
((∂x


θσ )2 + (∂x 
ϕσ )2) +
∑
ab

uab cos
√

2 
dab · 
θσ

+ vab cos
√

2 
dab · 
ϕσ , (4.40)

where we have abbreviated 
dab = 
da − 
db. This model was
studied in a different context in Ref. [65], where it was shown
that at criticality (uab = vab), it flows to the Zk parafermion
conformal field theory. Here, we give a simple argument for
why that is true.

First, consider the simplest case k = 2, where 
θσ and 
ϕσ

have a single component, and d12 − d21 = √
2. Then, we have

H = v

2π
[(∂xθσ )2 + (∂xϕσ )2] − u cos 2θσ − v cos 2ϕσ .

(4.41)

Viewed as a transfer matrix for the partition function of an
anisotropic statistical mechanics problem, this Hamiltonian
gives a well-known representation of the 2D Ising model [66].
This can be understood by first considering u = 0. This de-
scribes the 2D XY model with order parameter (cos θσ , sin θσ ).
For v = 0, θσ is a noncompact variable, so there are no vortices.
From (4.39) it can be seen that exp ±2iϕσ (x,τ ) creates a vortex
where θσ winds by ±2π around (x,τ ). v is thus the fugacity
for vortices, and its presence makes θσ an angular variable
defined modulo 2π . Integrating out θσ gives the sine-Gordon
representation of the XY model. For nonzero u, − cos 2θσ

introduces an Ising anisotropy into the XY model. For large
u, θσ is pinned in the minima of this potential at θ = nπ . Due
to the presence of v, only two of those minima are distinct.
For u �= v, since both u and v are relevant, the system flows
at low energy to a strong coupling phase in which either θσ

or φσ is pinned. The symmetry under u ↔ v and θσ ↔ φσ is
precisely the Kramers-Wannier duality of the Ising model. At
the self-dual point u = v, the system at low energy flows to
the fixed point of the Ising critical point.

For k > 2, a similar interpretation is possible. Now, how-
ever, 
θσ lives in k − 1 dimensions. exp i

√
2 
dab · 
ϕσ creates

vortices around which 
θ → 
θσ + √
2π 
dab. This compactifies


θσ , so that it is defined on a (k − 1)-dimensional torus.
cos

√
2 
dab · 
θσ introduces a periodic potential for 
θσ , and pins


θ in its minima.
For k = 3, the minima of the periodic potential are shown

in Fig. 9. They form a triangular lattice with lattice constant
2π/

√
3. The compactification of 
θσ is associated with a larger

triangular lattice with lattice constant 2π . This identifies points
on the original lattice that are on the same

√
3 sublattice. There

are three distinct minima. We thus have a two-dimensional
generalization of the XY model (where the order parameter
is defined on a torus T 2), with a three-state anisotropy. Since
both the vortices and the anisotropy are relevant (the periodic
potential has scaling dimension 1), this leads to a three-state
generalization of the Ising model with Z3 symmetry, which is
uniquely specified by the three-state Potts model. Again, the
critical point appears at the self-dual point uab = vab.

For k = 4, the minima of the periodic potential form a
three-dimensional fcc lattice. The fcc lattice can be viewed as a
larger bcc lattice with a four-site basis. The compactification is
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associated with the larger bcc lattice. There are thus four states,
so we have a four-state generalization of the Ising model with
Z4 symmetry, which is known as the Ashkin-Teller model.
This model has a parameter, which for different values gives,
for example, the four-state Potts model and the four-state clock
model. It is not immediately obvious what the value of that
parameter should be based on the form of (4.41). However,
from the analysis of the previous section, we know that the
critical point is described by the Z4 parafermion conformal
field theory. We thus expect that this model describes the
Fateev-Zamolodchikov point of the Ashkin-Teller model.

For general k, the minima occur on a (k − 1)-dimensional
lattice formed by combinations of

√
2π 
da . There are k distinct

but equivalent minima to this potential, which can be located
at 
θσ = 
θn = n

√
2π 
d1, for n = 0, . . . ,k − 1. The minima at

n = k are equivalent to the one at n = 0 because from (4.9),
k 
d1 = ∑k

a=1

daj . All other minima of cos

√
2 
dab · 
θσ can also

be reduced to these k minima with a suitable combination of√
2π 
dab. This model thus describes a k-state system with Zk

symmetry. Zk models have extra parameters for k � 4, but as
discussed above, since the critical point is described by the Zk

parafermion theory, we conclude that our model describes the
Fateev-Zamolodchikov point of the Zk model.

Now, we consider the operators �a discussed above, which
has a simple interpretation. When uab + vabϒ

R
abϒ

L
ab opens a

large gap, then we can restrict 
θσ to the minima 
θn = n
√

2π 
d1.
It is then straightforward to see that

�R
j,a�

L
j,a = ei

√
2 
da ·
θn = e−2πin/k, (4.42)

independent of a. This is precisely the spin order parameter
of the Zk model, which gives different values e−2πin/k

for the different ordered states specified by n. We thus
conclude that when the [SU (2)1]k/SU (2)k sector is gapped,
the operator �R

j,a , when projected into the SU (2)k/U (1) sector,
corresponds precisely to the spin field σ of the Zk model.

E. Generalization

As in Sec. IIIC, our construction for the Read-Rezayi
sequence can be generalized by introducing a staggered
component to the field. Again, the way to think about it is

FIG. 10. (Color online) Schematic diagram for the generalized
Read-Rezayi state at filling ν = k/(2 + kq). Groups of k wires
are coupled to one another by Ot

j+1/2,ab, which require a specific
staggered magnetic field for momentum conservation. Wires within
a group are coupled by Ou,v

j,ab, which are independent of the field.
Representative examples of Ot

j+1/2,ab and Ou,v
j,ab are shown.

to start with the bosonic state at ν = k/2, which can be viewed
as a staggered field, in which the field between neighboring
wires is b for one out of every k neighbors and 0 for the other
k − 1 neighbors. Keeping this staggered field fixed, we now
add a uniform field b̄, and find that for certain values, which
correspond to filling factor

ν = k

2 + kq
, (4.43)

there are allowed tunneling processes, which have a structure
similar to (4.1)–(4.4). Expressed in terms of charge/neutral
variables, as in (4.13), we find that the neutral sector is
independent of q, while the charge sector is modified, as
in (3.34). Rather than repeating the algebra in Sec. III C, we
simply display the diagram, analogous to Fig. 7, in Fig. 10.

V. CONCLUSION

In this paper, we have introduced a formulation of non-
Abelian fractional quantum Hall states, in which electronic
models built from coupled interacting one-dimensional wires
can be analyzed using Abelian bosonization. The picture
that emerges from this analysis is summarized in Figs. 6
and 8. Non-Abelian states can be viewed as systems in
which the original one-dimensional chiral fermion modes are
split into fractionalized sectors, in accordance with the coset
construction of conformal field theory (CFT). The different
coset sectors are then coupled to one another in “opposite
directions.” This leads to a simple understanding of the edge
states and quasiparticles that is similar in some respects
to the one-dimensional AKLT model. In the case of the
Moore-Read state, the c = 1

2 coset theory has a simple fermion
representation. For the more general Read-Rezayi states, the
coset theory can be identified by a mapping to the critical point
of a Zk statistical mechanics problem. We now conclude with
some future directions and open problems.

It is natural to speculate that a coupled wire construction is
possible for any quantum Hall state. For example, we expect
that it should be possible to construct the hierarchical gener-
alizations of the Moore-Read and Read-Rezayi states [67]. In
addition, it would be interesting to develop the construction for
the non-Abelian spin-singlet state introduced by Ardonne and
Schoutens [68,69], which is based on an SU (3)2 coset theory,
as well as the orbifold states introduced by Barkeshli and
Wen [70]. More generally, a much wider variety of quantum
Hall states can be formulated using the parton construction.
It would be interesting to understand the connection between
our more concrete approach, which can be formulated in terms
of electrons and solved, and the more abstract constructions.
Our approach should also be applicable to spin models, and
it is likely that an anisotropic version of Kitaev’s honeycomb
lattice model [71] could be analyzed.

It would be interesting to further explore the way in
which the coupled wire construction accounts for the non-
Abelian statistics of the quasiparticles. In the Abelian case,
as explained in Sec. II C 2, the Abelian statistics of the
Laughlin quasiparticles can be simply understood. It should be
possible to understand the degeneracy and braiding properties
associated with quasiparticles in the non-Abelian case in terms
of the coupled wire model.
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It is also interesting to ask whether the coupled wire
construction could be useful for describing any phases which
are not already well understood. It seems likely that the coupled
wire model could give a concrete representation of fractional
Chern insulators, non-Abelian Chern insulators, and fractional
topological insulators in two, and possibly three, dimensions.

Note added in proof. Recently, there have been several
interesting applications of the coupled wire construction
to one-dimensional [72–74] and two-dimensional [75] su-
perconducting systems that exhibit non-Abelian topological
phenomena.
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APPENDIX A: KLEIN FACTORS AND ZERO MODES

In this appendix, we carefully treat the Klein factors for
fermions, along with the zero-momentum modes of ϕ and θ .
This shows that in expressions such as (2.33) and (2.55), the
Klein factors may be ignored. An explicit formulation of the
Klein factors can be formulated by considering a system with
periodic boundary conditions in the x direction. The chiral
modes may then be treated separately. Define

ψ
p

j (x) = κ
p

j√
2πxc

eiφ
p

j (x). (A1)

Here, p = R/L = +1/ − 1 describes the right- and left-
moving chiral modes, and[

φ
p

j (x),φp′
j ′ (x ′)

] = ipπδpp′δjj ′sxx ′ , (A2)

where sxx ′ = sgn(x − x ′). The Klein factors are necessary to
assure that fermion fields associated with different channels
anticommute. They may be represented by the factors

κ
p

i = (−1)
∑

(j,q)<(i,p) N
q

j , (A3)

where the number operator for each chiral channel

N
p

i = p

∫
dx ∂xφ

p

i /2π (A4)

satisfies [Np

j ,φ
p′
j ′ ] = iδjj ′δpp′ and has integer eigenvalues. We

have chosen an ordering of the chiral modes with direction
p = R/L on wire i, such that (i,L) < (i,R) < (i + 1,L) <

(i + 1,R). Defined in this way, the Klein factors mutually com-
mute [κp

j ,κ
p′
j ′ ] = 0, but the fermion operators anticommute,

{ψp

j ,ψ
p′
j ′ } = 0. Other choices for the phase factors in (A3) are

also possible.
The density and phase fields defined on each wire may be

introduced as

ϕj = (
φR

j + φL
j + πNL

j

)/
2, (A5)

θj = (
φR

j − φL
j + πNL

j

)/
2. (A6)

These satisfy [θj (x),θj ′ (x ′)] = [ϕj (x),ϕj ′ (x ′)] = 0, along with

[θj (x),ϕj ′ (x ′)] = iπδjj ′�(x − x ′). (A7)

The electron operators are then

ψ
p

j (x) = κj√
2πxc

ei(ϕj +pθj ), (A8)

where the Klein factor (with no superscript) used in (2.7) is

κi = (−1)
∑

j<i NR
j +NL

j (A9)

is now independent of p.
Consider the backscattering operator on an individual wire

Oj = ψ
L†
j ψR

j = 1

2πixc

e2iθj . (A10)

The Klein factors are absent, and can safely be ignored.
In Secs. A1 and A2, we will apply this analysis to the

Laughlin states and hierarchy states. The bosonic Moore-Read
state does not require Klein factors in the original model,
however, they require care when refermionizing. This is
discussed in Sec. A3.

1. Laughlin states

The electron operator responsible for the fermionic Laugh-
lin state ν = 1/m, for m odd, is

O1/m

�=j+1/2 = (
ψ

L†
j+1

) m+1
2

(
ψR

j+1

) m−1
2

(
ψ

L†
j

) m−1
2

(
ψR

j

) m+1
2 .

(A11)
We write this as

O1/m

j+1/2 = ψ̃
L†
j+1ψ̃

R
j , (A12)

where

ψ̃R
j = (

ψ
L†
j

) m−1
2

(
ψR

j

) m+1
2 , ψ̃L

j = (
ψ

R†
j

) m−1
2

(
ψL

j

) m+1
2 . (A13)

We now keep the Klein factors and define θ̃j+1/2 and ϕ̃j+1/2

such that

e2iθ̃j+1/2 = ψ̃
L†
j+1ψ̃

R
j , e2iϕ̃j+1/2 = ψ̃L

j+1ψ̃
R
j . (A14)

Then,

2θ̃j+1/2 = φ̃R
j − φ̃L

j+1 + πÑθ
j ,

(A15)
2ϕ̃j+1/2 = φ̃R

j + φ̃L
j+1 + πÑ

ϕ

j ,

where

φ̃R
j = 1 + m

2
φR

j + 1 − m

2
φL

j ,

(A16)

φ̃L
j = 1 − m

2
φR

j + 1 + m

2
φL

j .

Ñ
θ/ϕ

j are sums of N
R/L

i determined by the Klein fac-
tors, using (A1), (A3), and (A13). Defined in this way,
the commutation relations obeyed by ψ̃

R/L

j guarantee that

[e2iA�(x),e2iB�′ (x ′)] = 0 for A,B = θ̃ ,ϕ̃ and x �= x ′. This means
that [A�(x),B�′(x ′)] = iP AB

��′ π/2, where P AB
��′ is an integer.

However, there is freedom in how Ñ
θ/ϕ

j is defined because (A3)

is unchanged when Ñ
θ/ϕ

j is increased by an even integer (which

could depend on N
R/L

i ). This freedom can be exploited to
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define θ̃ and φ̃ so that they obey a standard commutation
relation. While a general method for determining Ñ

θ/ϕ

j remains
to be developed, we have by trial and error found (nonunique)
solutions.

For

Ñθ
j = m − 1

2
NL

j + NR
j + m − 1

2
NL

j+1, (A17)

Ñ
ϕ

j = m − 1

2
NL

j + mNR
j + m − 1

2
NL

j+1, (A18)

the fields θ̃j and ϕ̃j defined in (A15) satisfy (A1), (A3), (A13),
and (A14), as well as [θ̃i(x),θ̃j (x ′)] = [ϕ̃i(x),ϕ̃j (x ′)] = 0 and

[θ̃i(x),ϕ̃j (x ′)] = iπδij�(x − x ′). (A19)

2. Hierarchy states

The procedure for defining the Klein factors for the
hierarchy states is similar to that in the preceding section.
Here, we just sketch the process. We may again write the
tunneling operators, defined in (2.45), as

O2k = ψ̃
L†
k+1,1ψ̃

R
k,1, O2k+1 = ψ̃

L†
k+1,2ψ̃

R
k,2 (A20)

with

ψ̃R
k,1 = (

ψR
2k−1

) m1+n

2
(
ψ

L†
2k−1

) m1−n

2
(
ψ

L†
2k ψR

2k

)m0
,

ψ̃L
k,1 = (

ψL
2k−1

) m1+n

2
(
ψ

R†
2k−1

) m1−n

2 ,
(A21)

ψ̃R
k,2 = (

ψR
2k

) m1+n

2
(
ψ

L†
2k

) m1−n

2 ,

ψ̃L
k,2 = (

ψ
L†
2k

) m1+n

2
(
ψ

R†
2k

) m1−n

2
(
ψ

R†
2k−1ψ

L
2k−1

)m0
.

We now define

e2iθ̃k+1/2,a = ψ̃
L†
k+1,aψ̃

R
k,a, e2iϕ̃k+1/2,a = ψ̃L

k+1,aψ̃
R
a,k. (A22)

Then,

2θ̃k+1/2,a = φ̃R
a,k+1 − φ̃L

a,k + πÑθ
a,k,

(A23)
2ϕ̃k+1/2,a = φ̃R

a,k+1 + φ̃L
a,k + πÑ

ϕ

a,k,

with

φ̃R
k,1 = n + m1

2
φR

2k−1 + n − m1

2
φL

2k−1 + m0
(
φR

2k − φL
2k

)
,

φ̃L
k,1 = n − m1

2
φR

2k−1 + n + m1

2
φL

2k−1,

(A24)

φ̃R
k,2 = n + m1

2
φR

2k + n − m1

2
φL

2k,

φ̃L
k,2 = n − m1

2
φR

2k + n + m1

2
φL

2k − m0
(
φR

2k−1 − φL
2k−1

)
and

Ñθ
k+1/2,1 = n − m1

2

(
NL

2k−1 + NL
2k+1

)
− (n + m0)NL

2k − n
(
NR

2k−1 + NR
2k

)
,

Ñ θ
k+1/2,2 = n − m1

2

(
NL

2k + NL
2k+2

)
− (n + m0)NL

2k+1 − n
(
NR

2k + NR
2k+1

)
,

Ñ
ϕ

k+1/2,1 = n − m1

2

(
NL

2k−1 − NL
2k+1

)
− (n + m0)NL

2k − n
(
NR

2k−1 − NR
2k

)
,

Ñ
ϕ

k+1/2,2 = n − m1

2

(
NL

2k − NL
2k+2

)
+ (n + m0)NL

2k − n
(
NR

2k − NR
2k+1

)
. (A25)

These fields then satisfy

[θ̃k,a(x),θ̃l,b(x ′)] = [ϕ̃k,a(x),ϕ̃l,b(x ′)] = 0. (A26)

In addition,

[θ̃k,ax,ϕ̃l,b(x ′)] = iπδkl[Kab�(x − x ′) + Wab], (A27)

with K given in (2.49) and Wab are integers. It may be possible
to find another choice for Ñ

R/L

k,a in which Wab = 0. However,
for the purpose of this paper, this choice suffices.

3. Moore-Read state

Here, we provide the details of the zero modes and Klein
factors for the ν = 1

2 bosonic Moore-Read state discussed in
Sec. IIIA. Since it is a model of bosons, there are no Klein
factors in the original model. However, it is necessary to keep
track of the zero modes in order to correctly fermionize the
theory. The analysis in this appendix leads to the appropriate
(and slightly counterintuitive) factors of i in Eqs. (3.9)–(3.11).

Recall �
†
j,a(x) ∼ eiϕj,a (x) is the boson creation operator and

ρn ∼ ein[2kf x+2θ(x)] represents the density wave at q ∼ 2πρ̄n.
In order for these fields to commute for x �= x ′, we require

[θj,a(x),ϕj ′,b(x ′)] = iπδjj ′δab�(x − x ′), (A28)

where �(x − x ′) is the step function. To define the chiral
modes, with the appropriate commutation relations, we must
augment (3.6) with the appropriate factors as in (A6). This
may be written as

θj,a = (
φ̃R

j,a − φ̃L
j,a + πNL

j,a

)/
2,

(A29)
ϕj,a = (

φ̃R
j,a + φ̃L

j,a + πNL
j,a

)/
2.

Here, N
p

j,a = p
∫

dx ∂xφ̃
p

j,a/(2π ). These fields obey commu-
tation relations identical to (A2). The extra NL

j,a term was
necessary to make φR

j,a and φL
j,a commute. Charge and spin

modes can then be defined, as in (3.7), and the correction
terms involve N

p

j,μ = p
∫

dx ∂xφ̃
p

j,μ/(2π ), which satisfy[
N

p

j,μ,φ̃
p

j,μ

] = i (A30)

for μ = ρ,σ .
In terms of these variables, we then write

Ou
j = exp

[
i
(
φ̃R

j,σ + φ̃L
j,σ + πNL

j,σ

)]
,

(A31)
Ov

j = exp
[
i
(
φ̃R

j,σ − φ̃L
j,σ + πNL

j,σ

)]
.

We now separate the chiral modes in the exponential, keeping
track of the commutator, and obtain

Ou
j = iei(φ̃R

j,σ +πNL
j,σ )eiφ̃L

j,σ ,

Ov
j = iei(φ̃R

j,σ +πNL
j,σ )e−iφ̃L

j,σ . (A32)
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It then follows that

Ou
j + H.c. = i

[
cos

(
φ̃R

j,σ + πNL
j,σ

)
cos φ̃L

j,σ

− sin
(
φ̃R

j,σ + πNL
j,σ

)
sin φ̃L

j,σ

]
,

Ov
j + H.c. = i

[
cos

(
φ̃R

j,σ + πNL
j,σ

)
cos φ̃L

j,σ

+ sin
(
φ̃R

j,σ + πNL
j,σ

)
sin φ̃L

j,σ

]
. (A33)

Thus, the Josephson and interwire coupling terms are given
in (3.10) and (3.11). A similar analysis gives (3.9). The
factor of NL

j,σ in (A31) provides precisely the necessary factor
to define the Klein factor for the fermions in (3.12), as in
Eqs. (A1) and (A3).

A similar analysis can be applied to the Read-Rezayi states
for general k. For example, (4.17) is modified to be

Ou
j,ab = e

i 
dab ·
(


φR
j,σ +
φL

j,σ +π 
NL
j,σ

)
/
√

2

= ie
i 
dab ·

(

φR
j,σ + 
NL

j,σ

)
ei 
dab · 
φL

j,σ , (A34)

where 
Np

j,σ = p
∫

dx ∂x

φp

j,σ /2π and 
dab = 
da − 
db.

APPENDIX B: DECOUPLING OF
ENERGY-MOMENTUM TENSOR

In this appendix, we review how the energy-momentum
tensor for [SU (2)1]k is decomposed into [SU (2)1]k/SU (2)k ,
SU (2)k/U (1), and U (1). Since the notations in the conformal
field theory literature and the condensed matter literature are
somewhat different, we first review the translation between the
two for a single noninteracting (right-moving) fermion mode.
In the CFT notation, this is written as

ψ(z) =: eiφ(z) : , (B1)

where z is a complex coordinate and the colons denote normal
ordering. The chiral boson field φ satisfies

〈φ(z)φ(w)〉 = −ln(z − w) (B2)

so that ψ satisfies 〈ψ†(z)ψ(w)〉 = 1/(z − w). The energy-
momentum tensor is

T (z) = − 1
2 : (∂zφ)2 : . (B3)

Using (B2) and Wick’s theorem, it can then be shown that
the singular terms in the operator product expansion (OPE) of
T (z) with ψ(w) are

T (z)ψ(w) = 


(z − w)2
ψ(w) + 1

z − w
∂wψ(w) (B4)

with 
 = 1
2 . This shows that ψ is a primary field with

dimension 
 = 1
2 .

In the condensed matter literature, the chiral fermion field
is often written as

ψ(x,τ ) = 1√
2πxc

eiφ(x,τ ), (B5)

where the operator is not normal ordered and xc is a conver-
gence factor in divergent momentum integrals, which plays
the role of a short-distance cutoff. Since exp iφ = (xc/L)1/2 :
exp iφ :, the cutoff xc can be eliminated by writing (B5) using
a normal ordered exponential. ψ satisfies 〈ψ(x,τ )ψ(0,0)〉 =

[2π (vF τ + ix)]−1. The dynamics is governed by the Hamilto-
nian

H =
∫

dx
vF

4π
: (∂xφ)2 : . (B6)

To make contact with the CFT notation, we first observe
that the normalization of ψ in (B5) differs by a factor of

√
2π

from (B1). Consider a finite system with periodic boundary
conditions of length L, so that vF τ + ix is defined on a
cylinder, and introduce the radial variable

z(x,τ ) = e2π(vF τ+ix)/L. (B7)

The fermion field on the cylinder then has the form similar
to (B1):

ψ(x,τ ) =
√

2πz

L
: eiφ(z) : |z=z(x,τ ). (B8)

Aside from the
√

2π difference in the normalization, this is
equivalent to (B5) for L → ∞.

The Hamiltonian (B6) corresponds to the lowest mode of
the energy-momentum tensor in the radial quantization

H = 2πvF

L
L0, (B9)

with

L0 = 1

2πi

∮
dz zT (z), (B10)

where the integral is on a circle |z| = e2πvF τ/L. It can readily
be seen that (B7), (B9), and (B10) imply that (B3) and (B6)
are equivalent.

Now, consider the k fields φ̃a , along with φ̃μ=ρ,σ considered
in Sec. IVA, which are related by (4.13). [Again, we consider
only a single (i.e., right-moving) chiral sector, and omit the
superscript R]. In the notation defined above, these satisfy

〈φ̃a(z)φ̃b(w)〉 = −δab ln(z − w),
(B11)

〈φ̃μ(z)φ̃μ′(w)〉 = −δμμ′ ln(z − w),

and the energy-momentum tensor is

T[SU (2)1]k = −1

2

∑
a

: (∂zφ̃a)2 : (B12)

= −1

2
: ((∂zφ̃ρ)2 + (∂z


φσ )2) : . (B13)

For each of the k channels, the operators

J z
a = i∂zφ̃a, J±

a = J x
a ± iJ y

a =
√

2e±i
√

2φ̃a (B14)

form an SU (2)1 current algebra. Using the fact that : Ja · Ja :=
−3 : (∂zφa)2 :, we may write the energy -momentum tensor in
a way that reflects the [SU (2)1]k symmetry

T[SU (2)1]k = 1

6

∑
a

: Ja · Ja : . (B15)

The diagonal subalgebra generated by J = ∑
a Ja forms

an SU (2)k current algebra. The corresponding energy-
momentum tensor will be proportional to J · J (we now
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suppress the normal ordering symbols, for brevity). The
coefficient can be deduced by using (B14) to compute

J · J = −(k + 2)(∂zφ̃ρ)2 − 2(∂zφσ )2 + 2
∑
a �=b

ei
√

2( 
da−
db)· 
φσ .

(B16)

If we require that the (∂zφρ)2 terms in (B13) and (B16)
coincide, then an expression similar to (B4) shows that
Jz = i

√
2k∂zφρ has the appropriate scaling dimension 
 = 1.

We then recover the Sugawara energy-momentum tensor

TSU (2)k = 1

2(k + 2)
: J · J : . (B17)

It follows that we may express T[SU (2)1]k in (B13) as
TSU (2)k + T[SU (2)1]k/SU (2)k , where TSU (2)k is given in (B17), and
T[SU (2)1]k/SU (2)k is the remainder. Moreover, TSU (2)k may be
further decomposed into TU (1) + TSU (2)k/U (1), where the U (1)
term, generated by J z, is simply the (∂zφ̃ρ)2 term in (B16),
and TSU (2)k/U (1) is the rest. This leads to the final results quoted
in (4.27), (4.28), and (4.29).

APPENDIX C: OPERATOR PRODUCT EXPANSIONS

In this appendix, we provide the details of the calculations
for Eqs. (4.30)–(4.33) that show that the operators � and
ϒ defined at the end of Sec. IV A are primary fields of
the SU (2)k/U (1)Zk parafermion and the [SU (2)1]k/SU (2)k
sectors, respectively. The key is to compute the singular terms
in the operator product expansion of the energy-momentum
tensors for the coset sectors [given in Eqs. (4.27)–(4.29) and
discussed in the previous appendix] with these operators.

The necessary terms involve two kinds of products, which
it is useful to consider separately. First, using Wick’s theorem
and (B2), the OPE of the quadratic terms in T with an
exponential operator takes the form

−1

2
[∂z


φσ (z)]2ei 
D· 
φσ (w)

=
(

| 
D|2/2

(z − w)2
+ i 
D · ∂z


φσ (z)

z − w

)
ei 
D· 
φσ (w)

=
(

| 
D|2/2

(z − w)2
+ ∂w

z − w

)
ei 
D· 
φσ (w) + · · · . (C1)

For brevity, we have suppressed the normal ordering symbols.
This shows that the operator ei 
D· 
φσ is a primary field of the
[SU (2)1]k theory [described by (B13)] with scaling dimension

 = | 
D|2/2. In particular, using (4.11), this shows that 
� =
| 
da|2 = 1 − 1/k and 
ϒ = 
� = | 
da − 
db|2/4 = 1/2.

Using the Baker-Hausdorf formula and (B2), we may show
that

ei 
D1· 
φσ (z)ei 
D2· 
φσ (w)

= 1

(z − w)− 
D1· 
D2
ei[ 
D1· 
φσ (z)+ 
D2· 
φσ (w)]

= 1 + i(z − w) 
D1 · ∂w

φσ (w)

(z − w)− 
D1· 
D2
ei( 
D1+ 
D2)· 
φσ (w) + · · · . (C2)

The OPE’s for � involve (C1) with 
D = √
2 
da , along

with (C2) with 
D1 = √
2( 
da − 
db) and 
D2 = √

2 
dc. In this
case, 
D1 · 
D2 = 2(δac − δbc), so there are singular terms in the
OPE only for c = b �= a. Using the fact [from Eq. (4.9)] that∑

b �=a

da − 
db = k 
da , we then find

∑
a �=b

ei
√

2( 
da−
db)· 
φσ (z)
∑

c

ei
√

2 
dc · 
φσ (w)

=
∑
a �=b

(
1

(z − w)2
+ i

√
2( 
da − 
db) · ∂w


φσ

z − w

)
ei

√
2 
da · 
φσ

=
(

k − 1

(z − w)2
+ k∂w

z − w

) ∑
a

ei
√

2 
da · 
φσ . (C3)

Combining (C1) (with | 
D|2/2 = 1 − 1/k) and (C3) leads im-
mediately to the results (4.30) and (4.31) quoted in Sec. IV B.
That TU (1)� = 0 is obvious because � does not depend on φ̃ρ .

Thus, we have established that � is a primary field of the
SU (2)k/U (1) sector. � are a bosonized representation for Zk

parafermion operators [76]. They can be combined to define
more general operators

�� = Ak,l

∑
a1<···<al

ei
√

2
∑l

i=1

dai

· 
φσ . (C4)

For an appropriate normalization Ak,l = √
l!(k − l)!/k! these

can be shown using (C2) to satisfy the OPE’s for Zk

parafermions discovered by Zamolodchikov and Fateev [63].
The OPE’s for ϒ and � involve (C1) with 
D = ( 
da − 
db)/√

2 (| 
D|2 = 1), along with (C2) with 
D1 = √
2( 
da − 
db) and


D2 = ( 
dc − 
dd )/
√

2. It follows that 
D1 · 
D2 = δac + δbd −
δad − δbc. This leads to a 1/(z − w)2 singularity for a = d

and b = c. In addition, there is a 1/(z − w) singularity for
a = d �= b �= c or b = c �= a �= d. After an analysis similar
to (C3), it follows that

∑
a �=b,c �=d

ei
√

2( 
da−
db)· 
φσ (z)e±i( 
dc−
dd )· 
φσ (w)/
√

2

=
(

1

(z − w)2
+ 2∂w

z − w

) ∑
a �=b

e∓i( 
da−
db)· 
φσ /
√

2

+
∑

c �=a �=b

2 cos ((2 
dc − 
da − 
db) · 
φσ/
√

2)
(z − w)

.

Since the last term is independent of the sign in the exponent,
it cancels for ϒ . Combining (C5) with (C1) (with | 
D|2/2 = 1

2 )
then leads to (4.32) and (4.33). Again, the U (1) term vanishes
because ϒ is independent of φ̃ρ . Thus, ϒ is a primary field of
the [SU (2)1]k/SU (2)k sector.

For �, the last term does not cancel. The OPE’s for both
TSU (2)k/U (1) and T[SU (2)1]k/SU (2)k are both nonzero and do not
have the form of a primary field. Presumably, � can be written
as a sum of terms that are products of primary fields in the
SU (2)k/U (1) and [SU (2)1]k/SU (2)k sectors.
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