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We report recent progress in determining the global behavior of the two-dimensional electron gas in a
high magnetic field. Specifically, we have: (i) derived a law of corresponding states which allows us to
construct a global phase diagram and calculate many interrelations between transport coefficients; (ii) de-
rived a “selection rule” governing the allowed continuous transitions between pairs of quantum Hall
liquid states; and (iii) identified the “insulating state,” which we have named the Hall insulator, as a state
in which, as the temperature T—0, p,, — «, 0,, and o,,—0, but p,, tends to a constant value, roughly
B /nec. Each of these results has many testable experimental consequences.

1. INTRODUCTION

In this paper, we report on our progress in determining
the global behavior of the two-dimensional electron gas
in a high magnetic field. Our results are summarized in
the schematic phase diagrams in Figs. 1(a)-1(c). The log-
ic that leads to these figures is fairly simple, although the
specific calculations become somewhat complex. To be-
gin with, in this introduction, we will describe the logic
and motivate our conclusions physically, but will not pro-
vide detailed derivations. In the subsequent two sections,
we will discuss the derivation of the various concrete re-
sults we have obtained which support our picture. These
sections are fairly technical, and can be skipped by the
reader who is interested in results but is uninterested in
their derivation. In Sec. IV and the Appendix we discuss
the issue of the universality of the conductivity at the
critical point between quantum Hall liquids. Finally, in
Sec. V, we discuss specific experimentally testable conse-
quences of our global picture.

A. Thermodynamic considerations

In the presence of disorder, as the temperature T tends
to zero, there are two known stable phases of the two-
dimensional electron gas in a transverse magnetic field, B:
(1) the insulating state, in which o,, —0 and p,, — e as
T —0 and (2) the quantum Hall liquid, in which o, —0,
Pxx—0, and o,, takes a quantized value o, =(e?/h)s,y,
where s, is a particular rational fraction and e’/h is the
quantum of conductance. From a quantum-
thermodynamic point of view, the particular rational
value of s,, characterizes the particular quantum Hall
liquid state.! We shall argue in Sec. III that the insulat-
ing state is not unique in the presence of a magnetic field,
but is rather characterized by its Hall resistance as well,
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so that as T—0, o,, —0 and 0,,—0, in such a way that
Oy (04 ), so that Pxy—>Pxy(0), a constant, finite value
which we expect to be roughly its classical value,
pxy(O)zB /nec, where n is the area density of electrons
and c is the speed of light. This state therefore differs
fundamentally from a band insulator, or a Mott insulator,
in which the dc p,,— «. We have named this state the
“Hall insulator.” In the phase diagrams in Fig. 1, the
quantum Hall liquid and the Hall insulator are the only
thermodynamic phases exhibited.

There appears experimentally? to be a third possible
stable phase, for which, to date, no satisfactory theoreti-
cal understanding exists. This is sometimes known as
“the v=1 anomaly.” This state is observed in very high
mobility heterojunctions for magnetic fields such that v,
the electron density per magnetic flux quantum, is v~ 1.
It appears to have a finite (metallic) value of o, in the
T—0 limit and an unquantized value of o,,. Typically,
0,,(0) is considerably smaller than e?/h and has a rather
sharp minimum as a function of magnetic field at precise-
ly v=4, while o,,~nec/B. [The residual conductance
0,,(0) decreases as the sample mobility increases.] It is
not clear whether the v=1 anomaly corresponds to a
true stable phase of matter in the thermodynamic sense.
Rather, it could be associated with a crossover behavior
governed by the properties of an unstable metallic fixed
point at v=1. Metallic behavior is certainly observed in
the absence of magnetic fields in high mobility hetero-
junctions® down to the lowest experimentally accessible
temperatures, although there is every reason to believe
that at asymptotically low temperatures they would be in-
sulating.* This is due to the slow (logarithmic) flow of the
conductivity under the action of the renormalization
group in the so-called weak localization regime, where
the flow occurs in the neighborhood of the unstable (me-
tallic) fixed point. Similar crossover behavior could be re-
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FIG. 1. (a) Phase diagram for the integer quantum Hall
effect. pi% and p!0 are, respectively, microscopic measures of
the strength of the disorder and the magnetic field. We have
drawn the phase boundaries according to the naive scaling

theory of the integer quantum Hall effect described in the text:
PSPV +H (P =g =(e*/h)(n +3) .

This expression assumes the accuracy of a two-parameter scal-
ing theory, and so ignores the possible effects of other irrelevant
operators. However, for the purposes of the present study, it is
only the topology of the phase diagram which matters. (b)
Phase diagram for the integer and fractional quantum Hall
effect obtained by applying the flux attachment transformation
to the phase diagram in (a). The relative heights of the v=1 and
% lobes are arbitrary, as discussed in the text. (c) Phase diagram
obtained by applying the particle-hole transformation to the
phase diagram in (¢). Also shown as shaded regions are the re-
gion where Hall metal (the “v= anomaly”) behavior is ob-
served experimentally, and regions related to it by the law of
corresponding states.
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sponsible for the observed properties of the v=1 anoma-
ly. The v=1 anomaly appears in the phase diagram in
Fig. 1(c) as a shaded area, indicating a region in which
the system exhibits metallic behavior down to very low
temperatures. Note that similar regions are indicated in
the vicinity of v= and 3. The existence of these and an
infinite hierarchy of related ‘“Hall metal” regions is a
consequence of the law of corresponding states, which we
will discuss in Sec. I B.

There are several unstable behaviors of the two-
dimensional electron gas that are important to mention:
(1) For zero disorder, it is easy to see that as 7 —0,
o, —0,and

o,,—nec/B =(e?/h)v,

where v=nhc/eB is the density of electrons per unit
magnetic flux quantum, or “the filling fraction.” Howev-
er, it is well known that in two dimensions, in the absence
of a magnetic field, any amount of disorder localizes all
states and so the metallic state is necessarily unstable un-
der the introduction of disorder. Similarly, in the pres-
ence of a magnetic field, it is believed that (except for the
set of measure zero of densities v=s,, ) the zero-disorder
state is unstable with respect to the introduction of a
small amount of disorder. As far as the phase diagrams
in Fig. 1 are concerned, these unstable phases lie on the
horizontal axis, where the limit of zero disorder occurs.
Near this axis, the phase diagram becomes infinitely com-
plicated, reflecting the infinite number but zero density of
stable quantum Hall liquid phases in the zero-disorder
limit. (2) Again, for zero disorder and low enough elec-
tron density, we expect a Wigner crystal phase, with
spontaneously broken translational symmetry. More-
over, unlike all the other phases mentioned to this point,
one would expect there to be a finite temperature transi-
tion (presumably of the Kosterlitz-Thouless-Halperin-
Nelson-Young® variety) into this phase. This phase
would also be insulating. However, once again, any finite
amount of disorder in two dimensions is expected to elim-
inate this phase.6 Thus, while in the presence of disorder
it is possible to have short-range Wigner crystal order, at
long distances and low temperatures the only known in-
sulating phase is the Hall insulating phase. For the
remainder of this paper we will completely ignore the
Wigner crystal phase. (3) For zero disorder, there is also
the possibility of a more exotic phase, the Hall crystal
phase,” which has Wigner crystalline long-range order
but, nonetheless, finite Hall conductance. Again, in the
presence of any disorder, the Wigner crystalline long-
range order is destroyed, so this phase is unstable to the
introduction of any disorder.

B. Law of corresponding states

The fundamental building block on which we have
based our theory is a law of corresponding states. This
law is a set of approximate relations between the proper-
ties of a given system at one value of the magnetic field
and the properties of the same system at another value of
the magnetic field. Here, we describe the qualitative
physics underlying the law of corresponding states and
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give heuristic arguments that support them. Below, we
will derive them, in a well-defined approximate sense,
from the Chern-Simons formulation of the problem and
will obtain specific relations [see Eq. (3)] between the
transport coefficients in the different states related by the
correspondence. (The formal statement of the law of cor-
responding states, discussed in Sec. II, is that there is an
exact equivalence between a given system at one value of
the filling factor v and a similar system at a correspond-
ing value of v'. The similar systems may have slightly
different values of the disorder potential, be at slightly
different temperatures, or have slightly different interac-
tions so that an appropriate measure of the microscopic
physics, a'? also defined below, is held fixed in going
from vto v'.)

(i) To start with, let us consider the simplest of these
relations, the Landau-level addition transformation:

veov+1, (1a)

where we have used the symbol <> to imply that there ex-
ists a correspondence between the properties of the sys-
tem at the two different values of v. This piece of the law
of corresponding states has a simple interpretation; it
derives from the observation that a filled Landau level is
an inert background which does not much affect the
physics in higher-lying, partially filled Landau levels.
Suppose we know the ground-state wave function for a
particular system at one value of v, including the effects
of some specified disorder potential and some appropriate
electron-electron interactions. We can construct an ap-
proximate ground state for the system at v+ 1, by apply-
ing the Landau-level raising operator to the ground-state
wave function for density v and then multiplying the re-
sulting wave function by the creation operator for a filled
lowest Landau level. Among other things, this transfor-
mation relates the different integer quantum Hall liquid
states.

(ii) The second relation is the particle-hole transforma-
tion for v< 1:

vel—v ., (1b)

This piece of the law also has a simple interpretation. If
we happen to know the ground state (or some other state)
of the system at a given density v, we can construct a
good approximate eigenstate of the system at density
1—v, by applying to a new vacuum state, corresponding
to a filled Landau level, a function of electron annihila-
tion operators which create the state of density v for the
quasiholes. While in the thermodynamic limit this is an
exact symmetry® for certain model Hamiltonians restrict-
ed to the lowest Landau level, we expect it to be a good
approximate symmetry more generally. As an example,
this transformation relates the v=1 and Z states.

(iii) The third, and most interesting, relation is the flux
attachment transformation:

viloy 42, (1c)

Among other things, this piece of the law relates integer
and fractional quantum Hall liquid states, such as v=1to
v=1 and v=2 to v=2. This law was first proposed as a
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way to understand the hierarchy of ideal incompressible
fractional quantum Hall liquid states by Jain® (see also
Greiter and Wilczek!®®)) and from a different perspective
by MacDonald, Aers, and Daharma-Wardana!®®) from
an analysis of the particle-hole transformation in the
lowest Landau level. It was argued by Jain, Kivelson,
and Trevedi!!® (JKT) that this law is more generally
applicable to compressible, as well as incompressible,
states. Indeed, JKT showed that explicit wave functions
can be constructed corresponding to this transformation
which have good variational energies. They also showed
that, for certain model systems in the presence of disor-
der, the transformation is exact, even in a regime where
the system is compressible, so long as the system is deep
in the quantum Hall liquid phase. More recently, Dev
and Jain!!® have constructed trial ground states for sys-
tems with small numbers of particles (N < 8) at magnetic
fields such that the filling factor v lies between v=1 and
% by applying a flux attachment transformation to the
corresponding states with v between v=1 and 2; they
found better than 98% overlap between these trial states
and the exact ground state obtained by numerical diago-
nalization. The flux attachment transformation can be
understood intuitively on the basis of the mean-field argu-
ments applied by Laughlin!? in the context of anyon su-
perconductivity and by two of us'® in the context of the
quantum Hall effect: Consider the problem of electrons
in a given magnetic field B. Imagine attaching some flux
to each particle, so in addition to the physical interac-
tions, they also interact via an Aharonov-Bohm phase. If
the amount of flux ¢ is equal to two flux quanta,
¢=2¢o=2hc /e, the Aharonov-Bohm interaction can be
gauged away, so that the flux has exactly no effect on the
physics; the problems with and without the added flux
are identical. Now imagine treating the added flux in a
mean-field approximation, where it is represented by a
uniform magnetic field of magnitude 2n¢,, where n is the
mean areal electron density. Then at mean-field level,
there is an equivalence between the problems of the elec-
trons in a magnetic field of magnitude B and electrons in
a field of magnitude B +2n¢,. In terms of the filling fac-
tor, the correspondence is between the two filling factors
related in Eq. 1(c).

By applying these laws of corresponding states multi-
ple times, all the spin-polarized quantum Hall liquid
states that have been observed experimentally to date can
be related to the fundamental s,, =1 quantum Hall liquid
state. Thus, a consequence of the law of corresponding
states is that if we understand the long-wavelength elec-
tromagnetic properties of the s,, =1 quantum Hall liquid
state, we understand all spin-polarized quantum Hall
liquid states and if we understand the transition between
the s,, =1 state and other states, we understand all tran-
sitions between any quantum Hall liquid state and anoth-
er state. Similarly, the existence of the v=1 anomaly im-
plies the existence of similar states at v=1,3, etc., with
analogous properties which can be computed in terms of
the properties of the v=1 anomaly. The law of corre-
sponding states has been discussed previously in terms of
wave functions by Jain® and JKT; its explicit implemen-
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tation as a relation between transport coefficients in Eq.
(3) below is our principal result. Most of our findings fol-
low directly.

C. Selection rules and the global phase diagram

In Fig. 1 we construct the schematic T'=0 phase dia-
gram in the disorder—magnetic-field plane. For simplici-
ty, we have drawn the phase diagram for spinless elec-
trons, so there are no differences between the even and
odd integer quantum Hall liquid states, as there would be
if we included spin. We label the disorder axis p2,, indi-
cating some microscopic measure of the longitudinal
resistance, and the magnetic-field axis with the dimen-
sionless measure of the magnetic-field strength, engy /h.

In Fig. 1(a), we represent the phase diagram for the in-
teger quantum Hall effect. We know that in the zero
magnetic-field limit for any value of the disorder, or for
any value of the magnetic field with strong enough disor-
der, or for strong enough magnetic field for a given value
of the disorder, the system should be insulating. Thus,
the entire “outer reaches” of the phase diagram consist of
an insulating state in which p,, — o as T—0. We know
that for vanishing disorder, the boundary between the in-
sulating state and the s,, =1 state occurs at v=1, where
the Fermi energy passes below the delocalized states at
the middle of the Landau band, and that similarly the
boundary between the s,, =1 and 2 states occurs at v=13.
Indeed, we know that the value of s,, simply counts'> 14
the number of delocalized levels below the Fermi energy.
Thus, unless two delocalized levels merge (which we be-
lieve cannot happen, generically), an important selection
rule can be immediately deduced concerning possible
continuous phase transitions in the integer quantum Hall
effect:

across each phase boundary, s,, must change by *1 .

(2a)

Among other things, this implies that there can only be a
direct transition between the insulating state and the
5y =1 liquid; all other integer quantum Hall liquid states
must lie in a region of the phase diagram completely sur-
rounded by the s,, =1 phase. It is well known that at
fixed magnetic field, as a function of increasing disorder,
there is little effect of the disorder on the location of the
delocalized states until the broadening of the Landau
bands becomes comparable to #iw,.. For still larger disor-
der, the delocalized states begin “floating up” in energy,'*
until eventually all of the delocalized states pass through
the Fermi level. The unique result of these considera-
tions is a phase diagram with the general structure of the
one shown in Fig. 1(a).

We do not know precisely how the phase boundaries
coalesce near the origin of the diagram where B —0 and
pe, —0. However, a simple expression for the shape of
the phase boundary can be made using a simple
renormalization-group argument similar to those used by
Khemelinskii and Laughlin:'* According to the two-
parameter scaling theory of the integer quantum Hall
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effect, the critical value of 0,, at the transition between
the s,,=n and n —1 plateaus is (e2/h)(n —1). More-
over, at the critical point, Oy is constant under renor-
malization, which means that

0= /P HPQI= (e i+ 1)

This argument is inescapable in a two-parameter scaling
theory, but in the strong disorder limit, where all sorts of
irrelevant variables can affect the scaling at intermediate
length scales, the location (but not the topology) of the
phase boundaries may be determined by more complicat-
ed microscopic considerations.

In Fig. 1(b) we apply the flux attachment transforma-
tion to the phase diagram in Fig. 1(a). As you can see,
v=1 is to v=1% as v=1 to v=2. Transitions, indeed
reentrant transitions, between the insulating state and the
v= 3 state or the v=1 state are permitted, but all other
quantum Hall liquid states are separated from the insu-
lating state by a regime of at least one other quantum
Hall liquid phase. Figure 1 illustrates the topology of the
phase diagram; the detailed shape of the phase boundary
can change as a result of electron-electron interactions
and other microscopic details. In particular, the relative
heights of the s,,=1 and 1 lobes are of no particular
significance.

In Fig. 1(c) we apply the particle hole transformation
to the phase diagram in Fig. 1(b). We stop here because
the phase diagram is already so complicated. The reader
can easily verify that this series of transformations can be
iterated to produce the entire phase diagram with all the
appropriate quantum Hall states. (Of course, for physi-
cally relevant interactions, eventually iteration of the law
of corresponding states will lead us to construct regions
of the phase diagram corresponding to Hall liquid phases
that are never stable, so we need not iterate forever. See
the Comment below.) On this phase diagram, we have
also included a shaded region indicating the regime of the
v=1 anomaly. As stated previously, this shaded region
does not necessarily indicate the location of a true T =0
phase in the thermodynamic sense, but rather may be a
regime in which metallic behavior is observed down to a
very low crossover temperature. As is also shown in the
figure, if this shaded region exists near v=1, there must
be another such region, related by the flux attachment
transformation, near v= +and %, etc.

Finally, we note that the important selection rule con-
cerning possible continuous transitions that we derived
from the integer quantum Hall effect has a natural gen-
eralization for the fractional quantum Hall effect:

any continuous transition between two states must be
related by the law of corresponding states to a transition
in which s,, changes by *1. (2b)

Thus, for example, a continuous transition between the
Sxy =7 and the s,, =z states is allowed, but not between
Syy =+ and 5., = 3.

Comment. It is important to stress that the law of cor-
responding states relates the properties of the two-

dimensional electron gas at two different values of v only
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if some appropriate long-wavelength measure of the disor-
der and the electron-electron interactions is held fixed.
(We will return to discuss this point more explicitly in
Sec. IID below.) It is easy to think of examples where,
for fixed microscopic interactions and disorder, the prop-
erties of the system at the two different values of v related
by the law of corresponding states will not correspond.
For example, if at v=1 a given system exhibits quantum
Hall liquid behavior, this does not guarantee that, at all v
related by multiple iterations of the law of corresponding
states, the system will exhibit quantum Hall liquid behav-
ior. Multiple applications of the integer addition trans-
formation will eventually lead to a regime where either
the inelastic scattering rate or the effective Rydberg is
large!*® compared to the spacing between Landau levels,
leading to a breakdown of the quantum Hall effect. Re-
peated applications of the flux attachment transformation
will eventually lead to such low values of v that the quan-
tum Hall liquid behavior will be terminated by either the
effect of the disorder of the appearance of a Wigner crys-
tal. The phase diagram in Fig. 1(c) already partially
reflects the diminished stability of higher-order quantum
Hall liquids. However, in reality, both the effective in-
teractions and disorder can have nontrivial magnetic-field
dependence, so on the phase diagrams in Fig. 1, a given
physical system (with fixed microscopic disorder and
electron-electron interactions) could follow a complicated
trajectory, as a function of increasing B, with a tendency
to rise to higher values of the effective disorder in the
large magnetic-field regime at the right-hand side of the
phase diagram. In order to estimate the stability of the
various quantum Hall liquid phases, as opposed to the to-
pology of the global phase diagram and the nature of the
phase transitions, it is necessary to carry out detailed mi-
croscopic calculations for physical interactions, as in the

calculations of MacDonald, Aers, and Daharma-
Wardana and co-workers and Jain'®® and co-
workers.>11(®)

D. The role of the short-distance cutoff

It is important to note that in this discussion we have
implicitly assumed that /(B), the magnetic length, is the
shortest length scale in the problem, since 1//(B) is the
ultraviolet cutoff for the Chern-Simons field theory. For
weak localization theory it is always assumed that the
elastic mean free path I is the shortest length in the
problem and that /(B) is large compared to /,;. It is not
clear that the physics in these two extremely different
limits is simply connected. It is possible that a phase
transition can occur as a function of /,,/I(B) from a Hall
insulator to an Anderson insulator. The nature of this
transition would be beyond the scope of the present
theory. It is with this piece of physics in mind that we
have refrained from trying to understand the v=1 anom-
aly as being related by the law of corresponding states to
the zero-field, weak localization state at v=0.

E. Relation to other global theories

To illustrate the severity of the constraints placed on
any global theory of the quantum Hall effect by the law
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of corresponding states, it is useful to ask whether other
theories of the quantum Hall effect are consistent with it.
As discussed originally by JKT, the hierarchical theories
of the incompressible quantum Hall liquids (whether con-
structed using the notion of a condensation of quasiparti-
cles, as was done by Halperin!® and Haldane,'® or by con-
structing explicit wave functions based on the integer
quantum quantum Hall states, as was done by Jain®) are
fully consistent with the law of corresponding states. By
contrast, the conjectured global renormalization-group
flow diagram constructed by Laughlin et al.!” based on
an analogy with the scaling theory of the integer quan-
tum Hall effect is inconsistent with the law of corre-
sponding states. For instance, in the theory of Laughlin
et al.,'” the possibility exists of a continuous transition
between the s,, =1 and % states, which is incompatible
with the selection rules discussed above and, indeed, has
never been observed experimentally. Thus, from the to-
pology of the implied phase diagram alone, it is possible
to conclude that the theory of Laughlin et al.!” is incon-
sistent with the law of corresponding states.

Strong indirect evidence for the selection rules dis-
cussed above can be obtained by studying the edge-state
structure of various Hall liquid states. For instance,
studies by MacDonald and Johnson'® of the interface be-
tween v=2 and O states show that there always exist two
edges, one between v=§ and 1 and a second between
v=1 and 0. Indeed, using the law of corresponding
states and our knowledge of the edge-state structure in
the integer quantum Hall effect, we can easily predict the
edge-state structure of arbitrary quantum Hall liquids.

II. THE LAW OF CORRESPONDING STATES

We have discussed the qualitative contents and conse-
quences of the law of corresponding states in Sec. I. In
this section we will be more quantitative. In particular,
we will write down the implications of the three principal
correspondences on the low-energy and long-wavelength
electromagnetic properties of the system and derive ex-
pressions which allow the conductivity tensor of a two-
dimensional electron gas to be parametrized by those of a
related Bose system. Finally, we will show that these ex-
pressions embody the law of corresponding states.

A. The three principal correspondences

The quantitative statement corresponding to the law of
corresponding states is summarized in the three relations:

OV,  (v+1), axy(v)eaxy(v+l)—e2/h , (3a)
0 (W)  (1—w), axy(v)eez/h —o,(l—=v), (3b)
and
Y _lop. (v)
pxx 1+2V pxx 4
(3c)
—Y  lop,, (v)+2h se?
pxy 1+2V pxy M

We have used the symbol <> instead of an equal sign to
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signify ‘“‘correspondence” rather than equality between
the transport coefficients at different filling fractions. The
related transport coefficients are, in fact, equal to each
other only if a specific long-wavelength measure of the
electron-electron interactions and the strength of the dis-
order (defined below) is held fixed as the filling factor is
changed. In realistic experimentally relevant cir-
cumstances, as the filling factor is varied, the effective
strength of the disorder potential changes as well, so that
we do not expect strict equality between transport
coefficients in this relation. Of course, where the behav-
ior is independent of microscopic details, the relations in
Eq. (3) must hold as strict equalities. For example, at
temperature 7 =0 in a quantum Hall liquid state, the re-
lations in Eq. (3) become strict equalities, so if at some
density v near 2, the system exhibits s,, =2 quantum Hall
liquid behavior, o,, =0, and o,, =2(e2/h), then accord-
ing to Eq. (3c) at the corresponding density v’ near %, the
system should have p,, =0 and p,, =3(h /e?), ie., Sy =%
quantum Hall liquid behavior. Note that at 7 =0, re-
markably, the relations in Eq. (3) can also relate the con-
ductivity of a quantum Hall liquid to that of an insulator.
For instance, if, for v near 1, a system exhibits Sy =1
quantum Hall liquid behavior, then according to Eq. (3a),
for the corresponding density v’ near O, insulating behav-
ior with o, =0 and o,, =0 should be observed. Finally,
assuming that the critical conductivity is universal, then
Egs. (3) should be read as equalities when they relate the
critical densities at which a continuous transition be-
tween two states occurs. The full nature of the
correspondence in Egs. (3) will be clarified in the deriva-
tion below.

B. Chern-Simmons bosons

To derive the law of corresponding states, we exploit
the exact mapping between the two-dimensional electron
gas and a bosonic field coupled to a fluctuating “‘statisti-
cal” gauge field with a Chern-Simons action. We refer to
the bosons as Chern-Simons bosons to remind ourselves
that, while they are certainly bosons, the physical parti-
cles they represent actually have other statistics (in this
case, Fermi statistics). We will also use the term Chern-
Simons bosons to designate a similar bosonic representa-
tion of the quasiparticles, which we exploit in Sec. IIC
below. We use the same name, although in a somewhat
different context, since it is fundamental to our approach
that we treat the two problems on an equal footing.

The Hamiltonian of the two-dimensional (spinless)
electron gas in a transverse magnetic field is
2

1 . e
H:2m* zj" ——tﬁVj-—:A(rj) +%gje2V(ri—rj)
+3 [eUlr;)—edy(r;)], 4)

J

where the sum over j runs over all particles, V is the
electron-electron repulsion, and U is a disorder potential.
Counter terms involving the interaction between the elec-
trons and the external electromagnetic vector potential
A, with a uniform positively charged background are

left implicit. Up to this point, we have retained all fac-
tors of e, h, and ¢. From this point forward in the deriva-
tion, for notational clarity, we will adopt units so that
fi=e/c=1.

It has been shown'® previously that this problem is ex-
actly equivalent to a problem of charged bosons interact-
ing with both the electromagnetic vector potential and
with a “statistical” gauge field a,, with a Chern-Simons
action, in which the coupling k =2m +1 is an odd in-
teger. Thus, the Chern-Simons term serves to attach k
quanta of statistical flux to each boson. It is important to
note that m is an arbitrary integer. This is the essential
observation responsible for the third transformation of
the law of corresponding states; it reflects the fact that we
can attach two quanta of statistical flux to a particle
without any observable consequences. The properties of
the Chern-Simons bosons is described by the Euclidean
Lagrangian

S=3 Jdt[im* @1, 7]
J

i

+ [drdt | oema,8,0,—ila,—n 4,0,

+in I VI +qUJy+ind- A, |, (5a)

where 6=k and =1, and J,=(Jy,J), and where
Jo(r)= 3 ¢;8(r—r;)
and / (5b)
J(r)= 3 q;(dr;/dt)8(r—1;) ,
J

with g;=1, are, respectively, the particle and current
densities. (We include 6, 7, and ¢ ; in these equations for
later reference.) The coordinates r; are now interpreted
as the positions of point bosons, and appropriate bosonic
boundary conditions must be applied to the path integral.
Note that the coefficient of the Chern-Simons term 6 in
the Lagrangian contains the information concerning the
statistics of the physical particles. In the present case, 6
is an odd integer, so Eq. (5) is a theory of fermions; if 0
were an even integer, then Eq. (5) is a theory of bosons;
for 6 noninteger, Eq. (5) is a theory of anyons. Similarly,
7 specifies the charge of the physical particles (in units of
e), which is, of course, 7=1 for electrons, as stated.
Since this Lagrangian is expressed entirely in terms of bo-
sonic particles, it is straightforward to reexpress it in
terms of a coherent-state path integral as a field theory by
introducing a bosonic field ¢ such that |@|? is the density
of particles and the Lagrangian density

,£=—2—I§E‘””a#8vaa+rp*( —idyg—ag— Ay

+ (—iV—m A—a)p|?
2m,‘l i P
2
+1’2—|¢>12V|<p|2+nU|<p|2—A0ﬁ , (6)

where
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lp?V1gl*= [ dr'lp(o)2V (r—r)|@(r')|?

and 7 is the charge density of the uniform background.
So far, all our manipulations have been formally exact.
The properties of the principal quantum Hall liquids,
with s,, =1/k, can be simply understood by studying the
mean-field solutions of this Lagrangian; in particular, it is
found that the quantum Hall liquid state corresponds to a
superfluid state of the Chern-Simons bosons in which ¢
develops quasi-long-range order. However, to obtain a
richer understanding of the two-dimensional electron gas
and, in particular, to derive the law of corresponding
states, it is necessary to treat fluctuations in a serious
fashion. This is what we do next.

C. Derivation of the law of corresponding states

The external gauge field can always be written as
A4,= A +84,, where A" is due to the external mag-
netic field €479, 4 =8B and 6 4 u is a small external
perturbation (e.g., an applied voltage) used to probe the
system. Similarly, the statistical gauge field can be writ-
ten as the sum of an average piece and a fluctuating piece,

a#=au+80# where

4799 @, =8k don(r) , (7)

and n(r) is the self-consistent ground-state density. The
matter field ¢ is a complex field characterized by a mag-
nitude |@| and a phase a, p=|@|e’® There are three
types of fluctuations of ¢ which must be treated separate-
ly: (1) small-amplitude fluctuations of |@|, (2) “spin-
wave” fluctuations corresponding to smooth deforma-
tions of the field a, and (3) vortex excitations, that is to
say, point defects where |@| vanishes and the curl of « is
nonzero. As discussed in Ref. 20, by introducing suitable
Hubbard-Stratonivich fields, one can integrate out the
spin-wave fluctuations exactly. The result is an effective
action describing a gas of quasiparticles (the dressed vor-
tices and antivortices described above) which interact
with each other, with the externally applied magnetic
field, and with a fluctuating statistical gauge field. In this
effective action, far-separated quasiparticles are charac-
terized by their creation energies A, and A_, their
charges e* =me and e* = —ne, and their statistical an-
gle 6, where 270 is the change in the Berry’s phase when
one quasiparticle is adiabatically transported around
another. A, 7, and @ are all properties of the parent
states, and, in particular, in a primary quantum Hall
liquid, n=6=1/k. Other than this, the effective
Coulomb repulsion between two quasiparticles at short
distances and, more importantly, the effective disorder
potential seen by the quasiparticles are somewhat renor-
malized by the effect of short-wavelength fluctuations of
the modulous |p|. Fluctuations of the quasiparticle
current dominate the temperature dependence of the
quantum Hall liquid. If we represent the quasiparticles
as Chern-Simons bosons, then when the Chern-Simons
bosons are frozen in an insulating state, the physical par-
ticles exhibit the daughter quantum Hall liquid behavior,
with axy=(e2/h )s,,, while if the Chern-Simons bosons
condense into a superconducting state, the physical parti-
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cles exhibit the parent state behavior
0,y =(e?/h)(s,, —n*/0) .

As discussed in Ref. 21, the same transformations can be
carried out at higher levels of the hierarchy, so long as
the values of 7 and 6 are suitably computed. Thus, the
condensation of quasiparticles provides an appropriate
context to understand any continuous transition involv-
ing this system.

The result of all these formal manipulations is that an
effective action which captures the low-energy, long-
wavelength action describing the electromagnetic
response of a two-dimensional electron gas at filling fac-
tor v is given by

— i i
S —fdzr dt _Esxys;kauavAk+§E,wxa#avax
_i(aﬂ_nAu)Ju +Smatter ’ (8a)
where
Smatter = " UNN L —N_)+N, A +N_A_
+ [ dt(inia, Vi,
—nJoU+InJ-A+---), (8b)

where the ellipsis represents other (less important) in-
teractions between vortices. The parameter s,, in Eq.
(8a) deserves particular attention. Imagine that we fix the
magnetic field (and hence v) and increase the strength of
the disorder. The two-dimensional electron gas will land
in one of the two states: (i) the quantum Hall liquid at
low disorder and (ii) the insulator or another quantum
Hall liquid at higher disorder. s,, is defined such that the
Hall conductance of the low-disorder (“daughter”) quan-
tum Hall liquid is given by o, =(e2/h)s,,, and 6 and 7
are the statistics and charge parameters of quasiholes in
this quantum Hall liquid. Other quantities in Eq. (8) that
need explanation are J,, the particle three-current of the
Chern-Simons bosons associated with the quasiparticles,
which has the same definition as in Eq. (5b), but now r
are the positions of the vortices and gi==*1 for
quasiholes (vortices) and quasielectrons (antivortices), re-
spectively; p is the chemical potential, and A, and A_
are the creation energies of the quasiholes (+) and
quasielectrons (—), respectively. The first term in Eq.
8(a) is the electromagnetic gauge action of the reference
Hall liquid, and the rest describes the motion of quasipar-
ticles and the coupling between the quasiparticles and the
electromagnetic gauge field. Note that the quasiparticles
have no effective mass and obey guiding center dynamics.
Moreover, 6 and 7 take on different values reflecting the
fractional charge and statistics of the quasiparticles, and
both ¥V and U are now renormalized interactions in which
the effect of short-wavelength fluctuations have already
been taken into account. A(r)= A®Y(r)+a(r) is the
static mean-field “seen” by the quasiparticles. The parti-
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tion function can be computed from S by performing the
path integral

1
Z = E —_—
v N+!N_!]

xzf D(r;1fDla,le™5. (9

Here, the sum is over all permutations P of the quasipar-
ticles, and we note the Bose boundary conditions for the
integral. Given Eqgs. (8) and (9), we could integrate out
a, and J, to obtain an effective action in terms of 4
alone. This effective action summarizes all electromag-
netic properties of the two-dimensional electron gas.

We proceed to integrate out degrees of freedom in two
stages. First, we integrate out the matter fields J 4 and
the short-wavelength high-energy pieces of the statistical
gauge field to obtain an effective action for the remaining
fields. To quadratic order in the fluctuating gauge fields,

this action is of the form

=rpj) (0)

, i
Sie=[drdr — Sy Aud At 55 29 £,114,0,0;

+3foimfot 3 12mf 12
—imgpnd,—a,)f | - (10)
Here
fuw=90,n4,—a,)—0,nd,—a,),

and 7, m,, and ; are space-time functions summarizing
the linear-response properties of the Chern-Simons bo-
sons. At this point we have made only one approxima-
tion, which is to ignore higher-order terms in powers of
Suv- We will consider the validity of this approximation
in Sec. II D below. Of course, even with this approxima-
tion, we have only formally carried out the integration;
we have hidden all our ignorance in the unknown
response functions ;.

Now we can integrate out a,
effective action in terms of A alone:

;'ﬂ=fd2rdt[—i

+1F ;11 Fo;++F TLF

to obtain the final

Sy TI;— €A Fon

7
0

, (1n

where F,,,=0d,4,—9,4,,
2
™
=5 D
2
m,= —Z_’L 32, (12)
207 —my)
n,= |1 2
3 0 D )
and
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D =w*m+q*mm,+(07 ' —m3)? .

The conductivity tensor (with factors of e and 4 re-
stored) is given by

Oy = 97 llm [0Il;(q=0, »)],

, , (13)
ec .
oxyZTal)lE}) 5xy T1I5(q=0, w)—-ﬂe— ] ,
which reduces to
2 (b)
0 =180 "z (142)
Toh (1-008)2+(00)?
6 (O.(b) (U(b))Z _O';b)
Oxy = ! Sey — N [ (b)\2 N ](b) 2y ) (14b)
h (1—602)+(602)

where the dimensionless conductivity tensor of the
Chern-Simons bosons is given by

o= limo[a)frl(q=0, )],

(15)
o(b)—hm[m (q=0, w)] .

Now we will show that Eq. (14) embodies the three prin-
ciples of the law of corresponding states. To show that
the first two laws are satisfied by Eq. (14), we note that

Sy (vH1)=1+s,,(v),
o(v+1)=6(v) , (16a)
nv+1)=7(v)
and
Sey(1=v)=1—=s5,,(v),
0(1—v)=—06(v), (16b)
n(1—v)=—nv).
Therefore, Eq. (14) implies
o (v+1)=0,.(v) and axy(v+1)=e72+oxy(v) ,
(17a)
provided that
d2(v+1)=0 and o b)(v-l-l) ﬁg,’(v). (17b)
Similarly,
o (l1—v)=0,(v) and axy(l—v)=£};——0xx(v) ,
(18a)
provided that
oQ1—v)=clv), d(1—v)=—0c¥(v). (18b)

The third law of corresponding states is somewhat more
subtle; here we will only illustrate it using a simple exam-
ple. Consider the case v'“1=43"142 in a range of v such
that s,,(v)=1 and s,,(v')=5. By evaluating Eq. (14)
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with the charge and statistics parameters 8(v)=n(v)=1
and 6(v')=n(v')=1, we find
PN =L t), potv)=ow), (9
e e
h
PyM="3l1 -0y,
h (19b)
pxy(vi)=_2[3 O.(b)(v )]
e
and therefore that
Pex(V)=p,.(v) and p,cy(v')=p,cy(v)-i—2h/e2 (20a)
provided that
a®(v)=0®(v) and cr;lj’,)(v')=0§’;)(v) . (20b)

Equations (17b), (18b), and (20b) constitute the conditions
under which the relations in Eq. (3) are equalities.

D. Regime of validity and further implications

The major approximation which went into deriving the
above relations is the neglect in the effective action [Eq.
(10)] of the higher-order terms in powers of the fluctuat-
ing gauge fields. We consider its validity separately near
a critical point and far from a critical point: (1) At the
critical point, we can determine the relevance or ir-
relevance of any term in the effective action by comput-
ing its renormalization-group dimension. Since gauge
fields cannot acquire an anomalous dimension under re-
normalization (see the Appendix) and since charge con-
servation implies that all density fluctuations vanish in
the ¢ —0 limit, we believe that the terms of greater than
second order in the gauge fields do not contribute
relevant corrections to the conductivity. (2) Far from a
critical point, i.e., deep in one of the phases, there is no
reason to expect large-amplitude fluctuations to play an
important role so long as the phase is stable to fluctua-
tions. Thus, self-consistently, whenever the system is
well described by either the superconducting or insulat-
ing phase of the appropriate Chern-Simons bosons, the
neglect of large-amplitude density and current fluctua-
tions (i.e., the large-amplitude fluctuations of the statisti-
cal gauge fields) is well justified for computing the long-
wavelength, low-energy response functions of the system.
The second assumption we made is that all the complica-
tions of the microscopic physics, which we explicitly ig-
nore when we restrict ourselves to considering the low-
energy, long-wavelength properties of the system, can be
expressed in terms of the conductivity tensor of the
Chern-Simons bosons. In effect, this assumption is relat-
ed to the fact that all the complicated microscopic pro-
cesses which lead to a magnetic-field-dependent renor-
malization of the effective strength of the disorder and
the electron-electron interactions occur at short dis-
tances, of order the magnetic length, so that it can serve
as input to the Chern-Simons Landau-Ginzburg theory
which treats all the effects at longer length scales. To be
precise, the law of corresponding states relates the prop-
erties of the two-dimensional electron gas at different
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values of the magnetic field, interactions, and disorder
under conditions of fixed |o’! J”) .

One further implication follows at once from this,
which was noted previously by JKT. If the transition be-
tween quantum Hall liquids is continuous, so that there is
a localization length £y(v) which diverges as v—v_, then
there should be a correspondence between £,(v) for v ap-

proaching v, and £y(v) as v approaches v,

E§v)~E('), 21

where v and V' are any two densities related by the law of
corresponding states and v, and v, are the corresponding
critical densities. Equation (21) implies that any two
transitions related by the law of corresponding states
must be in the same universality class.

III. THE EXISTENCE OF THE HALL INSULATOR

To lowest order in the dimensionless conductivity
g =0, h/e?, the scaling theory of weak localization in
two dimensions has the remarkable feature?? that the
Hall coefficient Ry =0, /an does not renormalize (to
logarithmic accuracy). ThlS analysis is valid so long as
Eo>>1,,(T)>>1, and I[(B)>>1;,, where &, is the localiza-
tion length, /; is the inelastic scattering length (which
diverges as T—0), [, is the elastic mean free path, and
1 (B) is the magnetic length. Were R unrenormalized to
all orders in g and for all values of the magnetic field, it
would imply that in the insulating state p,, — B /nec, i.e.,
Anderson insulators would be Hall insulators.

Entirely different physics can occur in the strong-field
limit, where [;; >>I(B), as is surely the case at all
relevant magnetic fields for quantum Hall devices. It is
in this limit that we argue that the existence of the Hall
insulator follows from Eq. (14). Before we start, we note
that the Hall insulator can only be reached by a continu-
ous transition from the s,,=1/(2p +1) quantum Hall
liquid. Therefore, if a two dimensional electron gas at
filling factor v can be driven directly to a Hall insulator
phase by increasing the disorder, it must have

S, (V)=0(v)=n(v)=1/(2p +1) . (22)
Let us first look at the case where v=1/(2p +1), i.e., the
“center” of the plateau. In that case, there is no net mag-
netic field acting on the Chern-Simons bosons, and so
o'%)=0and Eq. (14) reduces to
_ (ne)? ol
h o 14608 °

UXX

i o) (23)

=2 —2g—x

72T T T R (6o )
The transition between the s,,=1/(2p +1) quantum
Hall liquid and the Hall msulator is triggered by the con-
densation of the Chern-Simons bosons. Specifically, in
the quantum Hall liquid phase, o'%=0. Therefore,
0,x=0and o,,=e?/h (2p +1). However, in the Hall in-
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(b)

o —> o0 and

sulator phase, o

2
~Ame/0r ()" and o

xx =~ h xx

2
e TGy

(24)
Therefore, p,, —  and
Pry—(h0)/(me)V=(h/e*)s,,) '=(2p +1)(h /e?) .

Put another way, at the commensurate values of the mag-
netic field such that v=1/(2p +1) and values of the dis-
order such that p,, — o as T'—0, we have shown that
Pxy =B /nec. This establishes the existence of the Hall in-
sulator. For other values of the magnetic field, we have
no such clean derivation of the transport properties of
the insulating state. However, we see no reason to expect
quantization of p,, in the insulating state, and therefore
we expect the Hall resistance will interpolate smoothly
between its values at commensurate values of the magnet-
ic field. Therefore, the Hall insulator is characterized by

pxx—© and p,,~B/nec . (25)

One caveat is in order at this point. Equation (25) follows
directly from the quadratic form of the effective action in
Eq. (10), so the only corrections to it come from higher-
order terms in the gauge field. While these are certainly
small, we have not yet proven that away from the critical
point they make no contribution to the low-energy
response of the system. Since in the insulating phase, o,
and o, are vanishing rapidly as the temperature tends to
zero, even a small contribution, if it vanishes less rapidly
as T —0, can affect this result. Thus, while it seems to us
unlikely, we have not ruled out the possibility that at
asymptotically low temperatures, there is a crossover to
different behavior, e.g., a weakly diverging p,,.

IV. THE ISSUE OF THE UNIVERSALITY
OF THE CONDUCTIVITY AT THE CRITICAL POINT

It has been noted in many contexts?>?* that, since the

conductivity in two dimensions is a dimensionless num-
ber times e’/h, it is possible that it takes a universal
value at a zero-temperature critical point. (This interest-
ing proposal is akin to the original proposal of Mott?
that in a two-dimensional electron gas, the conductivity
takes a universal value at the metal-insulator transition.)
For noninteracting electrons Abrahams er al.* have
shown that the metallic phase is unstable in two (or
fewer) dimensions; upon renormalization, logarithmic
corrections always drive the system insulating. As a re-
sult, there can be no metal-insulator transition and hence
no quantum critical point. The situation is different for
the disordered, interacting boson problem, where there is
no doubt that there exist at least two distinct phases: an
insulating phase and a superfluid phase. On the basis of
scaling arguments, Fisher and co-workers®* have argued
that there exists a zero-temperature critical point be-
tween these two phases and that there the conductivity at
the critical point should be universal. While the explicit
calculations of Fisher and co-workers have been carried

STEVEN KIVELSON, DUNG-HAI LEE, AND SHOU-CHENG ZHANG 46

out with this particular example in mind, the basic argu-
ment that the conductivity should be universal at the
transition is more general, and hence should be applicable
to the critical point governing the transitions between
quantum Hall liquids and between a quantum Hall liquid
and an insulator as well. (See the Appendix for a review
of the arguments for a universal critical conductance, and
some cautionary remarks concerning them.) In the rest
of this section, we assume the applicability of these gen-
eral scaling results, and explore their consequences.

In the previous sections we showed that the transitions
in the quantum Hall systems can be understood in terms
of the superfluid-to-insulator transitions of the quasiparti-
cle Chern-Simons bosons. Moreover, we presented scal-
ing arguments that the relation between the conductivi-
ties of the Bose and Fermi systems is exact at the critical
point. Thus, at the critical point, the conductivity tensor
of the original electrons is exactly given in terms of the
conductivity tensor of the Chern-Simons bosons by Eq.
(14). Any universal feature of the Bose conductivities
translates into a corresponding universal feature of the
actual electronic conductivities.

We first consider the case in which the Chern-Simons
bosons are symmetric under charge conjugation, and
hence o'?’=0. (On a rough, intuitive level, this corre-
sponds to looking at the transition as a function of disor-
der at a fixed magic value of v=s,,. For noninteracting
electrons in the integer quantum Hall effect, this corre-
sponds to the case in which the disorder potential is
particle-hole symmetric.) In this case, the critical values
of o, and o,, (0, and o,,.) are uniquely determined
by the critical value of the Bose conductivity, o'o.. As
shown in Ref. 26, if we also assume that the result of the
scaling theory of the integer quantum Hall effect!>!4®
that axyc=(e2/h )(n — 1) survives in the presence of in-
teractions, we can invert Eq. (14b) with 6=%=1 and
Sy =n, to find that o' =1. It now immediately follows
from Eq. (14) that the critical value of the conductivity
tensor at an integer or fractional plateau is given by the
expression?6

_(me)* 1 A
T T Ty Ty T g [T
(26)
When the Chern-Simons bosons are not charge-

conjugation symmetric, we no longer know a priori what
the value of a;’}’,’c should be. We envisage two possibili-
ties: (1) The system always scales to a self-dual fixed
point at which ai’;)=0. Since in the scaling theory of the
integer quantum Hall effect, the transition between pla-
teaus is governed by a single fixed point, independent of
whether the transition is approached as a function of dis-
order at fixed magic v, or as a function of v (i.e., B) at
fixed disorder, this is the scenario suggested by that
theory. If this is the case, Eq. (26) should be universally
applicable. (2) The transition away from the self-dual
point is different from that at the critical point in the
same way that the superconductor-to-insulator transition
is thought to be different in the presence and absence of a

magnetic field.?”” In this case, it is possible that o8,
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represents the eigenvalue of a marginal operator, and
hence that o,,. and o,, vary continuously along the
phase boundary separating two quantum Hall liquid
phases or a Hall liquid and an insulating phase. This pro-
vides a good example of how the existence of a marginal
operator could spoil the universality of the critical con-
ductance. We are currently trying to determine which of
these possibilities applies.

V. EXPERIMENTAL IMPLICATIONS

There are a number of important, and unambiguous,
experimental implications of the theory described above,
even though it is incomplete and there are many experi-
mentally relevant questions which we cannot, at this
stage, answer with any degree of certainty. The clearest
predictions derive from the topology of the phase dia-
gram in Fig. 1 and from the fact that all the transitions
are continuous and in the same universality class.

Transitions between quantum Hall liquids. It has been
argued previously by several authors'®%28 that in the ab-
sence of electron-electron interactions, the transition be-
tween integer quantum Hall liquid states should be con-
tinuous and in the same universality class regardless of
the value of the integer. The Landau-level addition
transformation of the law of corresponding states implies
that the same universality of the results applies in the
presence of electron-electron interactions. However,
whereas the one-electron theory is related to a two-
dimensional statistical-mechanics problem (a nonlinear o
model), in the presence of interactions, it is clear that the
correct theory must be 2+ 1=3 dimensional. As a result,
in the presence of interactions, we expect the conductivi-
ty at the transition to be universal (as discussed above)
and the transition to be characterized not only by a
diverging correlation length but by a diverging correla-
tion time as well. It has been argued by JKT that the
same is true of the transitions between fractional Hall
liquid states, i.e., that transitions between fractional
quantum Hall liquid states are in the same universality
class as transitions between integer states. Their argu-
ment is essentially the same as the one outlined here,
based on the flux attachment transformation of the law of
corresponding states.

Experiments have already been reported by Tsui and
co-workers demonstrating that the transitions between
plateaus are characterized by a single critical exponent,
regardless of whether the transition is between integer
plateaus? or fractional plateaus.’® Let us briefly recall
the analysis that underlies this result.?’ Consider the
zero-temperature conductivity tensor of a system near
the transition between two plateaus or between a given
plateau and an insulating state. We will perform a finite-
size scaling analysis. Since we are studying a quantum
critical phenomenon, it is important to consider a system
which has finite extent L in space and L, in (imaginary)
time. Finite-size scaling implies that o, should be a
function of L /& and wyL,, where £ is the diverging corre-
lation length and @ ! is the “correlation time:”

aab(L’Lt’B _Bc)zaab(L/g’wOLt) ’
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where B, is the value of the magnetic field at which the
(zero-temperature) transition occurs. For values of B
near to B, £~|B —B_,|™*. (The traditional symbol for
this exponent is v, but here v is the filling factor. The
best estimate®! of x is x ~1.) w,~& % where z is the dy-
namic exponent (at present unknown). When L /£ and
woL, << 1, the system behaves as if it were at its critical
point, so o ,, ~0o'3, the value of o, at the critical point
(which is likely to be universal, as discussed in Sec. IV
above). For L /& and wyL, >>1, the system behaves as if
it is far from the critical point, so o,, is quantized and
o, is exponentially small.

One can, in principle, explore the transition between
short- and long-distance behavior in many ways. The
two extreme approaches are either (1) hold wyL, >>1 and
consider the behavior as a function of L /£ or (2) hold
L /£>>1 and consider the behavior as a function of wyL,.
In either case, the transition occurs when the scaled sys-
tem size is of order 1.

The relevance of this to experiments at finite tempera-
ture is that temperature introduces an effective finite size
for the system. Specifically, we can think of the system as
having a spatial extent corresponding to the inelastic
scattering length L=, (T)~T?’? [in the low-field limit
(Ref. 32), p=1] and an extent in imaginary time
L,=%/kygT. Thus, for a given value of B —B_, a cross-
over from low-temperature (quantum Hall) to high-
temperature (critical) behavior will occur at a crossover
temperature T*(B — B, ) which is equal to the smaller of
the temperatures T, and Ty, defined implicitly by
the relations

lin(Tspace)=§~|B —BC|—X ’ (27a)

kg Time =flwg~E& 7. (27b)
As long as zp <2 (which is believed to be the case), the
crossover for |B —BCI small is always determined by
Tpace- Thus, where Tsui and co-workers?”3® observed
that [B —B,|~(T*)** for small enough |B —B,|, they
sensibly interpreted this as a measurement of the ex-
ponent p/2x. (This is consistent with x =1 and p =2.)
It is this exponent that they found is universal for transi-
tions between integer and fractional quantum Hall
liquids. The behavior of the system is also interesting
when we do not focus on the region of parameter space
close to B.. In this case, it should be possible to explore
the crossover from low- to high-temperature behavior
due to the dynamics, rather than the inelastic scattering.
Quantum Hall liquid to insulator transition. The ob-
served reentrant transition in the neighborhood of v=1
between an insulating and a quantum Hall liquid state is
consistent with the proposed phase diagram. (See, also,
Ref. 21.) Moreover, this transition should be in the same
universality class as the transition between plateaus, and
so should be described by the same critical exponents. In
particular, the activation energy for conduction A,
should vanish, according to dynamic scaling, as
|A,| <#iwy~E™2 This scaling behavior has not yet been
critically tested experimentally. Preliminary results by
Jiang et al.*® suggest that |A_| < |B —B,|® with b ~0.5.
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We would expect that in less clean samples, similar
reentrant behavior should be observed in the neighbor-
hood of v= 3 and, in still less clean samples, in the vicini-
ty of v=1. To get a feeling for the sort of realistic values
of parameters needed to observe this phenomenon, let us
focus on the simple and dramatic case of v=1. We ex-
pect to observe the s,, =1 quantum Hall state in samples
that are sufficiently clean that for magnetic fields such
that v=1, w.7> 1, where w,=eB/m*c, m* is the band
effective mass of the electrons, and 7 is the elastic scatter-
ing time. Since #iw, at v=1 is equal to the Fermi energy
Ey for B =0, this condition is equivalent to the condition
#i/T<Ep. Thus, we must restrict ourselves to samples
with high enough mobility that this condition is satisfied,
or, equivalently, with a microscopic resistance
p%. <h/e?. On the other hand, the cleaner the sample,
the lower the temperatures necessary to observe the true
low-temperature behavior. In the zero-field limit, we can
deduce from weak localization theory and finite-size scal-
ing that a crossover from metallic behavior (controlled by
flows in the neighborhood of the unstable metallic fixed
point) to insulating behavior (controlled by flows toward
the stable insulating fixed point) occur at a length scale

*=Lqexp[m*(h/e?p2,)],

where L, is a microscopic length scale (ultraviolet cutoff)
and the exponent 77 is derived from the one-loop S func-
tion.>* As usual, we relate this crossover length to a
crossover temperature by finding the temperature T* at
which the inelastic scattering length L, is equal to L*.
Again, as usual, we imagine that L, =a(T/6,F"?
where a is a micropscopic length, kz©, is a microscopic
energy characterizing the scattering mechanism, and p is
an exponent which, for phonon scattering in two dimen-
sions with B =0, is thought® to be p =1. Combining
these relations, we find a crossover temperature

T* = Toexp[(2m2/p)(h /e%°,)], (28)

where T, is a microscopic temperature scale. The ex-
ponent in this expression is approximately 20 times the
dimensionless conductivity, so for clean samples in which
p2, is much less than the quantum of resistive, the cross-
over temperature is astronomically low and insulating be-
havior is never seen. However, for p° near h /e, insu-
lating behavior is observable at accessible temperatures.
We therefore predict that in samples with a microscopic
resistance which is less than, but not much less than, the
quantum of resistance, dramatic reentrant behavior
should be observable at low temperatures: For B =0, the
system should exhibit insulating behavior. This behavior
should persist up to a critical magnetic field B,, above
which s,, =1 quantum Hall liquid behavior should be ob-
served. Finally, for B greater than a second critical field,
B,, insulating behavior again should be observed. Criti-
cal exponents and qualitative behavior should be similar
to those observed in the neighborhood of v=1 in clean
samples.

The Hall insulator. Goldman, Shayegan, and Tsui®’
have performed experiments to look for evidence for a

Sxy =1 quantum Hall liquid state. In this study, the focus
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was on a small dip in the resistance as a function of mag-
netic field observed in the neighborhood of v=1. How-
ever, the most salient feature of the experiment is that the
resistance was found to be a diverging function of tem-
perature for all magnetic fields in the neighborhood; it
simply was diverging a little less fast at v=21. This be-
havior we interpret as evidence that the system is in the
insulating state, but that it passes ‘“near” the phase
boundary of the v=1 quantum Hall liquid state in the
sense that if the sample were a little less disordered or the
electron-electron interactions were a little shorter ranged,
the system would have exhibited a v=1 Hall liquid
phase. In other words, the dip in the resistance is a pre-
cursor effect due to critical fluctuations on the insulating
side of the Hall liquid phase boundary.

Here, we would like to draw attention to another as-
pect of these data which relates directly to the properties
of the insulating phase and, presumably, has nothing to
do with the quantum Hall liquid state. By the time the
temperature is 140 mK or lower, the system is already ex-
hibiting strongly insulating behavior in the sense that
Pxx > 20h /e?. Despite this, the measured p,, is observed
to be roughly temperature independent and to obey ap-
proximately the classical relation p,, =B /nec. It is, of
course, difficult to obtain a completely reliable measure-
ment of p,, when p,, <<p,,, so it would probably be use-
ful for the experiment to be repeated. However, taken at
face value, we feel that this observation is a direct
confirmation of the existence of the Hall insulator.

Quasi-particle Hall insulator in the quantum Hall
liguid phase. The law of corresponding states implies
that there should appear a signature of the Hall insulator
behavior in the quantum Hall liquid regime. In particu-
lar, it is important to the occurrence of the quantum Hall
effect that the quasiparticle gas is in an insulating state,
and we infer that this insulating state must be a Hall in-
sulator. It therefore follows from Eq. (3) that for finite
temperatures (or finite-size systems) there exists a simple
relation between the deviation 8p,, of the Hall resistance
from its zero-temperature value (8p,,=p,, —h /sxyez)
and the deviation of the longitudinal resistance dp,, from
its zero-temperature value (8p,, =p,, ):

8Py ~ (Pxx ) - 29

Hall insulator versus Wigner crystal. As we have
stressed before for a disordered system, there is no sharp
distinction between the Wigner crystal and a disorder-
induced insulator, since disorder necessarily destroys the
long-range order of the Wigner crystal.® Nonetheless,
there is a clear qualitative question that determines how
one should think about any given set of experiments on
an insulating state of a quantum Hall device: (1) It is best
to think about the state in terms of large but finite pinned
Wigner-crystal “grains” if there is sufficiently long short-
range Wigner-crystal order. (2) If, on the other hand, the
Wigner-crystal order is of shorter range than the localiza-
tion length, then it is better to think of the insulating
state as being basically an effect of the disorder. Above,
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we interpreted the reentrant insulator—quantum Hall
liquid-insulator transition observed in the neighborhood
of v=1 in the ultrahigh mobility GaAs heterojunctions
as being evidence of the validity of the law of correspond-
ing states.

It is important to note that this interpretation is some-
what at odds with the most prevalent interpretation of
the same results, which are widely believed to be evi-
dence’¢ 3 of the existence of a Wigner crystal, with the
reentrance of the phase boundary being evidence of the
first-order nature of the liquid-crystal transition. Other
experimental evidence that is taken as corroborating evi-
dence for the existence of the Wigner crystal are the fol-
lowing: (1) the observation®®~% of a fairly well-defined
(magnetic-field-dependent) temperature (T*~100 mK)
below which the characteristic “Wigner-crystal behav-
jor” is observed; (2) the observation®?3¢73 of a fairly
well-defined, and strikingly small, threshold electric field
(Er~1 mV/cm) above which non-Ohmic behavior and
broadband noise’® are observed (in Ref. 36, rather larger
threshold fields are reported); and (3) the observation®®3?
of a moderately well-defined resonance at fixed wave
number as a function of frequency with a strikingly low
frequency scale (w~1 GHz). All of these observations
find a natural explanation if one assumes that in these
samples (which are certainly among the least disordered
systems in existence) there is substantial Wigner-crystal
order.

We wish to show that these experimental results have
another rather straightforward interpretation in terms of
the properties of the Hall insulator in the neighborhood
of the critical point using more or less standard notions
of scaling. To understand the nature of the electromag-
netic response of a Hall insulator in the scaling regime,
let us first start (as a warmup) by considering a simpler
problem, namely, the transition between the insulating
state and the s,, =1 quantum Hall liquid, and let us for
now ignore electron-electron interactions. We have al-
ready shown that as a result of the “floating up” of the
delocalized states, the reentrant phase diagram is a natu-
ral, indeed a necessary, feature of this theory. Let us con-
sider now the finite frequency and finite electric-field
response of the system just on the insulating side of the
transition. Nonlinear I-V relations arise in this system ei-
ther through well-known modifications of the variable-
range-hopping conductivity, or through electric-field-
induced transitions between the localized and the delocal-
ized states. (This is analogous to Zener tunneling.) Since
in the temperature range probed by the experiments,
variable range hopping is never observed, we ignore this
first contribution and concentrate on the second. The en-
ergy that an electron can easily acquire from the electric
field is eE &, where & is the localization length. The en-
ergy required to promote an electron to the delocalized
states, A, is the difference between the Fermi energy and
the energy of the delocalized states. Thus, at zero tem-
perature we expect significant nonlinear conductance to
occur above a threshold field

Er~A,/e*E, (30a)

where in this case e* =e. This simple single-electron pic-
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ture is, of course, invalid near the transition. However,
using the law of corresponding states to relate the proper-
ties of the integer and fractional quantum Hall regimes,
and reinterpreting the above results in terms of scaling
variables, we can obtain a more generally valid expression
in the Hall insulator near the critical point. First, we
must reinterpret the frequency scale as the characteristic
frequency determined by dynamic scaling, A, ~(&,) 7, as
discussed above. (In the single-particle theory,
A,~|B —B,|, which implies z=1/x~3, which is un-
likely to be the correct value of the exponent in the fully
interacting theory.) Furthermore, the proper quasiparti-
cle charge e* must be used in Eq. (30a), where e* is the
charge of the quasiparticle in the nearby Hall liquid state
(e.g., near v=%, e*=e /5. This is, of course, a nontrivial
interaction effect). In the neighborhood of the transition
to the quantum Hall liquid, E is small due to the small-
ness of A, and the largeness of £y Ey~|B —B,|*1T2.
For the same reason, we expect broadband noise (micro-
scopic shot noise) when E exceeds E;. Similar reasoning
leads to the conclusion that there should be a peak in the
absorptive response of the system at a characteristic fre-
quency (which we expect to be independent of wave num-
ber k so long as k§,< 1) determined by dynamic scaling,
#fiw~A,. Finally, we can easily use finite-size scaling to
relate the zero-temperature properties to finite-
temperature properties. For example, the threshold field
at finite temperature should be determined by a scaling
function of the form

E;r~(A,/e*E) (L /60, Ay /kpT) (30b)
where f(x,y) is another scaling function which tends to
0 when either of its arguments is small compared to 1 and
approaches a constant as its two arguments approach
infinity. The characteristic temperature T*(B) should
also be determined by scaling, as above. According to
this interpretation, a characteristic temperature at which
the behavior of the system changes qualitatively (al-
though, of course, there is no phase transition) is deter-
mined by either the equation kzTw-~A,, or by
Lin(T*)~&,.

At present, we feel™ that both the present interpreta-
tion and the interpretation in terms of the disordered
Wigner crystal are consistent with the experiments. Fur-
ther tests of the theories can be made by measuring the
variation of the various characteristic energies as a func-
tion of |[B —B_| to test the predictions of scaling. (Pre-
liminary indications from the measurements in Ref. 38,
which show that E; increases as the critical point is ap-
proached, would appear to be inconsistent with the scal-
ing assumption. However, in Ref. 36(b), the critical field
is found to vanish as the critical point is approached,
which would be consistent with the scaling assumption.)
A simpler test is to study more disordered samples (which
are correspondingly less likely to support substantial
Wigner-crystal order). If similar reentrant insulating be-
havior and similar nonlinear responses of the system can
be observed in a more disordered sample in the neighbor-
hood of v=1 or 1, this will be exceedingly strong evi-
dence in support of the present theory. Even more im-
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portantly, if Hall insulating behavior is observed in the
insulating regime .with p,, ~ B /nec, this will constitute
overwhelming evidence that the insulating state is not a
Wigner crystal. Conversely, if p,, >>B/nec, then it is
probably better to think of the insulating state as a disor-
dered Wigner crystal.

Finally, we wish to emphasize that where &, is large,
substantial Wigner-crystal order could exist without it
affecting any of our conclusions, so long as the Wigner-
crystal correlation length &wc-<§, However, the ex-
istence of such short-range Wigner-crystal order could
have important consequences on other properties of the
system which depend on shorter-range effects. Energetic
considerations, such as determine the relative stability of
the various phases, could be quite sensitive to the pres-
ence of short-range Wigner-crystal order. In particular,
this could strongly influence the shape (although not the
topology) of the phase diagram in Fig. 1(c) and produce a
variety of Wigner-crystal-like features in the intermediate
energy response of the system.

The critical conductance. Equation (26) contains a
series of predictions concerning the critical conductance
at various transitions under the assumption that the tran-
sition is governed by a single fixed point. We are
unaware of any direct experimental tests of these predic-
tions (but see Ref. 26 for a discussion of a related, indirect
experimental verification of these relations). In particu-
lar, care must be taken when studying the properties of
small samples,*! since finite-size corrections (especially
the contribution of edge states*’) can affect the results
strongly.

The v=1 anomaly. At this stage, we cannot say any-
thing concrete about the v=1 anomaly itself. However,
from the law of corresponding states we can conclude
that similar behavior should be observed at v=1,3, etc.
We happen to know that this behavior has, in fact, been
observed.*’

Low-field phenomena. It is exceedingly dangerous to
apply any of the present results in the low-field regime
where [, <I(B). However, we have recently become
aware of results on the superconductor-to-insulator tran-
sition in thin-metal films that are tantalizingly suggestive
of the existence of a Hall insulating state in these materi-
als as well. Specifically, Hebard et al.** have studied a
series of samples as a function of disorder and magnetic
field. For any given sample which is superconducting at
T =0 in zero applied field, they have identified a critical
magnetic field B, such that for B <B,, the sample is su-
perconducting at T =0 and for B > B, the sample is in-
sulating in the sense that p,, diverges. However, there
appears in the same experiments to be a second critical
field B, > B,, such that for B <B/, p,, remains very small
at T =0, while for B > B/, p,, diverges. (Because of the
high density of electrons in these materials, it is not clear
to us whether for B, <B <B/, p,, ~B/nec or whether
pxy—0.) Despite the fact that these experiments are
clearly well out of the regime of validity of our theory,
since I, ~a lattice constant <<I/(B), it is tempting to
identify the intermediate zero-temperature phase between
as being a Hall insulator, so that as a function of magnet-
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ic field, there are two transitions: a superconductor-to-
Hall insulator transition followed by a Hall-insulator-to-
Anderson-insulator transition. We are currently trying
to extend our results to treat this problem.

Note added in proof. After we had completed this pa-
per, we received two papers, one by Santos et al.** and
one by D’Iorio et al.*® In Santos et al.’s paper a two-
dimensional hole gas in a magnetic field is studied and
reentrant insulating behavior observed in the neighbor-
hood of v=1 which is “strikingly similar” to that of the
electron gas near v=+. Anomalies in p,, are observed,
but not discussed in any detail. Other than the fact that
this system consists of holes rather than electrons, the
only two other possibly significant differences are that the
holes have a factor of 10 heavier effective mass and a fac-
tor of 20 lower zero-field mobility (u~4X10°
cm?/Vsec). Santos et al. still attribute this behavior to
Wigner crystallization, and attribute the fact that the
transition is shifted to lower filling factors to the in-
creased mixing between Landau levels. We would like to
suggest that it is more likely that the difference in behav-
ior is due to the lower mobility of the hole gas samples.
In the paper of D’Iorio et al., quantum Hall behavior is
studied in Si inversion layers, which are still more disor-
dered (u~4X10* cm?/V sec). They observe reentrant in-
sulating behavior in the neighborhood of v=1, and simi-
lar nonlinear I-V curves are obtained. It is absolutely im-
perative that careful measurements of p,, be performed
on both systems. Also, after completion of this work, it
was pointed out to us by Z. Wang that theoretical evi-
dence of the existence of a Hall insulator was obtained
previously by Efetov.*” Efetov studied the problem of
noninteracting electrons in the strong magnetic-field limit
and concluded that in the insulating state, p,, remains
finite.

It was also pointed out to us*® that there are some ex-
isting data*® which appear to show a direct quantum-
Hall-liquid-to-insulator transition in the neighborhood of
v=1, although no data that we are aware of show a pla-
teau in p,,. A direct, continuous transition from an
Sy =+ quantum Hall liquid to an insulator is forbidden
according to the selection rules we have derived, so fur-
ther experimental study of this point could be very im-
portant.
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APPENDIX: REVIEW OF THE ARGUMENT
THAT THE CRITICAL
CONDUCTANCE IS UNIVERSAL

The conductivity is simply related to a particular
correlation function (e.g., the current-current correlation
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function). Since we are dealing with a quantum critical
phenomenon, there should be no fundamental distinction
between a dynamical correlation function and a static
correlation function, as there would be in classical statist-
ical mechanics. Near the critical point, the difference be-
tween the actual Hamiltonian of the system H and the
fixed point Hamiltonian H* is

H=H*'+3 4,0,
J

(A1)

where {O;} are a complete set of scaling operators. We
imagine, moreover, that H is a field theory (since we are
only interested in long-wavelength phenomena), so we
regularize it with an ultraviolet cutoff K. Then, the con-
ductivity can be written as

O'ab=fab(1‘i1,7\2,7\3,...;K) . (A2)

Simply rescaling the units of space and time so that
K =1, we find

0w =K " f.r(ApApAs..51), (A3)

where d, =0 is the engineering dimension of the conduc-

tivity and A; =K 9 A ; are the dimensionless coupling con-
stants, where d; is the engineering dimension of O;. This
is just straight rescaling. We now imagine thinning de-
grees of freedom by “integrating out” degrees of freedom
between K and AK, and then rescaling the cutoff back to
K, i.e., by subjecting the system to a renormalization-

group transformation. The result is
b =A AT IALA AL OA 1), (Ad)

where 8, is the scaling dimension of the conductivity and
8; is the scaling dimension of O;.

To arrive at the conclusion that the critical conductivi-
ty is universal, it is necessary at least to show that on the
critical surface (i.e., the basin of attraction of H*) in the
neighborhood of H*, o, is independent of parameters.
This can be shown under the following assumptions: (1)
The scaling dimension §,=0. That §,=d, follows>
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from gauge invariance and the fact that o, is a current-
current correlation function. (2) There are no marginal
variables in the neighborhood of H*. That is, some of
the operators have positive scaling dimension and others
have negative scaling dimension but none have zero scal-
ing dimension. (To be explicit, we consider the case in
which there is only one relevant variable so §,>0, but
8, <0 for j >1. Thus, the critical surface in the neigh-
borhood of the fixed point is defined by A;=0.) (3) There
are certain restrictions on the functional form of f,, (as
discussed below). Now, at the critical point, we can take
the limit as A—0 to obtain the long-distance physics,
and, in particular, to obtain the dc conductivity. As a re-
sult, we conclude that at the critical point, o, takes on
the universal value

) )
oly=lim f5,(0A" ApA Ay, 1)

=f44(0,0,0,...;1) . (AS)

As attractive as this conclusion is, there are several ways

in which it could be misleading: (1) It is possible that the
value of f could depend on the way in which the limit is
approached. This is particularly true if there are two ir-
relevant operators with the same scaling dimension. For
instance, suppose that 8,=8;. Then, f could depend on
the ratio A,/A;, even in the limit in which both cou-
plings tend to zero. This would produce a one-parameter
family of critical values of o ,,. (2) Even if this does not
occur, there is no guarantee that f,(0,0,0,...;1) is a
finite constant. It is possible that it is equal to zero or is
infinite. While this is indeed a universal value, it is not
what is typically meant by a universal value of the con-
ductance. In the present case, neither of these possibili-
ties has been ruled out. Thus, we must view the notation
that the value of the conductivity at the critical point is
universal as an interesting hypothesis, which remains to
be tested. We have therefore not based any of our argu-
ments on this hypothesis.
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