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The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter
physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very
early on it was realized that the zoo of emerging states of matter would need to be understood in a
systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further
work which has continued to this day. Since that time the idea of hierarchies of quasiparticles
condensing to form new states has been a pillar of our understanding of fractional quantum Hall
physics. In the 30 years that have passed since then, a number of new directions of thought have
advanced our understanding of fractional quantum Hall states and have extended it in new and
unexpected ways. Among these directions is the extensive use of topological quantum field theories
and conformal field theories, the application of the ideas of composite bosons and fermions, and the
study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of
this field, including the most recent developments.
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I. INTRODUCTION

A. Manifesto

The aim of this article is to give a systematic account of
several of the main approaches to quantum Hall (QH) physics.
In particular, we have aimed at a comprehensive review of
conformal field theory (CFT) techniques and the various
approaches to quantum Hall hierachies. We describe the
original ideas of Haldane and Halperin, the composite-
fermion (CF) approach, and the various field theory descrip-
tions based on composite bosons or fermions. We also, for the
first time, give a comprehensive review of the CFT approach
to both Abelian and non-Abelian hierarchy states.
We have tried to make this paper self-contained. We

carefully introduce the main ideas and results relating to
hierarchy states and also the CFT approach. For brevity, the
main text assumes a basic knowledge of quantum Hall
physics. For those needing a review of basics, a brief
introduction is provided in Appendix A. We similarly assume
some familiarity with a few concepts and techniques of CFT
(Belavin, Polyakov, and Zamolodchikov, 1984; Di Francesco,
Mathieu, and Sénéchal, 1997), so for the nonexpert we
provide a brief introduction to these ideas in Appendix B.
There are naturally several comprehensive texts that cover part
of the material in this review, and we particularly mention
Jain (2007), Ezawa (2008), and Fradkin (2013).

B. Brief historical introduction

It is hard to overemphasize the importance of the discov-
eries of the integer (Klitzing, Dorda, and Pepper, 1980) and
fractional (Tsui, Stormer, and Gossard, 1982) quantum Hall
effects. The integer quantization of the Hall conductance,
while being crucial for modern metrology1 (Weis and von
Klitzing, 2011), is perhaps even more important for its
theoretical implications. The precise quantization of the
integer quantized Hall conductance was initially understood
as a reflection of gauge invariance (Laughlin, 1981; Halperin,
1982) or as a measurement of the quantized electron charge.
However, soon thereafter it was realized that the quantized
conductance could also be understood as a robust topological
invariant (Thouless et al., 1982; Niu, Thouless, and Wu,
1985), which led to our modern understanding of topological
insulators and superconductors (Hasan and Kane, 2010).
Perhaps even more revolutionary from a theoretical point
of view was the discovery of the fractional quantum Hall
effect (FQHE) by Tsui, Stormer, and Gossard (1982), and the

1The quantum Hall effect defines the standard of electrical
resistance. The uncertainty of metrological quantum Hall measure-
ments has been determined to be less than 1 part in 1010 despite the
fact that the samples have substantial disorder. This is like measuring
the distance from Stockholm to San Francisco to within 1 mm.
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resulting realization that quantum liquids made of electrons
could support excitations with fractional charge (Laughlin,
1983) and fractional statistics (Arovas, Schrieffer, and
Wilczek, 1984; Halperin, 1984). This led to the concept of
topological order, which is central to the modern classification
of phases of matter (Wen, 2004).
Topological order is a way to characterize phases of matter

that cannot be distinguished by the pattern of spontaneous
symmetry breaking and the associated expectation values of
local order parameter fields. A topologically ordered state of
matter has an energy gap to bulk excitations, some of which
carry fractional quantum numbers. In two spatial dimensions,
the fractionalized particles are anyons, obeying fractional
statistics that can be Abelian or non-Abelian. The notion of
non-Abelian fractional statistics2 opened up the possibility of
using non-Abelian quasiparticles as a resource in quantum
information processing (Kitaev, 2003; Nayak et al., 2008).
When defined on a topologically nontrivial closed manifold, a
topologically ordered state exhibits a characteristic ground
state degeneracy. On a manifold with boundaries, there are—
at least in the cases we will be concerned with—gapless edge
modes.3 The robust connection between the bulk topological
order and the existence and properties of edge states is made
most clearly through the connections forged by conformal
field theory (Moore and Read, 1991).
The first observed fractional quantum Hall liquid (Tsui,

Stormer, and Gossard, 1982) was the state at filling fraction4

ν ¼ 1=3 which was soon understood by Laughlin’s seminal
theory (Laughlin, 1983). This theory predicted states of the
form ν ¼ 1=m with m odd. A few additional states were
experimentally observed that could be understood as simple
generalizations of this, including particle-hole conjugates of
these simple Laughlin states and analogous fractions in
partially filled higher Landau levels. However, soon thereafter,
new states were found experimentally which did not fit this
framework (Stormer et al., 1983). In particular, many fractions
were observed in the lowest Landau level (LLL), generally of
the form ν ¼ n=ð2mn� 1Þ, which are now known as “Jain
fractions” (Jain, 2007). Additional fractions, not fitting this
Jain form, were later discovered in the LLL (Pan et al., 2003)
as well as in partially filled higher Landau levels (Xia et al.,
2004). See Figs. 1 and 2 for high quality experimental data in
the lowest and second (or “first excited”) Landau levels.
Clearly it was necessary to find an organizing principle in

order to understand the plethora of experimentally observed
states. The first idea of this kind was due to Haldane (1983)
and Halperin (1983, 1984), who suggested that the states in
the LLL are hierarchically ordered. Moving away from the

center of a quantum Hall plateau by changing the filling
fraction (by changing magnetic field or electron density)
amounts to creating quasielectrons or quasiholes. These are
then assumed to condense in a Laughlin-like state, thus
forming a daughter state. In this way one can obtain any
fraction with an odd integer denominator. A further major step
was taken by Jain (Jain, 1989, 1990, 2007; Heinonen, 1998)
who constructed trial wave functions for the fractional
quantum Hall effect at ν ¼ q=ð2qp� 1Þ as being the integer
quantum Hall effect (IQHE) of “composite fermions.” The
latter can roughly be thought of as electrons with 2p quanta of
vorticity (or “flux”) attached, which fill q effective Landau
levels. These hierarchies (and other generalizations of the
same ideas) are a main focus of this article.
The theoretical understanding of the fractional quantum

Hall effect has progressed on several fronts. The first
approach, starting with the seminal work of Laughlin, and

FIG. 1. Very high quality quantum Hall data showing many
plateaus in the lowest Landau level. From Pan et al., 2003.

FIG. 2. Very high quality quantum Hall data showing plateaus
in the second Landau level. Note that many of the plateaus
labeled RIQHE (reentrant integer quantum Hall effect) are not
fractional quantum Hall states but are believed to be some sort of
charge density wave. From Kumar et al., 2010.

2The first theoretical works on non-Abelian statistics of quasi-
particles were by Bais (1980), Fredenhagen, Rehren, and Schroer
(1989), Witten (1989), Fröhlich and Gabbiani (1990), and Moore and
Read (1991), where the work of Moore and Read (1991) first
suggested that such statistics may occur in quantum Hall systems.

3This list of properties provides a working definition of topologi-
cal order, but there are also formal definitions in terms of modular
tensor chategories (Kitaev, 2003; Bonderson, 2007; Wang, 2010).

4The filling fraction ν is the number of complete Landau levels
filled; see Appendix A.
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later that of Jain, has come from the analysis of cleverly
guessed, and numerically highly accurate, trial wave func-
tions. Later, CFT was used to engineer model wave functions
with interesting properties (Moore and Read, 1991), which
allowed the first construction of non-Abelian quantum Hall
states such as the Moore-Read (MR) (Moore and Read, 1991),
Read-Rezayi (RR) (Read and Rezayi, 1999), and non-Abelian
spin-singlet (Ardonne and Schoutens, 1999) states. A second
front of attack was the development of effective field theories.
These are of two different types. The first amounts to a
rewriting of the original microscopic field theory of electrons
moving in a strong magnetic field, as a field theory of
composite bosons in zero field (Zhang, Hansson, and
Kivelson, 1989), or composite fermions in a weaker magnetic
field (Lopez and Fradkin, 1991). In principle these theories
describe the microscopic physics of Abelian quantum Hall
states, but they can be solved only by using mean-field
methods. The second type of field theories are topological
quantum field theories (TQFT) based on Chern-Simons (CS)
gauge fields. These theories can be formulated for both
Abelian and non-Abelian states, but, as the name indicates,
only encode topological information, such as filling fractions
and charge and statistics of the quasiparticles (Wen, 1995;
Nayak et al., 2008).
Connections between TQFTs and CFTs have been made

extensively throughout the literature, starting with the pioneer-
ing work of Witten (1989). These same connections are
extremely powerful in the quantum Hall context. The CFT
approach (Moore and Read, 1991) gives a description of the
dynamical [(1þ 1)-dimensional] theory of the quantum Hall
edge (Wen, 1992; Kane and Fisher, 1996) and at the same time
gives an explicit wave function for the [(2þ 0)-dimensional]
quantum Hall bulk as a correlator of certain operators in the
CFT. The primary operators of the CFT then define the fields
of the corresponding TQFT and hence define the full statistics
of quasiparticles present as excitations above the ground state.
Perhaps surprisingly, it has been hard to fit the prominently

observed Abelian hierarchy states in the LLL into the CFT
framework. The effective Chern-Simons description of these
states is well developed, defining the universal properties of
the edge CFT as well, but most work on trial wave functions
has been in terms of composite fermions, with no obvious
connection to a hierarchy formed by successive condensations
of quasiparticles. This situation has changed over the past
decade with the realization that CFT techniques can be used
to construct representative wave functions for any state in
both Abelian and non-Abelian hierarchies. Also, using these
methods, the composite-fermion wave functions can be
written as condensates of quasiparticles of a parent state
and thus belong to the Haldane-Halperin hierarchy as well.
A main objective of this article is to review these advances.

C. More detailed aims and organization of this article

In most of this review we will focus our attention on the
simplest cases where there is a single, partially filled, Landau
level with only one species of fermion (or boson). Note,
however, that more complicated situations may be considered
where each particle carries an additional nontrivial quantum
number. This has been explored in many experiments, for

example, for a spin-unpolarized Landau level one must keep
track of both spin species (Du et al., 1995). Similarly in
bilayer quantum Hall effect (Eisenstein et al., 1992), the layer
index may play the role of a pseudospin. The situation may be
more complicated still in multivalley semiconductors such as
graphene (Dean et al., 2011), where one may have to keep
track of both spin and valley indices.
This paper is organized as follows. In Sec. II we introduce the

concept of quantumHall hierarchies and then give a short review
of the various theoretical approaches that have been employed
to describe them. In Sec. III we discuss the current experimental
status and relation of the proposed theoretical approaches,
and in Sec. IV we review some important theoretical results
with bearing on the connection between Chern-Simons theory,
conformal field theory, and quantum Hall physics. Sections V
and VI describe how to obtain explicit wave functions for
Abelian and non-Abelian hierarchies, respectively. In particular,
we explain the need for “quasilocal” CFToperators for describ-
ing quasiparticles and give a fairly detailed discussion of various
approaches to non-Abelian hierarchies. In Sec. VII we general-
ize the construction of wave functions to the sphere and the
torus, and explain why this is of interest. We conclude in
Sec. VIII with a brief summary and outlook.
Several appendixes are included for those needing a bit

more background. In Appendix A some basic facts about
quantum Hall physics are elaborated. Appendix B gives basic
facts about conformal field theory. Appendix C gives some
details of derivations for one-dimensional edge theories.

D. Notation and conventions

For electron coordinates we use ~r ¼ ðx; yÞ, z ¼ xþ iy, and
z̄ ¼ x − iy, and similarly ~η, η, and η̄ for quasiparticle coor-
dinates. We sometimes use the abbreviation fzigba for the set
ðza; zaþ1;…; zbÞ, etc., and just fzig when the label i runs from
1 to N.
The term “quasiparticle” refers to either a quasielectron or a

quasihole. Up to a Gaussian factor, electronic wave functions
will be holomorphic functions of the zi’s only and depend
parametrically on the quasihole coordinates ηi and the
quasielectron coordinates η̄i (see Appendix A). Note, how-
ever, that at an intermediate step, the hierarchy wave functions
will be constructed as to have antiholomorphic components
which will be either integrated out or projected onto the LLL.
For sake of brevity, we often omit the Gaussian factors.
Late Greek letters μ, ν, σ, etc. will be used for Lorentz

indices, and early Greek letters α, β, γ, etc. to label different
CS gauge fields. In most of the paper we use a radial gauge
~A ¼ ðB=2Þð−y; xÞ, where a single-electron wave function in
the LLL is ∼fðzÞ exp½−jzj2=ð4l2Þ�, and often we will put the
magnetic length l2 ¼ ℏc=eB ¼ 1. The area element on the
plane is denoted by d2r ¼ dxdy ¼ d2z. We will always put
c ¼ 1, often ℏ ¼ 1, and always assume zero temperature.

II. QUANTUM HALL HIERARCHIES

A. Laughlin states: Plasma analogy and quasiparticles

In his original paper Laughlin (1983) argued that his wave
function describes an incompressible liquid, and that the
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quasihole excitations are fractionally charged. Soon thereafter
it was shown that the quasiholes are anyons, i.e., particles
obeying fractional quantum statistics (Leinaas and Myrheim,
1977; Wilczek, 1982). All these insights were based on using
the so-called plasma analogy,5 which we briefly review using
a modified version of the original argument given by Arovas,
Schrieffer, and Wilczek (1984) and Halperin (1984). More
details are presented in Sec. IV.A.1.
The Laughlin wave function (Laughlin, 1983) at filling

fraction ν ¼ 1=m with two quasiholes at positions η1 and η2 is
given by

Ψðη1; η2; z1 � � � zNÞ ¼ Nðη1; η2Þ
YN
i¼1

ðη1 − ziÞðη2 − ziÞ

×
Y
i<j

ðzi − zjÞme−
P

i
jzij2=ð4l2Þ; ð1Þ

where Nðη1; η2Þ is a normalization constant. By writing

Nðη1; η2Þ ¼ ~Njη1 − η2j1=me−ðjη1j2þjη2j2Þ=ð4ml2Þ; ð2Þ

jΨj2 can be related to the Boltzmann factor e−βU of a two-
dimensional Coulomb plasma, meaning that two point charges
q1 and q2 repel each other by the potential q1q2 ln j~r1 − ~r2j2.
The corresponding partition function is

Zðη1; η2Þ ¼
YN
i¼1

Z
d2zijΨj2 ¼ j ~Nj2

YN
i¼1

Z
d2zie−βU:

The inverse temperature of this analog plasma is β ¼ 1=m, the
charge of the z particles is m, the charge of the η particles is
unity, and there is a quadratic confining background potential
mjr2j=ð4l2Þ corresponding to a constant background charge
density 2πρpl ¼ eB. The crucial observation by Laughlin
(1983) was that the classical plasma is in a screening phase, at
least for m < 70.
From this follows a number of important results. First, in

the absence of the quasiholes, a uniform density of z charges
would (by Gauss’s law) precisely screen the constant back-
ground charge. Thus, the wave function describes a system
with uniform charge density, and since the plasmon in this
system is gapped, the long-range density fluctuations are
negligible and the quantum liquid is incompressible. Second,
it is easy to see that the electrical charge associated with η
must be exactly −1=m of the charge of an electron and is
spread over a distance given by the screening length of the
plasma (on the order of l). An important point is that these
fractional charges are sharp in the sense that properly defined,
the variance of their charge is essentially zero (Kivelson and
Schrieffer, 1982) as discussed by Kjønsberg and Leinaas
(1999). Third, the partition function Z is independent of the
positions of the charges, and thus j ~Nj2 is a constant indepen-
dent of η1 and η2 as long as they are far separated compared to
the magnetic length (Halperin, 1984). From the properly

normalized wave function, one can verify that these particles
obey fractional exchange statistics as explained later.
A heuristic argument for the exchange phase was first

given by Halperin (1984), arguing that removing the absolute
value of the relative factors of Eq. (2) amounts to a singular
gauge transformation that leaves the electronic wave function
“unchanged,” but allows us to interpret Eq. (1) as the proper
wave function for anyonic particles in the LLL with exchange
phase �π=m. Alternatively, one can compute the Berry phase
factor eiγ, or “holonomy,” associated with moving one
quasiparticle at η1 adiabatically around another at η2. The
general expression for the Berry phase is

iγ ¼
I

dτhΨ(η1ðτÞ; η2)
���� ddτ
����Ψ(η1ðτÞ; η2)i; ð3Þ

where τ is a parameter that takes the particle η1 once around η2
along some closed loop. Such an integral was first considered
by Arovas, Schrieffer, and Wilczek (1984), who argued that
the presence of a quasiparticle within the loop gives an
additional �2π=m contribution to the Berry phase. Thus
the Berry phase can be written as

γ ¼ 2π

m
Φ
ϕ0

þ 2
π

m
; ð4Þ

where ϕ0 ¼ h=e ¼ 2π=e is the unit quantum of flux, and Φ is
the flux enclosed by the loop. Thus the first term gives the
usual Aharonov-Bohm phase for a particle of charge e⋆ ¼
e=m moving in a magnetic field, while the second term is
twice the fractional exchange statistics phase for anyons with
statistical angle θ ¼ π=m. For more details on this calculation
see Stone (1992). We present an alternative derivation of the
Berry phase in Sec. IV.A.1, which is based on the particular
properties of the wave functions when written in terms of CFT
correlators.
A more detailed derivation of this result was done by

Kjønsberg and Leinaas (1997), who used the plasma analogy
to map the expressions to the two-anyon system. This
analytically derived result has been confirmed to be true
numerically (Kjønsberg and Myrheim, 1999; Zaletel and
Mong, 2012), so long as the quasiholes remain sufficiently
far (on the order of l) from each other. While there is no
plasma analogy for handling quasielectrons (rather than
quasiholes), it is often assumed that putting the factorQ

N
i¼1ð2∂zi − η̄Þ, proposed by Laughlin (1983), in front of

the Laughlin wave function would amount to placing a
quasielectron at position ~η. This description is not unproble-
matic; we discuss quasielectrons in detail in Sec. V.C.
Laughlin’s 1981 argument for the quantized conductance in

case of the integer quantum Hall effect was based on adiabatic
flux insertion in an annulus (Corbino) geometry where the
edges are held at a fixed voltage difference V. Each inserted
flux quantum can be shown to effectively move one unit of
charge from one edge to the other giving an energy shift
ΔE ¼ eV. On the other hand, the Hall current is given by
I ¼ ΔE=ϕ0, so I ¼ ðe2=hÞV ¼ σ0V (Laughlin, 1981).
Having established the presence of charge e=m quasiparticles,

5It is common nomenclature to call it an “analogy,” even though it
is in fact a precise mapping.

Hansson et al.: Quantum Hall physics: Hierarchies and …

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025005-5



Laughlin (1983) used the same argument to show that for the
fractional effect the Hall conductance is σ0=m.
This argument can in fact be used in “reverse” to establish

that a quasihole created by adiabatic insertion of a unit flux in
any incompressible quantum Hall state with filling fraction ν
has a fractional charge e⋆ ¼ νe (Karlhede, Kivelson, and
Sondhi, 1992). The argument, which does not invoke the
plasma analogy, goes as follows: Imagine inserting a thin
(radius≪ l) solenoid and then adiabatically turning on a flux
ΦðtÞ. This will, by Faraday’s law, induce an azimuthal electric
field Eα ¼ ∂tΦðtÞ=ð2πRÞ, where R is the distance from the
solenoid. Because of the quantum Hall response σH ¼ νe2=h
this results in a radial current density jr ¼ σHEα. So during a
process which introduces one quantum of flux ϕ0 ¼ h=e,
the charge transported through the circle at R is e⋆ ¼R
dt2πRjrðRÞ ¼ σHϕ0 ¼ νe. One can now invoke the

Byers-Yang theorem which states that if a system consists
entirely of particles with charge e, there is no physical
consequence of having an integer number of elementary
fluxes h=e added through a puncture in the plane (Byers
and Yang, 1961). This is precisely the configuration we end up
in after inserting the flux, so without changing any physical
properties of the system, it can be gauged away leaving a local
charge Q ¼ νe excitation. We do not know of any similarly
clear and general argument for the statistics of the Laughlin
quasiholes.

B. The Haldane-Halperin idea

If only a few quasiparticles are present, they will be
pinned to impurities and remain inert, so that the system
will have the same conduction properties as if the quasi-
particles were not present (indeed, this is the origin of the
finite width of the quantum Hall plateau). If many quasi-
particles are present and are unpinned, they will form a
system of itinerant charged particles in a magnetic field,
which, at an appropriate filling fraction, is likely to
condense into a Laughlin-like state. This is the heuristic
picture behind the original proposal of a hierarchy due to
Haldane (1983) and Halperin (1983, 1984). Given this idea,
one can show that any filling fraction with an odd
denominator can be obtained by successive condensations
of quasiparticles into Laughlin-like states (see Secs. V.B
and V.D). Since the charge of the elementary quasiparticle
in a state ν ¼ p=q is �e=q, the Coulomb gap is expected to
be a decreasing function of q, and thus one expects states
to be increasingly fragile, and thus harder to observe, as q
increases. This tendency is clearly seen in experiments as
illustrated in Fig. 3.

1. General form of an Abelian hierarchy wave function

Following Halperin, we refer to the wave functions for the
quasiparticles Φð~η1 � � � ~ηMÞ as a pseudo wave function and
write a general hierarchy state at level nþ 1 as

Ψnþ1ð~r1 � � � ~rNÞ ¼
Z

d2~η1 � � �
Z

d2~ηMΦ⋆
nð~η1 � � � ~ηMÞ

× Ψnð~η1 � � � ~ηM; ~r1 � � � ~rNÞ; ð5Þ

where Ψn is a state with M identical quasiparticle excitations
in a parent state at level n. Recall that throughout this paper we
use ~ri or zi for the position of the ith electron and ~ηi for the ith
quasiparticle.
One should be aware that the hierarchical constructions of

Haldane and Halperin are slightly different. For instance,
Halperin obtains the filling fraction of 3=7 by condensing
quasielectrons of the 2=5 state into a Laughlin 1=2 state,
while Haldane condenses quasiparticles of the 1=3 state into
a 2=3 quantum Hall state (the bosonic version of 2=5). Also
their arguments on how to determine the possible filling
fractions differ. Despite these differences, the two construc-
tions yield the same filling fractions with identical topo-
logical properties. In this review, we mostly follow
Halperin’s construction; in particular, the pseudo wave
function in Eq. (5) will always be of Laughlin form. Next
we exemplify Haldane’s construction by giving a heuristic
picture based on Haldane (1983) on how to determine the
filling fraction and quasiparticle properties of a hierarchical
daughter state.
Assume that M particles at positions ξi have condensed to

form a parent quantum Hall state. (Note that these particles
can be either electrons or the quasielectrons or quasiholes of
some grandparent quantum Hall state.) A quasihole in this
state at position ~η amounts to having a factor

Q
M
i¼1ðξi − ηÞ and

for a quasielectron we might take
Q

M
i¼1ð2∂ξi − η̄Þ. Effectively

this means that each quasihole at position η “sees” each of the
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FIG. 3. Observed states and fractal structure: quantum Hall
hierarchy states in the lowest Landau and their relative stability.
For each rational ν ¼ p=q < 1; q odd, there is a unique state
and its stability increases monotonically with 1=q. The crosses
denote observed states in the region 2=7 ≤ ν ≤ 2=3 (Pan et al.,
2003). The horizontal line marks the extent in ν of the
experiment and is a line of constant gap. This line provides
a good (although not perfect) approximate boundary for the
observed states. The inset shows the structure of hierarchy
states: At each ν ¼ p=q, q odd, there is a state with gap ∼1=q
and quasiparticles with charge �e=q. When these condense,
two sequences of states approaching p=q with decreasing gap
are obtained. From Bergholtz et al., 2007.
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particles ξi as if it were a single quantum of flux.6 We can now
form multiquasiparticle states simply by taking a product
of such factors, and if we use the normalization (2) the
wave function is symmetric in the ηi (or the η̄i in case of
quasielectrons), so the quasiparticles are bosons. In order for
the η particles to condense they must see enough total flux to
form a quantum Hall state. Since the quasiholes are bosons in
this description, we must have an effective filling fraction
νeff ¼ 1=p with p even, meaning that there must be p times as
many particles in the parent layer of the hierarchy as in the
daughter.
Let us exemplify the hierarchical construction by starting

from ν ¼ 1=3, with N electrons in 3N flux, and then adding
an extra N=2 flux. This creates N=2 (bosonic) quasiholes,
each experiencing one flux quantum per each of the
original electrons, hence N fluxes. These N=2 quasiholes
in N flux can condense in a ν ¼ 1=2 Laughlin liquid of
bosons. We conclude that this first level daughter state
would have N electrons in 3N þ N=2 flux, or a filling fraction
ν ¼ 1=ð3þ 1=2Þ ¼ 2=7.
To determine the charge of the fundamental quasihole in

this state we follow Haldane (1990) and imagine removing
one electron at a fixed magnetic field. This creates three
quasiholes of the original electron Laughlin state, leaving us
with N=2þ 3 bosons in N − 1 flux. We must now figure out
how many defects (quasiparticles) we obtain when we have
N=2þ 3 bosons in N − 1 flux at filling fraction ν ¼ 1=2.
Since there should be twice the number of flux quanta as
bosons in the “ground” state of such a system, this would be
2ðN=2þ 3Þ ¼ N þ 6 flux. With N − 1 flux, we are clearly
seven flux quanta short, and therefore there are seven
quasiparticles present. Going back to our original system
where we removed a charge of −e, we conclude that the
elementary quasihole charge is e=7. Note that there are no
rigorous arguments for deducing the fractional statistics of
such quasiholes. However, Wen’s K-matrix expression in
Sec. II.F predicts a statistical phase −3π=7 for the elementary
quasihole e=7. Moreover, it has been shown that predictions
based on clustering arguments as invoked by Su (1986) are
generally consistent with those from the K-matrix formalism
(Fulsebakke, 2010).
Read (1990) suggested an alternative way to extract the

topological content of hierarchy wave functions written as in
Eq. (5). The basic assumption is that two such wave functions
are orthogonal whenever the quasiparticle positions differ
much more than a magnetic length. Using this orthogonality
postulate the expectation values of operators, obtained by

integrating over the electron coordinates, simplify to integrals
that can be reinterpreted in terms of a multicomponent plasma,
and arguments similar to the ones given previously for the
Laughlin case will apply. We will discuss the status of the
plasma analogy for hierarchy states further in Sec. V.E.
The hierarchy argument can be continued to higher levels to

give filling fractions of the continued fraction form (Haldane,
1983; Halperin, 1984),

ν ¼ 1

m −
1

σ1p1 −
1

σ2p2 −
1

. .
.

−
1

σn−1pn−1

ð6Þ

where 1=m with m odd is the filling fraction of the 1st level
state, 1=pα with pα even is the filling fraction of the αth level
daughter bosonic condensate of quasiparticles and σα ¼ �1

indicates whether this condensate is formed by quasiholes (−)
or quasielectrons (þ). Note that with these conventions
the Laughlin states are at level n ¼ 1, and a general level n
state is formed by n − 1 condensates determined by pα and
σα, α ¼ 1; 2;…; n − 1.
An often aired criticism of the hierarchy scheme is that it is

based on a quasiparticle picture, which is valid only when the
separation between quasiparticles is large compared to their
radius. However, condensation into a daughter state occurs
precisely when the quasiparticles are overlapping, and hence
where a quasiparticle description loses its integrity. Thus the
very notion of condensation is questionable (Jain, 2007). We
believe that this point of view is based on demanding more
than what can be expected from a “picture.” The real content
of the hierarchy (in the Halperin sense) is embodied in Eq. (5),
as well as in the general arguments about the relative stability
and the properties of their excitations; see, e.g., Halperin
(1984). The description in terms of condensation is only a
(very suggestive) picture. It is worth mentioning here that
ordinary electrons in the LLL also have a finite size (∼l2)
and that they condense in a Laughlin state precisely when
the distance between them becomes comparable with this
length scale. Of course, electrons are in a sense “real”
particles, but it is far from clear that this distinction should
be very important.7

2. Difficulties and early numerical work

Although it is in principle straightforward to generate
hierarchy wave functions using Eq. (5), in practice this
formula turns out to be very difficult to work with. As a
concrete example, consider the simplest case of a quasihole
condensate in a ν ¼ 1=3 Laughlin state. The corresponding
quasihole wave function is the generalization of Eq. (1) with
the normalization factor

Q
M
α<β jηα − ηβj1=3, which assures that

the normalization, up to a phase, is independent of the

6What we precisely mean here is that the wave function for the η
particle is an analytic polynomial whose overall degree isM. This is
exactly of the same form as we would have for a unit charge particle
in a magnetic flux of Mϕ0. It is tempting to imagine that the η
particles “see” a flux quantum at the position of each of the ξ
particles. This is not correct, as a real flux quantum would just
imply a phase winding (i.e., it is a singular gauge transformation).
It is more correct to think of the ξ particles as having captured
the vortices of the wave functions for the η particles. At a “mean-
field” level, one can heuristically think of the ξ particles as
providing a uniform magnetic field that the η particles experience;
see Secs. II.D and II.E. 7This is commented upon in Sec. V.C.3.
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positions ηi, as long as these are far separated. The pseudo
wave function is taken as

Φ ¼
�YN
α<β

ðηα − ηβÞ2
�
e−ð1=3Þ

P
α
jηαj2=ð4l2Þ;

which is a Laughlin state treating the quasiholes at positions
ηα as bosons (Haldane, 1983; Halperin, 1984), and the factor
of 1=3 in the Gaussian exponent accounts for the quasiholes
having charge 1=3 and hence a longer magnetic length than
the electrons. ChoosingM ¼ N=2 and using these expressions
in the wave function Eq. (5) gives a quantum Hall wave
function at ν ¼ 2=78:

Ψ ¼
Z YM

α¼1

d2ηαe
−ð1=3Þ

P
α
jηαj2=ð4l2ÞYM

α<β

ðη̄α − η̄βÞ2jηα − ηβj1=3

×

�YM
α¼1

YN
i¼1

ðηα − ziÞ
YN
i<j

ðzi − zjÞ3
�
e−
P

i
jzij2=ð4l2Þ: ð7Þ

Even for this simplest case of a hierarchy wave function,
there is unfortunately no known way to evaluate the integrals
analytically, and numerical methods are feasible only for a
small number of particles. Such calculations were done early
on by Greiter (1994), who compared hierarchy states9 with
results of exact diagonalization; mainly at level 2 (i.e., first
level daughter) for up to eight particles, but also level 3 for up
to six particles. The overlaps for these small systems are very
good, but it is clearly questionable to draw conclusions from
studying a level 3 hierarchy state of only six electrons.
The Laughlin wave function is the exact ground state

wave function for a certain ultrashort-ranged electron-electron
interaction (Haldane, 1983; Pokrovsky and Talapov, 1985;
Trugman and Kivelson, 1985) which makes it very amenable
to certain analytic approaches. Similarly, some of the more
exotic wave functions such as the Moore-Read wave function
(Moore and Read, 1991) are also the exact ground states of
simple interactions (Greiter, Wen, and Wilczek, 1991; Read
and Rezayi, 1996). Unfortunately, there is no known electron-
electron interaction for which any of the hierachy wave
functions (those discussed here or later) are exact ground
states, and this substantially complicates the detailed analysis
of their properties.
If we relax the condition that the wave function should

reside in the LLL, there are potentials for which the
unprojected Jain state10 at ν ¼ 2=5 is the ground state
(Jain, Kivelson, and Trivedi, 1990). This might have been

a satisfactory situation if components in higher Landau
levels had been relatively small, but in reality this is not the
case.11 Another argument for restricting the discussion to
within a single Landau level is that the large B (or small me)
limit provides a theoretically well-defined limit that is
believed to capture the essence of quantum Hall physics.
So it seems like a good strategy to first try to solve that
problem and only later include effects of higher Landau
levels (see the discussion at the end of Sec. III.A).

3. Why wave functions and which?

At this point it is fair to ask why we are at all interested in
constructing explicit many-body wave functions? None of the
model wave functions considered here are the exact ground
states of any experimentally relevant Hamiltonian, and the
overlap with the realistic ground state will always be zero in
the thermodynamic limit. In addition, one may ask whether
model wave functions can tell us anything beyond what we
can deduce from the effective theories that are discussed in the
following sections.
First we should make clear that the wave functions we are

considering in this review are “representative wave functions”
in the sense of Moore and Read.12 This means that even
though they might not be eigenstates of any physical
Hamiltonian, they have the topological characteristics of some
distinct phase of matter. These are typically the charge and
statistics of quasiparticles, as well as properties of edge states
and the ground state degeneracy on topologically nontrivial
manifolds. It is these topological features we are interested in,
rather than microscopic details of the actual wave functions.
This, however, still begs the question of relevance—why are
we not satisfied with an effective field theory description,
since they are after all constructed precisely in order to capture
the topological characteristics of a phase? There are at least
three answers to this.
The first, which was already stressed in Sec. II.A, is that in

many cases the construction of wave functions has preceded
the effective field theories. This was true for both the Laughlin
states, the Jain states, and the states in the Read-Rezayi series.
In fact, for the latter there is to this day no generally accepted
low-energy field theory. Thus, constructing explicit model
wave functions has been an important step in understanding
many topological phases, and this might well continue to be
true in the future.
Second, one should be aware that the effective field theories

can rarely be derived from the microscopic physics. In fact,
even with rather low standards of rigor, this can be done only
for the Laughlin (Lee and Zhang, 1991) and the Jain states
(Lopez and Fradkin, 1992). Thus it is not at all guaranteed that

8Note that at this density there is no reason to believe that this
wave function is correctly normalized. As mentioned in Sec. II.B.1,
the real meaning of “condensation” is embodied in Eq. (5), and here
we note that it must also come with a definite prescription for how to
construct the pseudo wave function for the condensing particles.

9In order to evaluate Eq. (7), Greiter omitted the factor jη − ηj1=q,
which amounts to a change in the short-distance behavior thought to
be physically unimportant; cf. Sec. V.C.

10Jain’s composite-fermion states will be introduced in more detail
in Sec. II.E.

11Already for relatively small systems, such as six particles in the
(bosonic) ν ¼ 2=3 Jain state on the torus, only about 32% of the
unprojected state resides within the LLL, and this percentage
decreases rapidly with increasing system size. Similar numbers for
the LLL weight have been reported for the spherical geometry, for
both bosonic and fermionic Jain states (N. Regnault, private
communication).

12As far as we know this concept was first introduced by Moore
and Read (1991).
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given an effective field theory, there will be any microscopic
wave function with the same topological properties. In this
case the construction of trial wave functions provides a sanity
check of the predictions based on the effective field theory,
provided one can determine the topological properties, by
either analytical or numerical methods.13 The latter has often
proven hard, especially when dealing with composite fer-
mions. Here the CFT methods detailed in later sections have
proven useful, as their direct connection to TQFTs allows
us to conjecture their topological properties. In this sense,
rewriting the composite-fermion wave functions using CFT is
more than just an academic exercise, but allows us more direct
access to the important properties of the representative wave
functions.
Third, as discussed many times later, explicit wave func-

tions for a small number of particles can be compared with
wave functions obtained by numerically solving the
Schrödinger equation for a realistic interaction. Often good
agreements (typically as measured by overlaps of wave
functions) are taken as a proof of the validity of the model
wave function, but here we should add a note of caution.
First, it is clear that any conceivable model wave function will
have zero overlap with a numerically obtained one in the
thermodynamic limit.14 Moreover, for a too small number of
particles, the relevant Hilbert space, taking symmetries into
account, might not be very large, so that any model wave
function that is constructed as to keep the particles well
separated, typically by including Jastrow factors, will have a
good chance to have a large overlap. Thus it is to some extent a
matter of judgment and experience to decide upon the success
of a trial wave function by only studying overlaps for a small,
but not too small, number of particles. The Laughlin state is
often considered as something of a gold standard for overlaps.
For example, for N ¼ 9 electrons at ν ¼ 1=3 on a spherical
geometry (see Sec. VII.A), the dimension of the symmetry-
reduced Hilbert space is 84 and the squared overlap of the trial
state with the exact Coulomb ground state is 0.988 (Fano,
Ortolani, and Colombo, 1986). The Jain wave functions are
similarly (if not more) impressive. For example, for ν ¼ 2=5
with N ¼ 10 electrons on a sphere, the symmetry-reduced
Hilbert space has a dimension of 52, and the squared overlap
with the exact Coulomb ground state is 0.9956 (Tőke and Jain,
2009). A model wave function that gives overlaps this large
for comparably large Hilbert space is usually considered quite
good. However, overlaps must be used with caution. For
example, the Gaffnian wave function mentioned in Sec. II.J
(which, as discussed there, is gapless and therefore not a valid
quantum Hall state) also has very high overlaps: for the same

ν ¼ 2=5 system the squared overlap is 0.954. Because of this
difficulty in interpreting overlaps, other methods for determin-
ing the validity of wave functions have become important.
A particularly useful one is the entanglement spectrum (Li and
Haldane, 2008), which is discussed in Sec. II.G.4.

C. Bosonic Chern-Simons theory and the quantum
Hall phase diagram

It took some time after the discovery of the Laughlin wave
functions to unravel the physical nature of the quantum Hall
liquids. In modern terminology, they are topologically ordered
states (Wen, 2004). An important step was taken by Girvin
and MacDonald (1987), who proposed an order parameter
and showed that the Laughlin states are characterized by
algebraic off-diagonal long-range order (ODLRO). In essence,
by removing all phases from the Laughlin wave function using
a singular gauge transformation (see Sec. II.D) the remaining
wave function has algebraic long-ranged order. Girvin and
MacDonald also suggested that this order pointed toward a
field theory description in terms of composite objects con-
sisting of charge and flux (Girvin and MacDonald, 1987;
Girvin, 1990).
This idea was later exploited by Zhang, Hansson, and

Kivelson (1989) who proposed the Lagrangian for the
ν ¼ 1=m Laughlin state

L ¼ ϕ⋆ði∂0 − a0Þϕ −
1

2me
jð~p − e~Aþ ~aÞϕj2 − VðρÞ

þ 1

4πm
ϵμνσaμ∂νaσ; ð8Þ

where me is the electron band mass. Here ϕ is a complex
scalar order parameter field that is minimally coupled to the
“statistical” gauge field aμ, Aμ is the external electromagnetic
field, and ρ ¼ ϕ⋆ϕ is the particle density. It had already been
shown that coupling a gauge field with a CS term in the action
will effectively change the statistics of the original bosonic
or fermionic matter field (Wilczek and Zee, 1983; Pisarski and
Rao, 1985; Wilczek, 1990). The choice of coefficient in front
of the Chern-Simons term in Eq. (8) (the final term) corre-
sponds to a change from fermions to bosons when m is odd,
i.e., the original underlying electrons are fermions, but the
field ϕ is bosonic. When the statistical gauge field is treated in

a mean-field approximation, where ~a ¼ e~A, this Ginzburg-
Landau-Chern-Simons theory (GLCS)15 thus describes inter-
acting charged bosons without any magnetic field.16 In this

13Note that some properties, such as the edge theory or the
topological ground state degeneracy, cannot be probed using the
sphere geometry, so constructing model wave functions on different
geometries is an important aspect in numerics.

14An amusing exception to the rule that overlaps decrease with
increasing system size is the composite-fermion trial wave function
for the so-called single vortex state of bosons in the LLL with contact
interaction. Its overlap with the exact ground state increases with the
number of particles and approaches 1 in the limit N → ∞ (Korslund
and Viefers, 2006).

15This name has stuck, although it is an exact rewriting of the
underlying fermionic theory and as such a proper microscopic theory
with the extra condition of the bosons having hard cores. The usual
GL theory for superconductors are more like the hydrodynamic
theory discussed in Sec. II.F.

16There is a precursor to this picture where the physical magnetic
field is “canceled” by a collective effect due to a condensation of
bosons. Starting from a Wigner crystal, Kivelson et al. (1987) used
semiclassical methods to study instabilities that occur at the Laughlin
filling fraction, due to coherent tunneling events that can be viewed as
a condensation.
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effective description, the system is essentially a charged
superfluid and captures many topological properties of the
Laughlin states, including the algebraic ODLRO previously
discussed. Later it was also shown that the Laughlin wave
functions can be derived by including fluctuations around the
mean-field solution in a random phase approximation (RPA)
(Kane et al., 1991; Zhang, 1992). The GLCS approach was
further developed to include effects of orbital spin and the
response to curvature (Abanov, 2013; Son, 2013); see also
Sec. VII.B.
Applying the same ideas to the hierarchy states, Kivelson,

Lee, and Zhang (1992) used the GLCS approach to generate
the full Abelian quantum Hall hierarchy and to study the
resulting phase diagram and associated phase transitions. An
important tool in this analysis was the concept of “corre-
sponding states” (Jain, Kivelson, and Trivedi, 1990), which
relates transport properties of quantum Hall liquids at different
filling fractions. Kivelson, Lee, and Zhang (1992) also
proposed the existence of another phase of a two-dimensional
electron gas in a magnetic field, which they named a “Hall
insulator.” In this phase σxy ∼ σ2xx → 0 as T → 0, so ρxy
remains constant at very low temperatures. Early experiments
on heterojunctions giving evidence for this phase were made
by Shahar et al. (1995), and recently it was also found in
disordered indium-oxide films (Breznay et al., 2016). Lütken
and Ross (1992, 1993) analyzed the quantum Hall phase
diagram using an effective field theory and certain, rather
strong, symmetry assumptions; see also Fradkin and
Kivelson (1996).
The bosonic Chern-Simons approach correctly obtained

much of the topological data about each of the hierarchy states
(including Hall conductivity, quasiparticle charge, and sta-
tistics) and set the stage for field theoretic evaluation of many
additional quantities. While the construction of the Chern-
Simons Lagrangian Eq. (8) is in principle exact, the evaluation
of any quantity beyond mean-field or random phase approxi-
mation level is quite challenging, and the lack of any small
parameter to control perturbation theory makes it essentially
impossible to confirm the correctness of any such calculation
without support from other approaches such as numerics.
Particularly problematic is the issue of obtaining the proper
energy scale. While the bare band mass of the electron me is
present in the Lagrangian Eq. (8), all low-energy physics
(which describes physics of a partially filled single Landau
level) should be independent of the value of this parameter,
particularly in the limit of large Landau level spacing. In
principle, this result should emerge were calculations done
exactly, but all approximations so far attempted have failed to
achieve this.

D. Composite bosons

In a first quantized language, the wave function for the
charge-flux bosons described by Eq. (8) is related to the wave
function of the original fermions via17

ΨFð~r1;…; ~rNÞ ¼
Y
i<j

�
zj − zi
jz̄j − z̄ij

�
m
ΨBð~r1;…; ~rNÞ;

i.e., they differ by a phase factor which can be interpreted as
attaching singular (infinitely thin) flux tubes each carrying m
flux quanta at the position of the particles. An alternative order
parameter was introduced by Read (1989),

ϕ†
Rð~rÞ ¼ ψ†ð~rÞUmð~rÞ

¼ ψ†ð~rÞ exp
�
−
jzj2
4l2

þm
Z

d2r0 lnðz0 − zÞρð~r0Þ
�
; ð9Þ

who showed that it exhibits true long-range order. Here ψ†ð~rÞ
creates an electron, ρ ¼ ψ†ψ is the electron density operator,
and Um is a vortex of strength m.18 In a first quantized
formalism, such a vortex, centered at the particle position ~r,
is Umð~rÞ ¼

Q
iðzi − zÞme−jzj2=ð4l2Þ.

The Read operator ϕR is bosonic, but it is not related to the
original fermion by a unitary transformation, and it is there-
fore more difficult to derive an effective GLCS theory (Read,
1989; Rajaraman and Sondhi, 1996). The difference, com-
pared to the pure phase transformation leading to Eq. (8), is
that the Read operator builds in the characteristic vanishing
property limzi→zjΨLðz1 � � � zNÞ ∼ ðzi − zjÞm and exhibits true
(i.e., not algebraic) ODLRO. The Laughlin state can be
constructed in a way similar to a Bose condensate, either
as a coherent state where the ϕR has a finite expectation value
or as the state

j1=q;NiL ¼
�Z

d2rϕ†
Rð~rÞ

�
N
j0i

at a fixed number of particles, which directly yields the
ν ¼ 1=m Laughlin wave function for N particles.

E. Composite fermions

The idea of composite fermions (Heinonen, 1998; Jain,
2007) is most easily understood as the fermionic version of
the transformation (9), where an even number of vortices is
attached to the original fermions in order to form a composite
fermion. The transformation between the fermion wave
function ΨF and the CF wave functions ΨCF is thus

ΨFð~r1;…; ~rNÞ ¼ Φ2p
0 ð~r1;…; ~rNÞΨCFð~r1;…; ~rNÞ; ð10Þ

where Φ0 is the wave function for a filled LLL. This formula
can be written in an arbitrary geometry and specializing to

the plane we have Φ0 ¼
Q

i<jðzj − ziÞe−1=ð4
~l2Þ
P

j
jzjj2 , where

~l is not the physical magnetic length, but an effective one set
by ~Nϕ ¼ Ne corresponding to a single filled Landau level
(similar for ΨCF). This convention has the advantage that it
gives the correct Guassian factors (i.e., the correct magnetic

17In the context of anyon superconductivity, attachment of phase
factors was already used by Laughlin (1988) to describe fractional
statistics particles in terms of fermion wave functions.

18Note that ψ† is the full electron creation operator. In Read’s
original formulation, ϕ†

R is defined in terms of the electron operator
projected on the LLL.
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length) for the final wave function independent of the
geometry or gauge choice. Note that the polynomial part of
ðΦ0Þ2 is identical to that of

Q
iU2ðziÞ which provides the link

to the composite-boson transformation (9).

1. The Jain wave functions

The composite-fermion transformation (10) was used by
Jain to establish a powerful correspondence between frac-
tional and integer quantum Hall states. His basic insight was
that Eq. (10) allows us to think of the ν ¼ 1=ð2pþ 1Þ
Laughlin state as a filled LLL of a composite fermion. One
may then consider other homogeneous CF wave functions in
order to form new model wave functions. In particular, filling
q Landau levels of composite fermions—which we call
Λ levels following Jain’s terminology—gives a wave function
at ν ¼ q=ð2pqþ 1Þ in the positive Jain series (Jain, 1989,
1990),

Ψq=ð2pqþ1Þðf~rigÞ ¼ PLLL½Φ2p
0 ðf~rigÞΦqðf~rigÞ�; ð11Þ

where PLLL projects on the LLL. The filling fraction follows
from a simple counting argument: Since the state is expected
to be homogeneous (up to edge effects), the filling fraction is
given by ν ¼ N=Lmax ¼ N=ð2pN þ N=qÞ þOð1=NÞ, where
we used that each Landau level contains N=q particles
and that all filled Landau levels have the same maximum
angular momentum L up to boundary effects; cf.
Appendix A. Similarly, the states in the negative Jain series
ν ¼ q=ð2pq − 1Þ are obtained by attaching an even number of
antivortices to the electrons (Jain, 2007).
Quasiparticle excitations amount to putting composite

fermions in an unfilled Λ level (usually the lowest), or holes
in any of the filled Λ levels, entirely analogous to how we
would make the corresponding low-energy excitations for
integer quantum Hall states. This simple mapping between
fractional quantum Hall states and systems of free, or at
most weakly interacting, fermions gives a fruitful intuitive
picture that extends far beyond the previous example.
Another example is paired states of composite fermions,
which will be discussed later in the context of non-Abelian
quantum Hall states. The ground state wave functions (11),
as well as those for its quasiparticle excitations, have an
excellent overlap with the states found by exact diagonal-
ization of realistic Hamiltonians, thus providing a strong
a posteriori justification for the CF ansatz. There is a large
and successful body of work based on the composite-
fermion wave functions which is reviewed by Jain (2007)
and Heinonen (1998).

2. The Lopez-Fradkin and Halperin-Lee-Read effective field
theories

Just as the GLCS theory (8) can be considered as a field
theory for bosonic flux-charge composites, there is also a
field theory for fermionic flux-charge composites that was
proposed and analyzed by Lopez and Fradkin (1991). The
only difference in the Lagrangian from Eq. (8) is that the
integer in the coefficient in front of the CS term is now
even, m ¼ 2p, which means that the composite object ϕ is
still a fermion. The mean-field solution does, however,

differ from the one in the GLCS theory in that the statistical
mean field only partially cancels the external magnetic field.
This leaves the composite objects moving in a weaker
effective field. For special filling fractions, these composite
objects completely fill a number of Landau levels and form
a gapped state. The effective mean field seen by the
composite fermions is

Beff ¼ Bext − 2pϕ0ρ;

where ρ is the density of electrons, ϕ0 is the flux quantum,
and Bext is the externally applied field. Thus, the effective
filling fraction is

νeff ¼ ρϕ0

Beff ¼
ρϕ0

Bext − 2pϕ0ρ
¼ ν

1 − 2pν
;

which is an integer q exactly when ν ¼ q=ð2pqþ 1Þ. At
mean-field level, the fractional quantum Hall gap is given
by the effective cyclotron energy eBeff=me ¼ ϕ0ρe=ðqmeÞ.
As with the Chern-Simons boson theory, the (exact)
derivation of the Chern-Simons fermion Lagrangian
results in the bare electron band mass me appearing in
the kinetic term (and this sets the size of the mean-field
gap). However, since the low-energy physics occurs within
a single Landau level, me should not be an important
parameter of the problem (and should vanish altogether in
the limit of large Landau level spacing). As with the bosonic
case, this problem occurs since the Chern-Simons theory
can only be evaluated using rather crude methods such as
mean-field or random phase approximation. Presumably a
more precise (or exact) calculation would result in the
dependence on me vanishing. As with the bosonic case,
there is, however, serious difficulty in achieving any more
precise calculation, since there is no natural small parameter
in the theory.
The composite-fermion field theory approach was further

developed by Halperin, Lee, and Read (1993) who considered
the case of ν ¼ 1=2 (or any 1=m with m even) where the
composite fermions move in zero effective field (i.e.,
νeff ¼ ∞) and thus can form a Fermi liquid. In the Fermi
liquid context, a natural solution to the problem of energy
scales results from viewing the strongly interacting Fermi
liquid via the phenomenological Landau Fermi liquid theory
where an energy functional is proposed to describe the
deformation modes of the Fermi surface. In this framework
the electron mass can be renormalized to an effective mass m�

set by the interaction strength of the electrons so as to
correctly give a fractional quantum Hall gap (the
composite-fermion cyclotron energy eBeff=m�) on the inter-
action scale (Halperin, Lee, and Read, 1993; Simon and
Halperin, 1993). As is usual in Landau theory, the mass
renormalization is linked to a certain Fermi surface deforma-
tion parameter so as to preserve Galilean invariance of the
system (Nozieres and Pines, 1999).
A feature of the composite-fermion field theory, as well

as the composite-fermion wave functions, is that they do not
manifestly obey particle-hole conjugation. In the limit of
infinite Landau level spacing, the lowest Landau level is
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perfectly particle-hole symmetric,19 so, for example, the
energy gap for ν ¼ 1=3 should be identical to the energy
gap at ν ¼ 2=3. In the wave function approach this symmetry
is very close to true, but not exactly true (Möller and Simon,
2005). In the field theory approach, since the Lagrangian (8) is
in principle exact, the particle-hole symmetry should emerge
if calculations are performed exactly. However, any practical
calculation involves approximations, and no known approxi-
mation preserves the particle-hole symmetry [although RPA
methods come very close (Simon and Halperin, 1993)],
similar to the wave function approach.
The composite-fermion field theory gave rise to other field

theory approaches to composite fermions which emphasized
the dipolar nature (Read, 1994) of the composite object
(Pasquier and Haldane, 1998; Read, 1998; Lee, 1999; Stern
et al., 1999; Murthy and Shankar, 2003). There is a recent
surge in interest in constructing a particle-hole symmetric
description of the composite-fermion liquid in terms of neutral
Dirac particles (Barkeshli, Mulligan, and Fisher, 2015; Son,
2015; Wang and Senthil, 2015; Geraedts, Zaletel, Mong et al.,
2016; Murthy and Shankar, 2016). This approach has the
notable advantage that it is manifestly particle-hole symmetric
at all orders.
Note that just as in the GLCS theory, in the composite-

fermion field theory approach, the Laughlin wave function
does not appear at the mean-field level. This is because in
both cases the composite object is formed by a charge and a
pointlike statistical flux, so the extra “correlation hole”
∼
Q

j≠iðzj − ziÞ2p around the electron at position zi must
arise from fluctuations around the mean field (Lopez and
Fradkin, 1992).
Sometimes the wave functions (11) are also motivated in

terms of flux attachment—the cartoon picture being that
each electron grabs 2p flux quanta, leaving a weaker
effective magnetic field. This picture is somewhat mislead-
ing since in the approaches by Read and Jain the charge
binds to a vortex that includes the correlation hole and
directly yields good wave functions with filling fractions
following from a counting argument without any appeal to
effective fields.

F. The Wen-Zee effective Chern-Simons theory

In the Chern-Simons approaches discussed previously one
can imagine integrating out the particles of the theory to leave
an effective Lagrangian for the longest length scales of the
system. Since the quantum Hall states are gapped, one might
naively expect that this leaves no physics at all remaining.
This is, however, not true. First, as discussed in some detail in
the next section, in realistic geometries, there are low-energy
modes propagating along the edges of the sample. Second,
even in closed geometries the topological data remain at
arbitrarily long length scales and low energy.
Before presenting the general low-energy Lagrangian first

proposed by Wen and Zee (1992) we make some general

comments about its structure and status. It is useful to think of
this kind of effective theories in terms of hydrodynamics,
implying that the strategy for deriving them is not to keep the
original degrees of freedom below some cutoff scale, but
rather to introduce new ones. In hydrodynamics, the con-
served currents are natural variables, and in two dimensions
they are conveniently parametrized as jμ ¼ ϵμνσ∂ν ~aσ . In this
way, current conservation is built in, at the expense of
introducing a gauge symmetry. The hydrodynamical gauge
field ~a is not to be confused with the statistical gauge field a
in the previous sections. In the case of the Laughlin states
where we have a GLCS theory, or a composite-fermion field
theory, we can derive the hydrodynamical theory by directly
integrating over the microscopic field ϕ and the statistical
gauge field a. For general QH states this procedure is not
possible, and one must revert to the usual philosophy of
effective low-energy theories and include in principle all terms
allowed by symmetry. In practice one is usually keeping only
the lowest derivative terms. In the QH context, these are
Chern-Simons terms ∼ϵμνσ ~aμ∂ν ~aσ , which are linear in deriv-
atives and preserve rotation invariance but break parity and
time-reversal symmetry. These terms are also Lorentz invari-
ant, which is however a consequence of gauge symmetry.
Higher derivative terms are, in general, not Lorentz invariant.
What is special with the Wen-Zee effective action is that the
coefficients in front of the various terms have a direct
topological meaning and thus can take only discrete values.
In fact, all topological information about an Abelian

quantum Hall state at the nth level of hierarchy can be coded
in the following effective Lagrangian based on n Chern-
Simons gauge fields (Wen and Zee, 1992; Wen, 1995):

LWZ ¼ −
1

4π
Kαβϵ

μνσaαμ∂νa
β
σ −

e
2π

tαAμϵ
μνσ∂νaασ

−
sα
2π

ωiϵ
iνσ∂νaασ þ aαμl

q
αj

μ
q; ð12Þ

where we suppressed the tilde on the field a for ease of
notation, where μ, ν, and σ denote space-time indices, and
while the index i runs over spatial indices only. Aμ is an
external electromagnetic field, and aαμ are the n internal Chern-
Simons fields. The indices α, β run from 1;…; n, where n is
the rank of Kαβ which is a symmetric matrix with odd integers
along the diagonal and with all other entries even integers, and
tα is a vector of n integers defining the electric charge of the
currents ϵiνσ∂νaασ . The coupling of the n quasiparticle currents
jμq to the Chern-Simons fields is determined by the integer
vector lqα, and taking l

q
α ¼ δqα corresponds to the “elementary”

currents jμq that couple minimally to the gauge fields. In
Eq. (12) sα is a vector of spins associated with the different
Chern-Simons fields and ωi is a spin connection, such that the
corresponding field strength R ¼ ϵij∂iωj is the Gaussian
curvature of the surface on which the quantum Hall state
lives.20 We return to this in Sec. VII.A where we study
quantum Hall states on a sphere. On a flat surface, however, ω
can be taken to be zero and the spin does not enter.19In the presence of particle-hole symmetric disorder one can also

show that σxy should be exactly e2=ð2hÞ when the Landau level is
half filled (Kivelson et al., 1997). 20The Ricci curvature R is twice the Gaussian curvature R ¼ 2R.
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The full topological information can be extracted from the
Lagrangian (12). For example, using a vector notation, the
filling fraction is given by (Wen and Zee, 1992)

ν ¼ tTK−1t ð13Þ

and the ground state degeneracy on a manifold with genus g is
given by

ðdetKÞg: ð14Þ

Another important topological quantum number is the shift S
defined by

Ne ¼ νðNΦ þ SÞ; ð15Þ

where NΦ denotes the total number of flux quanta (on the
sphere) or the highest occupied angular momentum orbital
(on the disk), respectively. Its value is determined by the
topological data as

S ¼ 2s̄ ¼ 2

ν
tTK−1s; ð16Þ

where s̄ is known as the average orbital spin. The electric
charge of the quasiparticle of the qth type is

Qq ¼ −etTK−1lq; ð17Þ

and clockwise braiding of quasiparticle type q around one of
type r gives a phase of

θq;r ¼ 2πlTqK−1lr; ð18Þ

whereas clockwise exchange of two quasiparticles of type q
gives

θq ¼ πlTqK−1lq: ð19Þ

A given topological order does not uniquely define the
necessary data ðK; t; sÞ in the Lagrangian (12). In fact, one is
free to make the transformation (Read, 1990; Wen and Zee,
1992)

K → WTKW s → WTs

t → WTt lq → WTlq; ð20Þ

where W is an integer matrix with unit determinant,
without changing the values obtained from Eqs. (13), (14),
and (16)–(19). There are two very natural bases to work in.
The first, stemming from the Haldane-Halperin hierarchy and
thus called hierarchical basis, has t1 ¼ 1 and tα ¼ 0 for α > 1.
The second basis is the symmetric, or composite-fermion
basis, which has tα ¼ t ¼ 1 for all α. The transformation
that maps the symmetric to the hierarchical basis, i.e.,
Kh ¼ WTKsW, is given by Wij ¼ δi;j − δiþ1;j.
Wen argued that for a state at level n in the hierarchy, there

must be n linearly independent combinations with charge e, or
in other words n independent electron currents (Wen, 1995).

These are described by the n vectors lαe . In the symmetric basis
these take the simple form lαe;r ¼ Krα, where α labels the
vector and r its component, resulting in Qe ¼ −et ¼ −e as
expected. This will be important when we later use the
topological data ðK; t; sÞ to construct explicit electronic
wave functions. Finally we give the explicit form, in the
symmetric basis, for the K matrix and the spin vector that
describe the full hierarchy obtained by successive condensa-
tions of quasiparticles:

Kαβ ¼
�
mþ Σα if α ¼ β;

−σα þmþ Σα if α < β;

Σα ¼
Xα−1
j¼1

ðpj − 2Þσj;

sα ¼
1

2
Kαα þ α − 1; ð21Þ

with m odd and Kαβ ¼ Kβα, if α > β. The even integers pj

specify the density of the quasiparticle condensates, and
σα ¼ þ1 ð−1Þ for condensing quasielectrons (quasiholes)
[cf. Eq. (6)].

G. Physics at the quantum Hall edge

On a closed surface (such as a sphere or torus, see Sec. VII),
the Lagrangian (12) is completely self-consistent. However,
for a system with edges, such as a disk, the action turns out
to not even be gauge invariant, as discussed further in
Sec. II.G.2. The reason for this failure is that quantum Hall
systems always have nontrivial edge states, which must be
included in the theory. We thus briefly turn our attention now
to the physics of quantum Hall edge states, and, in particular,
edge states of the hierarchy. There are a number of papers
which give more detail about quantum Hall edge physics
(Wen, 1992; Kane and Fisher, 1996; Chang, 2003). Here we
give a very brief review just to indicate how these ideas fit into
the overall framework of hierarchies.

1. Introduction to edge physics

The existence of edge currents in a quantum Hall system is
virtually guaranteed by the presence of crossed magnetic field
B and electric field E (the electric field being caused by the
confining potential keeping the electrons inside the sample).
Classically one expects a drift velocity v ¼ E ×B=jBj2. Thus
a perturbation in density will propagate along the edge, in only
one direction, at this velocity, thus giving a chiral hydro-
dynamics. Another semiclassical picture of these edge states is
that of electrons executing so-called “skipping orbits” that
bounce off the edge and travel in one direction. What is less
obvious is how to quantize this sort of motion. An argument
by Wen (1992) gives a proper quantum mechanical treatment
for simple Laughlin states, which we now review.
Let us imagine a quantum Hall system filling the lower

half plane, with an edge running in the x direction at position
y ¼ 0. Given that the quantum Hall system is incompressible,
any perturbation of the edge must come from a physical
displacement of the edge by some distance hðxÞ in the y
direction so that the excess density along the edge is
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ρðxÞ ¼ n̄hðxÞ, where n̄ ¼ ν=ð2πl2Þ is the electron density of
the bulk quantum Hall state. The energy of the displacement
should be given simply in terms of the electrostatic potential
Vðx; yÞ ¼ Ey on the edge.21 We expect (Wen, 1992)

H ¼
Z

dx
Z

hðxÞ

0

dyeVðx; yÞn̄ ¼ Een̄
2

Z
dxhðxÞ2

¼ πv
ν

Z
dxρðxÞ2 ¼ 2πv

ν

X
k>0

ρkρ−k ð22Þ

with the Fourier transform convention

ρk ¼
1ffiffiffiffi
L

p
Z

dxe−ikxρðxÞ.

Now, given that any density perturbation should move along
the edge at the drift velocity, we expect dynamical equations
ð∂t − v∂xÞρðxÞ ¼ 0 or equivalently

ð∂t − ivkÞρk ¼ 0: ð23Þ

From the Hamilton equations _q ¼ ∂H=∂p and _p ¼ −∂H=∂q,
it follows that the momentum conjugate to the coordinate
q ¼ ρk for k > 0 must be taken as p ¼ 2πρ−k=ðikνÞ in order
for the dynamical equation (23) to be consistent with the
Hamiltonian (22). Canonical quantization is now straightfor-
ward and one obtains the so-called Uð1Þ Kac-Moody algebra,

½ρk; ρk0 � ¼
νk0

2π
δkþk0 : ð24Þ

This well-known, but nevertheless quite subtle result is
derived and commented upon in Appendix C.
Next we introduce a bose field φðxÞ related to the density by

ρðxÞ ¼ 1

2π
∂xφðxÞ; ð25Þ

where the field φ has equal-time commutation relations

½φðxÞ;φðx0Þ� ¼ iνπsignðx − x0Þ: ð26Þ

For the normalization convention, see Appendix B.2. Using
these commutation relations together with Eq. (25) for
ρðxÞ and Fourier transforming we recover the Kac-Moody
commutators (24).
From Eqs. (25) and (26) it easy to see that ∂xφ=ð2πνÞ is

canonically conjugate to φðxÞ (their commutator is propor-
tional to a delta function). Using this information with the
Hamiltonian previously given, Wen (1992) wrote the
Lagrangian for the edge as

Ledge ¼
1

4πν
ð∂xφÞð∂tφÞ −

v
4πν

ð∂xφÞð∂xφÞ; ð27Þ

which is that of a one-dimensional chiral boson.

One can write a creation operator for a bump of charge α at
position x as

VαðxÞ ¼ ∶eiαφðxÞ∶; ð28Þ

with colons denoting normal ordering. It is easy to check that
this inserts charge αν by noting that

½ρðx0Þ; VαðxÞ� ¼ ναVαðxÞδðx − x0Þ:

Crucially, we can create a charge e using the operator
Ψe ¼ V1=ν. Note, however, that this operator has proper
fermionic commutations ΨeðxÞΨeðx0Þ ¼ −Ψeðx0ÞΨeðxÞ only
when ν is one over an odd integer, corresponding to half
integer conformal spin (see Appendix B). This implies that
only these simple Laughlin states can be described by a single
edge mode.

2. Chern-Simons approach and Wen-Zee edge

Another way to understand the edge physics is via the
Chern-Simons approach. In the case of a Laughlin state, the
Wen-Zee effective Chern-Simons Lagrangian (12) is very
simple:

L ¼ −
1

4πν
ϵμνσaμ∂νaσ −

e
2π

ϵμνσaμ∂νAσ ; ð29Þ

where we have left out the coupling to external currents and
possible curvature of the two-dimensional surface.
On a closed manifold, it follows by integration by parts

that the corresponding action is gauge invariant. However, as
mentioned, the action is not gauge invariant in the presence
of a boundary. Let again our fluid occupy y < 0, and our
edge run along the y ¼ 0 axis. Now we cannot integrate by
parts in the y direction without getting a boundary term. What
happens is that the would-be gauge mode at the boundary
becomes a physical degree of freedom, which is shown as
follows: First notice that a0 is not dynamical, but a Lagrange
multiplier implementing the constraint ϵij∂iaj þ νeϵij∂iAj ¼
bþ νeB ¼ 0, which is solved by ai ¼ −νeAi þ ∂iφ.
Substituting this back in the action (29) and picking the
a0 ¼ 0 gauge, we get after partial integration and some
rearrangements:

S ¼
Z

dtd2xL0

¼ 1

4πν

Z
dtdxð∂xφ − νeAxÞð∂tφ − νeA0Þ

þ νe2

4π

Z
dtd2xϵμνσAμ∂νAσ −

e
4π

Z
dtdxφEx; ð30Þ

where φðx; tÞ≡ φðx; 0; tÞ is a scalar field with support along
the boundary y ¼ 0 and Ex ¼ ∂tAx − ∂xA0. Written in this
form it is clear that the only dynamical degrees of freedom
reside on the edge, and from the “symplectic” term ∼∂xφ∂tφ
we immediately get the canonical commutation relation
(Faddeev and Jackiw, 1988)

21With a sufficiently abrupt edge, this approach breaks down and
very different edge physics can result (Fern and Simon, 2016).
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½φðxÞ; ∂x0φðx0Þ� ¼ 2πiνδðx − x0Þ; ð31Þ
which again means that ∂xφ=ð2πνÞ is canonically conjugate to
φðxÞ as was inferred from Eq. (24). For the action (30) to be
invariant under gauge transformations of this background
field, Aμ → Aμ þ ∂μξ=e, the scalar field φ must transform as
φ → φþ νξ which identifies it as a phase field. Also note that
the edge action on the first line is separately invariant under
the gauge transformation, while the “anomaly” term ∼Ex on
the second line exactly cancels the gauge variation of the
Chern-Simons term for the background field (Hansson and
Viefers, 2000).
Neglecting the background field, the Lagrangian (30)

matches Eq. (27) except that it has zero edge velocity. This
is perhaps not surprising since the velocity is a nonuniversal
parameter of the edge, depending on the details of the
edge confinement. In order to precisely obtain the edge
Lagrangian (27), one can choose a different gauge fixing
a0 − vax ¼ 0, as discussed by Wen (1992), or alternatively
one can simply add the gauge invariant potential term
−ðv=4πνÞð∂xφ−νeAxÞ2 by hand.
Calculating the edge charge and current by varying the

action (30) with respect to A0 and Ax we get ρedge ¼
ðe=2πÞð∂xφ − νeAxÞ and jedge ¼ 0. Using the equation of
motion for φ we get _ρedge ¼ −ðνe2=2πÞEx, while a direct
variation of the bulk action with respect to Ay gives the
outgoing bulk current perpendicular to the edge, and we find
Jy ¼ _ρedge. This “anomaly cancellation” which was originally
pointed out in the quantum Hall context by Stone (1991), based
on earlier work by Callan and Harvey (1985), is a general
phenomenon. Charge nonconservation in a CS theory, which
physically corresponds to a current perpendicular to the
boundary, is exactly compensated by the charge not being
conserved in the edge theory since the corresponding current is
anomalous. Here we considered the charge current, but we later
also discuss the energy-momentum current related to heat
transport.
It is quite easy to generalize to arbitrary hierarchy states.

One starts with the first term of the Lagrangian (12)
and similarly enforces gauge invariance to obtain an edge
Lagrangian generalizing Eq. (30) to hierarchy states,

L0 ¼
1

4π
Kαβð∂xφ

αÞð∂tφ
βÞ;

where we suppressed the external field Aμ, and where φα are a
set of Bose fields with commutations

½φαðxÞ;φβðx0Þ� ¼ iπK−1
αβ signðx − x0Þ:

As in the case of Eq. (27) there is also a nonuniversal
interaction term H, which depends on details of the edge
structure as well as the strength of the interaction between the
different edge modes. We generally write the full Lagrangian
as Ledge ¼ L0 −H with the Hamiltonian

H ¼ 1

4π
Vαβð∂xφ

αÞð∂xφ
βÞ;

where V is a positive definite matrix.

Given the coupling of the gauge field a in Eq. (12) to the
external electromagnetic field A, it follows that the charge
density associated with an edge excitation must be

ρðxÞ ¼ 1

2π
tαð∂xφ

αÞ;

and a quasiparticle described by a vector l with entries lα as in
Eq. (17) can be created using the operator

Ψ†
l ðxÞ ¼ ∶ei

P
α
lαφαðxÞ∶:

The emerging picture of the edge of a hierarchy state is one
involving multiple chiral Bose modes, one for each level of the
hierarchy. However, one should be aware that modes corre-
sponding to any negative eigenvalue of the K matrix will be
reverse moving. One should also remember that there may
be processes that can remove an electron from one of the
edge modes and put it back into a different edge mode. In
composite-fermion language this corresponds to removing an
electron from one Λ level edge and placing it in another.

3. The conformal edge

Whether considering a single edge mode or a system with
multiple edge modes, one obtains a gapless (massless) one-
dimensional system, which is necessarily described by a
conformal field theory. There are, however, several added
features. To begin with, multiple edge modes will generically
have different velocities, whereas in a true CFT there should
be only one velocity of light. More generally the edge can be a
perturbed CFT where the perturbations may be irrelevant
(vanishing at low energy), marginal, or relevant. In some
cases, a relevant perturbation can drive the edge to another
gapless fixed point (Haldane, 1995; Read, 2009a; Cano et al.,
2014). Nonetheless, even when we consider more complex
quantum Hall states (such as non-Abelian states), the edges
will always be described by (possibly perturbed) CFTs.
The connection to CFT turns out to be far more significant

than it might appear so far. As seen in Sec. IV.C.2, a so-called
bulk-edge correspondence allows us to describe the bulk of
the quantum Hall state with the same CFT that we use for a
minimal description of the edge.

4. Edge CFT and entanglement spectrum

For quantum Hall wave functions that are the exact zero-
energy ground states of a model Hamiltonian, one can
explicitly derive the edge excitations and show that the state
counting (as a function of angular momentum) is the same as
in the associated CFT (Read and Rezayi, 1996; Ardonne,
Kedem, and Stone, 2005; Read, 2006). For other quantum
Hall states, one has to resort to numerical simulations. While
the study of quantum Hall edges potentially gives a direct
way to study the spectrum of the (1þ 1)-dimensional CFT
associated with a quantum Hall state, it can also be compli-
cated by the fact that these spectra depend on nonuniversal
properties of the edges (such as the slope of the potential at
the edge) and can also be further complicated by so-called
“reconstruction” where edges become nonmonotonic in
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density (MacDonald, 1990; Johnson and MacDonald, 1991;
de C. Chamon and Wen, 1994).
Recently it was realized that one can learn about the

excitations by looking at the entanglement properties of the
representative ground state wave function. The entanglement
entropy, independently introduced by Kitaev and Preskill
(2006) and Levin and Wen (2006), is currently the most
commonly used entanglement measure.22 It contains, in
principle, all the information about the S matrix, and thus
the quasiparticle excitations (Zhang et al., 2012), and gives
direct access to the total quantum dimension of the underlying
field theory. The numerical evaluation is, however, very
difficult for FQH systems (Haque, Zozulya, and Schoutens,
2007), and only recently was it possible to obtain reliable
results (Zaletel, Mong, and Pollmann, 2013). A numerically
more accessible quantity is the “entanglement spectrum”
(Li and Haldane, 2008), which allows one to examine the
CFT spectrum of a virtual edge and has quickly become an
indispensable tool of the community.
We consider a system bipartitioned into two subsystems A

and B (we can choose A and B to be the top and bottom halves
of a sphere divided along the equator, although many other
geometries are possible). The ground state wave function jΨi
is contained in the tensor product of the Hilbert spaces of
the A subsystem and the B subsystem. We make a Schmidt
decomposition of the state as

jΨi ¼
X
n

e−ξn=2jψn
Ai ⊗ jψn

Bi; ð32Þ

where jψn
Ai and jψn

Bi are states forming orthonormal sets
completely contained in the A and B subsystems, respectively.
The ξn are known as “entanglement energies,” but one should
realize that they are properties of the ground state decom-
position and have nothing to do with the physical energies of
the quantum Hall state. The conjecture by Li and Haldane
(2008) [see also Kitaev and Preskill (2006)] is that the
spectrum of entanglement energies should match that of the
(1þ 1)-dimensional CFT defining the quantum Hall state.
In order to examine these spectra more closely, one

typically divides the system into A and B so as to conserve
several quantum numbers. For example, if we divide the
sphere into an upper and lower part along a latitude, the
division conserves the total Lz angular momentum, and,
assuming a rotationally invariant interaction, it will conserve
the number of particles in each part. In this case one can plot
the entanglement energies as a function of these conserved
quantities, for example, ξðN;LzÞ. One can choose to biparti-
tion the system in several different ways: an orbital cut, where
certain single-electron orbitals are placed in subsystem A
and others in subsystem B (Li and Haldane, 2008); a real-
space cut, where particles in one physical region are placed in
subsystem A and others in subsystem B (Dubail, Read, and
Rezayi, 2012b; Rodríguez, Simon, and Slingerland, 2012;
Sterdyniak et al., 2012); or a particle cut, where certain

particles are placed in subsystem A and others in sub-
system B (Zozulya et al., 2007; Sterdyniak, Regnault, and
Bernevig, 2011).
For topologically ordered states, both the orbital and the

real-space cut can be used to extract important information
about the edge spectrum, viz. the type of CFT that describes
the edge spectrum and the compactification radius of the
charge field, which is directly related to the filling fraction
(Hermanns et al., 2011; Dubail, Read, and Rezayi, 2012b).
Both cuts should also give the same topological entanglement
entropy (Zozulya et al., 2007; Dubail, Read, and Rezayi,
2012a; Zaletel, Mong, and Pollmann, 2013), even though
the finite-size corrections in numerical simulations can be
quite substantial for the currently accessible system sizes
(Sterdyniak et al., 2012). There are, however, differences
which reflect that the orbital cut strictly speaking does not
mimic a spatial edge, as can be easily seen in the case of the
IQHE.23 From practical point of view, the orbital cut is the
favored tool since it is much easier to evaluate numerically.
The particle cut provides information about bulk excita-

tions. More precisely, for trial wave functions that are zero-
energy ground states of model Hamiltonians, the particle
entanglement spectrum reproduces the quasihole state count-
ing: the number of noninfinite eigenvalues equals the number
of zero-energy states for the appropriate number of particles
and flux. For other trial states, where no model Hamiltonian
exists, the particle entanglement spectrum may instead be
used to “define” the quasihole state counting. This “defini-
tion” is consistent both with the counting obtained using the
composite-fermion picture, as long as one considers holes in
any of the filled Λ levels, and with that obtained using CFT
techniques, as long as all quasihole operators (see Sec. V) are
taken into account.
Even though entanglement spectra of strongly correlated

states are very complicated and rigorous proofs are rare, there
have been some advancements recently. Several works have
formalized the connection between the CFT spectrum and
entanglement spectrum (Dubail, Read, and Rezayi, 2012a,
2012b; Qi, Katsura, and Ludwig, 2012; Swingle and Senthil,
2012) at various levels of rigor. In addition, one can derive a
bulk-edge correspondence in the entanglement spectra, analo-
gously to the well-established bulk-edge correspondence in
the physical system (Chandran et al., 2011).
The “simple” quantum Hall states, i.e., those that can be

written as correlators of primary fields of a CFT, have
correspondingly simple entanglement spectra. The spectra
for hierarchy states are somewhat more complicated and have
been studied to a much lesser extent. At least for ν ¼ 2=5 and
3=7 the counting of low entanglement energy modes matches
that of two or three chiral bosons, respectively (Regnault,
Bernevig, and Haldane, 2009; Rodríguez et al., 2013). It has
also been suggested that these states can be described fairly
simply in terms of composite fermions (Davenport et al.,
2015) although this has only been explicitly tested for the

22For a mathematical perspective on topological entanglement
entropy in Chern-Simons theories and quantum Hall states, see Dong
et al. (2008) and Hikami (2008).

23Being a single Slater determinant, this is trivially a short-range
entangled state, and an orbital cut gives an entanglement spectrum
with a single state. A real-space cut reveals that the edge supports a
gapless fermion, i.e., a c ¼ 1 CFT with unit charge radius.
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fractional quantum Hall effect of bosons at ν ¼ 2=3 (which is
presumably similar to fermions at ν ¼ 2=5).

H. Effective response action

Since the Wen-Zee action (12) is quadratic in the topo-
logical gauge fields aαμ, these can be integrated to give an
effective action that describes the response to external fields.
Neglecting the quasiparticle currents,24 a (nontrivial) calcu-
lation and some rearrangement gives (Gromov et al., 2015b)

Seff ¼
ν

4π

Z
d3xϵμνσ ½ðeAþ s̄ωÞμ∂νðeAþ s̄ωÞσ

þ βωμ∂νωσ� −
c

48π

Z
d3xϵμνσωμ∂νωσ: ð33Þ

Note that the first term is what we naively get from the
Gaussian integration. The filling fraction ν and the average
orbital spin s̄ are given by Eqs. (13) and (16) respectively,

and the orbital spin variance β is β ¼ νðs2 − s̄2Þ with

νs2 ¼ sTK−1s. For a ν ¼ 1=q Laughlin state s̄ ¼ q=2 and
β ¼ 0, since in a one-component state all electrons have the
same orbital spin so the variance vanishes. For general Abelian
hierarchy states, as the Jain states, β ≠ 0.
In the last term, the chiral, or topological, central charge c

equals the signature of the K matrix which is the difference
between the number of positive and negative eigenvalues and
determines the thermal Hall coefficient, κH, by (Kane and
Fisher, 1997; Read and Green, 2000)

κH ¼ c
πk2BT
6

:

Although the first term in Eq. (33) goes back to the original
work of Wen and Zee (1992), the history of the second term is
more involved. It was introduced in the condensed matter
context by Volovik (1990) in his work on liquid 3He films, and
later Read and Green (2000) argued that it was needed to
cancel the anomaly in the energy-momentum current con-
servation on the boundary, in analogy with the anomaly
cancellation in the charge current described in Sec. II.G.2.
Later it was found by an explicit calculation using free
fermions (i.e., the IQHE) by Abanov and Gromov (2014),
and subsequently by Gromov et al. (2015a, 2015b) by
carefully performing the integral over topological gauge fields
in Eq. (12). The subtlety is that although the action is
independent of the metric, performing the integral requires
a gauge fixing which will depend on the metric. As shown by
Witten (1989), this generates an extra term, which essentially
is the second one in Eq. (33). Bar-Natan and Witten (1991)
referred to this as the “framing anomaly.” In a parallel
development, Bradlyn and Read (2015a) determined the
general form of the effective low-energy action obtained by
integrating out the matter fields. Later they calculated the
second term in Eq. (33) directly from particular CFT wave
functions (Bradlyn and Read, 2015b). They also argued, based

on anomaly cancellation [for this see also Stone (2012)], that
the orbital spin variance β should vanish in a general one-
component (non-Abelian) quantum Hall state. Related work
on the gravitational response of Hall fluids was done by
Hoyos and Son (2012), Son (2013), Can, Laskin, and
Wiegmann (2014, 2015), and Cho, You, and Fradkin (2014).

I. Non-Abelian quantum Hall states and
non-Abelian hierarchies

The defining features of a non-Abelian quantum Hall state
are that the quasiparticles are described by multicomponent
wave functions and obey non-Abelian fractional statistics due
to the appearance of non-Abelian Berry phases (Wilczek and
Zee, 1984; Moore and Read, 1991) during braiding. The first
concrete proposal was the Moore-Read Pfaffian state dis-
cussed in detail in Sec. IV.C.5. Several more filling fractions,
all of them in the second Landau level (see Fig. 2), have
been conjectured to be non-Abelian. It is natural to
wonder whether there is a single governing principle that
can explain all the observed states as well as their properties
and relative stability, similar to the Haldane-Halperin hier-
archy in the LLL. Another question is whether it is possible to
form hierarchy states by condensing non-Abelian quasipar-
ticles. Several proposals in these directions are discussed
in Sec. VI.

J. Other approaches

There has been no shortage of attempts to construct new
representative wave functions for the quantum Hall effect.
Ideally we want these to be based on some physical principles,
and we want them to be gapped ground states of some (even
slightly realistic) Hamiltonians. This combination of demands
makes successful wave function building extremely difficult.
Establishing that a ground state is gapped is particularly
difficult and is only ever really confirmed by extensive
numerics, requiring large system size extrapolation, which
is always open to at least some degree of doubt. Even the
conventional hierarchies previously discussed are not beyond
question. For example, a detailed analysis of the conventional
hierarchy was given by Quinn et al. (2009). Further it was
proposed that certain experimentally observed fractional
quantum Hall states may not be of the hierarchy or
composite-fermion form (Mukherjee et al., 2014a, 2014b),
although it is not at all clear if the proposed competing states
would be viable gapped states in the thermodynamic limit.
One straightforward way to build new wave functions is to

perform one of several well-established transformations on a
known wave function. One such transformation is to build the
same wave function in a higher Landau level, which should
be a simple alteration; indeed, given a Hamiltonian with a
corresponding ground state in one Landau level, it is easy to
produce another Hamiltonian that will give precisely the same
ground state within another Landau level (Haldane, 1990;
Simon, Rezayi, and Cooper, 2007b). Another transformation
is particle-hole conjugation, which can potentially produce
new topological orders (Jolicoeur, 2007) even for a half filled
Landau level (Lee et al., 2007; Levin, Halperin, and Rosenow,
2007). A third transformation is flux attachment, which has

24These can be included, but will give a nonlocal action, which is
needed in order to encode the statistical phases related to the braiding
of the quasiparticles.
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seen great success in the composite-fermion (Jain, 2007) and
composite-boson approaches. Finally, one can consider sim-
ply multiplying together two known wave functions, which
can be interpreted as a parton construction (Wen, 1999); see
also Sec. IV.D.2. Combinations of these techniques have been
used to generate a number of novel filling fractions outside of
the conventional hierarchy such as ν ¼ 3=8 (Tőke, Shi, and
Jain, 2008; Mukherjee et al., 2012; Hutasoit et al., 2016) and
an alternative candidate for 4=11 that is distinct from the
hierarchical one (Mukherjee et al., 2014a).
There have also been approaches proposed that precisely

reproduce known conventional hierarchies from different
physical intuition. In two interesting papers using a formalism
entirely in the LLL, Haxton and co-workers (Ginocchio and
Haxton, 1996; Haxton and Haxton, 2015) provided a quite
different way to understand why the hierarchy and composite-
fermion states are energetically favorable. Another work by
Jain and Kamilla (1997a) physically motivated the fully chiral
subset of the CF hierarchy without appeal to higher Landau
levels. This is also the case for the CFT approach (Bergholtz
et al., 2008; Hansson, Hermanns, and Viefers, 2009; Suorsa,
Viefers, and Hansson, 2011a, 2011b), which is discussed in
detail in Sec. V.A.
Aside from the previously discussed methods, there have

been attempts to unify fractional quantum Hall states, and
to construct new states, by focusing on clustering patterns.
There are several closely related ways of approaching this
which we will review. Generalizing the clustering patterns of
the Laughlin and Moore-Read states leads to the Read-Rezayi
series of quantum Hall states (Read and Rezayi, 1999), which
can also be defined as correlators of primary fields of CFTs.
In addition to the Read-Rezayi series, several other wave
functions can be described in this clustering language includ-
ing the Haffnian wave function (Green, 2001) describing
electrons at ν ¼ 1=3 and the Gaffnian wave function
(Yoshioka, MacDonald, and Girvin, 1988; Simon et al.,
2007) describing electrons at ν ¼ 2=5. Unfortunately, despite
having good overlaps with exact diagonalizations for small
system sizes, the Gaffnian and Haffnian wave functions are
defective in certain ways.
The Haffnian turns out to be a correlator of a nonrational

conformal field theory which invalidates it as a candidate for a
sensible quantum Hall state as discussed in detail by Read
(2009b). Some of its resulting defects are that it has an infinite
number of particle types and correspondingly an infinite
ground state degeneracy on the torus in the thermodynamic
limit, both of which strongly suggest that it is gapless in this
limit (Read, 2009b). Indeed, arguments have been made that
this wave function represents a particular critical point
(Green, 2001).
Similarly, the Gaffnian is a correlator of a nonunitary

conformal field theory (Simon et al., 2007), and Read
(2009a, 2009b) has given a series of arguments demonstrating
that no nonunitary CFT can represent a gapped phase of matter.
Recently, numerical studies on the Gaffnian verified that its
excitation spectrum is gapless (Jolicoeur, Mizusaki, and
Lecheminant, 2014; Papić, 2014; Weerasinghe and Seidel,
2014) and that charge is indeed not screened (Bernevig,
Bonderson, and Regnault, 2012; Wu et al., 2014; Estienne,
Regnault, and Bernevig, 2015). This is an unfortunate feature of

the clustering approaches—focusing on the single-component
case for simplicity, none of these clustering approaches have
convincingly yielded any new gapped phases of matter, beyond
the Read-Rezayi series.
One of the clustering approaches to building new wave

functions is to identify polynomials (wave functions) with
certain clustering or vanishing properties. For example, the
Laughlin ν ¼ 1=3 wave function is uniquely identified by
being the lowest degree antisymmetric polynomial in
z1;…; zN which vanishes as three or more powers when
any two coordinates zi and zj approach the same point. This
direction of thought has resulted in the detailed study of Jack
polynomials (Greiter, 1993; Bernevig and Haldane, 2008a),
which are a family of special polynomials having well-defined
vanishing properties, where each polynomial can be identified
with a particular CFT (Feigin et al., 2003; Bernevig, Gurarie,
and Simon, 2009; Estienne and Santachiara, 2009). While this
Jack approach successfully describes the Read-Rezayi series
and is very powerful for both numerical and analytic compu-
tation (Bernevig and Haldane, 2008b; Bernevig and Regnault,
2009), all of the other CFTs it describes (including the
Gaffnian, for example) are nonunitary and therefore cannot
describe gapped phases of matter (Read, 2009a, 2009b).
A closely related approach is the so-called “pattern of

zeros” (Wen and Wang, 2008). In this case, one tries to fully
describe polynomials by the way in which zeros emerge as
various numbers of particles approach each other. Again this
works well for the Read-Rezayi series and can also define
wave functions such as the Gaffnian and Haffnian (which as
discussed are not acceptable quantum Hall states). However,
the approach runs into trouble in many other cases since the
pattern of zeros is not generically sufficient to uniquely define
a polynomial (Simon, Rezayi, and Cooper, 2007b; Simon,
Rezayi, and Regnault, 2010; Jackson, Read, and Simon, 2013)
and must be supplemented by further information (Lu et al.,
2010) to fully define a wave function, which ends up being
almost the same as simply defining a full CFT.
Another closely related approach is to examine quantum

Hall states in the limit of a thin torus or cylinder geometry
(Bergholtz and Karlhede, 2005; Bergholtz et al., 2006; Seidel
and Lee, 2006). In this “TT limit”25 the problem of finding
the ground state and low-energy excitations of strongly
interacting quantum particles is reduced to finding the lowest
energy configurations of classical, static charges; see, e.g.,
Bergholtz and Karlhede (2008) for a detailed discussion on
this. In the TT limit, the quantum Hall ground states become
simple charge density waves,26 where the pattern of occupied
and unoccupied orbitals maps to the pattern of zeros or
vanishing properties in the clustering approaches. Indeed,
each Jack polynomial can be directly mapped to a TT pattern

25Here TT can stand for either thin torus or Tao and Thouless, who
first considered this limit (Tao and Thouless, 1983).

26Note that there is a close relation to the charge density waves
occurring in one-dimensional coupled electron-phonon systems as
studied by Su, Schrieffer, and Heeger (1979) and later works
(Goldstone and Wilczek, 1981; Jackiw and Schrieffer, 1981; Su
and Schrieffer, 1981). These systems also harbor fractionally charged
excitations on the domain walls between different ground states.
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of occupancies, known as its “root state.” Furthermore the
domain walls in these charge density wave states map
precisely to the operators of the corresponding CFT
(Ardonne, 2009) and give a simple way to understand many
of the complicated quasiparticle properties of these quantum
Hall wave functions. Nonetheless, with the exception of the
Abelian hierarchy states and the Read-Rezayi series, the CFTs
are all nonunitary.
There is an interesting alternative way of looking at the TT

limit that is also explained by Bergholtz and Karlhede (2008).
Rather than thinking of making a torus very thin, one can
equivalently keep the geometry fixed, but change the interaction
to become very anisotropic. Viewed in this way, the TT limit
amounts to a renormalization group (RG) flow, toward (an
admittedly unphysical) fixed point Hamiltonian. Conversely,
moving from the TT limit to a realistic Hamiltonian, the
topological properties, that are manifest in the TT limit, will
persist as long as the excitation gap does not close.
Yet another clustering approach is to define model

Hamiltonians that enforce a particular clustering behavior
(Simon, Rezayi, and Cooper, 2007a, 2007b). Quite similarly
to the approaches discussed previously one can design a
Hamiltonian to forbid clusters of p particles having relative
angular momentum less than some number m. Again this
works well for the Read-Rezayi series but beyond this appears
to generate gapless states.
Given that there are many CFTs that are unitary (in fact an

infinite number), it seems that one should be able to define a
Hamiltonian whose ground state is the correlator of some
rational, unitary CFT that would evade the arguments given
by Read (2009a). Indeed, in several cases a Hamiltonian has
been constructed so that its ground state is uniquely given
by the correlator of a unitary CFT which is different from
those defining the Read-Rezayi series (Simon, Rezayi, and
Regnault, 2010; Jackson, Read, and Simon, 2013).
Unfortunately, unitarity of a CFT still does not guarantee
that the system is gapped. Indeed, in no case considered so far,
except the Read-Rezayi series, has anyone written a single-
component quantum Hall wave function which is a simple
correlator of primary fields of a CFT and which appears to
be gapped. Nonetheless, there have been many varieties of
hierarchies attempted from the field theoretical or CFT
viewpoints (Fröhlich and Zee, 1991; Fröhlich, Studer, and
Thiran, 1994; Cappelli and Zemba, 1997; Fröhlich et al.,
2001; Flohr and Osterloh, 2003; Estienne, Regnault, and
Santachiara, 2010). It remains to be seen if any of these will
actually result in gapped ground states of some (even slightly
realistic) Hamiltonian.

III. RELATION TO EXPERIMENT

While much of the theoretical study of hierarchies (and
fractional quantum Hall effect in general) focuses on the
construction of trial wave functions, at the end of the day one
is inevitably interested in explaining some physical experi-
ment (whether it be real or hypothetical). As mentioned at the
end of Sec. II.B there are special short-range interactions for
which the Laughlin states are exact ground states (Haldane,
1983; Pokrovsky and Talapov, 1985; Trugman and Kivelson,
1985), and similarly for the Moore-Read state (Greiter, Wen,

and Wilczek, 1991; Moore and Read, 1991) as well as the
Read-Rezayi series (Read and Rezayi, 1999). Yet there is no
known special interaction which yields the ground state
for any other spin polarized gapped quantum Hall state
(including all of the hierarchy or Jain states except the
Laughlin states). While such short-range interactions are
perhaps natural in a cold-atom experimental context
(Cooper, 2008; Viefers, 2008; Cooper and Dalibard, 2013;
Yao et al., 2013) or lattice-based quantum Hall realizations,27

such interesting systems remain proposals and have not yet
been realized experimentally.28 For real physical systems
where the fractional quantum Hall effect has been realized,
interactions are much more complicated, and it is usually
impossible to make any exact statements.

A. Connection of theory to real experiments

If we focus on real experiments, then the only systems ever
to show the FQHE are two-dimensional electron gases in
semiconductors. While the vast majority of fractional quantum
Hall experiments have been performed in some variety of
GaAlAs heterostructures, a few other semiconductor systems
have also allowed observation of FQH physics, including Si
MOSFETS (metal-oxide semiconductor field-effect transis-
tors) (Furneaux et al., 1986), SiGe (Monroe et al., 1992; Lai
et al., 2004; Lu et al., 2012), ZnMnO (Tsukazaki et al., 2010),
and particularly graphene (Bolotin et al., 2009; Du et al.,
2009; Dean et al., 2011).
In any given case of experimental interest, the Hamiltonian

should reflect the particular electron-electron interaction
relevant to the physical system in question. While one might
naively guess that the physical interaction between electrons
is simply the Coulomb interaction, the situation is actually
quite a bit more complicated. Wave functions of electrons in
two-dimensional electron systems typically have a substantial
width in the direction transverse to the two-dimensional plane.
As a result, one typically models the Coulomb interaction as
being softened at short distances depending on the shape of
the transverse wave function (Stern and Howard, 1967;
Girvin, MacDonald, and Platzman, 1986; Zhang and Das
Sarma, 1986). There may also be some amount of screening
due to nearby metallic layers, such as electrostatic gates,
which must be taken into account. When all of these things are
done, one obtains an electron-electron interaction within a
single Landau level which can be studied to try to predict what
FQH states will be seen in a given experiment and what their
properties will be.
As mentioned in Appendix A, independent of which

Landau level is being studied, it is always possible to map
the problem to an effective interaction within the LLL
(Haldane, 1990), which is often done for simplicity. We
emphasize, however, that the effective interaction resulting

27Fractional quantum Hall effects of particles on a lattice, also
known as “fractional Chern insulators,” are a large subfield. We do
not discuss any of these interesting proposals, but we refer the
interested reader to Bergholtz and Liu, 2013.

28An extremely interesting preprint (Gemelke, Sarajlic, and Chu,
2010) suggests that one can get small numbers of cold atoms into the
Laughlin regime.
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from the physical problem of a partially filled nth Landau
level is extremely dependent on the value of n. For typical
GaAs samples, in the LLL (ν < 2 since there are two spin
species), the effective interaction is fairly strong at short
range, which tends to favor the realization of the Jain series
of quantum Hall states (Pan et al., 2008); see Fig. 1. On the
other hand, in high Landau levels, the effective interaction
is longer ranged, as well as oscillatory. This type of
interaction favors charge density wave ground states, such
as stripes and bubbles (Fogler, Koulakov, and Shklovskii,
1996; Moessner and Chalker, 1996). This is in agreement
with experiment: no quantum Hall state has been
observed29 for Landau levels greater than the first excited
level (i.e., ν > 4), whereas anisotropic compressible states
[presumed to be striped or nematic (Fradkin and Kivelson,
1999)] are observed in ultraclean samples for filling
fractions between 9=2 and 15=2 (Du et al., 1999; Lilly
et al., 1999). The intermediate case of the partially filled
second Landau level (2 < ν < 4 for typical GaAs samples)
is potentially the most interesting having both fractional
quantum Hall physics and some charge density wave
physics (Eisenstein et al., 2002). It is in this regime that
the potentially non-Abelian quantum Hall states are exper-
imentally observed at ν ¼ 5=2 and 12=5 (Willett et al.,
1987; Pan et al., 1999, 2008; Kumar et al., 2010); see also
Fig. 2. The reason that this regime is special stems from the
form of the intermediate range of the Coulomb interaction
projected to the second Landau level, which promotes
clustering of electrons, which in turn appears to favor non-
Abelian quantum Hall states (see also the discussion at the
beginning of Sec. VI).
Theoretically once an interaction is determined for a

physical system of interest there are several common methods
of analysis. The simplest is to choose several trial wave
functions and compare their interaction energies (i.e., their
ground state energies within the Landau level) using
Metropolis Monte Carlo integration (Chakraborty and
Pietiläinen, 1995). Although this method is quite crude (since
one is simply guessing the ground state wave function) it has
the advantage that such Monte Carlo calculations can be
performed for extremely large systems, with numbers of
electrons possibly over 100.
A second method of analysis (and, indeed, the gold

standard of fractional quantum Hall theory for a generation)
is to perform exact diagonalization of a system for a small
number of interacting electrons [typically on a closed surface
such as a sphere (Haldane and Rezayi, 1985a) or torus
(Haldane and Rezayi, 1985b) to avoid edge effects]. Once
one obtains the ground state, one usually attempts to identify
which phase of matter it belongs to by examining its proper-
ties, such as its shift [see Eq. (15)] or its excitation spectrum.
More recently the entanglement spectrum (see Sec. II.G.4)
was used as a fingerprint for phases of matter.
A hybrid approach, known as composite-fermion diago-

nalization, was pursued by Jain (2007). In this work one

chooses a small basis of trial wave functions corresponding
to states that would be low energy in composite-fermion
language. Using the Monte Carlo method, one can calculate
matrix elements in this basis and then diagonalize the
resulting matrix. This approach has the advantage of
allowing the study of larger systems than exact diagonaliza-
tion, but presumably introduces a bias toward composite-
fermion states.
Recently another set of extremely powerful tools have been

added to the toolbox of numerical techniques. Using CFT
ideas, it is now possible to express certain quantum Hall states,
such as the Laughlin, Moore-Read, and Read-Rezayi states,
in matrix product representation (Zaletel and Mong, 2012;
Estienne et al., 2013; Estienne, Regnault, and Bernevig,
2013). This highly efficient encoding of the wave function
enables numerical calculations on very large systems (infi-
nitely long cylindrical geometry with circumference of 30
magnetic lengths) for these particular wave functions
obtaining quantities such as quasiparticle braiding statistics,
correlation length, pair-correlation function, and so forth.
Closely related to this technique is the density matrix
renormalization group (DMRG) method (White, 1992), which
is effectively a variational matrix product approach and can be
used as a replacement for exact diagonalization but for much
larger systems, similar to that for matrix product calculations
(Bergholtz and Karlhede, 2003; Shibata and Nomura, 2009;
Kovrizhin, 2010; Zaletel, Mong, and Pollmann, 2013;
Geraedts, Zaletel, Papić, and Mong, 2015; Mong et al.,
2015; Zaletel et al., 2015).
For simplicity one typically views the fractional quantum

Hall effect as existing within a single partially filled Landau
level. However, in real semiconductor systems, the Landau
level mixing parameter, the ratio of the interaction energy
ECoulomb ¼ e2=ϵl to the cyclotron energy ℏωc ¼ eB=m�c is
often of order unity, meaning that virtual transitions between
Landau levels can potentially be important. While often it is
assumed that such transitions have only a small effect on the
physics, in cases where two possible states of matter are very
close in energy, the small effects of Landau level mixing
can be crucial in determining which one is the ground state.
One case where Landau level mixing terms are crucial is in
determining30 whether the quantized Hall state experimen-
tally observed at ν ¼ 5=2 is the Moore-Read Pfaffian (Moore
and Read, 1991), or its particle-hole conjugate, known as
the anti-Pfaffian (Lee et al., 2007; Levin, Halperin, and
Rosenow, 2007)—the two states being energetically equiv-
alent for any two-body interaction without Landau level
mixing. There are two controlled methods of handling
Landau level mixing theoretically, the first being to integrate
out inter-Landau level transitions (Rezayi and Haldane,
1990; Peterson and Nayak, 2013; Simon and Rezayi,
2013; Sodemann and MacDonald, 2013; Wooten, Macek,
and Quinn, 2013) at leading order in the Landau level mixing
pararameter (ECoulomb=ℏωc) to obtain a modified interaction

29Possible exceptions are filling fractions 4þ 1=5 and 4þ 4=5
which look like FQHE states at intermediate temperature (Gervais
et al., 2004).

30Landau level mixing also appears quite important in determining
the nature of the experimentally observed ν ¼ 12=5 fractional
quantum Hall state and the apparent charge density wave at
ν ¼ 13=5 (Mong et al., 2015; Pakrouski et al., 2016).
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within a single Landau level.31 A second approach is to
include multiple Landau levels within an exact diagonaliza-
tion or DMRG calculation and attempt an extrapolation to a
system that includes all the Landau levels, as well as the
usual extrapolation to large system size (Rezayi and Simon,
2011; Mong et al., 2015; Zaletel et al., 2015). In principle the
two approaches should agree with each other at least for
small values of ECoulomb=ℏωc. However, there are cases
where they do not agree (see, in particular, the discussion
regarding ν ¼ 5=2 next), and the cause of the conflict
remains undetermined.32

B. Status of real experiments

Perhaps the most surprising thing about the fractional
quantum Hall effect is that it is so definitively observed in
experiment. [Indeed, we should not forget that it was
discovered in experiment (Tsui, Stormer, and Gossard,
1982) before it was explained theoretically.33] In this section
we discuss what is known from some key experiments. It is
obviously impossible for us to discuss all of the experiments
that have been performed on FQH systems so we instead
focused on those that are most interesting in the context of this
review.

1. The nature of plateaus

The observation of any fractional quantum Hall plateau
always raises the question of what the properties of that
plateau are, that is, what phase of matter are we observing?
Focusing on high mobiltity GaAs heterostructures within
the LLL (ν < 2) over 60 FHQ plateaus have been observed
(Pan et al., 2003, 2008). Of these, all but a very few are
of the Jain form ν ¼ q=ð2pq� 1Þ or are closely related
(particle-hole conjugate, for example) and are assumed to be
topologically equivalent to simple Jain or Halperin-Haldane
hierarchy states. A few fractions observed within the LLL do
not fit this Jain form, including 4=11, 7=11, 4=13, 5=13,
5=17, 6=17, and 4=19. None of these are fully formed
fractional quantum Hall plateaus, but the evidence for 4=11
(and possibly 5=13), in particular, appears fairly good (with
higher denominators getting successively weaker as sug-
gested by Fig. 3). These anomalous states could potentially
all be explained within the hierarchy construction.
Nonetheless there have been a number of other proposals
for the nature of these states which are discussed in
Mukherjee et al. (2014a). The most recent study
(Mukherjee et al., 2014a, 2014b) has been interpreted as
suggesting quantum Hall states arising from an
exotic mechanism proposed by Wójs, Yi, and Quinn

(2004),34 although this conclusion is certainly not generally
agreed upon.
In the second Landau level (2 < ν < 4), where roughly a

dozen FQH plateaus have been observed, the situation is
potentially even more interesting. There have been many
proposals that many of these states are nonconventional in one
way or another.
5=2: The most prominent of the states in this range is the

5=2 state (and its sister the 7=2 state). Since the seminal work
of Morf (1998), it has been increasingly clear (and now fairly
solidly established numerically) that this state is either in the
Moore-Read Pfaffian phase (Moore and Read, 1991) or in its
particle-hole conjugate phase, known as the anti-Pfaffian
(Lee et al., 2007; Levin, Halperin, and Rosenow, 2007). As
mentioned, in the absence of Landau level mixing, the two
possibilities are equal in energy. Deciding which is realized
has been difficult. While Rezayi and Simon (2011) and Zaletel
et al. (2015) found the anti-Pfaffian is favored, the work of
Pakrouski et al. (2015) found that the Pfaffian is favored. It is
not yet clear why these do not agree (see, however, foot-
note 32). The only experiment that attempts to directly
distinguish the two possibilities (Radu et al., 2008) was found
to be more consistent with the anti-Pfaffian.35 The exper-
imental observation by Dolev et al. (2011) of upstream neutral
edge currents (flowing opposite the direction of charge
transport) seems more natural for the anti-Pfaffian, but could
also occur for the Pfaffian if there were edge reconstruction.
Finally we mention that recent interferometry experiments
[see Willett et al. (2013), for example] have been interpreted
in a simple picture in terms of the anti-Pfaffian, but not
the Pfaffian (von Keyserlingk, Simon, and Rosenow, 2015).
This conclusion should not be taken as definitive given the
controversy over interpretation of these experiments (see
Sec. III.B.3).
7=3, 8=3: The overlap of the Coulomb ground state with the

conventional Laughlin wave function is found to be quite low
for 7=3 and 8=3 (Balram et al., 2013). It was later suggested
by Peterson et al. (2015) that (when Landau level mixing is
included) the 8=3 state might be the Z4 Read-Rezayi phase,

31Beyond leading order one obtains retarded terms, which make it
impossible to represent the resulting interaction terms as simply an
equal-time interaction within a single Landau level.

32This conflict appears to have recently been resolved by Rezayi
(2017), with the conclusion being that the anti-Pfaffian is favored at
low values of ECoulomb=ℏωc.

33It is interesting to debate whether anyone would have believed
quantum Hall effect (integer much less fractional) theory if it had
been provided before the experimental observation.

34This work stems from the proposal that a different kind of
quantum Hall state for ν ¼ 1=3 can be produced by having an
effective hollow-core-like interaction, generating a rotationally
invariant ground state on the sphere for ν ¼ 1=3 at a shift S ¼ 7

instead of the usual Laughlin value S ¼ 3. Using the corresponding
ν ¼ 4=3 wave function as ΨCF in Eq. (10) (with p ¼ 1) then results
in a trial wave function for ν ¼ 4=11 and similarly using 5=3 gives a
trial state for ν ¼ 5=13. A toy model of this type of wave function can
be built at ν ¼ 1=5 by using an interaction that forbids pairs with
relative angular momentum 3 but allows pairs with relative angular
momentum 1 (Jolicoeur, 2017). This model interaction generates a
rotationally invariant ground state at shift S ¼ 9 rather than the
Laughlin value of S ¼ 5. Such a ground state is unfortunately gapless
suggesting that all such states in this family might be also. Examining
the data in Mukherjee et al. (2014a) it looks likely that the 5=13 state
considered there is indeed gapless, but it is less clear for 4=11.

35Repeats of this experiment (Lin et al., 2012; Baer et al., 2014)
found that the 331 state was favored, which is hard to understand,
being completely contradictory to a large body of numerical work,
and potentially casts doubt on the interpretation of the experiment.
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and this has been supported using exact diagonalization of up
to 12 electrons. However, more recent DMRG calculations for
much larger systems, including Landau level mixing terms,
conclude that the 8=3 state is of Laughlin type (Zaletel et al.,
2015). The experiment of Baer et al. (2014) concluded that
both 7=3 and 8=3 are of Laughlin type (although there is some
question of the reliabiltity of this type of experiment, see
footnote 35).
12=5: The observation of a 12=5 plateau (Pan et al., 1999)

is now beyond any doubt (Kumar et al., 2010). Because of
the small size of the gap (around 80 mK in the only
experiments that have observed this fraction), it has been
impossible to perform many experiments beyond simply the
observation of the plateau. Theoretically, the most recent
works by Mong et al. (2015) and Pakrouski et al. (2016)
confirmed that the 12=5 state is (the particle-hole conjugate
of) the Z3 Read-Rezayi state, and further that Landau
level mixing suppresses the (experimentally unobserved)
13=5 state.
2þ6=13: Perhaps the most intriguing fraction yet

observed is at filling fraction 2þ 6=13 (Kumar et al.,
2010). While this could potentially fit into a conventional
hierarchy, it would be an extremely unusual creature
corresponding to q ¼ 6 of the Jain series q=ð2qþ 1Þ, where
q ¼ 3, 4, and 5 are not observed. A natural explanation of
this state would be a first order daughter state of the anti-
Pfaffian at 5=2 (Levin and Halperin, 2009). The physics of
this hierarchy are discussed in Sec. VI.B. The experimen-
tally measured activation gap for this state is exceedingly
small at only about 10 mK.
2þ3=8: In the LLL there is possibly some (albeit very

weak) evidence for a ν ¼ 3=8 plateau (Pan et al., 2003)
which was discussed theoretically by Scarola, Jain, and
Rezayi (2002) and Mukherjee et al. (2012). (If verified this
would be the first even denominator state in the LLL.)
However, in the second Landau level, the evidence for a
2þ 3=8 state is somewhat stronger, albeit with a small
measured activation gap of roughly 10 mK. Recent theoretical
work by Hutasoit et al. (2016) comparing possible trial wave
functions suggested that this state is of a Bonderson-
Slingerland type (Bonderson and Slingerland, 2008), dis-
cussed in Sec. VI.A.

2. Quasiparticle charge experiments

One of the particularly interesting features of FQHE
physics is the existence of fractionally charged quasipar-
ticles. Although in some sense the fractionally quantized
Hall conductance is indirect evidence of fractionally
charged quasiparticles, it has nonetheless been a key
experimental quest to directly measure these fractional
charges.
The first clear measurements were made via shot noise

obtaining charges of e� ≈ e=3 at ν ¼ 1=3 (de Picciotto et al.,
1997; Saminadayar et al., 1997) compatible with the Laughlin
prediction, as well as e� ≈ e=5 at ν ¼ 2=5 and e� ≈ e=7 at
ν ¼ 3=7 (Heiblum, 2010). These latter charges are compatible
with the prediction of the Halperin-Haldane hierarchy. More
recent shot noise experiments by Dolev et al. (2008) estab-
lished charges of e� ≈ e=4 at ν ¼ 5=2 compatible with the

Moore-Read state or the anti-Pfaffian,36 as well as establishing
charge e=3 at filling ν ¼ 8=3 and 5=3. Unfortunately, when
the same experiments were performed at extremely low
temperature and low voltage other values of charge were
sometimes measured, and these results remain not fully
understood (Dolev et al., 2010; Heiblum, 2010).
A second approach has been to measure charge motion

with scanning tips or stationary single-electron transistors.
Such experiments similarly give very clear evidence (Martin
et al., 2004) of e� ≈ e=3 at ν ¼ 1=3 and 2=3. The same
experiments attempted at ν ¼ 5=2were far more challenging
for a number of technical reasons. Although the expected
result of e� ≈ e=4 was indeed measured (Venkatachalam
et al., 2011), the result is a bit less clear than for the same
experiments at ν ¼ 1=3.

3. Quasiparticle statistics and quantum Hall interferometers

Perhaps the single most theoretically exciting quantity to be
measured experimentally would be exotic braiding statistics
(fractional or non-Abelian). Unfortunately, despite many
attempts over the years there is still no clear demonstration
of quasiparticle statistics. The main proposals for achieving
such a demonstration (de C. Chamon et al., 1997) revolve
around building Fabry-Pérot interferometers out of two-point
contacts.37 Early experiments reported a number of successes
[see, for example, Camino, Zhou, and Goldman (2007)] but it
was later realized by Rosenow and Halperin (2007) [with later
theoretical extensions by Halperin et al. (2011) and von
Keyserlingk, Simon, and Rosenow (2015)] that Coulomb
charging effects may dominate the physics and as a result
the statistical phase may be hidden. Further interferometry
experiments confirmed the picture of “Coulomb domination”
in some detail (Zhang et al., 2009; Ofek et al., 2010; Choi
et al., 2011; McClure et al., 2012).
Similar interferometry experiments were predicted to give

particularly clear evidence of non-Abelian statistics for the
ν ¼ 5=2 state (Bonderson, Kitaev, and Shtengel, 2006; Stern
and Halperin, 2006) given a number of simplifying assump-
tions [see also the discussion by Rosenow et al. (2009) and
von Keyserlingk, Simon, and Rosenow (2015)]. A series of
detailed experiments were conducted attempting to see this
physics [see Willett et al. (2013) and references therein].
However, the published data actually disagree with predictions
as detailed in von Keyserlingk, Simon, and Rosenow (2015)
and the situation remains controversial. Potentially, further
experiments will clarify the situation.38

36In fact, Levin and Stern (2009) argued that the additional charge
fractionalization of e=2 to e=4 has to occur for any valid represen-
tative wave function, simply because of the even denominator filling
fraction.

37There have also been impressive experiments with Mach-
Zehnder interferometers in the integer quantum Hall regime, but
not in the fractional regime. See, for example, Neder et al. (2006).

38Another experiment to see this statistical physics with an
interferometer by examining phase slips claimed to observe both
fractional and non-Abelian statistics (An et al., 2011). However, as of
yet, this work has not been reproduced.
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4. Composite-fermion experiments

There have been quite a few experiments demonstrating the
detailed physics of composite fermions near the half filled
(often lowest) Landau level. In particular, these have shown
that there is indeed a fermionic quasiparticle which moves
with a cyclotron radius R�

c ¼ ℏkF=eΔB, where kF is set by the
density of particles and ΔB ¼ B − B1=2 is the deviation of the
magnetic field from the half filled Landau level. The existence
of this length scale is exactly as predicted by Halperin, Lee,
and Read (1993). We refer the interested reader to Jain (2007)
as well as to Heinonen (1998) for detailed discussions of these
experiments.

IV. QUANTUM HALL LIQUIDS FROM CFT

A. Chern-Simons theory and CFT:
Abelian quantum Hall states

The presence of fractional statistics particles suggests there
should be a Chern-Simons description of the topological
properties of the system. Indeed, this is exactly what is
embodied in the Wen-Zee Lagrangian (12) discussed earlier.
Once the connection to Chern-Simons theories is made, one
can exploit the many connections and mathematical results
relevant to these well-studied theories.
The Chern-Simons term was first considered in a physics

context by Deser, Jackiw, and Templeton (1982), who showed
that when added to a Maxwell, or in the non-Abelian case a
Yang-Mills, Lagrangian it gives mass to the gauge field
without breaking the gauge invariance. Soon afterward it
was realized that coupling nonrelativistic particles minimally
to a gauge potential with a Chern-Simons term effectively
changes their statistics. Starting with the work of Witten
(1989), it was realized that there is an intimate connection
between Chern-Simons theories and CFT. It is perhaps then
not surprising that quantum Hall states can be written in terms
of CFT correlators.
As the connection between Chern-Simons theory and CFT

was developed, it was noticed that the polynomial part of the
Laughlin wave functions can be interpreted as holomorphic
conformal blocks (Fubini and Lütken, 1991; Moore and Read,
1991). For example, the wave function for two quasiholes in
Eq. (1) can be written as

Ψðη1; η2; fzigÞ ¼ hHðη1ÞHðη2ÞVðz1Þ � � �VðzNÞObgi

¼ ðη1 − η2Þ1=m
YN
i¼1

ðη1 − ziÞðη2 − ziÞ

×
Y
i<j

ðzi − zjÞme−1=ð4ml2Þðjη1j2þjη2j2Þ

× e−ð1=4l
2Þ
P

i
jzij2 ; ð34Þ

where the average is taken with respect to the action of a
massless chiral boson ϕ, normalized as

hϕðzÞϕðz0Þi ¼ − logðz − z0Þ:

The vertex operators are given by

VðzÞ ¼ ∶ei
ffiffiffi
m

p
ϕðzÞ∶;

HðηÞ ¼ ∶ei
ffiffiffiffiffiffi
1=m

p
ϕðηÞ∶; ð35Þ

and Obg provides a neutralizing background charge that is
discussed in more detail later. Although closely related, ϕ is
distinct from the φ used in Sec. II.G. In particular, their
normalizations differ. More details on this chiral boson CFT
are found in Appendix B. The value of the correlator in
Eq. (34) is almost precisely that of Eq. (1) except for the
ðη1 − η2Þ1=m factor in Eq. (34), which is holomorphic
(although with a branch cut), while Eq. (1) has a factor
jη1 − η2j1=m. The difference is just a choice of gauge; the one
used in Eq. (34) is often called “holomorphic” or “fractional
statistics” gauge. We should keep in mind that the z variables
are actual positions of the physical electrons in the system,
whereas the η variables are just parameters in the wave
function, and we are free to multiply the wave function with
any η-dependent phase factor.
As mentioned in Appendix B, correlators of vertex oper-

ators vanish if the fields inside the correlator do not fuse to the
identity. This “charge neutrality” is ensured by the insertion
of the background charge operator Obg. In principle, there is a
freedom of where to put this neutralizing charge. However,
it turns out that if the operator is chosen as (Moore and
Read, 1991)

Obg ¼ exp

�
−iρ

ffiffiffiffi
m

p Z
d2zϕðzÞ

�
; ð36Þ

where ρ is the (constant) fermion density, it provides the
Gaussian factors needed to directly interpret the correlators as
LLL wave functions. Making this operator well defined is a
bit tricky, as discussed in some detail by Hansson, Hermanns,
and Viefers (2009). On geometries other than the plane, the
Gaussian factors look different, but, mutatis mutandis, the
same recipe will work (see Sec. VII.A).
In general, primary fields of the CFT correspond to the

Wilson line operators of the corresponding Chern-Simons
theory. In the present case, the gauge group is a single Uð1Þ at
“level” m=2. The operator content of the CFT contains all
clusters of multiple elementary quasiholes H and each of
these should correspond to a different species of Wilson line.
The Wilson lines generally braid nontrivially with each other,
but the electron operator (which topologically amounts to a
cluster of m elementary quasiparticles) should actually be
topologically trivial. This statement is precisely true if the
“electron” is a boson, which is true for even m. For odd m,
braiding is trivial, but exchange of two fermions accumulates a
statistical sign.

1. Quasiparticle braiding and monodromies

We now revisit the question of fractional charge and
statistics and use the wave function (34) to derive the
Berry phase in Eq. (4) for braiding one quasihole at position
η1 around another at η2. Using Eq. (34) [rather than Eq. (1)]
for the wave function Ψ, and the decomposition
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d
dτ

¼
�
dη1
dτ

�
∂η1 þ

�
dη̄1
dτ

�
∂ η̄1 ;

it is particularly easy to calculate the Berry phase (Nayak
and Wilczek, 1996; Gurarie and Nayak, 1997). In hΨj∂τjΨi in
Eq. (3) the ∂ η̄1 acts only on the exponent, bringing down a
factor of −η1=4ml2. To handle the ∂η1 we integrate by parts so
that hΨj∂η1 jΨi is replaced by ð−∂η1hΨjÞjΨi noting that
hΨjΨi ¼ 1 so the total derivative vanishes. Once in this form,
the ∂η1 again operates only on the exponent to give η̄1=4ml2.
Thus we obtain

iγ ¼ 1

4ml2

I
dτ

�
η̄1

dη1
dτ

− η1
dη̄1
dτ

�

¼ iA
ml2

¼ i
2π

m
Φ; ð37Þ

with A being the (signed) area enclosed by the path of η1
and Φ the corresponding enclosed flux in units of the flux
quantum. This is simply the Aharonov-Bohm phase associ-
ated with moving a charge þe=m around the area A.
At this point, it appears that there is no effect of the other

quasihole η2. Indeed, the position of η2 does not enter the
Berry phase calculation here. However, examining the hol-
omorphic form of the wave function (34) we see that the wave
function is actually multivalued; mathematically this amounts
to having a branch cut in the complex η2 plane, or equivalently
defining this variable on a Riemann surface withm sheets. The
wave function itself accumulates a phase of e2πi=m when η1 is
moved around η2. This explicit phase in the wave function is
known as the monodromy. Thus the total phase accumulated
as one particle is moved around the other is the sum of the
Berry phase and the monodromy. The latter gives twice the
expected statistical angle θ ¼ π=m, precisely the same as that
obtained from Eq. (4). In the current calculation, the fractional
statistics is explicit in the phase of the wave function and the
Berry phase gives only the Aharonov-Bohm phase, whereas if
one works in the gauge of Eq. (2) there is no monodromy and
both the statistical phase and the Aharonov-Bohm phase are
parts of the Berry phase (Kjønsberg and Leinaas, 1997). Both
of these approaches are correct, in that they give the same total
phase. However, the holomorphic gauge appears much sim-
pler for most purposes, and it will generalize very easily to the
non-Abelian case treated in Sec. IV.C.4.

B. Multicomponent Abelian states

Although the electrons are spin half particles, the spin
degree of freedom can often be neglected in the context of the
quantum Hall effect, since it is quenched by the strong
magnetic field. However, this is not always the case
(Girvin and MacDonald, 1995), and in general one must
consider both components (Halperin, 1983; Du et al., 1995).
Other situations that require a multicomponent, or multilayer,
description are bilayers (Yoshioka, MacDonald, and Girvin,
1989; Eisenstein et al., 1992; Lopez and Fradkin, 1995),
where the layer index is a new quantum number, and semi-
conductors, such as graphene, where there is a valley
degeneracy (Dean et al., 2011).

All these cases can be described in the K-matrix formalism,
and the recipe for finding the corresponding CFT wave
functions is a straightforward generalization of the Laughlin
case: For a state with n components, or layers, the integer-
valued positive definite K matrix is symmetric and has rank n,
and it can always be factorized as

K ¼ QQT; ð38Þ

whereQ is a n × kmatrix and k ≥ n, since the rank ofK is n.39

We can then form n electron operators, using k chiral boson
fields40:

Vα ¼ ∶eiQαβϕ
β∶; ð39Þ

where the chiral bosons satisfy

hϕαðzÞϕβðz0Þi ¼ −δαβ logðz − z0Þ:

To neutralize a correlator with Nα particles in the αth layer, we
insert a background charge

Obg ¼ exp

�
−i
Z

d2rρð~rÞnαQαβϕ
βðzÞ

�
; ð40Þ

where ρ is the fermion density (which usually is assumed to be
constant), so

R
d2rρð~rÞ ¼ N. The neutrality condition for the

field ϕβ becomes

NαQαβ ¼ nαNQαβ

from which follows Nα ¼ nαN, so nα is just the relative
density of the layers.41 The relative filling fraction να is
given by

να ¼ Nα=NΦ ¼ nαν ¼ K−1
αβ tβ: ð41Þ

In most cases one takes k ¼ n, i.e., uses as many fields as
there are layers, but this is not necessary. Even for a given k
the factorization is not unique, as shown in the following

39An alternative notation is to write Kαβ ¼ ~QðαÞ · ~QðβÞ, where ~QðαÞ

are n different k-dimensional “charge vectors,” with elements QðαÞ
β ¼

Qαβ. The vertex operators are then written as Vα ¼ ∶ expði ~QðαÞ · ~ϕÞ∶,
where ~ϕ ¼ ðϕ1;…;ϕkÞ.

40While we need at least n chiral bosons to represent the state, in
some cases it is advantageous to use more, for instance when
representing the Jain series on the sphere (Kvorning, 2013).

41Note that there is a Uð1Þn symmetry, and thus n conserved
Abelian charges (the electric charge is −eρ). In many physical
situations this charge is not precisely conserved and strictly speaking
the wave function should be a superposition of sectors having
different numbers of particles in the different “layers.” For example,
the bilayer 111 state can be more properly written asQ

mðc†m↑ þ c†m↓Þj0i. However, for many purposes it is sufficient to

think about a single sector with fixed particle number in each layer.
Note that the K matrix of such a state is 1, not ð1

1
1
1
Þ, as we always

require it to be invertible; see Eq. (13).
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example. One can think of Q as the matrix square root of
the K; in the Laughlin case where Q is a scalar, we have
Q ¼ ffiffiffiffi

K
p ¼ ffiffiffiffi

m
p

. The multiparticle wave functions will be
built by products of factors such as

hVαðziÞVβðzjÞi ¼ ðzi − zjÞKαβ

and of course also the proper Gaussian factors. As an example,
we show how this works42 for the Halperin ðm;m; nÞ states
(Halperin, 1983) with m > n. The corresponding K can be
factorized as

K ¼
�
m n

n m

�

¼

0
B@

ffiffiffiffi
m

p
0

nffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffi
m2−n2

m

q
1
CA
0
B@

ffiffiffiffi
m

p nffiffiffi
m

p

0

ffiffiffiffiffiffiffiffiffiffi
m2−n2

m

q
1
CA

¼

0
B@

ffiffiffiffiffiffiffiffi
mþn
2

q ffiffiffiffiffiffiffi
m−n
2

p
ffiffiffiffiffiffiffiffi
mþn
2

q
−

ffiffiffiffiffiffiffi
m−n
2

p
1
CA
0
B@

ffiffiffiffiffiffiffiffi
mþn
2

q ffiffiffiffiffiffiffiffi
mþn
2

q
ffiffiffiffiffiffiffi
m−n
2

p
−

ffiffiffiffiffiffiffi
m−n
2

p
1
CA; ð42Þ

where we showed two different ways to factorize. In both
cases the ground state wave function is obtained by taking an
equal number of the operators V1 and V2 in the correlator, and
it is easy to show that using the second, symmetric, factori-
zation, only the field ϕ1 is related to the electric charge and
requires a background. As a concrete example, the vertex
operators corresponding to the first factorization are

V1 ¼ ∶ei
ffiffiffi
m

p
ϕ1∶;

V2 ¼ ∶eiðn=
ffiffiffi
m

p Þϕ1þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2−n2Þ=m

p
ϕ2∶;

giving the Halperin wave function

ψmmn ¼
Y
i<j

ðz↑i − z↑j Þm
Y
k<l

ðz↓k − z↓l Þm
Y
r;s

ðz↑r − z↓s Þn ð43Þ

with ↑ and ↓ denoting the (pseudo)spin up and down species,
respectively.
It is also possible to generalize Laughlin’s plasma analogy

to the multicomponent case, and thus to extract the topological
properties of the states, as long as the equivalent multi-
component Coulomb plasma is in a screening phase (Qiu,
Joynt, and MacDonald, 1989).

C. Non-Abelian quantum Hall states and the Moore-Read
conjecture

That the Laughlin wave functions can be represented as
correlators in a CFT suggests that other CFTs might be used to
generate valid quantumHall wave functions. Indeed,Moore and
Read (1991) suggested that quantumHall states might generally
be constructed in this way. The close relationship between CFT
and TQFT both allows an immediate identification of the

topological properties associated with that quantum Hall state
and provides a natural way to describe the edge of both Abelian
and non-Abelian states. Not every CFTwill produce acceptable
quantum Hall states. One important condition is that the CFT is
rational, which in this context means that there is a finite number
of inequivalent particle types, and that the ground state on a torus
has a finite degeneracy in the thermodynamic limit. Further the
CFT should be unitary (Read, 2009b), as a nonunitary theory
will inevitably result in a gapless state. However, it seems
unlikely that these two conditions alone are sufficient to
guarantee a well-behaved quantum Hall state in many cases
(Jackson, Read, and Simon, 2013).
The physics of the quantum Hall and CFT connection, and

the resulting study of a number of non-Abelian quantum Hall
states, was reviewed in some depth by Nayak et al. (2008). In
this review we mainly restrict ourselves to the simplest of
these states, namely, the Moore-Read, or Pfaffian state.

1. Electronic wave functions as conformal blocks

In order to implement the Moore-Read scheme, one starts
by choosing a CFT to work with. There will always be a Uð1Þ
charge sector given by a chiral boson, as we explored for the
case of the Laughlin wave function. Multiple Uð1Þ sectors can
be present if there are multiple species of electrons, as in the
multicomponent liquids in Sec. IV.B, or the hierarchies to be
discussed in Sec. V. For now, we assume only oneUð1Þ sector.
The electrical charge of a particle is determined entirely by its
Uð1Þ charge. In addition there may be a neutral sector of the
CFT which might be a more complicated CFT, such as the
Ising CFT in the case of the Moore-Read state. Those who find
the following general discussion too abstract are referred to
Sec. IV.C.5, where the example of the Moore-Read state is
treated explicitly.
Within the CFT, we must choose some simple current field,

which we call ψe to represent the electron (see Appendix B for
a definition of simple current). The electron must also be a
fermion, meaning that it has half-odd integer conformal
weight (or scaling dimension). Or, if one is considering the
quantum Hall effect of bosons, the “electron”must be a boson,
meaning that it has integer conformal weight. The ground state
wave function is given as the holomorphic chiral correlator or
conformal block,

Ψðz1;…; zNÞ ¼ hψeðz1Þψeðz2Þ � � �ψeðzNÞObgi;
where Obg is the appropriate background field operator such
that the correlator does not vanish. Except for the Gaussian
factors, this wave function is fully holomorphic and is
appropriate as a LLL wave function. For fermionic fields
ψe the wave function is totally antisymmetric and for bosonic
fields it is symmetric.
We can further consider fields ψqh, yielding wave functions

such as

ΨðfηigM1 ; fzigÞ ¼ hψqhðη1Þψqhðη2Þ � � �ψqhðηMÞ
×ψeðz1Þψeðz2Þ � � �ψeðzNÞObgi

which represent quasiholes at positions η1;…; ηM inserted
into the prior ground state wave function. In general there may

42The CFT vertex operators for the Halperin states were first
constructed by Moore and Read (1991).
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be several different species of quasiholes, represented by
distinct operators.
In order to be a valid electron wave function, these

correlators must be single valued, i.e., the electron operators
must braid trivially with the quasihole operators and no
singularities in the wave function must result. This condition
corresponds to the following. Consider taking a quasihole
to the same position as an electron. The combination will
form some other type of quasiparticle excitation ψf, which we
call the fusion of ψe and ψqh. (In CFT language, we say
ψe × ψqh ¼ ψf.) If the scaling dimensions of these operators
are he, hqh, and hf, respectively, then examining the operator
product expansion in Eq. (B4) tells us that we must have

hf − he − hqh ¼ integer ≥ 0 ð44Þ

for the wave functions to remain single valued (no branch
cuts) and nonsingular (no poles) as an electron approaches the
position of the quasihole. This provides a strong constraint on
the type of quasihole operator that can exist in our theory. The
simplest example is that of a hole in a ν ¼ 1=m Laughlin state.
The operators (35) are fused using the operator product
expansion limη→zVðzÞ ×HðηÞ ∼ ðz − ηÞ∶eiðmþ1ÞϕðzÞ= ffiffiffimp

∶, so,
recalling that Vα ¼ ∶eiαϕ∶ has the conformal dimension
hα ¼ α2=2 (cf. Appendix B), we get hf − he − hqh ¼
1
2
ðmþ 1Þ2=m − 1

2
m − 1

2
1=m ¼ 1 which fulfills Eq. (44).

2. Bulk-edge correspondence

The massless boson CFT that describes the bulk of the
Laughlin state is in fact the same massless bose theory that
describes the Laughlin quantum Hall edge that we considered
earlier in Sec. II.G.. Even the operators that create charge are,
in this case, identical [compare the quasiparticle creation
operators (35) to (28)]. This similarity, which is a manifes-
tation of what is known as bulk-edge correspondence, is not a
coincidence, but follows naturally from deep mathematical
results on the quantization of Chern-Simons theories (Witten,
1989; Cappelli et al., 1993). The general idea is that the
Chern-Simons description of the quantum Hall state is
essentially an isotropic (3 ¼ 2þ 1)-dimensional theory. If
we “cut” the 3-manifold in a spacelike slice (at fixed time) we
end up with the (2þ 0)-dimensional CFT that describes the
ground state wave function.43 On the other hand, if we cut the

3-manifold in a timelike slice (a fixed one-dimensional curve
crossed with time) we obtain a (1þ 1)-dimensional CFT
describing an edge.
Also in the general case of hierarchy and/or non-Abelian

states, there is a correspondence between the bulk CFT, whose
correlators describe the stationary (2þ 0)-dimensional wave
function of the state, and the edge CFT that describes the
dynamics of the (1þ 1)-dimensional quantum Hall edge. As
discussed in Sec. II.G., there is always at least one chiral
boson mode describing the dynamics of the charged edge
modes. However, in addition there can also be dynamical
neutral modes corresponding to the nonboson part of the
CFT. While there is often no simple representation of the
Lagrangian, the mathematical power of CFT can be brought to
bear on this part of the problem (Di Francesco, Mathieu, and
Sénéchal, 1997). For example, using CFT methods one can
determine fine details of the dynamical neutral mode spectrum
without ever having to write a Lagrangian (Ilan et al., 2009;
Bonderson, Nayak, and Shtengel, 2010; Cappelli, Viola, and
Zemba, 2010; Stern et al., 2010).

3. Vector space of conformal blocks, braiding,
and monodromy

As in the case of Eq. (34), the wave functions need not be
single valued in the coordinates η of the quasiholes, since
these are simply parameters of the wave function, rather
than physical electron coordinates. We already discussed the
Laughlin case where fixing the hole position η2, the single-
component wave function Ψ1=mðη1; η2Þ defines a function of
η1 on a Riemann surface with m sheets. In the case of a more
complicated CFT, and multiple quasiholes, the wave function
has many components, each with a complicated analytic
structure with multiple branch cuts. During a general braiding
operation (that also can amount to the exchange of identical
quasiparticles) the components transform into each other by a
unitary matrix. To make this more concrete, let us consider the
Moore-Read state at filling fraction ν ¼ 1=2 that we discuss at
length in Sec. IV.C.5. The correlator of four quasiholes only
(no electrons) can be calculated by standard methods (Zuber
and Itzykson, 1977; Belavin, Polyakov, and Zamolodchikov,
1984) with the result

lim
ω→∞

hψqhð0ÞψqhðηÞψqhð1ÞψqhðωÞObgi
∼ aþΨþðη;ωÞ þ a−Ψ−ðη;ωÞ;

which holds for jωj ≫ jηj; 1, where a� are arbitrary coef-
ficients, and

Ψ� ∼ ω1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

pq
:

Put differently, the wave function, at fixed positions of the
quasiholes, is given by the vector with coordinates ðaþ; a−Þ
in the basis of the two conformal blocks Ψ�. Letting the
quasiparticle at ω encircle the three others clockwise, while
keeping η fixed, the wave function picks up an Abelian phase
eiπ=2 in close analogy to the Laughlin case. The interesting
effect occurs when ω is kept fixed, and the quasiparticle at η
encircles the one at 1. This amounts to Ψ�ðη;ωÞ → Ψ∓ðη;ωÞ,

43In the CS description, particles are represented by Wilson lines
and the statistical phase factors, Abelian or non-Abelian, can be
extracted from the correlation functions of such lines. At a fixed time
surface, the Wilson lines correspond to a number of points or
“punctures.” Witten showed how to canonically quantize the CS
theory in the presence of such punctures (Witten, 1989). The outcome
is that the corresponding finite-dimensiononal Hilbert space is
precisely the space spanned by the blocks of a conformal field
theory. Thus, identifying the coordinates in the conformal block as
the (holomorphic) coordinates of the particles it is quite natural to
interpret the blocks themselves as bona fide representative wave
functions for the state in question, since the monodromies of these
functions will properly represent the statistics of the particles, be they
electrons or Abelian or non-Abelian anyonic quasiparticles.
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or equivalently a� → a∓, i.e., to a unitary rotation σx of the
two-dimensional state vector when thought of as a spinor.
Including the electrons to get the full quantum Hall wave

function is more complicated and was originally done for four
quasiholes by Nayak and Wilczek (1996) and later for the
general case of M holes and N electrons by Ardonne and
Sierra (2010). The explicit expressions are complicated, but
schematically the result is

Ψðη1; η2;…; ηM; fzigÞ ¼
X
α

cαΨαðη1; η2;…; ηM; fzigÞ;

where the conformal blocks, labeled by α, form a degenerate
vector space. Moving the quasiparticles around each other and
then returning to the same positions leaves the Ψα unchanged,
but transforms the coefficients cα by a unitary matrix,

cα → UðbraidÞ
α;β cβ;

where the monodromy matrix UðbraidÞ depends on the par-
ticular braid performed on the coordinates. This is the essence
of non-Abelian statistics. By braiding quasiparticles around
each other, the wave function is transformed unitarily within
the degenerate vector space spanned by the Ψα. The term
“non-Abelian” stems from the fact that the unitary matrices,
corresponding to different braid operations, will generically
not commute with each other (Moore and Read, 1991; Nayak
et al., 2008; Rowell and Wang, 2016).

4. Holonomy equals monodromy and the
Moore-Read conjecture

In the Abelian case, as discussed in Secs. II.A and IV.A.1,
the result of adiabatically moving one quasiparticle around
another is given by the sum of the phase due to the
monodromy and the Berry phase (3). Furthermore, for
wave functions extracted from conformal blocks, the Berry
phase solely comes from the Gaussian factor which gives
the Aharonov-Bohm phase due to the magnetic field. In the
present case where we have a degenerate vector space, the
Berry phase becomes matrix valued. Following the notation in
Read (2009b) we write for the holonomy

B ¼ MP exp

�I
dτhΨαj

d
dτ

jΨβi
�
; ð45Þ

where we denoted the monodromy matrix with M, and
where P is a path ordering operator which is necessary since
the matrices in the exponent do not commute at differ-
ent times.
Assuming that the charge sector can be ignored, Read

(2009b) explicitly calculated the non-Abelian monodromy
matrices for two and four quasiparticles in the Moore-Read
state. He furthermore argued that the Berry phase in Eq. (45)
just gives the Aharonov-Bohm phase times a trivial identity
matrix.
In general, the path ordered exponential in Eq. (45) can be

calculated by the methods given in Sec. IV.A.1, assuming the

conformal blocks to be holomorphic. In this case the Berry
matrix will again just give the Aharonov-Bohm phase times
the identity, so long as we have orthonormality of the
conformal blocks

hΨαjΨβi ¼ Cδα;β: ð46Þ

Thus, assuming this, the holonomy B (the physical result of
moving quasiparticles around each other) is given by the
monodromy M (how the wave function explicitly transforms
due to its branch cuts as discussed in Sec. IV.C.3) multiplied
by the Abelian Aharonov-Bohm phase (Gurarie and Nayak,
1997; Read, 2009b).
While for well-behaved quantum Hall states it appears that

Eq. (46) is true (and this is always assumed), proving this fact
turns out to be quite difficult. Equivalently we might ask
whether there are ways to prove that the holonomy is the
monodromy. The latter has been shown to be true numerically
for the Moore-Read state several times (Tserkovnyak and
Simon, 2003; Baraban et al., 2009), and then more recently for
the Z3 Read-Rezayi state as well (Wu et al., 2014). Direct
numerical tests of Eq. (46) have been done by Baraban (2010)
for the Moore-Read state. On the analytical side, we already
mentioned the calculation by Read (2009b) for two and four
quasiholes in the Moore-Read state. An alternative derivation
based on a mapping to a more complicated plasma was given
by Bonderson, Gurarie, and Nayak (2011).
Read (2009b) also gave some very general arguments for

the assertion holonomy equals monodromy, or equivalently
the orthogonality relation (46), for quasiparticle wave func-
tions constructed from holomorphic conformal blocks. The
main idea is to consider expressions such as

heiλ
R

d2zψ̄eðz̄ÞψeðzÞHðη1Þ � � �HðηMÞObgi;

where the electron operator has been factorized in a charge
and a topological part viz. ψe ¼ eði=

ffiffi
ν

p Þϕψ . For λ ¼ 0 this
formula is just a CFT correlator of some primary fields and
will have power-law dependence on the quasiparticle coor-
dinates ηi. For nonzero λ, expanding the exponential, we see
that the expression resembles the grand canonical sum over
different numbers of electrons, in addition to the quasipar-
ticles. With a suitably chosen background, this will describe
an N electron state with negligibly small charge fluctuations.
Alternatively, we can consider the operator ψ̄eψe as a
perturbation on the original CFT. For the charged sector,
one can use the Laughlin plasma analogy to infer screening of
the electric charge.
To demonstrate “generalized screening,” i.e., that all corre-

lations fall exponentially, which implies holonomy equals
monodromy, one must show that the topological sector is also
in a massive phase. Read (2009b) gives a series of arguments
for this assertion, but also points out that it is hard to draw firm
conclusions, since scaling arguments based on the conformal
dimensions of the perturbing operators are not to be trusted for
large (∼1) values of λ.
We now summarize the results of the preceding sections in

what we refer to as the Moore-Read conjecture.
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Representative wave functions for quantum Hall ground
states, as well as their quasihole excitations, can be expressed
in terms of conformal blocks of primary fields in (rational,
unitary44) CFTs. The holonomies, or statistical braiding
matrices, equal the monodromies of these blocks.
Furthermore, the same CFTs yield a minimal45 dynamical
theory for the edge of the quantum Hall liquid.
This conjecture, which has been a crucial guiding principle

for later work, applies directly to all one-component states, as
well as to multicomponent states of the Halperin type. As
formulated, it however does not apply to hierarchy states
where some of the electrons are described by descendant
fields. This is a main topic in Sec. V.

5. Example: The Moore-Read state

As a well-known example, we consider in detail the
extensively studied Moore-Read state (Moore and Read,
1991). The corresponding CFT is based on the Ising
CFT,46 which has three primary fields: 1;ψ ; σ with conformal
weights 0; 1=2, and 1=16, respectively. The fusion rules (see
Appendix B for a crash course in CFT) are given by

1 × 1 ¼ 1 1 × ψ ¼ ψ 1 × σ ¼ σ

ψ × ψ ¼ 1 ψ × σ ¼ σ

σ × σ ¼ 1þ ψ :

ð47Þ

That there is a fusion rule with two fields on the right-hand
side (the last rule) indicates that this is a non-Abelian theory.
This Ising CFT is particularly simple in that ψ is just a free
Fermi field, so Wick’s theorem applies, and we can evaluate
correlators such as

hψðz1Þ � � �ψðzNÞi ¼ A
�

1

z1 − z2

1

z3 − z4
� � � 1

zN−1 − zN

�

≡ Pf

�
1

zi − zj

�
;

where N is even and A denotes an antisymmetric sum over
all pairings of coordinates. This expression defines a Pfaffian
and we denote it as Pf. Correlators including σ fields (which
are not free so Wick’s theorem does not apply) can be
calculated analytically as well, although the results are far
more complicated (Belavin, Polyakov, and Zamolodchikov,
1984; Nayak and Wilczek, 1996; Ardonne and Sierra, 2010;
Bonderson, Gurarie, and Nayak, 2011). This Ising CFT must
be supplemented with a Uð1Þ CFT to make a proper quantum
Hall state. We consider the ν ¼ 1=2 state of fermions and
correspondingly define

ψeðzÞ ¼ ψðzÞVðzÞ ¼ ψðzÞ∶ei
ffiffi
2

p
ϕðzÞ∶; ð48Þ

where VðzÞ is a bosonic vertex operator in the Uð1Þ sector.
Recalling that the scaling dimension of ∶eiαϕ∶ is α2=2 (see
Appendix B), we note that the scaling dimension of the
electron field is he ¼ hψ þ hV ¼ 1=2þ 1 ¼ 3=2 which is a
half integer and therefore appropriate for a fermionic wave
function.47 The ground state wave function is then obtained by
multiplying together the results of the Ising and Uð1Þ sectors

ΨMR ¼ hψeðz1Þ � � �ψeðzNÞObgi ¼ Pf

�
1

zi − zj

�Y
i<j

ðzi − zjÞ2:

Note that this wave function is nowhere singular. However,
the Pfaffian allows particles to “pair,” i.e., the wave function
vanishes only as a single power, when two particle positions
coincide.
Consider now the rather surprising fact that we constructed

an interesting wave function based on noninteracting fermion
operators (obeying Wick’s theorem) and noninteracting free
boson operators, and yet this wave function has built into it
some extremely complicated correlations.
We can also construct quasihole operators by

ψqh ¼ σðηÞHðηÞ ¼ σðηÞ∶eiϕðηÞ=ð2
ffiffi
2

p Þ∶: ð49Þ

The coefficient in the exponent of the vertex operator is
chosen to give the lowest possible charge while still satisfying

Eq. (44). To see this, note that ψqh × ψe ¼ σ∶ei5ϕ=ð2
ffiffi
2

p Þ∶ ¼
ψf. The scaling dimensions are hqh ¼ hσ þ hH ¼ 1=16þ
1=16 ¼ 1=8 and similarly hf ¼ 1=16þ 25=16 ¼ 13=8. Thus
with he ¼ 3=2 we obtain hf − he − hqh ¼ 0 which assures no
singularity in the electron wave function. There are also other
operators that are nonsingular but they can all be obtained by
fusing a number of elementary holes (49).
We get for the Moore-Read wave function with N electrons

and M quasiholes,

Ψα ¼ hσðη1Þ � � � σðηMÞψðz1Þ � � �ψðzNÞiα
× hHðη1Þ � � �HðηMÞVðz1Þ � � �VðzNÞObgi

¼ hσðη1Þ � � � σðηMÞψðz1Þ � � �ψðzNÞiα

×
YM
γ<μ

ðηγ − ημÞ1=8
YN
i¼1

YM
γ¼1

ðηγ − ziÞ1=2
Y
i<j

ðzi − zjÞ2:

For the correlator not to vanish, all the Ising fields have to
fuse to the identity, and from Eq. (47) it follows that M must
be even. As described in Sec. IV.C.3, correlators involving
multiple quasiholes (and thus multiple σ fields) will generally
be multivalued and span a vector space rather than giving a
single wave function. For 2n quasiholes on a spherical or
planar geometry, the corresponding vector space is 2n−1

dimensional. The most suitable basis for this vector space

44The importance of unitarity was pointed out by Read (2009b).
45Many edge CFTs can correspond to a single 2D topological

bulk. This nonuniqueness is discussed in detail by Cano et al. (2014).
46More correctly, it is based on the chiral part of the Ising CFT.

For a pedagogical discussion of the full Ising theory, see Belavin,
Polyakov, and Zamolodchikov (1984) and Di Francesco, Mathieu,
and Sénéchal (1997).

47Indeed, the scaling dimension of 3=2 indicates that this is
actually a superconformal field theory, but we do not need this fact
(Di Francesco, Mathieu, and Sénéchal, 1997).
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is given by the conformal blocks (Di Francesco, Mathieu, and
Sénéchal, 1997), labeled by the index α in the earlier equation.
The charge of the quasihole is set by the repulsion of the
electrons from the quasihole position, i.e., the ðη − zÞ1=2
factor. Note that although this has a fractional power, the
product of all terms on the right is guaranteed, by Eq. (44), to
be nonsingular and without branch cuts for electron coor-
dinates. The half power can be viewed as 1=2 of a Laughlin
quasihole, which is obtained by inserting a flux quantum and
has electrical chargeþeν. Thus, the elementary quasihole (49)
has charge ν=2 ¼ þe=4. For a discussion of the correspond-
ing braiding properties see Nayak et al. (2008).

D. Non-Abelian effective Chern-Simons theory

Just as for the Abelian states, there are effective low-energy
gauge theories also for the non-Abelian states, and not
surprisingly they contain non-Abelian Chern-Simons terms.
These theories can be derived in different ways, and there can
be different candidate theories for the same state.

1. Construction based on the anomaly

Starting from the bosonic version of the Moore-Read state
at ν ¼ 1, the edge theory consists of a Majorana fermion ψ
and a chiral boson ∶eiϕðzÞ∶. This boson can be fermionized to a
Dirac fermion, or equivalently two Majorana fermions.
Consequently the edge theory has three Majorana fermions.
From these one can form three current operators that transform
as a spin one representation of an SUð2Þ2 Kac-Moody algebra,
where the subscript denotes the level. This algebra is also
generated by a chiral SUð2Þ2 Wess-Zumino-Witten model,
which is thus the purely bosonic incarnation of the edge
theory. To proceed from here, we recall the anomaly approach
to the bulk-edge correspondence described in Sec. II.G.2.
Starting from the bulk theory, we derived an anomalous edge
theory where the nonconservation of the edge charge was due
to inflow from the bulk. Here we turn the argument around.
Knowing the edge theory we can find the anomaly and then
ask what bulk theory will have a nongauge invariant boundary
term that exactly cancels this anomaly. The answer is a non-
Abelian SUð2Þ2 CS theory. See Fradkin et al. (1998) for
details of the derivation, and also for a similar, albeit more
complicated, construction for the ν ¼ 1=2 fermionic Moore-
Read state. [In a later paper, a Ginzburg-Landau approach,
similar to the one described in Sec. II.C, is constructed for the
bosonic case (Fradkin, Nayak, and Schoutens, 1999).]

2. Parton construction

An alternative way to derive effective Chern-Simons
theories for the non-Abelian states is the parton construction
due to Wen (1999). The main idea is to introduce a redundant
set of free fermions, or partons, that transform under an
SUðNÞ “color” group. The electron operator is a singlet under
this group, and the projection on the singlet sector is achieved
by gauging the symmetry. By integrating out the redundant
parton degrees of freedom one is left with an effective non-
Abelian theory for the gauge field. We illustrate this with an
example given by Wen (1999). We start from a set of
fermionic, charge e=2 parton fields ψaα with the Lagrangian,

Lpart ¼ iψ†
aα∂tψaα þ

1

2m
ψ†
aα

�
∂i − i

e
2
Ai

�
2

ψaα;

where α is a spin half index and a ¼ 1, 2 an SUð2Þ color
index, also in the spin half representation. By combining two
partons we can form a charge e spin one bosonic electron,

ΨmðzÞ ¼ ψaαðzÞψbβðzÞϵabCm
αβ;

where m is a spin one index and Cm
αβ is the pertinent Clebsch-

Gordan recoupling coefficients. Next we assume that the
only physical excitations are bosons with spin one and unit
electric charge. This can be achieved by coupling the color
current to a dynamical SUð2Þ gauge field akμ,

LðProjÞ
part ¼ iψ†

aαðδab∂t − iak0t
k
abÞψbα

þ 1

2m
ψ†
aα

��
∂i − i

e
2
Ai

�
1 − i~ai · ~t

�
2

ab
ψbα; ð50Þ

where ~t ¼ ð1=2Þ~σ with σk being the Pauli matrices. In this
theory only the color singlet operators are physical. This can
be seen in different ways. First, variation with respect to the
gauge fields shows that the color currents vanish identically.
Alternatively one can think of adding a Maxwell term
ð1=4g2ÞTrFk

μνFk;μν to the action and note that Eq. (50)
corresponds to the strong coupling (confining) limit
g → ∞. Since the color singlet is antisymmetric the spin
wave function must be symmetric by the Pauli principle, so
the theory indeed describes spin one bosons. To establish that
the state is non-Abelian, one integrates the parton field to get a
low-energy effective action. Assuming that the partons are at a
density corresponding to two filled Landau levels, the result-
ing low-energy action is again a non-Abelian SUð2Þ2 CS
theory, which is the spin one counterpart of the spin zero
theory derived using the anomaly approach.
In a later work Barkeshli and Wen (2010) carried out a

parton construction for the Zk Read-Rezayi parafermion
states at filling factor ν ¼ k=ðkM þ 2Þ, for which they
found the non-Abelian fermionic bulk theory to be
½UðMÞ × Spð2kÞ�1.

E. CFT quasiparticles and hierarchies: A summary

The task of generalizing the CFT construction to even the
Abelian hierarchies has turned out to be quite difficult, and we
pursue this in more depth in the coming sections. Since these
by necessity will be somewhat more technical, we provide
here a short summary of the main results with references to the
proper sections.
Before doing so, however, we note that as long as we are

concerned only with universal topological properties (and
do not aim at obtaining accurate wave functions) there is a
relatively straightforward path to be followed (Moore and
Read, 1991). Following the idea of a pseudo wave function
[Eq. (5)], we can, for example, construct a ν ¼ 2=7 wave
function as follows [cf. Eq. (7)]:
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Ψ ¼
Z YM

α¼1

d2ηαhV̂ðη̄1Þ � � � V̂ðη̄MÞObgi

× hHðη1Þ � � �HðηMÞV1ðz1Þ � � �V1ðzNÞObgi

with M ¼ N=2. Here VðzÞ and HðηÞ were defined in Eq. (35)
(with m ¼ 3 in this case), and

V̂ðη̄Þ ¼ ∶ei
ffiffiffiffiffiffiffiffiffiffi
2þ1=3

p
ϕðη̄Þ∶:

Note that the correlator of the V̂ is actually antiholomorphic
and corresponds to fields with opposite chirality in order
to properly cancel the phases in the holomorphic factors
ðηα − ηβÞ1=3 that arise from the second correlator. Ignoring, for
simplicity, the background charges and the resulting Gaussian
exponential factors, we obtain almost the same wave function
as in Eq. (7)—the only difference is that the fractional power
of the factors jηα − ηβj changes from 1=3 to 2=3. In Sec. V.C
we argue that this is a short-distance effect that does not
influence the topological properties.
Topologically this construction is valid, but, as stressed in

Secn. II.B.2, it is difficult to evaluate the integrals for a
reasonable number of particles. Also, if one tries to describe
condensates of quasielectrons by naively replacing the hole
operators HðηÞ with their inverse H⋆ðη̄Þ ¼ e−iϕðη̄Þ, the corre-
lators will have singularities ∼ðzi − η̄Þ−1. Again, this should
not change the long distance topological properties, but to get
acceptable wave functions one would need not only to handle
these singularities in the integrals over the positions η̄i, but
also to project the result on the LLL for the electrons.
Physically the singularities come about since introducing a

vortex of strength m changes the angular momentum of all the
electrons by m units with respect to the position of the vortex.
The problem occurs when one tries to make an antivortex, i.e.,
a vortex with negative m, at a position where there is already
an electron. This electron cannot lower its angular momentum
while still staying in the LLL, and this is what is manifested in
the singularities ∼ðzi − η̄Þ−1 encountered when naively trying
to form a quasielectron using the operator H⋆. Leaving the
LLL, the angular momentum can be lowered by including a
factor z̄i − η̄ which after projection onto the LLL provides the
rationale for Laughlin’s proposal that going from a quasihole
to a quasielectron amounts to

Q
iðzi − ηÞ →Q

ið2∂i − η̄Þ. The
resulting multiquasielectron wave functions are, however,
equally difficult to handle in the hierarchy integrals as their
quasihole counterparts.
Fortunately, there is a way out of these problems, and the

key insight is that calculating correlators of H, or H⋆, is not
the only way to represent quasiparticles using the CFT
formalism. To explain the alternative method, we first notice
that in the Laughlin ground state, the ith electron is sur-
rounded by a correlation hole

Q
jðzi − zjÞm that we think of as

m elementary holes on top of each other. The charge counting,
with respect to the ground state, now works as follows.
Introducing m elementary holes amounts to electric charge
þe, and the actual electron at position zi adds charge −e,
meaning that the electron together with its correlation hole is
neutral. This is as it should be, since adding an electron to the
incompressible quantum Hall liquid does not change the local

charge density, but just expands the droplet a tiny bit at the
edge. This provides the crucial clue for how to introduce
quasiholes or quasielectrons—we just modify a number of
electron operators by contracting or expanding their correla-
tion holes by one unit. These words can be translated into
CFT equations: contracting amounts to fusing an electron
operator VðzÞ with an inverse hole, i.e., the operator H⋆. Just
as in Sec. IV.C.1 fusion means making an operator product
expansion, but in this case the first term turns out to vanish,
so the leading term in the expansion will be a descendant
which means that it includes a derivative. In the simplest case
of the ν ¼ 1=ð2pþ 1Þ Laughlin state, fusing the electron
operator (35) with the conjugate of the hole (35) we get
~VðzÞ ¼ H⋆ ⊗ VðzÞ ∼ ∶∂zei2p=

ffiffiffiffiffiffiffiffiffi
2pþ1

p
ϕðzÞ∶. We can now form

states with an arbitrary number of quasielectrons simply by
replacing a number of the original electron operators V with
the new operators ~V.48 This will give rise to a state with
increased density at the second level of the hierarchy. In
particular, if half of the original electrons are replaced by ~V,
one obtains the ν ¼ 2=ð4pþ 1Þ Jain state. By constructing the
relevant hole operators in this new state the procedure can be
iterated.
In complete analogy one can introduce quasiholes by

expanding the correlation holes around the electrons; this is
done by fusing V with an appropriate hole operator.49 In this
case, modifying a fraction of the original electrons results in a
second level hierarchy state with charge density lower than the
parent state. In particular, this procedure will give the states of
the negative Jain sequences. That some of the Jain states were
obtained in these simple cases is not a coincidence; we show
that all the Jain composite-fermion states are exactly repro-
duced by this procedure.
Note that in this discussion there was no reference to the

hierarchy integrals or even states of several localized quasi-
particles. Such states can however be constructed by inserting
a number of quasilocal operatorsHðηÞ and Pðη̄Þ, representing
quasiholes and quasielectrons, respectively, into the correla-
tors. The exact definition and properties of these operators
are discussed in Sec. V.C. A most remarkable property of the
resulting multiquasiparticle wave functions is that when
inserted in the integral expressions for the hierarchy wave
functions, the integrals over the quasiparticle coordinates can
be carried out exactly, thus giving closed form expressions for
the wave function of the daughter state. These are just the
wave functions discussed previously. The details of this are
explained in Sec. V.F. An upshot of this is also that all
composite-fermion wave functions can be exactly written in a
manifestly hierarchical form.
In Sec. IV.C.4 we emphasized the importance of the plasma

analogy for proving the monodromy equals holonomy con-
jecture that the topological properties of the quantum Hall
states could be obtained directly from the monodromies of the

48As discussed in detail in Sec. V.C this is not entirely true; as
written the operator ~V is anyonic and has to be augmented by another
vertex operator to give fermionic commutation relations.

49Perhaps surprisingly, the pertinent hole operator is not the naive
Laughlin hole H; we return to this technical detail in Sec. V.C.
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conformal blocks. This turns out to be more difficult in the
case of the hierarchy states, which is discussed in Sec. V.E.

V. EXPLICIT HIERARCHY WAVE FUNCTIONS FOR
ABELIAN QUANTUM HALL STATES

In Sec. II.B we gave the general form of a hierarchy wave
function expressed as integrals over quasiparticle coordinates
and in Sec. II.E the explicit composite-fermion wave functions
in the Jain series. As mentioned, the latter have successfully
been compared with experiments, while the former are usually
too hard to evaluate. In this section we tie the two pictures
together using the CFT approach. Following Bergholtz et al.
(2008) and Suorsa, Viefers, and Hansson (2011a, 2011b), we
first present explicit vertex operators whose correlators
produce trial wave functions for any Abelian hierarchy state.
These are consistent with Wen’s topological classification
and reduce to Jain’s wave functions whenever these exist. We
then proceed to explain how to construct excited states with
quasielectrons and quasiholes. Finally we show that these
wave functions do form a hierarchy in that they can all be
written in the Halperin form (5), or in other words they can all
be obtained by successive condensations of quasiparticles. For
readability, we often omit the background charge operator (40)
from the correlators in this section.

A. The chiral hierarchy

For simplicity, we first consider states with a positive
semidefinite K matrix which describe fully chiral states,
where all the modes of the minimal, i.e., unreconstructed,
edge move in the same direction. These states form a
subhierarchy within the full hierarchy that will be considered
in Sec. V.B.

1. The need for many electron operators

In order to describe a state at level n in the hierarchy, we
use n different electron operators (Read, 1990; Wen, 1995);
see also Sec. II.F. In the edge theory, these are CFT vertex
operators. A natural assumption, consistent with the Moore-
Read conjecture, is that the bulk should be described by the
same CFT [cf. Sec. II.A in Suorsa, Viefers, and Hansson
(2011b)]. Given this, it is natural that the description of the
bulk states involves one electron (vertex) operator for each
level of the hierarchy.
The n electron operators will differ by their conformal

spin, which has a natural interpretation as an orbital spin
(cf. Secs. II.F, II.H, and VII). This however does not mean that
the electrons come in different types. They are indistinguish-
able, and the electronic wave functions are fully antisym-
metric as required by the Pauli principle. For heuristic
purposes, it is, however, sometimes useful to think in terms
of distinct types of electrons. For instance, we will show that
in all cases where composite-fermion wave functions exist, the
CFT approach leads to identically the same wave functions. In
these cases, the existence of n different “kinds” of electrons
finds its natural counterpart in the CF language, where the
different electron operators correspond to composite fermions
in different effective “Λ levels.”

2. Chiral ground states: Wave functions
from topological data

We now present the general form of ground state wave
functions for chiral states. These are hierarchy states resulting
from quasielectron condensation only. They can be expressed
as holomorphic correlators of local chiral operators, and their
edge states all have the same chirality. These wave functions
can be derived via an explicit hierarchical condensation
procedure, discussed in Sec. V.D. Here we directly present
the upshot—a set of vertex operators whose correlators give
wave functions that are consistent with Wen’s topological
classification (Bergholtz et al., 2008; Suorsa, Viefers, and
Hansson, 2011a).
The vertex operators at level n of the hierarchy closely

resemble those of the multicomponent states,

VαðzÞ ¼ ∶∂α−1
z ei

P
β
Qαβϕ

βðzÞ∶ α ¼ 1; 2;…; n; ð51Þ

where we recall from Eq. (38) that K ¼ QQT . Vα has
conformal spin sα ¼ ð1=2ÞKαα þ α − 1, where the two last
terms come from the derivatives, and the first term is just the
conformal dimension of the corresponding primary field.
These are exactly the entries in the hierarchy spin vector
(21), which should be interpreted as the orbital spins of the
electrons. The derivatives appear naturally from the conden-
sation construction presented later and are necessary for the
resulting wave functions not to vanish under antisymmetriza-
tion. In our scheme we divide the electrons into n groups
I1;…; In, assigning a different electron operator Vα to each of
the groups, and then sum over all ways of choosing the
groups. The ground state wave functions become

Ψ ¼ A
	Yn

α¼1

Y
iα∈Iα

VαðziαÞObg




¼ Afð1 − 1ÞK11∂2ð2 − 2ÞK22 � � � ∂n−1
n ðn − nÞKnn

× ð1 − 2ÞK12ð1 − 3ÞK13 � � � ððn − 1Þ − nÞKn−1;ng
× e−

P
i
jzij2=ð4l2Þ; ð52Þ

where A is the antisymmetrization operator. The derivatives
act on the Jastrow factors, but not on the Gaussian, and we use
the shorthand notation,

∂k
α ≡

Y
iα∈Iα

∂k
ziα
;

ðα − αÞKαα ≡ Y
i<j∈Iα

ðzi − zjÞKαα ;

ðα − βÞKαβ ≡ Y
iα∈Iα

Y
iβ∈Iβ

ðziα − ziβÞKαβ : ð53Þ

The groups Iα have the same partial filling fractions
να ¼ K−1

αβ tβ, as the multicomponent states in Sec. IV.B, and
the neutralizing background (40) is also the same. The size of
each of the groups is determined by requiring homogeneity.
For details about how to impose the homogeneity condition,
see Bergholtz et al. (2008). The vertex operators in Eq. (51)
are by no means unique. In principle, one needs to consider
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more general expressions, where the derivatives act only on
parts of the vertex operator, such as

∶eiaϕα∂neibϕ
β∶: ð54Þ

The freedom in placing the derivatives reflects the various
possibilities to regularize operator products between electron
and quasiparticle operators; see, e.g., Hansson, Hermanns, and
Viefers (2009) and Suorsa, Viefers, and Hansson (2011a,
2011b). Numerical studies indicate that on the plane the
precise placement of the derivates does not matter, i.e., it does
not change any of the topological features of the state. This is
widely used in numerical computations in order to find
alternative descriptions of the state that can be implemented
more efficiently on a computer (Jain and Kamilla, 1997a,
1997b; Möller and Simon, 2005; Bonderson and Slingerland,
2008; Rodríguez et al., 2012), even though there is no
rigorous proof of the equivalence of these various alternatives
as of yet. However, not all choices are allowed in Eq. (54), as
some would give singular wave functions by having too many
derivatives acting on a Jastrow factor to a broken power like
ðzi − zjÞp=q. On the plane, a simple prescription that avoids
this is to always move all derivatives to the left so that they
act on fully holomorphic functions. For instance, the operators
(51) as well as P andH in Sec. V.C are defined such as to give
this prescription when used in a hierarchy construction.
However, it was noted by Kvorning (2013) that it does not
give correct vertex operators for the spherical geometry,
and one is forced to use the more general expression (54)
in order to obtain wave functions that are nonvanishing; see
Sec. VII.A.
By evaluating the wave functions (52) on a thin cylinder,

Bergholtz et al. (2008) exactly reproduced the same charge
density wave patterns as those found by Bergholtz and
Karlhede in the TT limit (cf. Sec. II.J). It is both reassuring
and encouraging that the CFT wave functions precisely
reproduce the exact ground states found in a nontrivial model
of interacting electrons and constitutes an important consis-
tency check of the former.
To make this discussion less abstract, let us consider the

example of the quantum Hall state at filling ν ¼ 2=5 and
factorize K as in the first alternative in Eq. (42),

K ¼
�
3 2

2 3

�
¼
 ffiffiffi

3
p

0ffiffi
4
3

q ffiffi
5
3

q !0B@
ffiffiffi
3

p ffiffi
4
3

q
0

ffiffi
5
3

q
1
CA:

Equation (51) then gives the two vertex operators,

V1 ¼ ∶ei
ffiffi
3

p
ϕ1∶; V2 ¼ ∶∂ze

ið
ffiffiffiffiffiffi
4=3

p
ϕ1þ

ffiffiffiffiffiffi
5=3

p
ϕ2Þ∶:

Homogeneity requires the two sets I1 and I2 to be of equal
size, i.e., N=2, where N is the number of electrons, and the
wave function becomes

Ψ2=5 ¼ Afð1 − 1Þ3∂2ð2 − 2Þ3ð1 − 2Þ2ge−
P

i
jzij2=ð4l2Þ: ð55Þ

This wave function is identical to the one obtained in
Eq. (71) by condensing quasielectrons on top of the

Laughlin 1=3 state, and in fact also identical to the
ν ¼ 2=5 Jain wave function.
At level n of the hierarchy there are n elementary quasi-

holes,

HαðηÞ ¼ ∶ei
P

β
Q−1

βα ϕ
βðηÞ∶;

where Q−1 is the inverse of the matrix Q in the electron
operators (51).50 In Wen’s language, a generic quasihole is
some composite of these, as encoded in the l vector defined in
Sec. II.F. For example, a fundamental hole created by the
operator Hα corresponds to lqα ¼ δqα. A Laughlin hole, on the
other hand, amounts to a unit vortex in all condensates and is
created by the operator HL ¼QαHα and represented by the
l vector (1,1,1,…,1). The simple connection between the
K matrix and the hierarchy wave functions is manifest only in
the “symmetric basis” where the t vector equals (1,1,…,1)
(see Sec. II.F). The statistics of any quasihole follows
from Eq. (18).
The conformal spin of the operator Hα is calculated as

2sα ¼
P

βQ
−1
βαQ

−1
βα ¼PβðQ−1ÞTαβQ−1

βα ¼ K−1
αα in accordance

with Eq. (21), if we again identify the conformal spin with
the orbital spin in the Wen-Zee formalism. The holes obtained
using Hα do not in general have the same charge, but there is
always one with the minimal charge e=q for a state with
ν ¼ p=q. We believe that at level n in the hierarchy one can
always find n distinct hole operators with the same charge and
that only differ by integer units of conformal spin.51 Since the
n holes are topologically the same, it is fair to ask if all are
needed. The tentative answer is yes, but is based on arguments
that go beyond topology. Just as the n electron operators are
needed in order to construct a ground state wave function at
level n in the hierarchy, we presumably need all n quasihole
operators to describe a general quasihole wave function. This
belief is based on calculations of the particle entanglement
spectrum and is briefly outlined in Sec. II.G.4.
While this description of quasiholes was rather straightfor-

ward, the situation is more complicated for quasielectrons. A
naive approach leads to singular wave functions and there is
no local operator that creates acceptable quasielectron wave
functions. A heuristic way to understand what goes wrong
was given in Sec. IV.E. In Sec. V.C we explain how this
problem can be circumvented (Hansson et al., 2009; Hansson,
Hermanns, and Viefers, 2009) and discuss in some detail how
to construct operators for quasielectrons.

B. Ground states of the full Abelian hierarchy

Having positive definite K matrices is a special case. For
general hierarchy states, containing quasihole condensates
and, correspondingly, antichiral edge modes, a description in
terms of purely holomorphic conformal blocks is not possible.
Suorsa, Viefers, and Hansson (2011a, 2011b) generalized the

50If Q is not a square matrix, one instead chooses Q−1 as the
Moore-Penrose pseudoinverse, which (as n is the rank of K) fulfillsP

βQαβQ−1
βγ ¼ δαγ .

51We have not tried to prove this in general, but we have tested
several nontrivial cases of K matrices of rank two and three.
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construction in the previous section to general hierarchy
states. The idea is to split the K matrix as

K ¼ κ − κ̄; ð56Þ
where both κ and κ̄ are positive semidefinite and are associated
with the chiral and antichiral sectors, respectively. This
decomposition is in general not unique, but all such choices
are believed to represent the same topological phase. In
particular, filling fraction, quasiparticle charges, and statistics
depend only on the full K matrix; cf. Sec. II.F. There might be
ways to restrict the freedom in splitting the K matrix, for
instance by demanding that the resulting wave function should
have the correct TT limit just as the chiral states discussed
earlier. The freedom of decomposing the K matrix will be
illustrated in later examples.
Given a splitting of the K matrix, we parallel the

decomposition (38) in Sec. IV.B and write κ ¼ qqT and
κ̄ ¼ q̄q̄T .52 With this notation, the background operator (40)
generalizes to

Obg ¼ exp

�
−i
Z

d2rρð~rÞnαðqαβϕβ þ q̄αβϕ̄βÞ
�
; ð57Þ

and the generalized version of the vertex operators (51) is

Vα ¼ ∶∂σα
z ∂ σ̄α

z̄ ei
P

β
qαβϕβ

ei
P

β
q̄αβϕ̄β

∶; ð58Þ

where the powers of derivatives are related to the spin vector
sα ¼ ð1=2ÞKαα þ σα − σ̄α. In a minimal hierarchy construc-
tion we get a single derivative at each level, so σ þ σ̄ ¼ α − 1.
By adding extra derivatives, it can be generalized to states
with a shift (15) that differs from the minimal one obtained by
the condensation procedure described in Sec. V.D, but this
has so far no application to experimentally or numerically
observed quantum Hall states.
The properly antisymmetrized correlators of products of

these operators give the functions

Ψðfξig; fξ̄igÞ ¼ A
�Y

α

∂σα
α ∂ σ̄α

α ðα − αÞκααðᾱ − ᾱÞκ̄αα

×
Y
α<β

ðα − βÞκαβðᾱ − β̄Þκ̄αβ
�
e−
P

i
jξij2=ð4l2Þ

¼ ΨκðfξigÞ × Ψκ̄ðfξ̄igÞ; ð59Þ

where we used the same shorthand notation as in Eq. (53),
except that the z’s are replaced by ξ’s and the bar denotes
complex conjugation. They nicely factorize into a chiral and
antichiral part (except the Gaussian, which is distributed
equally between these two parts). Clearly the expressions
in Eq. (59) are not valid (holomorphic) LLL wave functions,
but they can be interpreted as wave functions in a coherent
state representation, i.e., the ξ’s are considered as coordinates
for the guiding centers of the electrons. The coherent state
wave functions are related to LLL wave functions by the
transformation

ΨðfzigÞ ¼
Z

½d2ξi�hfzigjfξigiΨκðfξigÞΨκ̄ðfξ̄igÞ: ð60Þ

Here hfzigjfξigi ¼
Q

N
i¼1 hzijξii, with hzjξi ¼ exp½−ðjξj2 −

2ξ̄zþ jzj2Þ=4l2� is the coherent state kernel, describing N
particles maximally localized to the points ðξ1;…; ξNÞ; up to a
phase, hzjξi ¼ expð−jz − ξj2=4l2Þ. Technically, this trans-
formation can also be interpreted as a LLL projection, as the
coherent state kernel and the Gaussian from Ψ combine to a
LLL delta function,

δLLL ¼ e−ðjξj2−ξ̄zÞ=ð2l2Þ: ð61Þ

A third interpretation is that the wave function
Ψðz1; z2;…; zNÞ can be viewed as a CFT correlator of
quasilocal electron operators

VðzÞ ¼
Z

d2ξ
2π

e−ðjξj2−2ξ̄zþjzj2Þ=ð4l2ÞVðξ; ξ̄Þ: ð62Þ

This latter view is appealing in that it displays the inherent
“fuzziness” of particles in the LLL, i.e., they cannot be
localized more precisely than the magnetic length. The
concept of quasilocality will be central when we discuss
how to explicitly build a hierarchy of quasielectron and
quasihole condensates.
The “sewing together” of the chiral and antichiral sectors

amounts to a two-fluid picture in which the chiral component
consists of the bare electrons and all quasielectron conden-
sates, and the antichiral sector consists of the hole conden-
sates. The actual particles are built as composites of the
positively and negatively charged parts, with their coordinates
identified (Suorsa, Viefers, and Hansson, 2011b).
With this background, we now propose a generalized

version of the Moore-Read conjecture.

Representative wave functions for ground states of
hierarchical quantum Hall phases, as well as their
quasiparticle excitations, can be constructed from
antisymmetrized products of chiral and antichiral
conformal blocks of primary and descendant fields
in a CFT, in the basis of coherent states jξ1;…; ξNi.
These wave functions obey generalized screening
and have minimal edge theories given by the same
CFTs that describe the bulk wave functions.

The assumption about generalized screening, which is
equivalent to postulating that holonomy equals monodromy,
is discussed further in Sec. V.E. So far we considered only
Abelian phases and presented a concrete construction that
yields explicit wave functions for the full hierarchy. In
Sec. VI we generalize to non-Abelian states some of which
again have explicit wave functions, while others can be
expressed only in terms of integrals over quasiparticle
coordinates.

1. Examples

The coherent state formulation and the freedom in decom-
posing the K matrix can be illustrated already at the level of52Recall that q and q̄ are matrices.
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the Laughlin wave function. The K matrix for the standard
ν ¼ 1=m state is simply K ¼ m. However, one can imagine a
more general form

K ¼ κ − κ̄ ¼ ðmþ kÞ − k:

This corresponds to the modified Laughlin wave functions
introduced by Girvin and Jach (1984),

ΨðfzigÞ ¼
Z

½d2ξi�hfzigjfξigi
Y
α<β

ðξ̄α − ξ̄βÞk

×
Y
α<β

ðξα − ξβÞkþme−
P

i
jξij2=ð4l2Þ

¼
Z Y

d2ξiδLLLðzi; ξiÞ
Y
α<β

jξ̄α − ξ̄βj2k

×
Y
α<β

ðξα − ξβÞme−
P

i
jξij2=ð4l2Þ: ð63Þ

The second line emphasizes that this can be considered as the
LLL projection of the Laughlin wave function with additional
correlation factors

Q
α<βjξ̄α − ξ̄βj2k. For integer k, the explicit

form of the LLL projected wave function is

ΨðfzigÞ ¼
Y
i<j

ð∂i − ∂jÞk
Y
i<j

ðzi − zjÞkþme−
P

i
jzij2=ð4l2Þ:

The pertinent vertex operator for obtaining this generalized
Laughlin wave function as a CFT correlator is

Vðm;kÞðξ; ξ̄Þ ¼ ∶ei
ffiffiffiffiffiffiffi
mþk

p
ϕðξÞei

ffiffi
k

p
ϕ̄ðξ̄Þ∶:

Girvin and Jach proposed Eq. (63) as a particular scheme to
make Laughlin’s wave function variational with k as the
variational parameter. The additional correlation factor in
Eq. (63) or more generically a function fðQα<βjξ̄α − ξ̄βj2kÞ
can be used to change the short-distance behavior of the wave
function, and thus lower the ground state energy, without
affecting the topological properties (Fremling et al., 2016).
One might wonder whether such a nonminimal description

of the Laughlin states would have implications for the edge
physics. To our knowledge this question has not been
investigated numerically, but the simplest guess is that the
edge still just supports a single, charged mode. To see this, we
use a nonminimal vertex operator

~Vðm;kÞðξ; ξ̄Þ ¼ ∶ei
ffiffiffi
m

p
ϕðξÞei

ffiffi
k

p
ϕ1ðξÞei

ffiffi
k

p
ϕ̄1ðξ̄Þ∶;

where ϕ is the same field as in the original description of
the Laughlin state; cf. Eq. (35). The corresponding edge
Lagrangian contains kinetic terms for the left-moving charged
field ϕ as well as for the neutral right- and left-moving fields
ϕR and ϕL. However, it generically also contains a term
∼ cosðϕR − ϕLÞ which opens a gap in the neutral sector, while
leaving the edge unchanged, up to microscopic details.
As a second example, consider ν ¼ 2=3. It can be viewed as

the particle-hole conjugate of the 1=3 Laughlin state or
alternatively as a hole condensate in the ν ¼ 1 quantum

Hall state. In the language of composite fermions it is
described as a reverse flux attachment CF state. Its K
matrix is

K ¼
�
1 2

2 1

�
:

There is no consistent purely chiral description of this state,
since K has a negative eigenvalue, corresponding to a
counterpropagating edge mode. This can also be seen at
the level of wave functions, in that the naive (112) state has a
very poor overlap with the exact Coulomb state, and it does
not have the correct thin torus limit (Bergholtz et al., 2008;
Suorsa, Viefers, and Hansson, 2011a, 2011b). So one has to
introduce an antichiral component. Again there are many
possible ways of splitting K. In particular, all integer-valued
splittings

K ¼ κ − κ̄ ¼
�
1þ k 2þ l

2þ l 1þ k

�
−
�
k l

l k

�

are “allowed” in the sense that κ and κ̄ are both positive (semi)
definite, provided k ≥ lþ 1 (k; l ≥ 0). The special case
(l ¼ 0, k ¼ 1) reproduces Jain’s ν ¼ 2=3 reverse flux attach-
ment wave function (Wu, Dev, and Jain, 1993),

ψ Jain
2=3 ¼ ð1̄ − 1̄Þ∂̄2ð2̄ − 2̄Þð1 − 1Þ2ð2 − 2Þ2ð1 − 2Þ2

× e−
P

j
jzjj2=4l2

:

This wave function has been tested numerically (in spherical
geometry) and is very close to the exact Coulomb ground
state (Wu, Dev, and Jain, 1993). It would be interesting to
perform a more systematic numerical comparison of states
with different splittings of the K matrix. Again note that the
derivatives do not follow from the form of the K matrix
itself, but rather from the explicit condensation procedure
explained later, and they are needed in order to get the
correct shift.

C. Local and quasilocal quasiparticle operators

Our “recipes” for writing down representative ground state
wave functions for general Abelian quantum Hall ground
states were stated in Secs. V.A and V.B, without further
explanation. In this section we discuss the CFT description of
fractionally charged excitations, in particular, quasielectrons.
Recall Laughlin’s wave function for a quasihole in a

ν ¼ 1=m quantum Hall state, localized at η,

ψLqhðη; z1;…; zNÞ ¼
YN
i¼1

ðzi − ηÞψLðz1;…; zNÞ

and correspondingly for quasielectrons,

ψLqeðη̄; z1;…; zNÞ ¼
YN
i¼1

ð2∂i − η̄ÞψLðz1;…; zNÞ: ð64Þ
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While the former agrees with the composite-fermion quasi-
hole, the CF quasielectron differs quite substantially from
Laughlin’s (Jain, 2007). The CF expression for a quasielectron
localized at η is

ψCFqeðη̄; fzigÞ
¼
X
i

ð−1Þie−qhðjη̄j2−2η̄ziÞ=ð4l2Þ

×
Y

j<k;j;k≠i
ðzj − zkÞm∂i

Y
l≠i

ðzl − ziÞm−1e−
P

j
jzjj2=ð4l2Þ: ð65Þ

Numerical studies (Kjønsberg and Leinaas, 1999; Jeon,
Graham, and Jain, 2003) showed that the CF quasielectrons
do better than Laughlin’s in that the former exhibits well-
defined fractional statistics for braiding of two well-separated
quasielectrons, while this is not the case for the latter. This
issue was revisited by Jeon and Jain (2010), who found that
Laughlin’s quasielectron, too, has the correct braiding sta-
tistics as long as the ratio Apath=A → 0, where Apath is the area
enclosed by the braiding path and A is the total area of the
quantum Hall droplet. However, if Apath encloses a finite
fraction of the droplet, then the braiding phase of Laughlin’s
quasielectron becomes ill defined, due to the Oð1=NÞ cor-
rections to the Aharonov-Bohm phase found by Kjønsberg
and Myrheim (1999).
There is an inherent asymmetry between the traditional

descriptions of quasiholes and quasielectrons that is also
reflected in the CFT formulation. When writing wave func-
tions as CFT correlators, the expression for a Laughlin
quasihole at η is reproduced by inserting a local hole operator
HðηÞ ¼ exp ½iϕðηÞ= ffiffiffiffi

m
p �. However, the naive guess for a

quasielectron using the inverse hole operator H−1ðηÞ does
not work, as this leads to unwanted singularities of the
form

Q
jðzj − ηÞ−1 in the wave function. The physical reason

behind this was discussed in Sec. IV.E, where it was also
pointed out that the problem can be solved by noting that since
every electron in the liquid is surrounded by a correlation hole
(m fold in the ν ¼ 1=m state), it is “safe” to contract the liquid
by contracting the correlation hole around any electron.
Formally, this is obtained by modifying one of the electron
operators; in the simplest case of a 1=m Laughlin state one
introduces

PðzÞ ¼ ∂z∶eið
ffiffiffi
m

p
−1=

ffiffiffi
m

p ÞϕðzÞ∶: ð66Þ

This is essentially an inverse quasihole fused with an electron,
using a particular regularization scheme to avoid the singu-
larities mentioned previously, while retaining the correct
fractional charge and anyonic statistics of the inverse hole.
Replacing one of the electron operators VðzÞ in the ground
state correlator by PðzÞ and antisymmetrizing over particle
coordinates exactly reproduces the expression for a CF
quasielectron at the center. It is then possible to, by hand,
write an expression for a localized quasielectron as a coherent
superposition of such a quasielectron in different angular
momentum states. However, this is not fully satisfactory as
one would wish for one single operator Pðη̄Þ which, when
inserted into the ground state correlator, directly produces such

a localized quasielectron state—in analogy to the quasihole
operator HðηÞ. Ideally, such an operator should make the
anyonic properties, fractional charge and anyonic braiding
statistics, manifest. It turns out that requiring manifest braiding
statistics, i.e., an anyonic monodromy factor and zero Berry’s
phase as discussed in Sec. IV.C.5, is quite nontrivial and has so
far not been achieved. It is, however, possible to instead use
bosonic or fermionic representations of the quasiparticles. The
monodromies are then bosonic or fermionic, and the statistics
is hidden in the Berry phase. Before presenting this operator,
let us shortly explain why obtaining explicit anyonic mono-
dromies is problematic for quasielectrons.
The root of the problem can already be seen from Eq. (66);

trying to use it to create multiquasielectron states results in
factors ∼ðzi − zjÞ4=3 for each pair of P’s. This is unacceptable
since the wave function, although being a many-quasielectron
state, describes a fermionic many-body state in the LLL and
thus must be analytic and antisymmetric. To remedy this
problem, one introduces (chargeless) auxiliary fields that
make the braiding of the quasielectrons trivial (either bosonic
or fermionic), while leaving their braiding properties vis-à-vis
the electrons and quasiholes unchanged. For instance, for a
Laughlin state at filling 1=m one can use

PðzÞ ¼ ∂z∶ei½ðm−1Þ= ffiffiffimp �ϕðzÞþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m−1Þ=mp

χðzÞ∶ ð67Þ
instead of the operator (66), which amounts to fusing a
bosonized inverse quasihole,

H−1
b ¼ ∶e−i

ffiffiffiffiffiffi
1=m

p
ϕþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m−1Þ=mp

χ∶;

with an electron operator. Even though this operator has
fermionic monodromy, it can be used to create proper many-
quasielectron states that exhibit the expected anyonic braid-
ing phase.
To get a better feel for this, let us briefly recall the case of

quasiholes. In their original form ∶eiϕ=
ffiffiffi
m

p
∶, the quasihole

operator produces factors ∼ðηα − ηβÞ1=m for any pair of
quasiholes. In this representation, the holonomy equals the
monodromy, i.e., the fractional braiding phase is fully dis-
played in the many-hole wave function, as explained in
Sec. IV.C. Such a representation, commonly believed to be
connected to the “minimal” CFT description, is not the only
viable choice. Alternatively, we can change the monodromy
of H to bosonic ones, by introducing auxiliary bosonic fields
as shown. This does not, of course, change the physics, but
amounts to “shuffling” the fractional statistics from the
monodromy into the Berry phase. For quasiholes, we can
therefore freely change the monodromy factor, while for
quasielectrons we are limited to either bosonic or fermionic
monodromy in order to avoid branch cuts in the electron
coordinates. In this latter case the different choices will not
just be a matter of normalization, but in fact correspond to
wave functions that differ by factors ðzi − zjÞn, where the
coordinates are those of the quasielectrons. Although such
factors are important when the quasielectrons come close to
each other, they do not influence the rest of the electrons. They
are also negligible when the quasiparticles are far apart and
thus do not change the topological properties.
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Here we also recall two other sources of short-distance
ambiguities related to the CFT wave functions that were
mentioned earlier. The first occurred in the first example in
Sec. V.B and amounts to introducing Jastrow factors such asQ

i;jjξi − ξjjk or even more general functions of the distance
between the particles. Since such factors do not introduce any
angular momentum, they will not influence the density of the
liquid and most likely53 neither will they influence any other
topological property. The second source of short-distance
ambiguities was discussed in Sec. V.B and relates to the
particular ordering of the derivatives that are present in the
LLL wave functions. We stress that this, rather large, freedom
in changing the short-distance details of the wave functions
without altering the topological properties is in fact a virtue. It
might be used in a variational sense to find good wave
functions with specified topological properties for realistic
Hamiltonians. In this context we also recall that within the
composite-fermion picture, similar short-distance ambiguities
can occur. A prominent example is the approximation to the
LLL projection that was devised by Jain and Kamilla (1997b)
and shows good agreement with the exact projection.

1. Quasilocal quasiparticle operators

Let us now return to the question of how to actually write
down an operator Pðη̄Þ that directly creates a quasielectron at
an arbitrary position ~η. The idea is that the surplus of charge is
generated by contracting the correlation holes of electrons in
the vicinity of ~η. This localization is accomplished by means
of a Gaussian weight which localizes the quasielectrons on the
scale of the magnetic length, thus the term quasilocal. The
quasielectron operator has the same charge and conformal
dimensions as H−1. As indicated earlier, it involves “fusing”
an inverse quasihole with an electron in an appropriate way.
In order to avoid the branch cuts that rendered Eq. (66)
unacceptable, we need to use a quasihole operator with a
trivial—either fermionic or bosonic—monodromy factor. The
two choices differ in their short-distance properties, i.e.,
how exactly the charge is localized. Depending on the task
at hand, one or the other might be more convenient and we use
both possibilities in the following discussion. In analogy with
the quasihole case, a correlator of the type hPðη̄ÞQiVðziÞi
gives a wave function for a quasielectron localized around ~η.
Moreover, multiquasielectron states can be generated by
multiple insertions of Pðη̄Þ.
To be more concrete, the operator for a quasielectron with

charge −qhe is given by54

Pðη̄Þ ¼
Z

d2we−qh=ð4l2Þðjwj2þjηj2−2η̄wÞðH−1∂̄JÞnðwÞ: ð68Þ

Note the similarity to the quasilocal electron operators (62)
discussed in Sec. V.B. The exponential factor indeed localizes
the quasielectron around the position ~η as it equals the

Gaussian exp½ð−qh=4l2Þjw − ηj2� up to a pure phase. Note
that this exponential factor is fully determined by this
condition together with the requirement that the resulting
Gaussian factors for the electrons should come out correctly.
This is also equivalent to demanding that the Gaussian factor
in η̄ in Eq. (68) is precisely the one expected for a charge qh
particle. JðwÞ ¼ i∂ϕðwÞ= ffiffiffiffi

m
p

is the holomorphic Uð1Þ cur-
rent related to the electric charge. Its divergence ∂̄JðwÞ
vanishes except at the position of the charges. Thus, it can
effectively be replaced by a sum of δ functions centered at the
electron positions (Hansson, Hermanns, and Viefers, 2009).
ð� � �Þn denotes a generalized normal ordering, which we return
to later. Its purpose is to regularize the fusion of the inverse
hole with the electron operators.
An appealing property of the quasielectron operator (68) is

its general applicability. It is not limited to Laughlin states, but
can be used for any Abelian, or even non-Abelian, quantum
Hall state, as long as one makes sure to use the appropriate
choice for the inverse quasihole. For hierarchy states at level n,
only one of the n quasiholes gives a nonvanishing result when
inserted into Eq. (68). Thus, for any level there is only a single
quasielectron, in accordance with findings by Jain (2007) for
the CF series. The example of non-Abelian quasielectrons in
the Moore-Read state is discussed in more detail in Sec. VI.
Finally, we stress that in spite of the quasilocal nature of the
operator P, the resulting density profile of the corresponding
quasielectron is only marginally larger than that of the
quasiholes in the same state [see for instance Chapter 8.5
in Jain (2007)].

2. A case study: Quasielectrons in the ν= 1=3 Laughlin state

To illustrate what happens when computing correlators
of the type hPðη̄ÞQiVðziÞi, we consider the simplest
case, quasielectrons in the ν ¼ 1=3 Laughlin state, so that
V ¼ ∶ expði ffiffiffi

3
p

ϕ1Þ∶. Without changing the topological prop-
erties, we can use a bosonized inverse quasihole,

H−1
b ¼ ∶e−ið1=

ffiffi
3

p Þϕ1þi
ffiffiffiffiffiffi
5=3

p
ϕ2∶:

As mentioned, current conservation implies that ∂̄JðwÞ has
support only at positions of charges. This leads to delta
functions

P
iδ

2ðw − ziÞ, where zi are the electron positions,
and thus

	
Pðη̄Þ

Y
i

VðziÞ



¼
	Z

d2we−qh=ð4l2Þðjwj2þjηj2−2η̄wÞ

× ðH−1
b ∂̄JÞnðwÞ

Y
i

VðziÞ



¼
X
k

ð−1Þke−qh=ð4l2Þðjzkj2þjηj2−2η̄zkÞ

×

	
ðH−1

b VÞnðzkÞ
Y
i≠k

VðziÞ


;

where qh ¼ 1=3 denotes the quasielectron charge. In the
simplest case of Laughlin states, the normal ordering is the
conventional one,

53In spite of this reservation, we strongly believe in this statement.
54For simplicity we are here somewhat cavalier about the subtle

issue of the background charge. See Suorsa, Viefers, and Hansson
(2011a) for a precise discussion of this point.
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ðH−1
b VÞnðzkÞ ¼

1

2πi

I
dz

z − zk
H−1

b ðzÞVðzkÞ

¼ ∂∶e½ið2= ffiffi3p Þϕ1ðzkÞþi
ffiffiffiffiffiffi
5=3

p
ϕ2ðzkÞ�∶; ð69Þ

where the operator product expansion of H−1
b V was carried

out to next to leading order before integrating, thus keeping
the first descendant (here just meaning first derivative) of the
vertex operator. The result is nothing but the operator PðzkÞ in
Eq. (67). Note that the derivative is a direct consequence of the
normal ordering.55 So, to summarize, one gets	
Pðη̄Þ

Y
i

VðziÞ



¼
X
k

ð−1Þke−qh=ð4l2Þðjzkj2þjηj2−2η̄zkÞ

×

	
PðzkÞ

Y
i≠k

VðziÞ


; ð70Þ

with the announced Gaussian-weighted sum over “shrinking
the correlation hole” (i.e., turning V’s into P’s) at the various
electron positions. This expression is identical to the one
for a CF quasielectron localized at η in Eq. (65). However,
the expressions for several quasielectrons do differ slightly
between the CF and CFT construction (Hansson, Hermanns,
and Viefers, 2009). We should also mention that for states
where there are additional quasielectrons or quasiholes
present, the position of the quasielectrons will in general
be shifted away from their expected positions given by the
arguments in the P operators. This discrepancy, which was
originally noticed for CF wave functions (Jeon, Graham, and
Jain, 2003), can in the CFT framework be understood as a
consequence of the field ϕ2 not being properly screened.
Adding appropriate screening charges will alleviate this
problem (Ardonne et al., 2017).

3. Quasilocal quasiholes and local quasielectrons

In fact, the description of quasielectrons and quasiholes is
not as asymmetric as it seems at first sight. It is possible to
reverse this logic and construct a quasilocal quasihole
operator HðηÞ as a Gaussian-weighted sum of expanding
the correlation holes around the electrons in the vicinity of
some position η (Suorsa, Viefers, and Hansson, 2011a).
Technically, this involves fusing the inverse of a local
quasielectron operator [which in fact corresponds to
Laughlin’s original quasielectron (64)] with a suitable repre-
sentation of the electron operator. This is well defined within
the coherent state formalism discussed in Sec. V.B. A single

insertion of a hole operator hHðηÞQiVðziÞi produces an
alternative to Laughlin’s quasihole wave function which
actually is slightly better numerically than the latter (Jeon
et al., 2005). It is appealing that quasielectrons and quasiholes
can be put on the same footing in this way. Moreover, it is this
description of quasiholes, rather than local Laughlin holes,
one has to resort to when carrying out an explicit hierarchy
construction for condensates of quasiholes. Also note the
similarity with the quasilocal electron operator in Eq. (62).
This emphasizes the point made in passing at the end of
Sec. II.B.1: Because of the cyclotron motion, all charged
particles acquire a size in the LLL, so condensing quasipar-
ticles into a hierarchy state might not be conceptually very
different from condensing electrons into a Laughlin state.

D. CFT wave functions as hierarchy states

Hansson, Hermanns, and Viefers (2009) proved that the
chiral states of Sec. V.A can be written in the Halperin form
and thus form a hierarchy. The extension to the full hierarchy,
including hole condensates, was given by Suorsa, Viefers, and
Hansson (2011a). We give here the argument for the simplest
case of the ν ¼ 2=5 state in the positive Jain series that is
obtained by condensing quasielectrons as densely as possible
in the ν ¼ 1=3 state. The starting point is Eq. (5)

Ψnþ1ð~r1 � � � ~rNÞ ¼
Z

d2~η1 � � �
Z

d2~ηMΦ⋆
nð~η1 � � � ~ηMÞ

× Ψnð~η1 � � � ~ηM; ~r1 � � � ~rNÞ;

describing the ν ¼ 2=5 wave function as a coherent super-
position of quasielectrons in the parent Laughlin state Ψ1 at
filling ν ¼ 1=3. For this densest possible condensate, the
number of quasielectrons M equals half the number of
electrons in the parent state. In general, the relation between
the number of quasielectrons and electrons is determined
from demanding homogeneity of the final state (Hansson,
Hermanns, and Viefers, 2009). One constructs multiquasie-
lectron states by multiple insertions of the quasielectron
operator,

Ψ1ðfηigM1 ; f~rigÞ ¼
	
Pðη̄1ÞPðη̄2Þ � � �Pðη̄MÞ

YN
i¼1

V1ðziÞ


;

where V1 ¼ ∶ei
ffiffi
3

p
ϕ1∶. Evaluation of this correlator is a direct

generalization of the derivation of Eq. (70), with one set of
Gaussian factors for each quasielectron coordinate. Since the
final polynomial has to be antisymmetric, one has to choose a
symmetric pseudo wave function for the Laughlin-like state of
the quasielectrons. Its generic form is

Φ�ð~η1;…; ~ηMÞ ¼
Y
i<j

ðηi − ηjÞ2ke−qh=ð4l
2Þ
P

i
jηij2 ;

where in this case qh ¼ 1=3, and k ¼ 0 for the densest
possible condensate. The Gaussian factors in the
pseudo wave function combine with those from the many-
quasielectron correlator into holomorphic delta functions (61),
so that the integration over the η’s becomes trivial.

55For more general hierarchy states, involving several bosonic
fields, one has to apply a generalized normal ordering [which
coincides with Eq. (69) in the Laughlin case],

ðABÞnðwÞ≡
I
w
dyTðyÞ

I
w
dzAðzÞBðwÞ;

where T is the energy-momentum tensor. This normal ordering,
including the definition of the integration contours, is explained by
Hansson, Hermanns, and Viefers (2009). Here we just mention that
the y integration amounts to taking the first descendant of the
operators to its right, which again produces the pertinent derivatives.
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The result is, for general k,

Ψ2ðf~rigÞ¼A
�	YM

k¼1

V2ðzkÞ
YN

l¼Mþ1

V1ðzlÞ

 YM

i<j¼1

ðzi−zjÞ2k
�

¼ð1−1Þ3ð2−2Þ2k∂2ð2−2Þ3ð1−2Þ2e−
P

j
jzjj2=ð4l2Þ;

ð71Þ
with M ¼ N=ð2þ 2kÞ and

V2 ¼ ∶ei
ffiffiffiffi
2k

p
ϕ3∂ei2= ffiffi3p

ϕ1þi
ffiffiffiffiffiffi
5=3

p
ϕ2∶:

Note that the precise form of the vertex operator depends both
on the details of the normal ordering (69) and on the choice
of the quasihole operator. For instance, using the simplest
fermionic quasihole (combined with a fermionic pseudo wave
function) yields a vertex operator

V2 ¼ ∶ei
ffiffiffiffiffiffiffiffi
2kþ1

p
ϕ3∂ei

ffiffiffiffiffiffi
4=3

p
ϕ1þi

ffiffiffiffiffiffi
2=3

p
ϕ2∶:

For k ¼ 0, Eq. (71) is simply the Jain 2=5 wave function,
while the less dense condensate with k ¼ 1 gives a trial wave
function for filling fraction ν ¼ 4=11 (Bergholtz et al., 2007).
This procedure naturally generalizes to the entire chiral
hierarchy and gives the wave functions shown in Eq. (52).
Similarly, quasihole condensation can be carried out using
multiple insertions of the quasilocal quasihole operator HðηÞ
(discussed in Sec. V.C.3) to construct the required many-
quasihole states (Suorsa, Viefers, and Hansson, 2011b).

E. Topological properties and plasma analogy

We already mentioned that it, perhaps surprisingly, has
turned out to be quite difficult to extract the topological
content from even explicitly given Abelian hierarchy wave
functions. Superficially, the problem resembles the one we
discussed in Sec. IV.C.4 in the context of non-Abelian states.
There we saw that correlators describing states with many
quasiparticles are not uniquely defined, but depend on the
fusion channels of the quasiparticles, and are generally to be
thought of as a vector in the space of conformal blocks. For the
Abelian hierarchy wave functions there is no such degeneracy,
but instead the wave functions are given by sums of conformal
blocks; these sums are needed in order to satisfy the Pauli
principle. In neither of the cases, there is a simple plasma
analogy as in the case of the Laughlin states, or the
multicomponent states discussed in Sec. IV.B. An additional
complication in the hierarchy case is that the operators are not
all primary fields, but descendants involving derivatives. At
this point it is important to stress that although a hierarchy
state is an antisymmetrized (in the zi’s) sum of correlators
hQkHðηkÞ

Q
lPðηlÞ

Q
iVðziÞi, each term has the same mono-

dromy. Thus it is meaningful to talk about the monodromy of a
hierarchy state and assuming generalized screening as dis-
cussed in Sec. IV.C.4 we posited that holonomy equals
monodromy also for these states. We now discuss the status
of this conjecture.
Most attempts to understand the topology of the Abelian

hierarchy states boil down to the claim that they essentially

can be described by a multicomponent Coulomb plasma. In
Sec. II.B we mentioned the arguments for this given by Read
(1990). These are based on the assumption that quasiparticle
wave functions are orthogonal if the particle positions differ
much more than a magnetic length, and while quite reason-
able, at least for quasiholes, it is not so easy to prove. In the
case of quasielectrons, there are extra complications due to the
need to regularize singularities such as ðzi − η̄Þ−1.
In Sec. IV.C.4 we discussed various attempts to find plasma

mappings also for non-Abelian states. Here we mention that
although the main focus in Read (2009b) is on the non-Abelian
states, the analysis is also applicable to Abelian multi-
component states, and the Halperin ðm;m; nÞ state discussed
in Sec. IV.B is in fact taken as an example. Because of the need
of antisymmetrization between inequivalent groups of elec-
trons, it is far from clear that this kind of analysiswould apply to
the hierarchy states, but it is certainly worth further consid-
eration. Bonderson, Gurarie, andNayak (2011) also considered
hierarchy states, but again it is not clear that their analysis
properly takes into account the need for antisymmetrization.
To appreciate the problem, consider the simplest possible

case—the normalization integral for the ν ¼ 2=5 ground state
wave function (55)

Ψ ¼ Afð1 − 1Þ3∂2ð2 − 2Þ3ð1 − 2Þ2ge−
P

i
jzij2=ð4l2Þ:

For a 2N-particle state, the two groups each contain N
particles, and recalling that the function is fully antisymmetric
within the groups, the sum due to the antisymmetrizer A
contains ð2NÞ!=ðN!Þ2 distinct terms. Up to an overall con-
stant, the normalization integral is

X
P

Z Y
d2ziΨ⋆ðz1 � � � zNÞΨðzPð1Þ � � � zPðNÞÞ; ð72Þ

where P denotes a permutation of the coordinates. Let us first
consider those permutations that reshuffle the coordinates
only within the groups. Disregarding, for the time being, the
derivatives, the integrand is

YN
i<j¼1

jzi − zjj6
Y2N

i<j¼Nþ1

jzi − zjj6
YN
i¼1

Y2N
j¼Nþ1

jzi − zjj4

and can directly be written as the partition function for a two-
component Coulomb plasma, just as in the multicomponent
case discussed earlier.
However, for general terms in the sum (72) the coordinates

will not match, since a particle at zi belonging to group 1
together with another at zj belonging to group 2 will give the
complex factor ðz̄i − z̄jÞ3ðzi − zjÞ2. Thus, the Hamiltonian for
the equivalent plasma will, in addition to the usual “electric”
interaction ∼ ln jzi − zjj, contain a term ∼iArgðzi − zjÞ which
is interpreted as the interaction between a charge and a vortex
(Nienhuis, 1984). Thus, still disregarding the derivatives, the
terms in the sum in Eq. (72) have the interpretation of a
Coulomb plasma with electric charges and a number of
vortices. It is rather straightforward to include quasiparticles,
so the question is whether all of the terms (or at least the
dominant ones) correspond to a screening plasma. Also
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including the derivatives is far from trivial, but the hope is that
they can bemapped onto impurities in the plasma. It remains an
open question whether or not these expressions can be under-
stood well enough to be useful in the quantum Hall context.

F. Composite fermions and the hierarchy

Recall that a strength of the hierarchy construction is that it
encodes the topological properties of a hierarchy state, while
these are less obvious in the CF description. On the other hand,
the CF formulation gives an appealing, and phenomenologi-
cally successful, picture of the prominent states in the Jain
sequences as systems of essentially free fermions, while the
hierarchy picture of these states is rather complicated (ν ¼ 4=9,
for example, amounts to three successive quasielectron con-
densates on top of a Lauglin ν ¼ 1=3 state). It is also far from
clearwhy any of the schemes should lead to good candidates for
ground states. The argument in the CF case is that the
introduction of a “flux attachment” factor that keeps the
electrons apart will vouch for a low interaction energy; but
this is true only provided that the projection to theLLL is not too
important, which is by no means intuitively obvious. In the
hierarchy picture one expects low-energy states since the
daughter states are built by correlating the low-energy excita-
tions of the parent state, viz., the quasiparticles, in an ener-
getically favorable Laughlin-like configuration. It is, however,
not clear why the good correlations in the original parent liquid
are not totally destroyed by the sequence of condensations.
Thus, at the level of heuristics, both pictures have their pros

and cons, and the precise relation between themhas been a topic
of debate. Read (1990) argued that both schemes have the same
topological content and thus essentially describe the same
physics,56 while Jain (1990, 2007) argued that the two schemes
are distinct. This issue has been difficult to settle; while the CF
approach has provided explicit wave functions that can be
tested numerically to a great precision, there has been no viable
numerical scheme to evaluate the hierarchy wave functions.
The results of the previous sections shed considerable light

on the relation between the hierarchy and the composite-
fermion states. First, it shows that Jain’s successful wave
functions fit beautifully into the hierarchy scheme, which
strongly suggests that they have the expected topological
properties. Second, it shows that the hierarchy construction of
“condensates within condensates” in the end produces wave
functions which intuitively have very low interaction energy
since they build in a large number of Jastrow factors in the
electron coordinates, in a way that is compatible with the
filling fraction and the shift. Third, and for the same reason, it
provides an intuitive understanding of why the Jain states are
so good in spite of the LLL projection.

VI. CFT DESCRIPTION OF NON-ABELIAN HIERARCHIES

While the physics pertinent to the LLL is well understood in
terms of the Haldane-Halperin hierarchy described in the
previous sections, this is not true for the second LL. The latter

is potentially very interesting, as numerical studies have
shown that certain non-Abelian quantum Hall states could
be stabilized. One of the underlying reasons is the nodal
structure of single-particle orbitals within the second LL. This
causes the matrix elements, even for purely repulsive inter-
actions, in the second Landau level to have a “hollow core,”
meaning that the effective interaction between two electrons
can be attractive at certain length scales. This favors pairing or
clustering of electrons, which is a common feature of non-
Abelian candidate states. From numerical work, e.g., by Wójs
(2001), one expects clustering to be important in the second
LL, which in turn may stabilize non-Abelian quantum Hall
liquids (Greiter, Wen, and Wilczek, 1991; Moore and Read,
1991; Read and Rezayi, 1999). One naturally may wonder if
there is an underlying, governing principle for the fractions in
the second LL, similar to the Haldane-Halperin hierarchy in
the LLL. There have been several attempts to generalize the
Haldane-Halperin hierarchy to non-Abelian states. The main
difficulty in such an endeavor is the non-Abelian statistics of
the quasiparticles. It is far from clear how to make sense of the
integration over quasiparticle positions in Eq. (5), as the
many-quasiparticle states form a vector space and moving
quasiparticles around changes not just an overall phase, but
the actual state.
In this section we review three different possible solutions to

this conundrum that lead to quite different predictions as to
what filling fractions can be obtained and what properties the
resulting quantum Hall liquids have. For simplicity, we restrict
the discussion to using the Moore-Read state as the parent
state. But all the hierarchies can be applied to general non-
Abelian states, in particular, the Read-Rezayi series (Read and
Rezayi, 1999). Note that hierarchy states on top of the anti-
Pfaffian (Lee et al., 2007; Levin, Halperin, and Rosenow,
2007), the particle-hole conjugate of the Moore-Read Pfaffian
state, can be obtained by simply taking the particle-hole
conjugate of hierarchy states on top of the Moore-Read state.
While we are of course interested in these hierarchies because
of their relevance for the second LL, we phrase the wave
functions (and filling fractions) within the LLL. Note that you
can always map between different LLs as long as the
interaction Hamiltonian is properly adjusted (see AppendixA).

A. The Bonderson-Slingerland hierarchies

The hierarchy by Bonderson and Slingerland (2008) (BS) is
essentially an Abelian hierarchy on top of a non-Abelian state.
The basic idea behind this hierarchy is that for a sufficiently
large density of the non-Abelian quasiparticles, the inter-
actions among them lift the degeneracy between the different
fusion channels. Thus, it may be energetically favorable that
pairs of quasiparticles form essentially Abelian excitations,
which may then condense in the same fashion as for Abelian
quantum Hall states (5). Using the CFT description of the
Moore-Read state in Sec. IV.C.5, these Abelian quasihole
operators can be written either as

ψqh ¼ 1∶ei
ffiffiffiffiffiffi
1=2

p
ϕ1ðηÞ∶ ð73Þ

or as

56The same conclusion was reached by Bergholtz et al. (2008) by
studying the TT limit of the hierarchy and also by Bonderson (2012).
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ψqh ¼ ψðηÞ∶ei
ffiffiffiffiffiffi
1=2

p
ϕ1ðηÞ∶; ð74Þ

i.e., they combine the usual Laughlin quasihole of an Abelian,
bosonic ν ¼ 1=2 state with the fields 1 or ψ depending on
which of the fusion channels is energetically preferred. For
quasielectrons, one instead combines a Laughlin or CF
quasielectron with 1 or ψ. The two possibilities for the
preferred fusion channel give distinct hierarchies. In particu-
lar, the series of filling fractions as well as the shift at a given
filling fraction differs for the two cases. Note that condensing
Abelian quasiparticles cannot change the non-Abelian part of
the CFT, but only the charge part. In particular, daughter states
in the BS hierarchy on top of the Moore-Read state always
have quasiparticles of Ising type. Consequently, the torus
ground state degeneracy for such hierarchy states is always
given by 3q for an even number of electrons and q for an odd
number of electrons, where q denotes the denominator of
the filling fraction. The first factor 3 is due to the Pfaffian,
while the second factor q encodes the (trivial) center-of-mass
degeneracy of fractional quantum Hall states on the torus; see
Eq. (14) or alternatively Sec. VII.B.
Let us first focus on the condensation of pairs in fusion

channel 1, where the discussion is slightly simpler. As we are
essentially condensing Laughlin quasiholes or quasielectrons,
we can use the same pseudo wave function as for the Abelian
hierarchy. The resulting daughter wave functions have a
particularly simple form,

ΨBS ¼ Pf

�
1

zi − zj

�
×ΨðbÞ

ν ðz1;…; zNÞ; ð75Þ

where ΨðbÞ
ν is a bosonic state in the Abelian hierarchy over the

Laughlin 1=2 wave function, and the possible filling fractions
for ΨBS are given by Eq. (6) with m ¼ 2. Its shift S differs

from the one for ΨðbÞ
ν due to the Pfaffian, which reduces the

highest possible angular momentum by 1. Thus, S ¼ Sν þ 1,

where Sν denotes the shift of ΨðbÞ
ν as given in Eq. (16).

Equation (75) is an example of building a hierarchy by
multiplying two known wave functions, as discussed in
Sec. II.J.
To give a concrete example we consider the first hierarchy

level on top of the Moore-Read state. In this case, we can use
the techniques of the Abelian hierarchy in Sec. V to obtain
explicit wave functions. For instance, condensing quasielec-
trons with maximal possible density gives a model wave
function for filling fraction ν ¼ 2=3,

ΨBS¼Pf

�
1

zi−zj

�
×ΨðbÞ

2=3ðz1;…;zNÞ

¼Pf

�
1

zi−zj

�
×Sfð1−1Þ2∂2ð2−2Þ2ð1−2Þge−

P
i
jzij2=ð4l2Þ;

ð76Þ

where S denotes an overall symmetrization. Note that ΨðbÞ
2=3 is

simply the bosonic version of the wave function (55). This
state has two electron operators, both of which are combina-
tions of ψ with the vertex operators of the ν ¼ 2=3 bosonic CF
state,

ψe1ðzÞ ¼ ψðzÞ∶ei
ffiffi
2

p
ϕ1ðzÞ∶;

ψe2ðzÞ ¼ ψðzÞ∂z∶ei
ffiffiffiffiffiffi
1=2

p
ϕ1ðzÞþi

ffiffiffiffiffiffi
3=2

p
ϕ2ðzÞ∶:

The quasihole spectrum is generated by a quasihole operator
with charge e=3,

ψqhðηÞ ¼ σðzÞ∶ei
ffiffiffiffiffiffi
1=8

p
ϕ1ðηÞþi=ð2 ffiffi6p Þϕ2ðηÞ∶;

which is the straightforward analog to the Moore-Read
quasihole. It is is determined by requiring it to reproduce
ðz − ηÞ1=2 in correlation functions with the vertex operators of
both ψe1 and ψe2, i.e., the quasihole-electron correlations are
identical to the ones in the Moore-Read state.
Condensing Abelian quasiparticles of the type

ψðηÞ∶ei
ffiffiffiffiffiffi
1=2

p
ϕ1ðηÞ∶ is not conceptually more difficult, but

the expressions become much more complicated, as the
quasiparticle coordinates enter in the Pfaffian. Also note that
the extra fermion field ψ in Eq. (74) changes the statistics of
the quasiholes compared to that in Eq. (73). To compensate
for this, the pseudo wave function acquires an extra Jastrow
factor in the quasihole positions, which in turn alters the
K matrix of the daughter states. As the filling fractions in the
BS hierarchies are solely determined by the K matrix, one
finds a different series of filling fractions compared to the
case where the condensed quasiparticle pairs are in the trivial
fusion channel. The shifts of the daughter states also differ and
are given by S ¼ Sν þ 2 −

P
jðK−1Þ1j, where Sν is deter-

mined by the K matrix via Eq. (16). To give a concrete
example, let us again consider the maximal density quasie-
lectron condensate at filling ν ¼ 3=5, which is described by
the K matrix

K ¼
�
2 1

1 3

�
:

This state has shift S ¼ 13=3 and a torus ground state
degeneracy of 15 for an even number of electrons. Note that
even though the shift is fractional, νðNΦ þ SÞ in Eq. (15) is an
integer.

B. The Levin-Halperin hierarchies

The hierarchy by Levin and Halperin (2009) is simplest to
describe for condensing non-Abelian quasiholes. As already
mentioned, this is in general not possible because of the
branch cuts at the quasiparticle positions that make the
integrals (5) ill defined. The way out devised by Levin and
Halperin is to choose a pseudo wave function which combines
with the original multiquasiparticle wave function to form a
correlator of full CFT fields, i.e., fields containing both
holomorphic and antiholomorphic parts. Such a correlator
is guaranteed not to contain any branch cuts and can thus be
integrated over with impunity. The pseudo wave function can,
in fact, be interpreted as the proper many-body wave function
for the non-Abelian anyons and is given by
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Φ⋆
αð~η1;…; ~ηMÞ ¼

	YM
j¼1

σ̄ðη̄jÞei
ffiffiffiffiffiffiffiffiffiffiffiffi
2mþ1=8

p
ϕ̄ðη̄jÞObg



α

for the Moore-Read state. Here M is the number of anyons, α
labels the conformal block of the σ correlator, and m is a
positive integer that sets the density of quasiholes in Eq. (5).
Note that the bosonic field ϕ̄ in the pseudo wave function is
independent of the original bosonic field in Eq. (48). The
product of the pseudo wave function and the many-quasihole
wave function in Eq. (5) now becomes an inner product,
as both wave functions are vectors in the 2M=2−1-dimensional
vector space,

Ψ1ð~r1 � � � ~rNÞ ¼
Z

d2~η1 � � �
Z

d2~ηM
X
α

Φ⋆
αð~η1 � � � ~ηMÞ

× Ψα
MRð~η1 � � � ~ηM; ~r1 � � � ~rNÞ: ð77Þ

As promised, the integrand is well defined in the η̄ coor-
dinates, i.e., it no longer has branch cuts. This can readily
be seen from the decomposition of the full σ correlator into
holomorphic and antiholomorphic blocks,

	YM
j¼1

σðηj; η̄jÞ � � �



¼
X
α

	YM
j¼1

σ̄ðη̄jÞ � � �



α

	YM
j¼1

σðηjÞ � � �



α

;

ð78Þ

and using that the full correlator has no branch cuts. This
hierarchical construction yields candidate wave functions
for filling fractions ν ¼ 8m=ð16mþ 1Þ. It turns out that
these states are Abelian, despite being daughters of a non-
Abelian state.
Evaluating Eq. (77) is in principle possible for small

numbers of electrons, but there is no closed expression for
an arbitrary number of electrons. We can, however, still
deduce the quasihole properties by requiring that the corre-
sponding operators are local with respect to the electron
operators and the full quasihole operator, i.e., the combination
of both the holomorphic and antiholomorphic parts given by

σðη; η̄Þ∶eiϕðηÞ=ð2
ffiffi
2

p Þþi
ffiffiffiffiffiffiffiffiffiffiffiffi
2mþ1=8

p
ϕ̄ðη̄Þ∶:

The locality conditions ensure that the full expression in
Eq. (77) has no branch cuts or poles, and, thus, gives a valid
electronic wave function. From this constraint one can deduce
that the quasihole spectrum is generated by a single quasihole
operator with electric charge e=ð16mþ 1Þ and Abelian
exchange phase θ ¼ πð16m − 1Þ=ð16mþ 1Þ. As the first
level daughter states are Abelian, further condensation of
quasiholes will, of course, yield only Abelian candidate states.
Interestingly, it was pointed out by Levin and Halperin (2009)
that the series of states (77) can alternatively be obtained by an
Abelian hierarchy starting from the strong-pairing ν ¼ 1=2
state, which is a ν ¼ 1=8 Laughlin state of strongly bound
electron pairs that was originally discussed by Halperin
(1983). The two approaches yield wave functions with the
same topological data and should therefore be in the same
universality class.

The simplest example for the Levin-Halperin hierarchy is
the state with the highest density of quasiholes, i.e., m ¼ 1,
which yields a candidate state at filling ν ¼ 8=17. Even
though this state is Abelian, it is distinct from the Abelian
Haldane-Halperin hierarchy state at this filling fraction; the
latter is obtained with q ¼ 8 and p ¼ 1 in the Jain series in
Eq. (11). This can most easily be seen from their different
shifts; the Levin-Halperin hierarchy state has shift S ¼ 5=2,
while the Abelian Haldane-Halperin hierarchy state has
shift 8. Candidate states for this filling can also be obtained
by the other hierarchies, but only at higher levels.
Levin and Halperin also suggested model states for con-

densing non-Abelian quasielectrons, which in the simplest
case yields a candidate state at ν ¼ 7=13. This does not
seem as natural as the quasihole condensates. In particular, the
quasielectron wave functions contain unphysical poles, and it
is not clear if these can be regularized while keeping the non-
Abelian braiding statistics explicit. The proposal for a state at
filling fraction 7=13 is still interesting because its particle-hole
conjugate state at ν ¼ 2þ 6=13 has been seen in experiments
by Kumar et al. (2010), suggesting that this quantum Hall
state may be a daughter state of the anti-Pfaffian (see also the
discussion in Sec. III.B.1). Note that this filling fraction also
occurs in the BS and Hermanns hierarchies. However, neither
of these provides a natural explanation for its occurrence.
The BS hierarchy contains this state at the second level, but it
also predicts a state at filling 4=9 as more prominent. The
latter was, however, not observed in Kumar et al. (2010). The
Hermanns hierarchy discussed next contains this filling in
the third level of hierarchy as a daughter state of 4=7. The latter
was again not observed. Thus, so far only the Levin-Halperin
hierarchy provides a natural explanation for ν ¼ 2þ 6=13.

C. The Hermanns hierarchies

In contrast to the other non-Abelian hierarchies discussed
in the previous sections, the daughter states in this hierarchy
have non-Abelian statistics different from their parents. Before
getting to the actual construction, we first devote some time to
explain how non-Abelian quasielectrons can be represented in
terms of CFT operators without unphysical singularities. We
focus on the condensation of quasielectrons. One can also
study quasihole condensation, but the wave functions will no
longer have such a simple form and interpretation.

1. Quasielectrons in the Moore-Read state

Before discussing the non-Abelian quasielectrons in the
Moore-Read state, let us first recall again the essential steps
in the definition of the Abelian quasielectron (68). The
quasielectron operator is obtained by attaching an inverse
quasihole to the electrons in such a way that the resulting
correlator has no branch cuts and no poles in the electron
coordinates. The latter is ensured by regularizing the resulting
operators using a generalized normal ordering. The former is
achieved by using a quasihole operator which has trivial
monodromies. In the Abelian case, the monodromies of the
quasihole can be made trivial simply by adding auxiliary,
chargeless, boson fields. This is not possible for the non-
Abelian quantum Hall states, within the usual description in
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terms of the Ising CFT, as the quasiholes are manifestly non-
Abelian. Braiding quasiholes around each other does not
solely give an additional phase factor, but in general also
changes the state. As a result, the quasihole of the Ising CFT
description cannot be used in the definition of the quasielec-
tron operator, as it necessarily leads to branch cuts in the
electron coordinates.
A way around this problem is to use an equivalent

description of the Moore-Read state that does allow for trivial
monodromies of the quasiholes. In the following, we use the
multilayer description of Cappelli, Georgiev, and Todorov
(2001). The bosonic Read-Rezayi state at level k is described
by k layers of bosonic Laughlin ν ¼ 1=2 states with a
subsequent symmetrization over the layer index. For example,
the bosonic Moore-Read wave function can alternatively be
written, using the shorthand notation (53), as

ΨMR ¼ Sfð1 − 1Þ2ð2 − 2Þ2ge−
P

i
jzij2=ð4l2Þ;

where we divided the particle coordinates into two equal-sized
groups I1 and I2, and S denotes the overall symmetrization
over all such partitions. This faithfully reproduces the Moore-
Read ground state. Quasihole excitations are obtained by
inserting Laughlin quasiholes in each of the layers. At level k,
one thus artificially introduces k quasihole operators, which
are then identified by the symmetrization. The vector space of
n quasihole states is spanned by the various orderings of the k
types of operators at positions η1;…; ηn and is identical to the
space obtained using the Ising CFT description (Cappelli,
Georgiev, and Todorov, 2001). However, in this description
the non-Abelian part of the braiding statistics resides entirely
in the Berry’s phase. The monodromies can then be made
trivial by introducing k additional bosonic fields in the same
way as in the Abelian case.
As an example, the fermionic Moore-Read state, phrased in

the two-layer description, has vertex operators

VðzÞ ¼ VþðzÞ þ V−ðzÞ;
V�ðzÞ ¼ ∶e�iϕðzÞei

ffiffi
2

p
χ1ðzÞ∶;

H�ðηÞ ¼ ∶e�ði=2ÞϕðηÞþi
ffiffiffiffiffiffi
1=8

p
χ1ðηÞ−i

ffiffiffiffiffiffi
3=8

p
χ2ðηÞ∓ði=2Þχ3ðηÞ∶; ð79Þ

where � denotes the two layers (Cappelli, Georgiev, and
Todorov, 2001) and the manifest monodromies of the quasi-
holes were chosen to be fermionic. Using the quasiholes of
Eq. (79) in Eq. (68) one can construct the two corresponding
quasielectron operators Pþðη̄Þ and P−ðη̄Þ with the correct
quasilocal excess charge qe ¼ −qh. Just like the quasiholes,
the quasielectrons must be inserted in pairs, otherwise the
correlator vanishes because of charge neutrality in the ϕ
sector. Inserting 2n quasielectrons, one finds 2n−1 linearly
independent orderings of Pþðη̄Þ and P−ðη̄Þ in complete
analogy to the quasiholes (Hansson et al., 2009; Hansson,
Hermanns, and Viefers, 2009). An appealing, alternative
interpretation of these operators is possible in the bosonic
Moore-Read state. There they can be seen as the usual Abelian
quasielectrons in each of the layers, and the non-Abelian
properties arise due to the symmetrization over the layers. As
shown by Rodríguez et al. (2012), this allows for a

numerically efficient way to study the properties of quasiele-
trons as well as of the neutral excitations.

2. Condensing quasielectrons

We now proceed to generalize the Haldane-Halperin
hierarchy using the non-Abelian quasielectrons introduced
previously. We restrict our discussion to the Moore-Read state
as the parent state, but mention briefly how the construction
can be adapted to other non-Abelian states, such as the
Read-Rezayi series.
Consider a quasielectron wave function for an insertion of

2M quasielectrons using an equal number of Pþ and P− at
positions η1;…; η2M. Such a multiquasielectron state is for
instance given by

Ψ1ð~η1;…; ~η2M; ~r1;…; ~rNÞ

¼
	YM

j¼1

PþðηjÞ
Y2M

j¼Mþ1

P−ðηjÞ
YN
j¼1

VðzjÞObg



;

but any other ordering of Pþ and P− gives an equally valid
wave function. Note that the order of the quasielectron
operators is, in general, important. In particular,

hPþðη1ÞPþðη2ÞP−ðη3ÞP−ðη4Þ � � �i
≠ hPþðη1ÞP−ðη2ÞPþðη3ÞP−ðη4Þ � � �i;

even though Pþ and P− are indistinguishable by any local
measurement.
Only 2M−1 of these orderings are linearly independent, but

that still leaves a macroscopic number of parent states to
choose from. It turns out that it is unimportant which of these
states is chosen in Eq. (5), as the integration over the
quasielectron coordinates can be interpreted as an average
over all positions, and the final result is independent of which
of the multiquasielectron states was used as a starting
configuration. As the monodromies of the quasielectrons
are fermionic, the simplest appropriate pseudo wave function
is a fermionic Laughlin state for each of the layers,

Φ⋆ð~η1;…; ~η2MÞ ¼
Y

i<j∈I1

ðηi − ηjÞ2p−1

×
Y

a<b∈I2

ðηa − ηbÞ2p−1e−qh
P

2M
j¼1

jηjj2=ð4l2Þ;

where I1 contains η1;…; ηM, i.e., all quasihole positions
appearing in Pþ, and I2 contains the rest. The integer p is
fixed by requiring homogeneity of the daughter state
M=N ¼ 1=ð4pÞ. The integral in Eq. (5) is straightforward
to evaluate, and the daughter state at filling fraction ν ¼
4p=ð8p − 1Þ can be compactly written as

Ψnð~r1;…; ~rNÞ ¼ SfΨ~νð~r1;…; ~rN=2Þ
× Ψ~νð~rN=2þ1;…; ~rNÞg

Y
i<j

ðzi − zjÞ; ð80Þ

where Ψ~ν is a bosonic hierarchy state at filling fraction
~ν ¼ 2p=ð4p − 1Þ and

Q
i<jðzi − zjÞ denotes a full Jastrow

Hansson et al.: Quantum Hall physics: Hierarchies and …

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025005-42



factor containing all the electrons. Note that in writing the
wave function in this form, we are cavalier about the exact
placement of the derivatives, which now act solely within Ψ~ν.
While this changes the wave function slightly, it is widely
believed not to have an impact on its non-Abelian properties
[see also the discussion below Eq. (54)]. The benefit of writing
Eq. (80) in this form lies in its natural interpretation as
symmetrized products of hierarchy (or CF) wave functions
(times a Jastrow factor), similar to the interpretation of the
Moore-Read state as a symmetrized product of two Laughlin
1=2 states (again times a Jastrow factor). Successive con-
densation of quasielectrons yields a hierarchy of model states
with filling fractions ν ¼ 2~ν=ð1þ 2~νÞ, where ~ν denote the
filling fractions of the chiral (bosonic) hierarchy over the
Laughlin 1=2 state.
An exciting feature of this hierarchy is that the non-Abelian

statistics changes from parent to daughter state, in contrast to
the hierarchy described in Sec. VI.A and without making the
non-Abelian statistics trivial as in Sec. VI.B. From Eq. (80),
however, it is not apparent what the topological properties of
the states are, as all the non-Abelian properties are hidden in
the Berry phase. The easiest way to proceed is to consider the
bosonic version of Eq. (80) and use the techniques introduced
by Ardonne et al. (2008, 2009) for the thin torus limit
(Bergholtz et al., 2008). This yields the ground state degen-
eracy and the quasihole fusion rules, but not the braiding
properties of the state. For instance, for the subset of wave
functions obtained by successively condensing quasielectrons
with maximal density,

Ψnð~r1;…; ~rNÞ ¼ SfΨn=ðnþ1Þð~r1;…; ~rN=2Þ
×Ψn=ðnþ1Þð~rN=2þ1;…; ~rNÞg;

one finds a ground state degeneracy on the torus of ðnþ 1Þ
ðnþ 2Þ=2 (for an even number of particles) and suðnþ 1Þ2
type fusion. The properties of the corresponding fermionic
filling fractions can then be deduced by incorporating the
Jastrow factor again. In fact, for the highest density con-
densate (p ¼ 1) in Eq. (80) at filling fraction ν ¼ 4=7, one
can even identify the CFT that makes braiding and fusion
properties explicit in the monodromy factor by noting the
close resemblance to the non-Abelian spin-singlet state
proposed by Ardonne and Schoutens (1999) and Ardonne
et al. (2001). This analysis determines the pertinent CFT to be
suð3Þ2=uð1Þ2 (Gepner, 1987), as shown by Hermanns (2010).
The generalization of this hierarchy to the Read-Rezayi states
by taking k layers instead of two is straightforward. Numerical
tests on these types of wave functions have been performed by
Sreejith et al. (2011, 2013), showing their relevance as
possible candidate states in the second LL.

VII. CFT HIERARCHY WAVE FUNCTIONS IN OTHER
GEOMETRIES

There are several reasons for studying quantum Hall liquids
on geometries other than the plane, and, in particular, on
closed geometries. Although these are not experimentally
realizable (we do not have magnetic monopoles at our
disposal in the lab), they are interesting from both a theoretical

and a numerical point of view. In particular, closed geometries
do not suffer from edge or boundary effects. On the disk
geometry, these can be substantial for the small system sizes
possible to probe with numerical techniques.
The simplest example of a closed manifold is the sphere,

which after the pioneering work by Haldane (1983) has not
only become the favorite geometry for numerical simulations,
but also has been instrumental for understanding how the
quantum Hall liquids respond to spatial curvature. The other
example that we consider is the torus. Here the geometry is
locally flat, but the manifold is topologically nontrivial which
is manifested in a characteristic ground state degeneracy.
In both these cases, a key point is to understand how the
magnetic translations, which are the proper symmetries of an
infinite plane penetrated by a constant magnetic field, are
manifested in other geometries. In the following we outline
how this is done and how hierarchy wave functions on the
sphere and the torus can be obtained using CFT techniques.

A. The sphere

In a suitably chosen gauge (Dirac gauge with the string
entering at the North Pole) solutions of the Landau problem on
the sphere are monopole harmonics (Stone, 1992; Jain, 2007),
and the multiparticle solutions can be organized in angular
momentum multiplets, with homogeneous states, such as
ground states, having L ¼ 0. Stated differently, the state
should be invariant under magnetic rotations. We already
saw that in the CFT formulation the physical condition of
homogeneity of the quantum Hall liquid translated into charge
neutrality enforced by coupling to a background charge
density. On a curved surface this is not sufficient for having
a consistent description, since the electrons and the quasi-
particles carry (orbital) spin and thus respond to curvature. As
we shall see, what is needed is both an extra piece in the action
and a modification of the electron operators.
Before turning to the general hierarchy wave functions,

we stress that in many cases one does not have to worry
about these complications. For the simple wave functions,
i.e., those that can be written as correlators of primary fields
only, it is straightforward to move from the expressions on
the plane to those on the sphere. In essence, this recipe
amounts to expressing the z coordinates in the polynomial
part of the wave functions in terms of the spherical
coordinates ðθ;ϕÞ, by the stereographic mapping (Read
and Rezayi, 1996),

z → 2R tanðθ=2Þeiϕ; ð81Þ

from the infinite plane to a sphere with radius R. At the
same time, the Gaussian factors have to be changed as
exp½−jzj2=ð4l2Þ� → 1=½1þ jzj2=ð4R2Þ�1þNΦ=2. Choosing the
number of electrons Ne and the number of flux quanta NΦ as
to implement the correct shift (15), one obtains a valid wave
function (Haldane, 1983). A similar, although somewhat
more complicated scheme for moving wave functions from
the plane to the sphere has also been devised for the
composite-fermion states in the Jain series (Jain, 2007).
For the general hierarchy states, which cannot be written as a
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projected version of a number of filled Landau levels, these
simple methods do not work.
We now turn to the general case, and review the main results

from Kvorning (2013). Naively, one would expect that
expressing hierarchical wave functions on the sphere is
straightforward: one simply has to evaluate the corresponding
CFT correlators [see, e.g., Eq. (52) for the fully chiral states]
on the sphere. It would indeed be that simple, if the correlators
contained only proper CFT operators (primaries or descend-
ants), but the background charge makes it more complicated.
So far we referred to the insertion Obg in Eq. (57) as a
background operator. An equivalent way, which is more
appropriate for the present purpose, is to view it as a part
of the action for the fields ϕβ. Kvorning (2013) showed that
using

Sbg ¼ −i
ðK−1Þαβ

2π

Z
dSðetαBþ sαRÞðqβγϕγ þ q̄βγϕ̄γÞ ð82Þ

in the action when evaluating the correlators indeed gives
wave functions that are invariant under magnetic rotations.
Note that adding the term ∼R is the standard way to include
curvature, while the term ∼B describes the neutralizing
background. Equation (82) is quite natural in light of the
combination tαeAμϵ

μνσ∂νaασ þ sαωiϵ
iνσ∂νaασ appearing in the

Wen-Zee Lagrangian (12). Making a partial integration to
rewrite it in terms of the dual electromagnetic field strength
⋆Fμ ¼ ϵμνσ∂μAν and the corresponding ⋆Rμ ¼ ϵμνσ∂μων

where ωi is the spin connection, the aα0 coefficient is precisely
the combination etαBþ sαR in Eq. (82).
The remaining difficulty for obtaining the hierarchy wave

functions on the sphere is related to the precise form of
the vertex operators, when they contain derivatives. In Sec. V
we pointed out that there is a freedom in distributing the
derivatives acting in the wave functions. On the disk, a valid
(in fact the simplest) prescription is to move all derivatives to
the left, which ensures that the derivatives always act on fully
holomorphic functions (or antiholomorphic in the case of ∂̄).
However, this prescription does not work on the sphere (and
likely not on any other closed surface).
The reason is that convoluting the resulting coherent state

wave functions with the spherical version of the coherent state
kernel, as in Eq. (60), gives zero, since it basically amounts to
integrating a total derivative over a closed manifold. We must
thus resort to consider more general expressions for the vertex
operators of the type (54):

∶eiaϕα∂neibϕ
β∶ ¼ ∶Dn½bϕβ�eiaϕα

eibϕ
β∶;

where Dn½f� ¼ e−if∂neif, so Dn½bϕβ� is nothing but a poly-
nomial in ϕβ. For details on how to adapt the operator D to
the sphere, and how to use it to construct a set of electron
operators that give well-behaved representative wave func-
tions for all states in the hierarchy, see Kvorning (2013).

B. The torus

The torus is interesting for several reasons. First, the ground
state wave function is degenerate, where the degeneracy is

identical to the number of particle types in the CFT. This
ground state degeneracy is in fact a smoking gun for a
topologically ordered phase. From a computational point of
view, the torus is interesting since candidate wave functions
with different shifts can be directly compared with each other
(on the sphere, wave functions with different shifts require a
different number of flux quanta and, therefore, cannot be
directly compared). In fact, at first it was not clear in what way
states with different shift would differ on the torus. Through
work by Avron, Seiler, and Zograf (1995) and Read (2009b) it
became clear that the shift is related to the Hall viscosity, which
is a transport coefficient characterizing a nondissipative flow
possible only in 2D systems violating time-reversal symmetry.
As explained in Sec. VII.B.4, the Hall viscosity can be probed
by deforming the geometry of the torus and can be extracted
from the CFT wave functions, again evoking assumptions
about screening similar to those described in Sec. IV.C.4. Last,
but not least, studying quantum Hall wave functions on the
torus provides an independent test of the holonomy equals
monodromy conjecture, as discussed in Sec. VII.B.5. Note that
in this section we consider only chiral Abelian states.

1. QH wave function on the torus

There are various ways to obtain the proper torus wave
functions for the simple quantum Hall states, i.e., those built
from CFT correlators involving only primary fields. The torus
version of the Laughlin wave function was first derived by
Haldane and Rezayi (1985b), using the vanishing properties of
the state as well as the constraints imposed by the magnetic
translations. The latter implies that proper torus wave func-
tions need to fulfill certain quasiperiodic boundary conditions.
These two properties are sufficient to uniquely specify the set
of m degenerate ground state wave functions for ν ¼ 1=m
Laughlin states. In fact, not only is the ground state m-fold
degenerate, but so is the entire spectrum (Haldane, 1985). This
center-of-mass degeneracy occurs because the magnetic trans-
lations along the two cycles of the torus do not commute.
A similar approach as described for the Laughlin states

can be used for the Halperin mmn states (43) (Wen, 2012)
and even the Read-Rezayi series; see, e.g., Greiter, Wen, and
Wilczek (1991) and Chung and Stone (2007) for the Moore-
Read ground state and quasihole states, respectively. Note that
for non-Abelian states there is an extra ground state degen-
eracy in addition to the kinematic center-of-mass degeneracy
(Read and Rezayi, 1996).
Another way to derive the pertinent wave functions is to

compute the relevant CFT correlators on the torus. Then, just
as on the sphere, one can extract wave functions by calculating
correlators of vertex operators to get the conformal blocks and
then impose the boundary conditions (Hermanns et al., 2008).
For technical reasons, one needs to consider the full fields
(holomorphic and antiholomorphic components) and separate
the correlator into a sum over conformal blocks (Di Francesco,
Mathieu, and Sénéchal, 1997). When doing this, it is also
important to correctly handle the Gaussian factor, which
amounts to distributing it symmetrically. A detailed derivation
of these wave functions, keeping the full τ dependence, was
given for the Laughlin case by Read (2009b) and for the
multilayer states by Fremling, Hansson, and Suorsa (2014). In
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both cases, the ground state wave functions are fully deter-
mined by the topological data; in the Laughlin case this is only
the filling fraction ν, while for the multilayer states it is both
the K matrix and the spin vector.
One would naively assume that this approach has a straight-

forward generalization to the hierachical states. However, the
presence of derivatives in the wave functions makes the
problem much harder, as they destroy the quasiperiodic
boundary conditions of the holomorphic blocks. Thus, one
needs to identify the proper torus analog of derivatives. To do
this, we must understand the modular properties of the torus
wave functions, which is the topic of the next section.

2. Modular properties of CFT wave functions

The geometry of a (flat) torus is determined by a complex
number, the modular parameter τ, which defines the periods
under which the coordinates are to be identified. We imagine
starting with a complex plane and drawing a segment from
0 to 1 on the real axis and another segment from 0 to τ.
Forming a parallelogram from these two segments and
identifying opposite edges, we obtain a torus. The boundary
conditions on the wave functions are defined by specifying
how they transform under z → zþ 1 and z → zþ τ. The
relation between the geometry of the torus and the modular
parameter is not one to one; different τ can describe the
same torus (i.e., they enforce the same periodicity on the
plane). The different values are related via modular trans-
formations, which form a group that is generated by the two
transformations,

T ∶ τ → τ þ 1; S∶ τ → −
1

τ
:

It will be important in the following that the S transformation
involves a rotation of the torus. Since values of τ that differ
only by a modular transformation describe the same physics,
the space spanned by the ground states must be invariant,
meaning that the states must transform into each other by a
unitary transformation.
For the CFT hierarchy construction, we need the modular

transformations of the multicomponent wave functions,
which can be derived using the techniques employed by
Read (2009b) for the Laughlin case. Schematically, they can
be written as57

ψs !S
�
τ

jτj
�

htot Xm
s0¼1

Ss;s0ψs0 ;

ψs !T
Xm
s0¼1

T sþs0ψs0 ; ð83Þ

where ψs are the (degenerate) ground state wave functions, and
htot is the total conformal weight of all the electron operators. In
the S transformation we also let z → z0 ¼ jτjz=τ, while in the
T transformation, z is unchanged. Note that the only τ depend-
ence in Eq. (83) is in the S transformation. This is easy to
understand: If we write τ ¼ jτjeiα the S transformation is
associated with a rotation of the coordinate z by an angle α
in the negative direction. Thus, an operator with conformal
dimension hψ , which here equals the conformal spin, acquires
a phase factor eiαhψ . The factor ðτ=jτjÞhtot in Eq. (83) is
precisely the product of these phase factors for all of the
electrons.
We are now ready to treat the hierarchy states. But before

showing how the general CFT formalism in Sec. V.A can be
implemented on the torus, we describe some work specially
aimed at the Jain states.

3. Composite-fermion wave functions on the torus

For obtaining the Jain series on the torus, one can take a
different route by using the fact that the product of two single-
particle states at fluxes NΦ1

and NΦ2
is a valid single-particle

state at flux NΦ1
þ NΦ2

, independent of the underlying
geometry. Thus, the Jain wave functions (including the
Laughlin states) on the torus can be computed by using the
torus version of Eq. (11). Note that this expression contains
only integer quantum Hall wave functions, which are known
on the torus. The only remaining difficulty lies in the
projection to the LLL, for which explicit expressions were
derived by Hermanns (2013). This approach is numerically
inefficient and one can handle only small system sizes for
two reasons. First, there is no analog of the fairly simple
projection scheme of Girvin and Jach (1984) on the torus.
Second, due to the periodic boundary conditions, momentum
is not conserved when multiplying two single-particle wave
functions (it is conserved only modulo NΦ), which makes the
evaluation of the projection much more numerically costly
than on the sphere.
Note that evaluating Eq. (11) on the torus always gives a

unique ground state wave function, in contrast to the
expected ground state degeneracy on the torus. As momenta
are defined only modulo NΦ, the flux attachment of Eq. (11)
does not conserve the total momentum of the state and the
resulting wave function is, in general, a linear combination of
the different degenerate ground states. The set of degenerate
ground states can be recovered by acting with the center-of-
mass translation operators or by allowing nontrivial boun-
dary conditions around the two handles of the torus for the
individual IQH wave functions. This construction even
works well for the MR state, when using the “layer
description” by Cappelli, Georgiev, and Todorov (1999,
2001). For the general RR Zk series, however, the full set
of degenerate ground (and excited) states can be generated
only by amending this construction as discussed by Repellin
et al. (2015).

4. Chiral hierarchical wave functions on the torus

The first attempt to use CFT methods for obtaining
hierarchy states was made by Hermanns et al. (2008), where

57The complete formulas, which include gauge transformations,
τ-independent phase factors, and offsets in the arguments of the
modular S and T matrices, also involve changes in the boundary
conditions. These can be periodic or antiperiodic in the cycles of
torus. The S transformation effectively swaps x ↔ y and conse-
quently also their boundary conditions; for details see Fremling,
Hansson, and Suorsa (2014).

Hansson et al.: Quantum Hall physics: Hierarchies and …

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025005-45



the derivatives were replaced by finite translations. While
these were chosen to locally have the same effect as
derivatives, the resulting wave functions did not transform
properly under modular transformations and worked well only
for tori of certain shapes. These difficulties were resolved by
Fremling, Hansson, and Suorsa (2014) who conjectured
that the transformations (83), which were derived for the
multicomponent case, should hold true also for the hierarchy
states.
The main achievement of Fremling et al. was to replace the

derivatives with combinations of finite differences in a way
such that Eq. (83) still holds, but with the total conformal
dimension htot adjusted to include the contributions from the
derivatives. The construction is rather technical, but the upshot
is that the torus generalization of the chiral hierarchy wave
functions (52) is given by

~ψs ¼ A
Yn
α¼1

Dα−1
ðαÞ ψs; ð84Þ

where ψ s is the toroidal wave function of the corresponding
multicomponent state with the same K matrix. The product is
over the n distinct electron operators, and the generalized shift
operator DðαÞ is a sum over finite magnetic translations on a
lattice withN2

Φ points.58 The actual expression forDðαÞ is quite
complicated but, up to a single choice of a sign, it is fully
determined by the requirement that the wave function (84)
transforms as (83) with the appropriate conformal spins. The
simplest example of a wave function (84), namely, the second
level Jain state at ν ¼ 2=5, shows an excellent agreement
over the whole τ plane with the numerically obtained
Coulomb wave function for eight electrons. We stress that
the overlap, as a function of τ, is obtained without fitting any
parameter.

5. The Hall viscosity

Avron, Seiler, and Zograf (1995) showed that the Hall
viscosity, which is a transport coefficient that determines
the nondissipative response to a strain rate, can be obtained
by adiabatically changing the modular parameter τ, much
like the Hall conductance σH can be obtained from an
adiabatic change of the flux though the holes in the torus
(Niu, Thouless, and Wu, 1985). In analogy with this case,
we define the Berry potentials related to the modular
parameter τ ¼ τ1 þ iτ2 by Aτ ¼ ihΨðτÞj∂τΨðτÞi, and
Aτ̄ ¼ ihΨðτÞj∂ τ̄ΨðτÞi, and the corresponding field strength
F ττ̄ ¼ i∂ τ̄Aτ − i∂τAτ̄. In terms of this quantity, the result of
Avron, Seiler, and Zograf (1995) reads

ηH ¼ −
2τ22
A

F ττ̄; ð85Þ

where A is the area of the system.
Avron, Seiler, and Zograf (1995) used Eq. (85) to calculate

ηH for the filled LLL level where the wave function is known.

Later Read (2009b) applied the same methods to the Laughlin
and Moore-Read states, using the representative CFT
wave functions.59 The result of these calculations could be
summarized as

ηH ¼ ℏ
2
ρs̄ ¼ ℏ

4
ρS; ð86Þ

where ρ is the electron density, s̄ is the average conformal spin
of the electrons, S is the shift on the sphere [see Eq. (16)], and
where we reinserted ℏ. Read argued that Eq. (86) should hold
also for general quantum Hall states.

a. Adiabatic calculation for the Laughlin states

Here we outline the main ingredients used by Read (2009b)
to calculate ηH for the Laughlin states. To determine the Berry
potentials Aτ and Aτ̄, and thus the field strength, one must
determine the full τ dependence of the normalized wave
functions. In this case this can be done by generalizing the
plasma analogy described in Sec. II.A to the case of a torus
with arbitrary τ. Technically it amounts to keeping the full
τ dependence in the calculation of the conformal blocks used
to construct the wave function as discussed. The calculation of
Aτ then proceeds similarly to the derivation of Eq. (37); using
the fact that the normalization constant is τ independent, the
only contribution comes from the nonholomophic (in τ) piece
in the wave function which turns out to be determined by the
orbital spin. In fact this nonholomorphic piece is directly
related to the conformal spin of the electron operators. So, as
long as holonomy equals monodromy, Eq. (86) will hold for
any wave function which is just a product of conformal blocks
up to Gaussian factors.

b. Other approaches to the Hall viscosity

The most direct way to use Eq. (85) is to simply compute
F ττ̄ numerically from a normalized wave function that
can be either a model wave function or one obtained
numerically from a model Hamiltonian. Such calculations
for the ν ¼ 1=2 bosonic and ν ¼ 1=3 fermionic Laughlin and
the numerically found Moore-Read state were done by Read
and Rezayi (2011), who found good agreement with
Eq. (86). They also checked the stability of the result for
the ν ¼ 1=2 state by adding a perturbation to the exact model
Hamiltonian.
It was pointed out by Bradlyn, Goldstein, and Read

(2012) and Hoyos and Son (2012) that, asuming Galilean
invariance, the Hall viscosity can be extracted from the
q2 term in the momentum dependent Hall conductance
σHðqÞ, which also can be read off from the term ∼s̄Adω
in the effective response action (33) in Sec. II.H. This is
perhaps not very surprising given that, according to Eq. (86),
the Hall viscosity is proportional to the average orbital
spin s̄.

58This lattice provides a natural way to define coherent states on
the torus (Haldane, 1985; Fremling, 2013).

59This paper also discusses earlier work on the Hall viscosity and
gives relevant references.
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c. Hall viscosity for Abelian hierarchy states

Using the same techniques as Read and Rezayi (2011),
Fremling, Hansson, and Suorsa (2014) calculated ηH for the
ν ¼ 2=5 Jain state and found good agreement, both with
Eq. (86) and with the corresponding results from the
numerically obtained Coulomb wave functions. To appre-
ciate the significance of this, let us again emphasize that
the strong arguments for Eq. (86) were given under the
assumption that our wave functions are normalized such that
no extra Berry phases are incurred during the adiabatic
change of τ, i.e., that all relevant τ dependence is explicit in
the wave functions. For some of the states that can be written
as correlators of primary fields, this can be convincingly
argued using the exact mapping onto a classical plasma.
Equation (86) will, however, apply to hierarchy states only if
the reasoning based on the plasma analogy holds. Thus, the
mere fact that the numerical results for ηH are in accordance
with it gives strong support for the assertion that holonomy
equals monodromy in the case of adiabatic changes of the τ
parameters. Although this does not per se lend support to the
corresponding claim for adiabatically moving quasiparticles,
it certainly lends indirect support.

d. Hall viscosity in realistic systems

Here we comment on the significance of the Hall viscosity
when we move away from an isotropic and clean system.
Concerning anisotropies, Haldane (2011) and Park and

Haldane (2014) argued that when rotational invariance is
broken, e.g., by a tilted magnetic field, Eq. (86) between
Hall viscosity and orbital spin has to be modified. Also on a
sufficiently deformed torus, i.e., coming close to the TT
limit, Eq. (86) no longer holds (Fremling, 2015), in much the
same way as braiding phases of quasiparticles are well
defined only when they are sufficiently separated. Stated
differently, we can only expect the topological properties
to emerge in a suitable scaling limit (Fröhlich and
Kerler, 1991).
As far as we know, there is no conclusive answer to

whether or not the Hall viscosity has any meaning for weakly
disordered systems, and the same holds for the shift on the
sphere. Read and Rezayi (2011) claimed that in the presence
of disorder “the shift ceases to have significance, due to the
loss of rotational invariance on the sphere. The same will
be true for the Hall viscosity.” In a strict sense, this is
presumably true, but we believe that for sufficiently weak
disorder, the shift ought to be robust, since changing the shift
amounts to changing the number of particles in the ground
state at given flux. Seen from the undisturbed system, this
amounts to exciting quasiparticles that will be pinned to the
impurity centers, but this will be energetically advantageous
only if the strength of the impurity is comparable to the gap.
We know of no similar argument for the Hall viscosity and
find it quite likely that the quantization of this quantity is lost
even for weak disorder. Even in this case the average value of
the orbital spin of the constituent electrons might have a
meaning, at least for weak disorder. However, it is com-
pletely unclear if this is an observable that could even in
principle be measured.

Having said this, we stress that from both a conceptual and
a computational point of view the Hall viscosity is a quite
interesting quantity, as should have been clear from the
previous discussion.

VIII. SUMMARY AND FUTURE DIRECTIONS

The main message of this review is that to address the
plethora of observed states, and the multitude of theories,
models, and schemes, there are powerful theoretical tools and
deep physical principles that help us organize our knowledge
of the vast and fascinating field of quantum Hall physics.
Hierarchy is such a principle. It comes in many varieties,

but the basic idea of starting from a parent state and
generating a sequence of topological liquids, by successive
condensation of quasiparticles, is common to all of them. If
the parent state is Abelian, so is the hierarchy, while a non-
Abelian parent state can give rise to qualitatively different
hierarchies depending on which quasiparticles condense, and
the details of how it is done. In particular, certain types of
condensations give rise to Abelian offspring, while others
can result in non-Abelian states either similar to or different
from that of the parent.
Conformal field theory has emerged as a unifying theo-

retical tool in quantum Hall physics. Originally its relation
to quantum Hall physics was via Chern-Simons theory.
Expectation values of the Wilson loops in these gauge
theories, which encode the topological properties of quasi-
particles, are closely related to the monodromies of the
conformal blocks of the corresponding CFT. In the quantum
Hall context, the CFT plays the dual role of providing
representative bulk wave functions, and being the dynamical
theory of the edge modes. In this review we also showed that
the CFT techniques are not restricted to states that can be
expressed as correlators of primary fields, such as the
Laughlin, Moore-Read, and the Read-Rezayi states, but can
also successfully be applied to hierarchy states. Although
we did not mention it prominently, there is a very general, and
in a sense minimal, mathematical description of topological
phases, phrased in terms of tensor categories (Kitaev, 2003;
Bonderson, 2007; Wang, 2010).
There are many intriguing questions concerning the

relationships between different hierarchies, and between
hierarchy constructions and other organizing principles.
Approaches based on effective field theories for composite
fermions and bosons naturally lead to hierarchy schemes, and
effective field theories based on Chern-Simons gauge fields
are general enough to encompass all the hierarchies discussed
in this review. The composite-fermion wave functions also fit
nicely in a hierarchy scheme, although they were originally
organized using quite a different logic.
In spite of the successes of the various hierarchy schemes,

there are many unanswered questions and several promising
lines of research. Clearly there is still no comprehensive
theoretical understanding of the non-Abelian hierarchies, and
we are still waiting for a universally accepted experimental
signature for any non-Abelian state. At a more detailed level,
there are many remaining theoretical problems. We already
mentioned the need for proofs of the expected topological
properties of quasiparticles in the hierarchy states. At the
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theoretical level this would require new tools, such as much
more refined plasma analogies, while convincing numerical
work would require developing novel methods. The extension
of the matrix product state methods (Zaletel and Mong, 2012;
Wu et al., 2015) to hierarchy states might be the way to go
forward. Another challenging problem is to find a direct and
precise link between the microscopic physics of the quantum
Hall effect and the description in terms of CFT correlators,
which is not based on case-by-case numerical verifications of
the Moore-Read conjecture.
The biggest question is, perhaps, to what extent the methods

discussed in this work will pertain to other systems. The
quantum Hall effect is clearly quite special as the only (for
dimensions d > 1) experimental system that has convincingly
demonstrated topological properties, such as charge fraction-
alization. Nonetheless, there is an enormous amount of
research activity exploring other systems that have nontrivial
topological properties (Hasan and Kane, 2010; Kallin and
Berlinsky, 2016; Savary and Balents, 2017) and many such
materials have recently been found. While no experiment has
observed any hierarchy physics in systems that are not
quantum Hall systems, there is nonetheless substantial influ-
ence of theoretical ideas from the quantum Hall world on these
research topics (Lu and Vishwanath, 2012, 2016). It is very
likely that our deep understanding of quantum Hall hierarchies
will continue to enlighten a broad range of future research
directions.
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APPENDIX A: SUPERABBREVIATED QUANTUM HALL
BASICS

The bare basics of quantum Hall physics will be given here
for reference. For further details see the various books on the
subject (Prange and Girvin, 1990; Stone, 1992; Chakraborty
and Pietiläinen, 1995; Ezawa, 2008).
We consider a particle in two dimensions, of mass μ and

charge q in a magnetic field B perpendicular to the plane.
The single particle energy spectrum breaks up into degenerate
“Landau levels” with energies E ¼ ℏωðnþ 1=2Þ, where
ω ¼ qB=μ is the cyclotron frequency. Working in symmetric

gauge so that the vector potential is ~A ¼ ðB=2Þðy;−x; 0Þ, we
can construct a set of ladder operators

a ¼ 1ffiffiffi
2

p ðz=2þ 2∂̄Þ; a† ¼ 1ffiffiffi
2

p ðz̄=2 − 2∂Þ;

b ¼ 1ffiffiffi
2

p ðz̄=2þ 2∂Þ; b† ¼ 1ffiffiffi
2

p ðz=2 − 2∂̄Þ;

with z ¼ xþ iy, and where ∂≡∂=∂z¼ð1=2Þð∂=∂x− i∂=∂yÞ
and ∂̄ ≡ ∂=∂z̄ ¼ ð1=2Þð∂=∂xþ i∂=∂yÞ, and the magnetic
length scale l ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

has been set to unity (a convention
that we adopt often). Note that ∂† ¼ −∂̄. These operators
satisfy ½a; a†� ¼ ½b; b†� ¼ 1 with other commutators vanish-
ing. The single particle Hamiltonian and the z component of
angular momentum take the form

H ¼ ℏωða†aþ 1=2Þ; Lz ¼ ℏðb†b − a†aÞ: ðA1Þ

Thus, a† is a Landau level raising operator, which changes the
energy eigenvalue and b† increases the angular momentum
one unit within the Landau level.
Defining a fiducial state j0; 0i, which is annihilated by

both a and b, we can construct a single particle eigenstate
with energy eigenvalue ℏωðnþ 1=2Þ and Lz eigenvalue
ℏðm − nÞ:

jn;mi ∼ ða†Þnðb†Þmj0; 0i:

Explicitly, we have the real-space wave function form of the
fiducial state hzjψ00i ∼ e−jzj2=ð4l2Þ so that the LLL basis states
become

hzjψ0mi ∼ ðb†Þme−jzj2=ð4l2Þ ∼ zme−jzj2=ð4l2Þ:

Here the mth state is shaped like a ring of radius
r2 ¼ x2 þ y2 ¼ 2ml2. The density of single particle eigen-
states (and hence the density of a filled Landau level) is
thus m=ðπ2ml2Þ ¼ 1=ð2πl2Þ. The most general LLL wave
function for a single particle is fðzÞe−jzj2=ð4l2Þ for any analytic
function f.
Unless otherwise stated, we will always be interested in the

physics of a partially filled LLL. We define the filling fraction
ν ¼ ρϕ0=B, where ρ is the particle density and ϕ0 ¼ 2πℏ=e
is the flux quantum. For fermionic particles, ν can also be
understood as the fraction of the orbitals available in the
Landau level that are occupied. When the LLL is partially
filled there is an enormous degeneracy corresponding to the
choice of which orbitals should be filled and which should
be left empty.60 This degeneracy is broken only by the
interactions between the particles, since within a single
Landau level, the kinetic energy H from Eq. (A1) is simply
an uninteresting constant.
When there are N identical particles in a fractionally filled

LLL, a many particle wave function must be of the form

Ψ ¼ fðz1;…; zNÞ
YN
i¼1

e−jzij2=ð4l2Þ;

60For bosons, the degeneracy remains even for ν an integer.
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where f is a symmetric (antisymmetric) analytic function
when the particles are bosons (fermions). If the Hamiltonian
is rotationally symmetric and the ground state is nondegen-
erate, then it should be an angular momentum eigenstate,
which means the function f should be a homogeneous
polynomial with an overall degree that is set by the total
angular momentum of the system. Given a function f, one
can determine the filling fraction, by finding the highest
power Lmax of z1 (or of any given zi). This determines the
maximum radial extent of the droplet. Thus, the filling fraction
is given by

ν → N=Lmax

as both N and Lmax become large. For finite N we have
Lmax ¼ N=ν − S, where S is a constant known as the shift;
see Eq. (15).
Which analytic function f should be chosen is determined

by the particular interparticle interaction so as to minimize the
interaction energy at the appropriate filling fraction in order to
find a ground state wave function. Laughlin’s original ansatz
for ν ¼ 1=m given by

f ¼
Y
i<j

ðzi − zjÞm

was motivated by the intuition that forcing the wave function
to vanish rapidly as two particles approach each other will
essentially keep the particles farther apart and is therefore
prone to lower the energy due to a short-ranged repulsive
interaction.
In fact, the Laughlin wave function can be shown to be the

exact ground state of a particular ultra-short-range interaction
which gives positive energy when the wave function vanishes
slower than m powers as two particles approach each other
(Haldane, 1983; Pokrovsky and Talapov, 1985; Trugman and
Kivelson, 1985). The Laughlin ν ¼ 1=m ground state is the
highest density zero energy state of this interaction. The
quasihole states obtained by multiplying the wave function by
factors

Q
iðzi − ηaÞ are also zero energy states of the

Hamiltonian, but are at lower electron density. Similarly,
edge excitations can be obtained by multiplying the Laughlin
ground state by any symmetric polynomial.
Let us comment on the case of a partially filled higher

Landau level. The easiest way to handle such higher Landau
level wave functions is to use the one-to-one mapping to LLL
wave functions, via

jnth LL wave functioni ¼
Y
i

ða†i ÞnjLLL wave functioni;

where a†i is the Landau level raising operator for the ith
particle. Note that the application of a† operators puts z̄ factors
in front of the Gaussian, and typically the nth Landau level
wave functions will have terms with n such factors of each z̄.
A wave function can be projected (Girvin and Jach, 1984) to
the LLL by moving all z̄ coordinates to the left and replacing
them with 2∂z.
For many filling fractions, the system will have a gap in the

excitation spectrum above the ground state—this is a sign of

incompressibility. If the system is also fluid (in the sense of
not having broken translational symmetry) then this is known
as a quantum Hall ground state. The stability of the quantum
Hall state is determined by the size of the excitation gap.
There are two types of collective excitations in quantum Hall
systems. The low-energy excitations are intra-Landau-level
quasiparticle-quasihole pairs, which are commonly called
magnetorotons. Their energy gap is set by the Coulomb
interaction, and it is this gap that is relevant for the stability
of the quantum Hall state. The other collective mode is the
cyclotron resonance mode of the center of mass, also called
the “Kohn mode.” At zero momentum it is just the cyclotron
motion of the center of mass, so the gap is ℏωc independent of
the interactions (Kohn, 1961).
In the absence of disorder, by Galilean invariance,61 the

conductance matrix of a two-dimensional system in a mag-
netic field is always given by σxx ¼ ρxx ¼ 0 for the longi-
tudinal component and σH ¼ σxy ¼ 1=ρyx ¼ νe2=h for the
Hall component, with h being Planck’s constant and e the
electron charge. If we consider a fractional quantum Hall
ground state with filling fraction ν ¼ p=q, when disorder is
added, the Hall conductance will be fixed at σH ¼ ðp=qÞe2=h
for a range of values of ν around p=q and σxx remains zero
over this range as well. This is known as a quantum Hall
plateau and typically the size of the plateau, i.e., the range of ν
for which the conductance is quantized, is larger for quantum
Hall states with larger gaps. If the disorder or the temperature
becomes larger than roughly the gap scale, then the quantum
Hall state will be destroyed: σxx becomes nonzero, and the
quantization of σH is lost.

APPENDIX B: EVERYTHING YOU NEED TO KNOW
ABOUT CONFORMAL FIELD THEORY

Conformal field theory (CFT) is a rich and interesting
subject and there are many excellent introductions to the
subject itself, most notably perhaps is the book by Di
Francesco, Mathieu, and Sénéchal (1997). For a pedagogical
review on how it is applied to quantum Hall states, see Nayak
et al. (2008). Although the topic is quite complex,62 for our
purposes we use only some of the very basic ideas.
While CFTs exist in higher dimensions, they are particu-

larly powerful for describing the physics of gapless (1þ 1)-
dimensional relativistic systems with spatial coordinate x,
time coordinate t, and speed of light c which we usually set to
unity. We often use the complex coordinates z ¼ xþ it and
z̄ ¼ x − it, which naturally describe left-moving and right-
moving particles. In the case of general-gapless (1þ 1)-
dimensional systems the two sectors decouple almost
perfectly, and one can treat the holomorphic (z) and anti-
holomorphic (z̄) variables almost entirely independently of
each other. In this Appendix we mainly focus on the
holomorphic parts, so we are essentially considering a left-
moving chiral theory. The generalization to the right-moving,

61The Galilean invariant result holds for strictly zero disorder, but
not necessarily for the limit of disorder going to zero.

62Pun intended.
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or antiholomorphic sector, which is needed when considering
general quantum Hall states, should be obvious.
The use of CFT in the quantum Hall context is twofold.

As discussed in Sec. I.B in the main text, the CFT is used
to describe not only the (1þ 1)-dimensional dynamics of
the chiral quantum Hall edge, but also the bulk (2þ 0)-
dimensional wave function, which essentially is a purely
holomorphic polynomial. While CFTs in 1þ 1 dimension
completely describe the physics of such systems, for our
purposes is it easier to think of a particular CFT as being
simply an operator algebra with certain properties, and which
is used to generate holomorphic functions, and hence quantum
Hall wave functions.
While one might attempt to build a quantum Hall state, both

at the edge and in the bulk, from any (1þ 1)-dimensional
CFT, it turns out that various subtle consistency conditions
prevent most CFTs from describing sensible quantum Hall
states. Most of them turn out to be described by some version
of one of the simplest CFTs imaginable, the chiral boson,
which we describe in some detail later.

1. General CFTs

Generally, a CFT contains a set of primary fields Φiðz̄; zÞ
(or sometimes just Φi) each with scaling dimensions Δi. Each
primary field also has a tower of corresponding descendant
fields (which are basically derivatives of the primary fields)
whose scaling dimensions are higher by integer steps from
the corresponding primary. The primary fields obey a set of
fusion rules63

Φi ×Φj ¼
X
k

Nk
ijΦk; ðB1Þ

where the Nk
ij’s are non-negative integers. A fieldΦi is known

as a simple current if fusion with this field acts as a
permutation on the fields, or in other words if for fixed i
and any j we have Nk

ij being zero for all values of k except a

single value of k for which Nk
ij ¼ 1.

There always exists a special field known as the identity
(written usually as 1) which fuses trivially with all fields
Nk

1j ¼ δj;k. Each field i has a unique conjugate field {̄, with

which it can fuse to form the identity, i.e., such that N1
i{̄ ¼ 1.

Note that a field’s inverse may be itself. A so-called charge
conjugation matrix Cij is defined to be unity for two fields
that are conjugates Ci{̄ ¼ 1 and zero otherwise. The matrix
Nijp ¼PkCpkNk

ij must be fully symmetric under permuta-
tion of i, j, and p.
The objects of particular interest for us are the conformal

blocks, which are correlation functions of holomorphic or

antiholomorphic fields. In many cases there are techniques for
calculating these blocks independently, while in general they
can be extracted by factorizing the correlators of the full fields
Φðz̄; zÞ, which essentially are the products of the holomorphic
ΦðzÞ, and the antiholomorphic fields Φ̄ðz̄Þ,

hΦðz1z̄1Þ;…;ΦðzN; z̄NÞi
¼
X
α

hΦ̄ðz̄1Þ;…; Φ̄ðz̄NÞiαhΦðz1Þ;…;ΦðzNÞiα; ðB2Þ

where α labels the different blocks. In simple cases the sum
has only one term, but in general there are many blocks that
will correspond to different quantum Hall wave functions, as
discussed in Secs. IV.C.1 and VII.B. The scaling dimensions
or “conformal weights” of the fields Φi and Φ̄i are denoted by
hi and h̄i, respectively.

64 The total scaling dimension is then
Δi ¼ hi þ h̄i, and the conformal spin, which in the context of
quantum Hall wave functions is identified with the orbital
spin, is given by si ¼ hi − h̄i.
There is a “neutrality” condition on any correlator

hΦ1Φ2 � � �ΦMi that the fields inside the correlator must fuse
to the identity, or the entire correlator will vanish. The
correlator of two conjugate fields must take the form

hΦiðzÞΦ{̄ðwÞi ¼ ðz − wÞ−2hi ðB3Þ

by dimensional analysis. The coefficient of unity (not written)
on the right of this equation is a conventional normalization
of the fields. There is a completely algebraic approach to
computing the correlators hΦ1Φ2 � � �ΦMi, using fusion rules
and conformal invariance, but in the cases where there is a
Lagrangian description the correlators are just the usual
vacuum expectation values of time (or in the Euclidian case
radially) ordered products of field operators that can be
calculated using standard field theory techniques. The main
examples used in this review, namely, the chiral boson and the
Ising CFT (used to construct the Moore-Read state), belong to
this category.
The fusion rules and the scaling dimensions allow one to

write the operator product expansion which describes what
happens when coordinates of the fields approach each other

ΦiðzÞΦjðwÞ ¼
X
k

Ckijðz − wÞhk−hi−hjΦkðwÞ þ � � � ; ðB4Þ

where the coefficients Ckij are constants that are only nonzero

when Nk
ij is. There are also terms on the right-hand side

corresponding to descendant fields,65 but if we are considering
only the leading terms in the expansion, it is sufficient just to
write the primaries.

63Fusion rules simply specify the possible outcomes when taking
the short-distance product of two local fields. One can consider it a
shorthand notation of the operator product expansion in Eq. (B4).
When the integer Nk

ij is greater than 1, it means that when Φi

fuses with Φj it results in several copies of the field Φk. This is
analogous to tensor products of group representations; e.g., in SU(3),
8 ⊗ 8 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 1̄0 ⊕ 27, so 8 occurs twice.

64Note that the conjugate of a field i has the same conformal
weight as the original field, i.e., hi ¼ h{̄.

65Descendants are obtained by acting with derivatives on primary
fields.
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2. The chiral boson

Perhaps the simplest example of a CFT is the chiral boson,
described by the Lagrangian (27). We define a boson field
ϕðzÞ as a function of the holomorphic coordinate z. These are
free bose fields so the bosonic version of Wick’s theorem
applies. The elementary two-point correlator is given by

hϕðzÞϕðz0Þi ¼ −
1

k
logðz − z0Þ:

Note that the constant k can be changed by renormalizing the
fields. In Sec. II.G we have k ¼ 1=ν. In Sec. IV and onward,
we will take k ¼ 1. In the main text, chiral bosons with
normalization k ¼ 1=ν are usually denoted by φ, while those
with normalization k ¼ 1 are denoted by ϕ.
The vertex operators are defined as

VαðzÞ ¼ ∶eiαϕðzÞ∶; ðB5Þ

with the colons representing normal ordering. The fusion rules
are given by

Vα × Vβ ¼ Vαþβ.

The key identity (which can be proven by use of Wick’s
theorem) is

hVα1ðz1ÞVα2ðz2Þ � � �VαN ðzNÞi ¼
Y
i<j

ðzi − zjÞαiαj=k ðB6Þ

provided that
P

jαj ¼ 0, otherwise the correlator vanishes
identically. The reason for this is that α is the charge of
the operator Vα with respect to the Uð1Þ symmetry
ϕðzÞ → ϕðzÞ þ a. For the correlator on the left-hand side
of Eq. (B6) to be invariant under such Uð1Þ transformations,
the resulting phase factor

Q
je

iαja has to be 1, thus yielding the
charge neutrality conditions. Frequently we can be sloppy
about this final constraint on the sum of α as we can imagine
placing an appropriate neutralizing charge at infinity to force it
to be satisfied if we want. Or as discussed in the main text [see
Eq. (36)] we can use a smeared background charge operator.
By dimension counting, the scaling dimension of the

primary field Vα is given by α2=ð2kÞ, and combining this
with the operator product expansion (B4), we see that, taking
k ¼ 1, the vertex operators (B5) are bosonic or fermionic for α
being an even or odd integer, respectively.

3. The compactified boson

In the quantum Hall context (say, for the Laughlin states)
we do not want our Bose CFT to contain quasiparticle
operators Vα for all possible α. As discussed in connection
with Eq. (44), once we define our electron operator ψe ¼ Vα0,
we must insist that all other operators in the theory are
mutually local with respect to this operator; that is, there
should be no branch cuts in the electron wave function due to
the insertion of quasiparticle operators. This limits the particle
content of our theory to only contain operators ψn ¼ Vn=α0
with integer n.

This constraint on the Bose vertex algebra is in fact
equivalent to having what is known as a “compactified”
boson. One begins with the same Bose Lagrangian (27), but
imposes the periodicity relation

ϕðzÞ ¼ ϕðzÞ þ 2πR;

where R is known as the compactification radius, i.e., ϕ is
defined on a circle with radius R. This immediately constrains
the possible vertex operators since

Vα ¼ ∶eiαϕ∶ ¼ ∶eiαðϕþ2πRÞ∶ ¼ e2πiαRVα

which implies that α ¼ n=R, i.e., there is a discrete set of
allowed values for α.

APPENDIX C: COMMUTATOR OF EDGE OPERATORS

In the text we motivated the fundamental anomalous com-
mutator, Eq. (24), by a heuristic argument, based on the expected
equation of motion for edge excitations. In this Appendix we
give two complementary field theoretic derivations.

1. Approach 1: The UV perspective

Here we give a derivation which is essentially the original
one by Mattis and Lieb (1965) but cast in the quantum Hall
context. Working in Landau gauge, single-electron orbitals
can be taken to be strips parallel to the edge, indexed by their
momentum in the direction along the edge k and having
position perpendicular to the edge y ¼ kl2. For ν ¼ 1, the
ground state is simply described as a Slater determinant of k
states filled up to a Fermi energy kF (we imagine a half-
infinite space so we consider only one edge). The density
operator along the edge (with the same normalization as
Sec. II.G.1) is then

ρq ¼
1ffiffiffiffi
L

p
X
k

c†kþqck. ðC1Þ

Direct calculation of the commutator yields

½ρq; ρq0 � ¼
1

L

X
k;k0

½c†k0þqþq0ck0δk;k0þq − c†kþqþq0ckδk0;kþq�.

While it may look like the two terms on the right precisely
cancel, consideration of the ultraviolet limit (k far from the
Fermi surface) can give something nonzero. When we are far
below the Fermi surface, since all states are filled, c†kþqþq0ck is
zero unless q ¼ −q0. However, when q ¼ −q0, then we are
generally subtracting two nonzero terms from each other and
we must be more careful since there are potentially an infinite
number of such terms, and depending on how they are paired
up, they can leave a finite result. Thus we focus on this
particular case and obtain

½ρq; ρ−q� ¼
1

L

X
k

½nkþq − nk�; ðC2Þ
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where nk ¼ c†kck which is exactly unity deep below the Fermi
surface. Now suppose we try to cut off the infinite sum in
Eq. (C1), say by including a regularization factor wk inside the
sum which is equal to unity near the Fermi surface, but drops
to zero very far away from the Fermi surface. For any form of
this cutoff function (we can consider a step function) we find
that the difference in the two terms is nonzero and gives
exactly qðL=2πÞ which is just the number of k states that lie
between kþ q and k, thus recovering exactly Eq. (24). In the
case of FQHE, one need only modify this derivation by
assuming that far below the Fermi surface nk will be ν rather
than 1.

2. Approach 2: The IR perspective

This derivation was contingent upon subtle noncancella-
tions of potentially UV divergent terms and as such appears as
a UV effect. Although formally correct, this looks strange,
particularly from a condensed matter perspective where there
is certainly no infinite Dirac sea. A similar conundrum is
related to the axial anomaly in 1þ 1 dimensions. Defining
left- and right-moving currents to be jþ and j−, respectively,
the vector and axial currents are jV ¼ jþ þ j− and
jA ¼ jþ − j−. We then have ∂μj

μ
A ¼ eE=π, which for a chiral

theory amounts to an anomaly in the fermion current j ¼
ðjA þ jVÞ=2 given by ∂μjμ ¼ eE=ð2πÞ. This can, by the
following reasoning, be understood as an IR effect.
A constant electric field in the positive x direction will give

rise to a spectral flow at the Fermi level, which corresponds to
creating right-moving particles and left-moving holes in such
a way that the total electric charge is conserved, while the axial
charge, i.e., the difference between right and left movers, is
not. For a more detailed description of this “infinite hotel”66

derivation of the axial anomaly, see Zahed and Brown (1986).
We now give a direct derivation of the anomalous commu-

tator using only IR arguments. Starting with an achiral one-
dimensional system, we can construct a chiral theory by
separating the two chiralities. To do this we start with the usual
one-dimensional (nonchiral) current and density operators in
first quantization

ρðxÞ ¼
XN
n¼1

δðx − xnÞ

and

jðxÞ ¼ 1

2m

XN
n¼1

½pnδðx − xnÞ þ δðx − xnÞpn�

from which we can directly derive

½ρðxÞ; jðx0Þ� ¼ −iðℏ=mÞρðxÞ∂xδðx − x0Þ ðC3Þ

along with

½ρðxÞ; ρðx0Þ� ¼ ½jðxÞ; jðx0Þ� ¼ 0.

We then assume small excitations of both the left-going
and right-going Fermi surfaces. Then we can write ρ ¼ ρ0 þ
ρþ þ ρ− and j ¼ vFðρþ − ρ−Þ where þ and − again indicate
left and right movers, and ρ0 is a constant background density
which is much larger than the perturbations ρþ and ρ−. We
then have

½ρþðxÞ; ρþðx0Þ� ¼ 1
4
½ρðxÞ þ jðxÞ=vF; ρðx0Þ þ jðx0Þ=vF�

¼ −iℏ=ð2vFmÞρðxÞ∂xδðx − x0Þ
¼ −i=ð2πÞ∂xδðx − x0Þ; ðC4Þ

where in going to the last line we substituted ρ0 for ρðxÞ on
the right, since it is assumed to be much larger than ρþ and ρ−.
We also used that for spinless one-dimensional fermions
ρ0 ¼ kF=π ¼ mvF=ðπℏÞ. The chiral operators ρþ are what
we called ρðxÞ in Sec. II.G.1, and Fourier transforming
gives Eq. (24).
Note that just as in the infinite hotel derivation of the axial

anomaly, we considered only effects close to the Fermi surface.
The connection between the two calculations follows if we
couple the right-moving charge to an electromagnetic potential
byH ¼ e

R
A0ρþ and use Eq. (C3) and partial integration to get

∂tQþ ¼
Z

dxdy½ρþðxÞ; eA0ðyÞρþðyÞ�

¼ e
Z

dx∂xA0ðxÞ

¼ ð1=πÞ
Z

dxeEðxÞ

which is the integrate form of the fermion current anomaly for
spatially constant fields.
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