
COMPUTATIONAL PHYSICS

Morten Hjorth-Jensen

University of Oslo, Fall 2007

Preface

So, ultimately, in order to understand nature it may be necessary to have a deeper under-
standing of mathematical relationships. But the real reason is that the subject is enjoyable,
and although we humans cut nature up in different ways, and we have different courses in
different departments, such compartmentalization is really artificial, and we should take our
intellectual pleasures where we find them. Richard Feynman, The Laws of Thermodynamics.

Why a preface you may ask? Isn’t that just a mere exposition of a raison d’etre of an author’s choice
of material, preferences, biases, teaching philosophy etc.? To a large extent I can answer in the affirmative
to that. A preface ought to be personal. Indeed, what you will see in the various chapters of these notes
represents how I perceive computational physics should be taught.

This set of lecture notes serves the scope of presenting to you and train you in an algorithmic approach
to problems in the sciences, represented here by the unity of three disciplines, physics, mathematics and
informatics. This trinity outlines the emerging field of computational physics. Time is ripe for revising
the old tale that if mathematics is the queen of sciences1 , then physics is king. Informatics ought definitely
to belong among the princely.

Our insight in a physical system, combined with numerical mathematics gives us the rules for setting
up an algorithm, viz a set of rules for solving a particular problem. Our understanding of the physical
system under study is obviously gauged by the natural laws at play, the initial conditions, boundary con-
ditions and other external constraints which influence the given system. Having spelled out the physics,
for example in the form of a set of coupled partial differential equations, we need efficient numerical
methods in order to set up the final algorithm. This algorithm is in turn coded into a computer program
and executed on available computing facilities. To develop such an algorithmic approach, you will be
exposed to several physics cases, spanning from the classical pendulum to quantum mechanical systems.
We will also present some of the most popular algorithms from numerical mathematics used to solve a
plethora of problems in the sciences. Finally we will codify these algorithms using some of the most
widely used programming languages, presently C, C++ and Fortran 90/95. However, a high-level and
fully object-oriented language like Python is now emerging as a good alternative. From fall 2009, due to
the changes in our undergraduate curriculum, these lectures notes will employ Python as programming
language. But all Fortran 90/95 and C++ examples will be kept.

Computer simulations are nowadays an integral part of contemporary basic and applied research in
the sciences. Computation is becoming as important as theory and experiment. In physics, computational
physics, theoretical physics and experimental physics are all equally important in our daily research and
studies of physical systems. Physics is the unity of theory, experiment and computation2 . Moreover,
the ability "to compute" forms part of the essential repertoire of research scientists. Several new fields
within computational science have emerged and strengthened their positions in the last years, such as
computational materials science, bioinformatics, computational mathematics and mechanics, computa-
tional chemistry and physics and so forth, just to mention a few. These fields underscore the importance

1According to the German mathematician Karl Friedrich Gauss in the nineteenth century.
2We mentioned previously the trinity of physics, mathematics and informatics. Viewing physics as the trinity of theory,

experiment and simulations is yet another example. It is obviously tempting to go beyond the sciences. History shows that
triunes, trinities and for example triple deities permeate the Indo-European cultures (and probably all human cultures), from the
ancient Celts and Hindus to modern days. The ancient Celts revered many such trinues, their world was divided into earth, sea
and air, nature was divided in animal, vegetable and mineral and the cardinal colours were red, yellow and blue, just to mention
a few. As a curious digression, it was a Gaulish Celt, Hilary, philosopher and bishop of Poitiers (AD 315-367) in his work De
Trinitate who formulated the Holy Trinity concept of Christianity, perhaps in order to accomodate millenia of human divination
practice.

iii

of simulations as a means to gain novel insights into physical systems, especially for those cases where no
analytical solutions can be found or an experiment is too complicated or expensive to carry out. To be able
to simulate large quantal systems with many degrees of freedom such as strongly interacting electrons in
a quantum dot will be of great importance for future directions in novel fields like nano-techonology. This
ability often combines knowledge from many different subjects, in our case essentially from the physi-
cal sciences, numerical mathematics, computing languages, topics from high-performace computing and
some knowledge of computers.

In 1999, when I started this course at the department of physics in Oslo, computational physics and
computational science in general were still perceived by the majority of physicists and scientists as topics
dealing with just mere tools and number crunching, and not as subjects of their own. The computational
background of most students enlisting for the course on computational physics could span from dedicated
hackers and computer freaks to people who basically had never used a PC. The majority of undergraduate
and graduate students had a very rudimentary knowledge of computational techniques and methods.
Questions like ’do you know of better methods for numerical integration than the trapezoidal rule’ were
not uncommon. I do happen to know of colleagues who applied for time at a supercomputing centre
because they needed to invert matrices of the size of 104 × 104 since they were using the trapezoidal
rule to compute integrals. With Gaussian quadrature this dimensionality was easily reduced to matrix
problems of the size of 102 × 102, with much better precision.

Less than ten years later most students have now been exposed to a fairly uniform introduction to
computers, basic programming skills and use of numerical exercises. Practically every undergraduate
student in physics has now made a Matlab or Maple simulation of for example the pendulum, with or
without chaotic motion. Nowadays most of you are familiar, through various undergraduate courses in
physics and mathematics, with interpreted languages such as Maple, Matlab and/or Mathematica. In
addition, the interest in scripting languages such as Python or Perl has increased considerably in recent
years. The modern programmer would typically combine several tools, computing environments and
programming languages. A typical example is the following. Suppose you are working on a project
which demands extensive visualizations of the results. To obtain these results, that is to solve a physics
problems like obtaining the density profile of Bose-Einstein condensate, you need however a program
which is fairly fast when computational speed matters. In this case you would most likely write a high-
performance computing program using Monte Carlo methods in languages which are taylored for that.
These are represented by programming languages like Fortran 90/95 and C++. However, to visualize the
results you would find interpreted languages like Matlab or scripting languages like Python extremely
suitable for your tasks. You will therefore end up writing for example a script in Matlab which calls a
Fortran 90/95 ot C++ programme where the number crunching is done and then visualize the results of say
a wave equation solver via Matlab’s large library of visualization tools. Alternatively, you could organize
everything into a Python or Perl script which does everything for you, calls the Fortran 90/95 and/or
C++ programs and performs the visualization in Matlab or Python. Used correctly, these tools, spanning
from scripting languages to high-performance computing languages and vizualization programs, speed
up your capability to solve complicated problems. Being multilingual is thus an advantage which not
only applies to our globalized modern society but to computing environments as well.

There is however more to the picture than meets the eye. Although interpreted languages like Matlab,
Mathematica and Maple allow you nowadays to solve very complicated problems, and high-level lan-
guages like Python can be used to solve computational problems, computational speed and the capability
to write an efficient code are topics which still do matter. To this end, the majority of scientists still use
languages like C++ and Fortran to solve scientific problems. When you embark on a master or PhD the-
sis, you will most likely meet these high-performance computing languages. This course emphasizes thus
the use of programming languages like Fortran 90/95 and C++ instead of interpreted ones like Matlab or

iv

Maple, although you should feel free to solve problems using for example Matlab or even Python. You
should however note that there are still large differences in computer time between for example numerical
Python and a corresponding C++ program for many numerical applications in the physical sciences, with
a code in C++ being the fastest. Loops are for example still deadly slow in high-level languages like
Python.

Computational speed is not the only reason for this choice of programming languages. Another
important reason is that we feel that at a certain stage one needs to have some insights into the algorithm
used, its stability conditions, possible pitfalls like loss of precision, ranges of applicability, the possibility
to improve the algorithm and taylor it to special purposes etc etc. One of our major aims here is to
present to you what we would dub ’the algorithmic approach’, a set of rules for doing mathematics or
a precise description of how to solve a problem. To device an algorithm and thereafter write a code
for solving physics problems is a marvelous way of gaining insight into complicated physical systems.
The algorithm you end up writing reflects in essentially all cases your own understanding of the physics
and the mathematics (the way you express yourself) of the problem. We do therefore devote quite some
space to the algorithms behind various functions presented in the text. Especially, insight into how errors
propagate and how to avoid them is a topic we would like you to pay special attention to. Only then
can you avoid problems like underflow, overflow and loss of precision. Such a control is not always
achievable with interpreted languages and canned functions where the underlying algorithm and/or code
is not easily accesible. Although we will at various stages recommend the use of library routines for
say linear algebra3, our belief is that one should understand what the given function does, at least to
have a mere idea. With such a starting point, we strongly believe that it can be easier to develope more
complicated programs on your own using Fortran or C++.

We have several other aims as well, namely:

– We would like to give you an opportunity to gain a deeper understanding of the physics you have
learned in other courses. In most courses one is normally confronted with simple systems which
provide exact solutions and mimic to a certain extent the realistic cases. Many are however the
comments like ’why can’t we do something else than the particle in a box potential?’. In several of
the projects we hope to present some more ’realistic’ cases to solve by various numerical methods.
This also means that we wish to give examples of how physics can be applied in a much broader
context than it is discussed in the traditional physics undergraduate curriculum.

– To encourage you to "discover" physics in a way similar to how researchers learn in the context of
research.

– Hopefully also to introduce numerical methods and new areas of physics that can be studied with
the methods discussed.

– To teach structured programming in the context of doing science.

– The projects we propose are meant to mimic to a certain extent the situation encountered during a
thesis or project work. You will tipically have at your disposal 2-3 weeks to solve numerically a
given project. In so doing you may need to do a literature study as well. Finally, we would like
you to write a report for every project.

Our overall goal is to encourage you to learn about science through experience and by asking questions.
Our objective is always understanding and the purpose of computing is further insight, not mere numbers!

3Such library functions are often taylored to a given machine’s architecture and should accordingly run faster than user
provided ones.

v

Simulations can often be considered as experiments. Rerunning a simulation need not be as costly as
rerunning an experiment.

Needless to say, these lecture notes are upgraded continuously, from typos to new input. And we do
always benefit from your comments, suggestions and ideas for making these notes better. It’s through the
scientific discourse and critics we advance. Moreover, I have benefitted immensely from many discus-
sions with fellow colleagues and students. In particular I must mention Prof. Torgeir Engeland, whose
input through the last years has considerably improved these lecture notes.

Finally, I would like to add a petit note on referencing. These notes have evolved over many years
and the idea is that they should end up in the format of a web-based learning environment for doing com-
putational science. It will be fully free and hopefully represent a much more efficient way of conveying
teaching material than traditional textbooks. I have not yet settled on a specific format, so any input is
welcome. At present however, it is very easy for me to upgrade and improve the material on say a yearly
basis, from simple typos to adding new material. When accessing the web page of the course, you will
have noticed that you can obtain all source files for the programs discussed in the text. Many people have
thus written to me about how they should properly reference this material and whether they can freely
use it. My answer is rather simple. You are encouraged to use these codes, modify them, include them
in publications, thesis work, your lectures etc. As long as your use is part of the dialectics of science
you can use this material freely. However, since many weekends have elapsed in writing several of these
programs, testing them, sweating over bugs, swearing in front of a f*@?%g code which didn’t compile
properly ten minutes before monday morning’s eight o’clock lecture etc etc, I would dearly appreciate in
case you find these codes of any use, to reference them properly. That can be done in a simple way, refer
to M. Hjorth-Jensen, Lecture Notes on Computational Physics, University of Oslo, (2006). The weblink
to the course should also be included. Hope it is not too much to ask for. Enjoy!

vi

Contents

I Introduction to Numerical Methods in Physics 1

1 Introduction 3
1.1 Choice of programming language . 5
1.2 Designing programs . 6

2 Introduction to C++ and Fortran 90/95 9
2.1 Getting started . 9

2.1.1 Representation of integer numbers . 14
2.2 Real numbers and numerical precision . 18

2.2.1 Representation of real numbers . 19
2.2.2 Further examples . 27

2.3 Loss of precision . 30
2.3.1 Machine numbers . 30

2.4 Additional features of C++ and Fortran 90/95 . 31
2.4.1 Operators in C++ . 31
2.4.2 Pointers and arrays in C++. 33
2.4.3 Macros in C++ . 35
2.4.4 Structures in C++ and TYPE in Fortran 90/95 36

3 Numerical differentiation 39
3.1 Introduction . 39
3.2 Numerical differentiation . 39

3.2.1 The second derivative of ex . 43
3.2.2 Error analysis . 53

3.3 How to make figures with Gnuplot . 55

4 Linear algebra 59
4.1 Introduction . 59
4.2 Mathematical intermezzo . 60
4.3 Programming details . 64

4.3.1 Declaration of fixed-sized vectors and matrices 65
4.3.2 Runtime declarations of vectors and matrices in C++ 65
4.3.3 Matrix operations and C++ and Fortran 90/95 features of matrix handling 70

4.4 Linear Systems . 74
4.4.1 Gaussian elimination . 76
4.4.2 LU decomposition of a matrix . 79

vii

Contents

4.4.3 Solution of linear systems of equations . 84
4.4.4 Inverse of a matrix and the determinant . 85
4.4.5 Tridiagonal systems of linear equations . 90

4.5 Singular value decomposition . 92
4.6 QR decomposition . 92
4.7 Handling sparse matrices . 92
4.8 Classes, templates and Blitz++ . 92

4.8.1 The Complex class . 94
4.9 Single-value decomposition . 102
4.10 QR decomposition . 102
4.11 Physics project, the one-dimensional Poisson equation 102

4.11.1 Solution to exercise c) . 105

5 Non-linear equations and roots of polynomials 109
5.1 Introduction . 109
5.2 Iteration methods . 110
5.3 Bisection method . 112
5.4 Newton-Raphson’s method . 113
5.5 The secant method and other methods . 116

5.5.1 Calling the various functions . 118

6 Numerical interpolation, extrapolation and fitting of data 119
6.1 Introduction . 119
6.2 Interpolation and extrapolation . 119

6.2.1 Polynomial interpolation and extrapolation . 119
6.3 Richardson’s deferred extrapolation method . 122
6.4 Qubic spline interpolation . 123

7 Numerical integration 127
7.1 Introduction . 127
7.2 Newton-Cotes quadrature: equal step methods . 127

7.2.1 Romberg integration . 133
7.3 Gaussian quadrature . 133

7.3.1 Orthogonal polynomials, Legendre . 137
7.3.2 Mesh points and weights with orthogonal polynomials 139
7.3.3 Application to the case N = 2 . 140
7.3.4 General integration intervals for Gauss-Legendre 142
7.3.5 Other orthogonal polynomials . 142
7.3.6 Applications to selected integrals . 144

7.4 Treatment of singular Integrals . 146
7.5 Adaptive quadrature methods . 148
7.6 Multi-dimensional integrals . 148
7.7 Parallel computing . 149

7.7.1 Brief survey of supercomputing concepts and terminologies 149
7.7.2 Parallelism . 150
7.7.3 MPI with simple examples . 152
7.7.4 Numerical integration with MPI . 157

viii

Contents

7.8 Physics project: quantum mechanical scattering via integral equations 161

8 Outline of the Monte-Carlo strategy 163
8.1 Introduction . 163

8.1.1 First illustration of the use of Monte-Carlo methods, crude integration 165
8.1.2 Second illustration, particles in a box . 169
8.1.3 Radioactive decay . 171
8.1.4 Program example for radioactive decay of one type of nucleus 172
8.1.5 Brief summary . 174

8.2 Probability distribution functions . 174
8.2.1 Multivariable Expectation Values . 177
8.2.2 The central limit theorem . 179

8.3 Random numbers . 180
8.3.1 Properties of selected random number generators 184

8.4 Improved Monte Carlo integration . 186
8.4.1 Change of variables . 187
8.4.2 Importance sampling . 191
8.4.3 Acceptance-Rejection method . 193

8.5 Monte Carlo integration of multidimensional integrals 194
8.5.1 Brute force integration . 195
8.5.2 Importance sampling . 196

8.6 Physics Project: Decay of 210Bi and 210Po . 198
8.7 Physics project: Numerical integration of the correlation energy of the helium atom . . . 199

9 Random walks and the Metropolis algorithm 201
9.1 Motivation . 201
9.2 Diffusion equation and random walks . 202

9.2.1 Diffusion equation . 202
9.2.2 Random walks . 204

9.3 Microscopic derivation of the diffusion equation . 208
9.3.1 Discretized diffusion equation and Markov chains 210
9.3.2 Continuous equations . 215
9.3.3 Numerical simulation . 216

9.4 Entropy and Equilibrium Features . 218
9.5 The Metropolis algorithm and detailed balance . 221
9.6 Physics project: simulation of the Boltzmann distribution 224
9.7 Physics project: Random Walk in two dimensions . 226

10 Monte Carlo methods in statistical physics 229
10.1 Introduction and motivation . 229
10.2 Review of Statistical Physics . 231

10.2.1 Microcanonical Ensemble . 232
10.2.2 Canonical Ensemble . 233
10.2.3 Grand Canonical and Pressure Canonical . 234

10.3 Ising model and phase transitions in magnetic systems 235
10.3.1 Theoretical background . 235
10.3.2 Phase Transitions . 244

ix

Contents

10.4 The Metropolis algorithm and the two-dimensional Ising Model 245
10.5 Selected results for the Ising model . 252
10.6 Correlation functions and further analysis of the Ising model 255

10.6.1 Thermalization . 255
10.6.2 Time-correlation functions . 258

10.7 Physics Project: Thermalization and the One-Dimensional Ising Model 261
10.8 Physics project: simulation of the two-dimensional Ising model 261
10.9 Physics project: Potts Model . 262

11 Quantum Monte Carlo methods 265
11.1 Introduction . 265
11.2 Postulates of Quantum Mechanics . 266

11.2.1 Mathematical Properties of the Wave Functions 266
11.2.2 Important Postulates . 267

11.3 First Encounter with the Variational Monte Carlo Method 269
11.4 Variational Monte Carlo for quantum mechanical systems 270

11.4.1 First illustration of variational Monte Carlo methods, the one-dimensional harmonic oscillator 272
11.5 Variational Monte Carlo for atoms . 275

11.5.1 The Born-Oppenheimer Approximation . 275
11.5.2 The hydrogen Atom . 276
11.5.3 Metropolis sampling for the hydrogen atom and the harmonic oscillator 282
11.5.4 The helium atom . 285
11.5.5 Program example for atomic systems . 289
11.5.6 Physics Projects: Studies of light Atoms . 294
11.5.7 Helium and beyond . 296
11.5.8 Physics Projects: Ground state of He, Be and Ne 297

11.6 Simulation of molecular systems . 298
11.6.1 The H+

2 molecule . 298
11.6.2 Physics Project: the H2 molecule . 300

12 Eigensystems 303
12.1 Introduction . 303
12.2 Eigenvalue problems . 303
12.3 Similarity transformations . 304
12.4 Jacobi’s method . 305

12.4.1 Parallel Jacobi algorithm . 307
12.5 Diagonalization through the Householder’s method for tridiagonalization 307

12.5.1 The Householder’s method for tridiagonalization 308
12.5.2 Diagonalization of a tridiagonal matrix . 309

12.6 Schrödinger’s equation through diagonalization . 311
12.6.1 Numerical solution of the Schrödinger equation by diagonalization 313
12.6.2 Program example and results for the one-dimensional harmonic oscillator 314

12.7 Discussion of BLAS and LAPACK functionalities . 319
12.8 Physics projects: Bound states in momentum space . 319

x

Contents

13 Differential equations 323
13.1 Introduction . 323
13.2 Ordinary differential equations . 324
13.3 Finite difference methods . 325

13.3.1 Improvements to Euler’s algorithm, higher-order methods 327
13.3.2 Predictor-Corrector methods . 328

13.4 More on finite difference methods, Runge-Kutta methods 329
13.5 Adaptive Runge-Kutta and multistep methods . 331
13.6 Physics examples . 332

13.6.1 Ideal harmonic oscillations . 332
13.6.2 Damping of harmonic oscillations and external forces 337
13.6.3 The pendulum, a nonlinear differential equation 339
13.6.4 Spinning magnet . 341

13.7 Physics Project: the pendulum . 342
13.7.1 Analytic results for the pendulum . 342
13.7.2 The pendulum code . 345

13.8 Physics Project: studies of neutron stars . 350
13.8.1 The equations for a neutron star . 351
13.8.2 Equilibrium equations . 351
13.8.3 Dimensionless equations . 352

13.9 Physics project: studies of white dwarf stars . 355
13.9.1 Equilibrium equations . 356
13.9.2 Dimensionless form of the differential equations 359

13.10Physics project: Period doubling and chaos . 360

14 Two point boundary value problems 363
14.1 Introduction . 363
14.2 Shooting methods . 364

14.2.1 Improved approximation to the second derivative, Numerov’s method 364
14.2.2 Wave equation with constant acceleration . 366
14.2.3 Schrödinger equation for spherical potentials 370

14.3 Numerical procedure, shooting and matching . 371
14.3.1 Algorithm for solving Schrödinger’s equation 372

14.4 Physics projects . 374

15 Partial differential equations 377
15.1 Introduction . 377
15.2 Diffusion equation . 379

15.2.1 Explicit scheme . 380
15.2.2 Implicit scheme . 384
15.2.3 Crank-Nicolson scheme . 387
15.2.4 Numerical truncation . 388
15.2.5 Analytic solution for the one-dimensional diffusion equation 389

15.3 Laplace’s and Poisson’s equations . 391
15.3.1 Jacobi Algorithm for solving Laplace’s equation 393
15.3.2 Laplace’s equation and the parallel Jacobi algorithm 394
15.3.3 Relaxation methods for boundary value problems with parallel implementation . 394

xi

Contents

15.4 Wave equation in two dimensions . 394
15.4.1 Analytic solution . 396

15.5 The Leap frog method and Schrödinger’s equation . 397
15.6 Physics projects, two-dimensional wave equation . 398
15.7 Physics projects, one- and two-dimensional diffusion equations 398

II Advanced topics 401

16 Finite element method 403

17 Modelling Phase Transitions in Statistical Physics 405

18 Quantum Monte Carlo and Bose-Einstein condensation 407

19 Quantum Monte Carlo for atoms and molecules 409

20 Large-scale diagonalization and Coupled-Cluster theories 411

21 Quantum Information Theory and Quantum Algorithms 413

III Programs and additional notes on C++, MPI and Fortran 90/95 415

A Additional C++ and Fortran 90/95 programming features 417
A.1 The vector class . 417
A.2 Modules in Fortran 90/95 . 422
A.3 Debugging of codes . 427
A.4 MPI functions and examples . 428
A.5 Special functions used in the natural sciences . 428

xii

Part I

Introduction to Numerical Methods in
Physics

1

Chapter 1

Introduction

. . . Die Untersuchungsmethode, deren ich mich bedient habe und die auf ökonomis-
che Probleme noch nicht angewandt wurde, macht die Lektüre der ersten Kapitel ziemlich
schwierig, und es ist zu befürchten, daβ das französische Publikum, stets ungeduldig nach
dem Ergebnis und begierig, den Zusammenhang zwischen den allgemeinen Grundsätzen und
den Fragen zu erkennen, die es unmittelbar bewegen, sich abschrecken läβt, weil es nicht
sofort weiter vordringen kann.

Das ist ein Nachteil, gegen den ich nichts weiter unternehmen kann, als die nachWahrheit
strebenden Leser von vornherein darauf hinzuweisen und gefaβt zu machen. Es gibt keine
Landstraβe für die Wissenschaft, und nur diejenigen haben, Aussicht, ihre lichten Höhen zu
erreichen, die die Mühe nicht scheuen, ihre steilen Pfade zu erklimmen. Karl Marx, preface
to the french edition of ’Das Kapital’, Vol. I

In the physical sciences we often encounter problems of evaluating various properties of a given function
f(x). Typical operations are differentiation, integration and finding the roots of f(x). In most cases
we do not have an analytical expression for the function f(x) and we cannot derive explicit formulae
for derivatives etc. Even if an analytical expression is available, the evaluation of certain operations on
f(x) are so difficult that we need to resort to a numerical evaluation. More frequently, f(x) is the result
of complicated numerical operations and is thus known only at a set of discrete points and needs to be
approximated by some numerical methods in order to obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introduction to selected numerical methods which are
encountered in the physical sciences. Several examples, with varying degrees of complexity, will be used
in order to illustrate the application of these methods.

The text gives a survey over some of the most used methods in computational physics and each
chapter ends with one or more applications to realistic systems, from the structure of a neutron star to
the description of quantum mechanical systems through Monte-Carlo methods. Among the algorithms
we discuss, are some of the top algorithms in computational science. In recent surveys by Dongarra and
Sullivan [1] and Cipra [2], the list over the ten top algorithms of the 20th century include

1. The Monte Carlo method orMetropolis algorithm, devised by John von Neumann, Stanislaw Ulam,
and Nicholas Metropolis, discussed in chapters 8-11.

2. The simplex method of linear programming, developed by George Dantzig.

3. Krylov Subspace Iteration method for large eigenvalue problems in particular, developed by Mag-
nus Hestenes, Eduard Stiefel, and Cornelius Lanczos, discussed in chapter 20.

3

Introduction

4. The Householder matrix decomposition, developed by Alston Householder and discussed in chap-
ter 12.

5. The Fortran compiler, developed by a team lead by John Backus, codes used throughout this text.

6. The QR algorithm for eigenvalue calculation, developed by Joe Francis, discussed in chapter 12

7. The Quicksort algorithm, developed by Anthony Hoare.

8. Fast Fourier Transform, developed by James Cooley and John Tukey, discussed in chapter 21

9. The Integer Relation Detection Algorithm, developed by Helaman Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Greengard and Vladimir Rokhlin; (to calculate
gravitational forces in an N-body problem normally requires N 2 calculations. The fast multipole
method uses order N calculations, by approximating the effects of groups of distant particles using
multipole expansions)

The topics we cover start with an introduction to C++ and Fortran 90/95 programming combining
it with a discussion on numerical precision, a point we feel is often neglected in computational science.
This chapter serves also as input to our discussion on numerical derivation in chapter 3. In that chapter
we introduce several programming concepts such as dynamical memory allocation and call by reference
and value. Several program examples are presented in this chapter. For those who choose to program in
C++ we give also an introduction to the auxiliary library Blitz++, which contains several useful classes
for numerical operations on vectors and matrices. The link to Blitz++, matrices and selected algorithms
for linear algebra problems are dealt with in chapter 4. Chapters 5 and 6 deal with the solution of non-
linear equations and the finding of roots of polynomials and numerical interpolation, extrapolation and
data fitting.

Therafter we switch to numerical integration for integrals with few dimensions, typically less than
three, in chapter 7. The numerical integration chapter serves also to justify the introduction of Monte-
Carlo methods discussed in chapters 8 and 9. There, a variety of applications are presented, from in-
tegration of multidimensional integrals to problems in statistical physics such as random walks and the
derivation of the diffusion equation from Brownian motion. Chapter 10 continues this discussion by ex-
tending to studies of phase transitions in statistical physics. Chapter 11 deals with Monte-Carlo studies of
quantal systems, with an emphasis on variational Monte Carlo methods and diffusion Monte Carlo meth-
ods. In chapter 12 we deal with eigensystems and applications to e.g., the Schrödinger equation rewritten
as a matrix diagonalization problem. Problems from scattering theory are also discussed, together with
the most used solution methods for systems of linear equations. Finally, we discuss various methods for
solving differential equations and partial differential equations in chapters 13-15 with examples ranging
from harmonic oscillations, equations for heat conduction and the time dependent Schrödinger equation.
The emphasis is on various finite difference methods.

We assume that you have taken an introductory course in programming and have some familiarity
with high-level and modern languages such as Java, C++, Fortran 77/90/95, etc. Fortran1 and C++ are
examples of compiled high-level languages, in contrast to interpreted ones like Maple or Matlab. In such
compiled languages the computer translates an entire subprogram into basic machine instructions all at
one time. In an interpreted language the translation is done one statement at a time. This clearly increases
the computational time expenditure. More detailed aspects of the above two programming languages will
be discussed in the lab classes and various chapters of this text.

1With Fortran we will consistently mean Fortran 90/95. There are no programming examples in Fortran 77 in this text.

4

1.1 – Choice of programming language

There are several texts on computational physics on the market, see for example Refs. [3, 4, 5, 6, 7,
8, 9, 10], ranging from introductory ones to more advanced ones. Most of these texts treat however in
a rather cavalier way the mathematics behind the various numerical methods. We’ve also succumbed to
this approach, mainly due to the following reasons: several of the methods discussed are rather involved,
and would thus require at least a two-semester course for an introduction. In so doing, little time would
be left for problems and computation. This course is a compromise between three disciplines, numerical
methods, problems from the physical sciences and computation. To achieve such a synthesis, we will have
to relax our presentation in order to avoid lengthy and gory mathematical expositions. You should also
keep in mind that computational physics and science in more general terms consist of the combination of
several fields and crafts with the aim of finding solution strategies for complicated problems. However,
where we do indulge in presenting more formalism, we have borrowed heavily from the text of Stoer and
Bulirsch [11], a text we really recommend if you wouldd like to have more math to chew on.

1.1 Choice of programming language

As programming language we have ended up with preferring C++, but all examples discussed in the text
have their corresponding Fortran 90/95 programs on the webpage of this text.

Fortran (FORmula TRANslation) was introduced in 1957 and remains in many scientific computing
environments the language of choice. The latest standard, Fortran 95 [12, 13, 14], includes extensions that
are familiar to users of C++. Some of the most important features of Fortran 90/95 include recursive sub-
routines, dynamic storage allocation and pointers, user defined data structures, modules, and the ability
to manipulate entire arrays. However, there are several good reasons for choosing C++ as programming
language for scientific and engineering problems. Here are some:

– C++ is now the dominating language in Unix and Windows environments. It is widely available
and is the language of choice for system programmers. It is very widespread for developments of
non-numerical software

– The C++ syntax has inspired lots of popular languages, such as Perl, Python and Java.

– It is an extremely portable language, all Linux and Unix operated machines have a C++ compiler.

– In the last years there has been an enormous effort towards developing numerical libraries for C++.
Numerous tools (numerical libraries such as MPI [15, 16, 17]) are written in C++ and interfacing
them requires knowledge of C++. Most C++ and Fortran 90/95 compilers compare fairly well
when it comes to speed and numerical efficiency. Although Fortran 77 and C are regarded as
slightly faster than C++ or Fortran 90/95, compiler improvements during the last few years have
diminshed such differences. The Java numerics project has lost some of its steam recently, and
Java is therefore normally slower than C++ or F90/95, see however the Java Numerics homepage
for a discussion on numerical aspects of Java [18].

– Complex variables, one of Fortran 77 and 90/95 strongholds, can also be defined in the new ANSI
C++ standard.

– C++ is a language which catches most of the errors as early as possible, typically at compilation
time. Fortran 90/95 has some of these features if one omits implicit variable declarations.

– C++ is also an object-oriented language, to be contrasted with C and Fortran 90/95. This means that
it supports three fundamental ideas, namely objects, class hierarchies and polymorphism. Fortran

5

Introduction

90/95 has, through the declaration the capability of defining classes, but lacks inheritance,
although polymorphism is possible. Fortran 90/95 is then considered as an object-based program-
ming language, to be contrasted with C++ which has the capability of relating classes to each other
in a hierarchical way.

An important aspect of C++ is its richness with more than 60 keywords allowing for a good balance
between object orientation and numerical efficiency. Furthermore, careful programming can results in
an efficiency close to Fortran 77. The language is well-suited for large projects and has presently good
standard libraries suitable for computational science projects, although many of these still lag behind
the large body of libraries for numerics available to Fortran programmers. However, it is not difficult
to interface libraries written in Fortran with C++ codes, if care is exercised. Other weak sides are the
fact that it can be easy to write inefficient code and that there are many ways of writing the same things,
adding to the confusion for beginners and professionals as well. The language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basics is rather straightforward, but takes
time to master. A specific problem which often causes unwanted or odd errors is dynamic memory
management.

The efficiency of C++ codes are close to those provided by Fortran 90/95. This means often that a
code written in Fortran 77 can be faster, however for large numerical projects C++ and Fortran 90/95 are
to be preferred. If speed is an issue, one could port critical parts of the code to Fortran 77.

Future plans

Since our undergraduate curriculum has changed considerably from the beginning of Fall-2007, with the
introduction of Python as programming language, the content of this course will change accordingly from
the fall semester 2009. C++ and Fortran 90/95 will then coexist with Python and students can choose
between these three programming languages. Most likely, Python will replace C++ as the main language
used in this text.

1.2 Designing programs

Before we proceed with a discussion of numerical methods, we would like to remind you of some aspects
of program writing.

In writing a program for a specific algorithm (a set of rules for doing mathematics or a precise
description of how to solve a problem), it is obvious that different programmers will apply different
styles, ranging from barely readable 2 (even for the programmer) to well documented codes which can be
used and extended upon by others in e.g., a project. The lack of readability of a program leads in many
cases to credibility problems, difficulty in letting others extend the codes or remembering oneself what a
certain statement means, problems in spotting errors, not always easy to implement on other machines,
and so forth. Although you should feel free to follow your own rules, we would like to focus certain
suggestions which may improve a program. What follows here is a list of our recommendations (or
biases/prejudices).

First about designing a program.

2As an example, a bad habit is to use variables with no specifi c meaning, like x1, x2 etc, or names for subprograms which
go like routine1, routine2 etc.

6

1.2 – Designing programs

– Before writing a single line, have the algorithm clarified and understood. It is crucial to have a
logical structure of e.g., the flow and organization of data before one starts writing.

– Always try to choose the simplest algorithm. Computational speed can be improved upon later.

– Try to write a as clear program as possible. Such programs are easier to debug, and although it
may take more time, in the long run it may save you time. If you collaborate with other people, it
reduces spending time on debugging and trying to understand what the codes do. A clear program
will also allow you to remember better what the program really does!

– Implement a working code with emphasis on design for extensions, maintenance etc. Focus on the
design of your code in the beginning and don’t think too much about efficiency before you have a
thoroughly debugged and verified your program. A rule of thumb is the so-called 80 − 20 rule, 80
% of the CPU time is spent in 20 % of the code and you will experience that typically onlya small
part of your code is responsible for most of the CPU expenditure. Therefore, spend most of your
time in devising a good algorithm.

– The planning of the program should be from top down to bottom, trying to keep the flow as linear as
possible. Avoid jumping back and forth in the program. First you need to arrange the major tasks to
be achieved. Then try to break the major tasks into subtasks. These can be represented by functions
or subprograms. They should accomplish limited tasks and as far as possible be independent of
each other. That will allow you to use them in other programs as well.

– Try always to find some cases where an analytical solution exists or where simple test cases can be
applied. If possible, devise different algorithms for solving the same problem. If you get the same
answers, you may have coded things correctly or made the same error twice.

– When you have a working code, you should start thinking of the efficiency. Analyze the efficiency
with a tool (profiler) to predict the CPU-intensive parts. Attack then the CPU-intensive parts after
the program reproduces benchmark results.

However, although we stress that you should post-pone a discussion of the efficiency of your code to
the stage when you are sure that it runs correctly, there are some simple guidelines to follow when you
design the algorithm.

– Avoid lists, sets etc., when arrays can be used without too much waste of memory. Avoid also calls
to functions in the innermost loop since that produces an overhead in the call.

– Heavy computation with small objects might be inefficient, e.g., vector of class complex objects

– Avoid small virtual functions (unless they end up in more than (say) 5 multiplications)

– Save object-oriented constructs for the top level of your code.

– Use taylored library functions for various operations, if possible.

– Reduce pointer-to-pointer-to....-pointer links inside loops.

– Avoid implicit type conversion, use rather the explicit keyword when declaring constructors in
C++.

– Never return (copy) of an object from a function, since this normally implies a hidden allocation.

7

Introduction

Finally, here are some of our favoured approaches for writing a code.

– Use always the standard ANSI version of the programming language. Avoid local dialects if you
wish to port your code to other machines.

– Add always comments to describe what a program or subprogram does. Comment lines help you
remember what you did e.g., one month ago.

– Declare all variables. Avoid totally the statement in Fortran. The program will be more
readable and help you find errors when compiling.

– Do not use structures in Fortran. Although all varieties of spaghetti are great culinaric temp-
tations, spaghetti-like Fortran with many statements is to be avoided. Extensive amounts of
time may be wasted on decoding other authors’ programs.

– When you name variables, use easily understandable names. Avoid when you can use
. Associatives names make it easier to understand what a specific subprogram

does.

– Use compiler options to test program details and if possible also different compilers. They make
errors too.

– Writing codes in C++ and Fortran 90/95 may often lead to segmentation faults. This means in most
cases that we are trying to access elements of an array which are not available. When developing
a code it is then useful to compile with debugging options. The use of debuggers like gdb is
something we highly recommend during the development of a program.

8

Chapter 2

Introduction to C++ and Fortran 90/95

Computers in the future may weigh no more than 1.5 tons. Popular Mechanics, 1949

There is a world market for maybe five computers. Thomas Watson, IBM chairman, 1943

2.1 Getting started

In all programming languages1 we encounter data entities such as constants, variables, results of evalua-
tions of functions etc. Common to these objects is that they can be represented through the type concept.
There are intrinsic types and derived types. Intrinsic types are provided by the programming language
whereas derived types are provided by the programmer. If one specifies the type to be for example

for Fortran 90/952 or in C++, the programmer selects a partic-
ular date type with 2 bytes (16 bits) for every item of the class or . Intrinsic
types come in two classes, numerical (like integer, real or complex) and non-numeric (as logical and
character). The general form for declaring variables is and Table 2.1
lists the standard variable declarations of C++ and Fortran 90/95 (note well that there may compiler and
machine differences from the table below) An important aspect when declaring variables is their region of
validity. Inside a function we define a a variable through the expression or
. The question is whether this variable is available in other functions as well, moreover where is var
initialized and finally, if we call the function where it is declared, is the value conserved from one call to
the other?

Both C++ and Fortran 90/95 operate with several types of variables and the answers to these questions
depend on how we have defined . The following list may help in clarifying the above points:

1For more detailed texts on C++ programming in engineering and science are the books by Flowers [19] and Barton
and Nackman [20]. The classic text on C++ programming is the book of Bjarne Stoustrup [21]. See also the lecture
notes on C++ at . For Fortran 90/95 we recommend the online lectures
at . These web pages contain extensive references to other C++ and Fortran
90/95 resources. Both web pages contain enough material, lecture notes and exercises, in order to serve as material for own
studies. The Fortran 95 standard is presented in Ref. [12, 13, 14]. The reader should note that this is not a text on C++ or Fortran
90/95. It is therefore important than one tries to fi nd additional literature on these programming languages.

2Our favoured display mode for Fortran statements will be capital letters for language statements and low key letters for
user-defi ned statements. Note that Fortran does not distinguish between capital and low key letters while C++ does.

9

Introduction to C++ and Fortran 90/95

type in C++ and Fortran 90/95 bits range

char/CHARACTER 8 −128 to 127
unsigned char 8 0 to 255
signed char 8 −128 to 127
int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 10−44 to 10+38

double/REAL(8) 64 10−322 to 10e+308

Table 2.1: Examples of variable declarations for C++ and Fortran 90/95. We reserve capital letters for
Fortran 90/95 declaration statements throughout this text, although Fortran 90/95 is not sensitive to upper
or lowercase letters. Note that there are machines which allow for more than 64 bits for doubles. The
ranges listed here may therefore vary.

type of variable validity

local variables defined within a function, only available within the scope of
the function.

formal parameter If it is defined within a function it is only available within that
specific function.

global variables Defined outside a given function, available for all functions
from the point where it is defined.

In Table 2.1 we show a list of some of the most used language statements in Fortran and C++. In addition,
both C++ and Fortran 90/95 allow for complex variables. In Fortran 90/95 we would declare a complex
variable as which refers to a double with word length of 16 bytes. In
C++ we would need to include a complex library through the statements

inc lude <complex>
complex<double > x , y ;

We will discuss the above declaration complex<double> x,y; in more detail in chapter 4.
Our first programming encounter is the ’classical’ one, found in almost every textbook on computer

languages, the ’hello world’ code, here in a scientific disguise. We present first the C version.

/∗ comments i n C beg in l i k e t h i s and end wi t h ∗ /
inc lude < s t d l i b . h> /∗ a t o f f u n c t i o n ∗ /
inc lude <math . h> /∗ s i n e f u n c t i o n ∗ /
inc lude < s t d i o . h> /∗ p r i n t f f u n c t i o n ∗ /

10

2.1 – Getting started

Fortran 90/95 C++
Program structure

PROGRAM something main ()
FUNCTION something(input) double (int) something(input)
SUBROUTINE something(inout)

Data type declarations
REAL (4) x, y float x, y;
DOUBLE PRECISION :: (or REAL (8)) x, y double x, y;
INTEGER :: x, y int x,y;
CHARACTER :: name char name;
DOUBLE PRECISION, DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];
LOGICAL :: x
TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF (a == b) THEN if (a == b)
b=0 { b=0;
ENDIF }
DO WHILE (logical statement) while (logical statement)
do something {do something
ENDDO }
IF (a>= b) THEN if (a >= b)
b=0 { b=0;
ELSE else
a=0 a=0; }
ENDIF
SELECT CASE (variable) switch(variable)
CASE (variable=value1) {
do something case 1:
CASE (. . .) variable=value1;
. . . do something;

break;
END SELECT case 2:

do something; break; . . .
}

DO i=0, end, 1 for(i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.

11

Introduction to C++ and Fortran 90/95

i n t main (i n t argc , char∗ a rgv [])
{
double r , s ; /∗ d e c l a r e v a r i a b l e s ∗ /
r = a t o f (a rgv [1]) ; /∗ c o n v e r t t h e t e x t argv [1] t o doub le ∗ /
s = s i n (r) ;
p r i n t f (, r , s) ;
re turn 0 ; /∗ s u c c e s s e x e c u t i o n o f t h e program ∗ /

}

The compiler must see a declaration of a function before you can call it (the compiler checks the argument
and return types). The declaration of library functions appears in so-called header files that must be
included in the program, e.g., #include < stdlib .h>We call three functions atof , sin , printf and these are
declared in three different header files. The main program is a function called main with a return value set
to an integer, int (0 if success). The operating system stores the return value, and other programs/utilities
can check whether the execution was successful or not. The command-line arguments are transferred
to the main function through int main (int argc , char∗ argv []) The integer argc is the no of command-
line arguments, set to one in our case, while argv is a vector of strings containing the command-line
arguments with argv[0] containing the name of the program and argv[1], argv[2], ... are the command-
line args, i.e., the number of lines of input to the program. Here we define floating points, see also
below, through the keywords float for single precision real numbers and double for double precision.
The function atof transforms a text (argv [1]) to a float. The sine function is declared in math.h, a library
which is not automatically included and needs to be linked when computing an executable file.

With the command printf we obtain a formatted printout. The printf syntax is used for formatting
output in many C-inspired languages (Perl, Python, awk, partly C++).

In C++ this program can be written as
/ / A comment l i n e b e g i n s l i k e t h i s i n C++ programs
us ing namespace s t d ;
inc lude < io s t r e am >
i n t main (i n t argc , char∗ a rgv [])
{
/ / c o n v e r t t h e t e x t argv [1] t o doub le u s i n g a t o f :
double r = a t o f (a rgv [1]) ;
double s = s i n (r) ;
c ou t << << r << << s << ;

/ / s u c c e s s
re turn 0 ;

}

We have replaced the call to printf with the standard C++ function cout. The header file iostream is then
needed. In addition, we don’t need to declare variables like r and s at the beginning of the program. I
personally prefer however to declare all variables at the beginning of a function, as this gives me a feeling
of greater readability.

To run these programs, you need first to compile and link it in order to obtain an executable file under
operating systems like e.g., UNIX or Linux. Before we proceed we give therefore examples on how to
obtain an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, the following instructions under Linux/Unix
can be used

12

2.1 – Getting started

where the compiler is called through the command . The compiler option -Wall means that a warning
is issued in case of non-standard language. The executable file is in this case . The option
is for compilation only, where the program is translated into machine code, while the option links the
produced object file and produces the executable .

The corresponding Fortran 90/95 code is

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) : : r ! I n p u t number
REAL (KIND=8) : : s ! R e s u l t

! Get a number from use r
WRITE(∗ , ∗) ’ I n p u t a number : ’
READ(∗ , ∗) r

! C a l c u l a t e t h e s i n e o f t h e number
s = SIN (r)

! Wr i t e r e s u l t t o s c r e e n
WRITE(∗ , ∗) ’ He l l o World ! SINE o f ’ , r , ’ = ’ , s

END PROGRAM shw

The first statement must be a program statement; the last statement must have a corresponding end pro-
gram statement. Integer numerical variables and floating point numerical variables are distinguished. The
names of all variables must be between 1 and 31 alphanumeric characters of which the first must be a
letter and the last must not be an underscore. Comments begin with a ! and can be included anywhere
in the program. Statements are written on lines which may contain up to 132 characters. The asterisks
(*,*) following WRITE represent the default format for output, i.e., the output is e.g., written on the
screen. Similarly, the READ(*,*) statement means that the program is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommend the use of. In many Fortran 77 programs
one can find statements like IMPLICIT REAL*8(a-h,o-z), meaning that all variables beginning with any
of the above letters are by default floating numbers. However, such a usage makes it hard to spot eventual
errors due to misspelling of variable names. With IMPLICIT NONE you have to declare all variables
and therefore detect possible errors already while compiling. I recommend strongly that you declare all
variables when using Fortran 90/95.

We call the Fortran compiler (using free format) through

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script which includes
possible compiling commands, in order to avoid retyping the above lines every once and then we have
made modifcations to our program. A typical makefile for the above cc compiling options is listed below

13

Introduction to C++ and Fortran 90/95

If you name your file for ’makefile’, simply type the command make and Linux/Unix executes all of the
statements in the above makefile. Note that C++ files have the extension .cpp

For Fortran, a similar makefile is

2.1.1 Representation of integer numbers

In Fortran a keyword for declaration of an integer is INTEGER (KIND=n) , n = 2 reserves 2 bytes (16
bits) of memory to store the integer variable wheras n = 4 reserves 4 bytes (32 bits). In Fortran, although
it may be compiler dependent, just declaring a variable as INTEGER , reserves 4 bytes in memory as
default.

In C++ keywords areshort int , int , long int , long long int . The byte-length is compiler dependent
within some limits. The GNU C++-compilers (called by gcc or g++) assign 4 bytes (32 bits) to variables
declared by int and long int . Typical byte-lengths are 2, 4, 4 and 8 bytes, for the types given above. To
see how many bytes are reserved for a specific variable, C++ has a library function called sizeof (type)
which returns the number of bytes for type .

An example of program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant
C++: short int age_of_participant;

Note that the (KIND=2) can be written as (2). Normally however, we will for Fortran programs just use
the 4 bytes default assignment INTEGER .

In the above examples one bit is used to store the sign of the variable age_of_participant and the other
15 bits are used to store the number, which then may range from zero to 215 − 1 = 32767. This should
definitely suffice for human lifespans. On the other hand, if we were to classify known fossiles by age
we may need

14

2.1 – Getting started

Fortran: INTEGER (4) :: age_of_fossile
C++: int age_of_fossile;

Again one bit is used to store the sign of the variable age_of_fossile and the other 31 bits are used to
store the number which then may range from zero to 231 − 1 = 2.147.483.647. In order to give you a
feeling how integer numbers are represented in the computer, think first of the decimal representation of
the number 417

417 = 4× 102 + 1× 101 + 7× 100,

which in binary representation becomes

417 = 1× an2n + an−12
n−1 + an−22

n−2 + · · · + a02
0,

where the ak with k = 0, . . . , n are zero or one. They can be calculated through successive division by
2 and using the remainder in each division to determine the numbers an to a0. A given integer in binary
notation is then written as

an2n + an−12
n−1 + an−22

n−2 + · · · + a02
0.

In binary notation we have thus
(417)10 = (110100001)2 ,

since we have

(110100001)2 = 1×28 +1×27 +0×26 +1×25 +0×24 +0×23 +0×22 +0×22 +0×21 +1×20.

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=27 remainder 0 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

A simple program which performs these operations is listed below. Here we employ the modulus opera-
tion (with division by 2), which in C++ is given by the a%2 operator. In Fortran 90/95 we would call the
function MOD(a,2) in order to obtain the remainder of a division by 2.

us ing namespace s t d ;
inc lude < io s t r e am >

i n t main (i n t argc , char∗ a rgv [])
{

i n t i ;
i n t t e rms [3 2] ; / / s t o r a g e o f a0 , a1 , e t c , up t o 32 b i t s
i n t number = a t o i (a rgv [1]) ;

/ / i n i t i a l i s e t h e term a0 , a1 e t c

15

Introduction to C++ and Fortran 90/95

f o r (i =0 ; i < 32 ; i ++) { t e rms [i] = 0 ; }
f o r (i =0 ; i < 32 ; i ++) {

t e rms [i] = number%2;
number /= 2 ;

}
/ / w r i t e ou t r e s u l t s

cou t << ‘ ‘ Number o f b y t e s used= << s i z e o f (number) << end l ;
f o r (i =0 ; i < 32 ; i ++) {

cou t << ‘ ‘ Term nr : ‘ ‘ << i << ‘ ‘ Value= ‘ ‘ << t e rms [i] ;
c ou t << end l ;

}
re turn 0 ;

}

The C++ function sizeof yields the number of bytes reserved for a specific variable. Note also the for
construct. We have reserved a fixed array which contains the values of ai being 0 or 1, the remainder of
a division by two. Another example, the number 3 is given in an 8 bits word as

3 = 0000011.

Note that for 417 we need 9 bits in order to represent the number wheras 3 needs only 2 significant bits.
The corresponding Fortran 90/95 code is

PROGRAM b i n a r y _ i n t e g e r
IMPLICIT NONE
INTEGER i , number , t e rms (0 : 3 1) ! s t o r a g e o f a0 , a1 , e t c , up t o 32 b i t s ,

! n o t e a r ra y l e n g t h runn ing from 0 : 3 1 . Fo r t ran a l l ow s n e g a t i v e i n d e x e s as
we l l .

WRITE(∗ , ∗) ’ Give a number to t r a n s f o rm to b i n a r y n o t a t i o n ’
READ(∗ , ∗) number

! I n i t i a l i s e t h e t e rms a0 , a1 e t c
t e rms = 0

! Fo r t ran t a k e s on l y i n t e g e r loop v a r i a b l e s
DO i =0 , 31

t e rms (i) = MOD(number , 2) ! Modulus f u n c t i o n i n Fo r t ran
number = number / 2

ENDDO
! w r i t e ou t r e s u l t s
WRITE(∗ , ∗) ’ Bina ry r e p r e s e n t a t i o n ’
DO i =0 , 31
WRITE(∗ , ∗) ’ Term nr and va lue ’ , i , t e rms (i)

ENDDO

END PROGRAM b i n a r y _ i n t e g e r

With these prerequesites in mind, it is rather obvious that if a given integer variable is beyond the
range assigned by the declaration statement we may encounter problems.

If we multiply two large integers n1×n2 and the product is too large for the bit size allocated for that
specific integer assignement, we run into an overflow problem. The most significant bits are lost and the
least significant kept. Using 4 bytes for integer variables the result becomes

220 × 220 = 0.

16

2.1 – Getting started

However, there are compilers or compiler options that preprocess the program in such a way that an error
message like ’integer overflow’ is produced when running the program. Here is a small program which
may cause overflow problems when running (try to test your own compiler in order to be sure how such
problems need to be handled).

/ / Program to c a l c u l a t e 2∗∗n
u s i n g namespace s t d ;
i n c lude < io s t r e am >

i n t main ()
{

i n t i n t 1 , i n t 2 , i n t 3 ;
/ / pr i n t to s c r e e n

cou t << ;
/ / read f rom sc r e e n

c i n >> i n t 2 ;
i n t 1 = (i n t) pow (2 . , (double) i n t 2) ;
c ou t << << i n t 1 ∗ i n t 1 << ;
i n t 3 = i n t 1 − 1 ;
cou t << << i n t 1 ∗ i n t 3 << ;
cou t << << i n t 3 << ;
re turn 0 ;

}
/ / End : program main ()

If we run this code with an exponent N = 32, we obtain the following output

We notice that 264 exceeds the limit for integer numbers with 32 bits. The program returns 0. This can be
dangerous, since the results from the operation 2N (2N − 1) is obviously wrong. One possibility to avoid
such cases is to add compilation option which flag if an overflow or underflow is reached.

The corresponding Fortran 90/95 example is

PROGRAM i n t e g e r _ e x p
IMPLICIT NONE
INTEGER (KIND=4) : : i n t 1 , i n t 2 , i n t 3
! Th i s i s t h e b eg in o f a comment l i n e i n Fo r t ran 90
! Now we read from s c r e e n t h e v a r i a b l e i n t 2
WRITE(∗ , ∗) ’Read in t h e number to be e x p o n en t i a t e d ’
READ(∗ , ∗) i n t 2
i n t 1 =2∗∗ i n t 2
WRITE(∗ , ∗) ’2^N∗2^N’ , i n t 1 ∗ i n t 1
i n t 3 = i n t 1 −1
WRITE(∗ , ∗) ’2^N∗ (2^N−1) ’ , i n t 1 ∗ i n t 3
WRITE(∗ , ∗) ’2^N−1 ’ , i n t 3

END PROGRAM i n t e g e r _ e x p

17

Introduction to C++ and Fortran 90/95

2.2 Real numbers and numerical precision

An important aspect of computational physics is the numerical precision involved. To design a good
algorithm, one needs to have a basic understanding of propagation of inaccuracies and errors involved
in calculations. There is no magic recipe for dealing with underflow, overflow, accumulation of errors
and loss of precision, and only a careful analysis of the functions involved can save one from serious
problems.

Since we are interested in the precision of the numerical calculus, we need to understand how com-
puters represent real and integer numbers. Most computers deal with real numbers in the binary system,
or octal and hexadecimal, in contrast to the decimal system that we humans prefer to use. The binary
system uses 2 as the base, in much the same way that the decimal system uses 10. Since the typical
computer communicates with us in the decimal system, but works internally in e.g., the binary system,
conversion procedures must be executed by the computer, and these conversions involve hopefully only
small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a fixed number
of digits, and the set of values possible is only a subset of the mathematical integers or real numbers. The
so-called word length we reserve for a given number places a restriction on the precision with which a
given number is represented. This means in turn, that for example floating numbers are always rounded
to a machine dependent precision, typically with 6-15 leading digits to the right of the decimal point.
Furthermore, each such set of values has a processor-dependent smallest negative and a largest positive
value.

Why do we at all care about rounding and machine precision? The best way is to consider a simple
example first. In the following example we assume that we can represent a floating number with a
precision of 5 digits only to the right of the decimal point. This is nothing but a mere choice of ours, but
mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

f(x) =
1− cos(x)

sin(x)
, (2.1)

for small values of x. If we multiply the denominator and numerator with 1 + cos(x) we obtain the
equivalent expression

f(x) =
sin(x)

1 + cos(x)
. (2.2)

If we now choose x = 0.007 (in radians) our choice of precision results in

sin(0.007) ≈ 0.69999 × 10−2,

and
cos(0.007) ≈ 0.99998.

The first expression for f(x) results in

f(x) =
1− 0.99998

0.69999 × 10−2
=

0.2× 10−4

0.69999 × 10−2
= 0.28572 × 10−2, (2.3)

while the second expression results in

f(x) =
0.69999 × 10−2

1 + 0.99998
=

0.69999 × 10−2

1.99998
= 0.35000 × 10−2, (2.4)

18

2.2 – Real numbers and numerical precision

which is also the exact result. In the first expression, due to our choice of precision, we have only one
relevant digit in the numerator, after the subtraction. This leads to a loss of precision and a wrong result
due to a cancellation of two nearly equal numbers. If we had chosen a precision of six leading digits,
both expressions yield the same answer. If we were to evaluate x ∼ π, then the second expression for
f(x) can lead to potential losses of precision due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors, where the
number of leading digits is lost in a subtraction of two near equal numbers. The lesson to be drawn is
that we cannot blindly compute a function. We will always need to carefully analyze our algorithm in the
search for potential pitfalls. There is no magic recipe however, the only guideline is an understanding of
the fact that a machine cannot represent correctly all numbers.

2.2.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent range. The
mantissa contains the significant figures of the number (and thereby the precision of the number). A
number like (9.90625)10 in the decimal representation is given in a binary representation by

(1001.11101)2 = 1×23 +0×22 +0×21 +1×20 +1×2−1 ++1×2−2 +1×2−3 +0×2−4 +1×2−5,

and it has an exact machine number representation since we need a finite number of bits to represent this
number. This representation is however not very practical. Rather, we prefer to use a scientific notation.
In the decimal system we would write a number like 9.90625 in what is called the normalized scientific
notation. This means simply that the decimal point is shifted and appropriate powers of 10 are supplied.
Our number could then be written as

9.90625 = 0.990625 × 101,

and a real non-zero number could be generalized as

x = ±r × 10n,

with a r a number in the range 1/10 ≤ r < 1. In a similar way we can use represent a binary number in
scientific notation as

x = ±q × 2m,

with a q a number in the range 1/2 ≤ q < 1. This means that the mantissa of a binary number would be
represented by the general formula

(0.a−1a−2 . . . a−n)2 = a−1 × 2−1 + a−2 × 2−2 + · · · + a−n × 2−n.

In a typical computer, floating-point numbers are represented in the way described above, but with certain
restrictions on q andm imposed by the available word length. In the machine, our number x is represented
as

x = (−1)s ×mantissa× 2exponent,

where s is the sign bit, and the exponent gives the available range. With a single-precision word, 32 bits,
8 bits would typically be reserved for the exponent, 1 bit for the sign and 23 for the mantissa. This means
that if we define a variable as

Fortran: REAL (4) :: size_of_fossile
C++: float size_of_fossile;

19

Introduction to C++ and Fortran 90/95

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23 bits for the
mantissa, implying a numerical precision to the sixth or seventh digit, since the least significant digit is
given by 1/223 ≈ 10−7. The range of the exponent goes from 2−128 = 2.9×10−39 to 2127 = 3.4×1038,
where 128 stems from the fact that 8 bits are reserved for the exponent.

A modification of the scientific notation for binary numbers is to require that the leading binary digit
1 appears to the left of the binary point. In this case the representation of the mantissa q would be (1.f)2

and 1 ≤ q < 2. This form is rather useful when storing binary numbers in a computer word, since we can
always assume that the leading bit 1 is there. One bit of space can then be saved meaning that a 23 bits
mantissa has actually 24 bits. This means explicitely that a binary number with 23 bits for the mantissa
reads

(1.a−1a−2 . . . a−23)2 = 1× 20 + a−1 × 2−1 + +a−2 × 2−2 + · · · + a−n × 2−23.

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2 ,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The exponent m is
given by the next 8 binary numbers 01111101 resulting in 125 in the decimal system. However, since the
exponent has eight bits, this means it has 28−1 = 255 possible numbers in the interval−128 ≤ m ≤ 127,
our final exponent is 125 − 127 = −2 resulting in 2−2. Inserting the sign and the mantissa yields the
final number in the decimal representation as

−2−2
(
1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5

)
= (−0.4765625)10 .

In this case we have an exact machine representation with 32 bits (actually, we need less than 23 bits for
the mantissa).

If our number x can be exactly represented in the machine, we call x a machine number. Unfortu-
nately, most numbers cannot and are thereby only approximated in the machine. When such a number
occurs as the result of reading some input data or of a computation, an inevitable error will arise in rep-
resenting it as accurately as possible by a machine number. A floating number x, labelled fl(x) will
therefore always be represented as

fl(x) = x(1 ± ϵx),

with x the exact number and the error |ϵx| ≤ |ϵM |, where ϵM is the precision assigned. A number like
1/10 has no exact binary representation with single or double precision. Since the mantissa

1. (a−1a−2 . . . a−n)2

is always truncated at some stage n due to its limited number of bits, there is only a limited number of
real binary numbers. The spacing between every real binary number is given by the chosen machine
precision. For a 32 bit words this number is approximately ϵM ∼ 10−7 and for double precision (64 bits)
we have ϵM ∼ 10−16, or in terms of a binary base as 2−23 and 2−52 for single and double precision,
respectively.

This means in turn that for real numbers, we may have to deal with essentially four types of problems
(note that there are other errors as well, like errors made by the programmer, or problems with compilers).
Let us list them and discuss how to discover these problems and their eventual cures.

1. Overflow : When the positive exponent exceeds the max value, e.g., 308 for DOUBLE PRECI-
SION (64 bits). Under such circumstances the program will terminate and some compilers may
give you the warning ’OVERFLOW’.

20

2.2 – Real numbers and numerical precision

2. Underflow : When the negative exponent becomes smaller than the min value, e.g., -308 for
DOUBLE PRECISION. Normally, the variable is then set to zero and the program continues.
Other compilers (or compiler options) may warn you with the ’UNDERFLOW’ message and the
program terminates.

3. Roundoff errors A floating point number like

x = 1.234567891112131468 = 0.1234567891112131468 × 101

may be stored in the following way. The exponent is small and is stored in full precision. However,
the mantissa is not stored fully. In double precision (64 bits), digits beyond the 15th are lost since
the mantissa is normally stored in two words, one which is the most significant one representing
123456 and the least significant one containing 789111213. The digits beyond 3 are lost. Clearly,
if we are summing alternating series with large numbers, subtractions between two large numbers
may lead to roundoff errors, since not all relevant digits are kept. This leads eventually to the next
problem, namely

4. Loss of precision Overflow and underflow are normally among the easiest problems to deal with.
When one has to e.g., multiply two large numbers where one suspects that the outcome may be
beyond the bonds imposed by the variable declaration, one could represent the numbers by log-
arithms, or rewrite the equations to be solved in terms of dimensionless variables. When deal-
ing with problems in e.g., particle physics or nuclear physics where distance is measured in fm
(10−15m), it can be quite convenient to redefine the variables for distance in terms of a dimension-
less variable of the order of unity. To give an example, suppose you work with single precision
and wish to perform the addition 1 + 10−8. In this case, the information containing in 10−8 is
simply lost in the addition. Typically, when performing the addition, the computer equates first the
exponents of the two numbers to be added. For 10−8 this has however catastrophic consequences
since in order to obtain an exponent equal to 100, bits in the mantissa are shifted to the right. At
the end, all bits in the mantissa are zeros.
However, the loss of precision and significance due to the way numbers are represented in the
computer and the way mathematical operations are performed, can at the end lead to totally wrong
results.

Other cases which may cause problems are singularities of the type 0/0 which may arise from functions
like sin(x)/x as x→ 0. Such problems may need the restructuring of the algorithm.

In order to illustrate the above problems, we consider in this section three possible algorithms for
computing e−x:

1. by simply coding

exp (−x) =
∞∑

n=0

(−1)n xn

n!

2. or to employ a recursion relation for

exp (−x) =
∞∑

n=0

sn =
∞∑

n=0

(−1)n xn

n!

using
sn = −sn−1

x

n
,

21

Introduction to C++ and Fortran 90/95

3. or to first calculate

exp (x) =
∞∑

n=0

sn

and thereafter taking the inverse
exp (−x) =

1

exp (x)

Below we have included a small program which calculates

exp (−x) =
∞∑

n=0

(−1)n xn

n!
,

for x-values ranging from 0 to 100 in steps of 10. When doing the summation, we can always define a
desired precision, given below by the fixed value for the variable TRUNCATION= 1.0E−10, so that for
a certain value of x > 0, there is always a value of n = N for which the loss of precision in terminating
the series at n = N is always smaller than the next term in the series xN

N ! . The latter is implemented
through the while{. . . } statement.

/ / Program t o c a l c u l a t e f u n c t i o n exp(−x)
/ / u s i n g s t r a i g h t f o r w a r d summation w i t h d i f f e r i n g p r e c i s i o n
us ing namespace s t d ;
inc lude < io s t r e am >
/ / t y p e f l o a t : 32 b i t s p r e c i s i o n
/ / t y p e doub le : 64 b i t s p r e c i s i o n
de f i n e TYPE double
de f i n e PHASE(a) (1 − 2 ∗ (ab s (a) % 2))
de f i n e TRUNCATION 1 .0E−10
/ / f u n c t i o n d e c l a r a t i o n
TYPE f a c t o r i a l (i n t) ;

i n t main ()
{

i n t n ;
TYPE x , term , sum ;
f o r (x = 0 . 0 ; x < 1 0 0 . 0 ; x += 1 0 . 0) {
sum = 0 . 0 ; / / i n i t i a l i z a t i o n
n = 0 ;
te rm = 1 ;
whi le (f a b s (te rm) > TRUNCATION) {

term = PHASE(n) ∗ (TYPE) pow ((TYPE) x , (TYPE) n) / f a c t o r i a l (n) ;
sum += term ;
n++;

} / / end o f wh i l e () loop
cou t << ‘ ‘ x = << x << ‘ ‘ exp = ‘ ‘ << exp(−x) << ‘ ‘ s e r i e s = ‘ ‘ <<

sum ;
cou t << ‘ ‘ number o f t e rms =

22

2.2 – Real numbers and numerical precision

There are several features to be noted3. First, for low values of x, the agreement is good, however for
larger x values, we see a significant loss of precision. Secondly, for x = 70we have an overflow problem,
represented (from this specific compiler) by NaN (not a number). The latter is easy to understand, since
the calculation of a factorial of the size 171! is beyond the limit set for the double precision variable
factorial. The message NaN appears since the computer sets the factorial of 171 equal to zero and we end
up having a division by zero in our expression for e−x.

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm for exp (−x).

In Fortran 90/95 Real numbers are written as 2.0 rather than 2 and declared as REAL (KIND=8) or
REAL (KIND=4) for double or single precision, respectively. In general we discorauge the use of single
precision in scientific computing, the achieved precision is in general not good enough. Fortran 90/95
uses a do construct to have the computer execute the same statements more than once. Note also that
Fortran 90/95 does not allow floating numbers as loop variables. In the example below we use both a
do construct for the loop over x and a DO WHILE construction for the truncation test, as in the C++
program. One could altrenatively use the EXIT statement inside a do loop. Fortran 90/95 has also if
statements as in C++. The IF construct allows the execution of a sequence of statements (a block) to
depend on a condition. The if construct is a compound statement and begins with IF ... THEN and
ends with ENDIF. Examples of more general IF constructs using ELSE and ELSEIF statements are given

3Note that different compilers may give different messages and deal with overflow problems in different ways.

23

Introduction to C++ and Fortran 90/95

in other program examples. Another feature to observe is the CYCLE command, which allows a loop
variable to start at a new value.

Subprograms are called from the main program or other subprograms. We have a declared a function
TYPE factorial (int) ; . Subprograms are always called functions in C++. If we declare it with void is has
the same meaning as subroutines in Fortran,. Subroutines are used if we have more than one return value.
In the example below we compute the factorials using the function factorial . This function receives
a dummy argument n. INTENT(IN) means that the dummy argument cannot be changed within the
subprogram. INTENT(OUT) means that the dummy argument cannot be used within the subprogram
until it is given a value with the intent of passing a value back to the calling program. The statement
INTENT(INOUT) means that the dummy argument has an initial value which is changed and passed
back to the calling program. We recommend that you use these options when calling subprograms. This
allows better control when transfering variables from one function to another. In chapter 3 we discuss
call by value and by reference in C++. Call by value does not allow a called function to change the value
of a given variable in the calling function. This is important in order to avoid unintentional changes of
variables when transfering data from one function to another. The INTENT construct in Fortran 90/95
allows such a control. Furthermore, it increases the readability of the program.

! In t h i s module you can d e f i n e f o r example g l o b a l c o n s t a n t s
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complex v a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))
! Globa l T r u n c a t i o n parame ter
REAL(DP) , PARAMETER, PUBLIC : : t r u n c a t i o n =1 .0E−10

END MODULE c o n s t a n t s

! Here you can i n c l u d e s p e c i f i c f u n c t i o n s which can be used by
! many s u b r o u t i n e s or f u n c t i o n s

MODULE f u n c t i o n s

CONTAINS
REAL(DP) FUNCTION f a c t o r i a l (n)
USE CONSTANTS
INTEGER , INTENT (IN) : : n
INTEGER : : l oop

f a c t o r i a l = 1 . 0 _dp
IF (n > 1) THEN

DO l oop = 2 , n
f a c t o r i a l = f a c t o r i a l ∗ l oop

ENDDO
ENDIF

END FUNCTION f a c t o r i a l

END MODULE f u n c t i o n s
! Main program s t a r t s here
PROGRAM exp_prog
USE c o n s t a n t s
USE f u n c t i o n s

24

2.2 – Real numbers and numerical precision

IMPLICIT NONE
REAL (DP) : : x , term , f i n a l _ s um
INTEGER : : n , l o op_ove r_x

! loop over x−v a l u e s
DO l o op_ove r _x=0 , 100 , 10

x= loop_ove r _x
! i n i t i a l i z e t h e EXP sum
f i n a l _ s um= 0 .0 _dp ; te rm = 1 . 0 _dp ; n = 0
DO WHILE (ABS(term) > t r u n c a t i o n)

te rm = ((−1 .0 _dp) ∗∗n) ∗ (x∗∗n) / f a c t o r i a l (n)
f i n a l _ s um= f i n a l _ s um+ term
n=n+1

ENDDO
! w r i t e t h e argument x , t h e e x a c t va lue , t h e computed v a l u e and n
WRITE(∗ , ∗) x ,EXP(−x) , f i n a l _ sum , n

ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like the one which calculates the
factorials. Note also the usage of the module constants where we define double and complex variables.
If one wishes to switch to another precision, one just needs to change the declaration in one part of the
program only. This hinders possible errors which arise if one has to change variable declarations in every
function and subroutine. In addition we have defined a global variable truncation which is accessible to
all functions which have the USE constants declaration. These declaration has to come before any variable
declarations and IMPLICIT NONE statement.

The overflow problem can be dealt with by using a recurrence formula4 for the terms in the sum, so
that we avoid calculating factorials. A simple recurrence formula for our equation

exp (−x) =
∞∑

n=0

sn =
∞∑

n=0

(−1)n xn

n!
,

is to note that
sn = −sn−1

x

n
,

so that instead of computing factorials, we need only to compute products. This is exemplified through
the next program.

/ / program t o compute exp(−x) w i t h o u t f a c t o r i a l s
us ing namespace s t d ;
inc lude < io s t r e am >
de f i n e TRUNCATION 1 .0E−10

i n t main ()
{

i n t loop , n ;
double x , term , sum ;

4Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, form among the most
commonly used forms for function approximation. Examples are Bessel functions, Hermite and Laguerre polynomials.

25

Introduction to C++ and Fortran 90/95

f o r (loop = 0 ; loop <= 100 ; loop += 10) {
x = (double) loop ; / / i n i t i a l i z a t i o n
sum = 1 . 0 ;
te rm = 1 ;
n = 1 ;
whi le (f a b s (te rm) > TRUNCATION) {

term ∗= −x / ((double) n) ;
sum += term ;
n++;

} / / end wh i l e loop
cou t << ‘ ‘ x = << x << ‘ ‘ exp = ‘ ‘ << exp(−x) << ‘ ‘ s e r i e s = ‘ ‘ << sum ;
cou t << ‘ ‘ number o f t e rms =

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264
100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm for exp (−x).

In this case, we do not get the overflow problem, as can be seen from the large number of terms. Our
results do however not make much sense for larger x. Decreasing the truncation test will not help! (try
it). This is a much more serious problem.

In order better to understand this problem, let us consider the case of x = 20, which already differs
largely from the exact result. Writing out each term in the summation, we obtain the largest term in the
sum appears at n = 19 and equals −43099804. However, for n = 20 we have almost the same value, but
with an interchanged sign. It means that we have an error relative to the largest term in the summation of
the order of 43099804 × 10−10 ≈ 4 × 10−2. This is much larger than the exact value of 0.21 × 10−8.
The large contributions which may appear at a given order in the sum, lead to strong roundoff errors,
which in turn is reflected in the loss of precision. We can rephrase the above in the following way: Since
exp (−20) is a very small number and each term in the series can be rather large (of the order of 108,
it is clear that other terms as large as 108, but negative, must cancel the figures in front of the decimal
point and some behind as well. Since a computer can only hold a fixed number of significant figures,
all those in front of the decimal point are not only useless, they are crowding out needed figures at the
right end of the number. Unless we are very careful we will find ourselves adding up series that finally
consists entirely of roundoff errors! To this specific case there is a simple cure. Noting that exp (x) is

26

2.2 – Real numbers and numerical precision

the reciprocal of exp (−x), we may use the series for exp (x) in dealing with the problem of alternating
signs, and simply take the inverse. One has however to beware of the fact that exp (x) may quickly
exceed the range of a double variable.

The Fortran 90/95 program is rather similar in structure to the C++ program.

! In t h i s module you can d e f i n e f o r example g l o b a l c o n s t a n t s
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complex v a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))
! Globa l T r u n c a t i o n parame ter
REAL(DP) , PARAMETER, PUBLIC : : t r u n c a t i o n =1 .0E−10

END MODULE c o n s t a n t s

PROGRAM improved_exp
USE c o n s t a n t s
IMPLICIT NONE
REAL (dp) : : x , term , f i n a l _ s um
INTEGER : : n , l o op_ove r _x

! loop over x−va l u e s , no f l o a t s as loop v a r i a b l e s
DO l o op_ove r _x=0 , 100 , 10

x= loop_ove r _x
! i n i t i a l i z e t h e EXP sum
f i n a l _ s um =1 .0 ; te rm =1 .0 ; n = 1
DO WHILE (ABS(term) > t r u n c a t i o n)

te rm = −te rm ∗x /FLOAT(n)
f i n a l _ s um= f i n a l _ s um+ term
n=n+1

ENDDO
! w r i t e t h e argument x , t h e e x a c t va lue , t h e computed v a l u e and n
WRITE(∗ , ∗) x ,EXP(−x) , f i n a l _ sum , n

ENDDO

END PROGRAM improved_exp

2.2.2 Further examples

Summing 1/n

Let us look at another roundoff example which may surprise you more. Consider the series

s1 =
N∑

n=1

1

n
,

which is finite when N is finite. Then consider the alternative way of writing this sum

s2 =
1∑

n=N

1

n
,

27

Introduction to C++ and Fortran 90/95

which when summed analytically should give s2 = s1. Because of roundoff errors, numerically we will
get s2 ≠ s1! Computing these sums with single precision for N = 1.000.000 results in s1 = 14.35736
while s2 = 14.39265! Note that these numbers are machine and compiler dependent. With double pre-
cision, the results agree exactly, however, for larger values of N , differences may appear even for double
precision. If we choose N = 108 and employ double precision, we get s1 = 18.9978964829915355
while s2 = 18.9978964794618506, and one notes a difference even with double precision.

This example demonstrates two important topics. First we notice that the chosen precision is im-
portant, and we will always recommend that you employ double precision in all calculations with real
numbers. Secondly, the choice of an appropriate algorithm, as also seen for e−x, can be of paramount
importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation σ when σ is small compared to the
average value x. Below we illustrate how one of most frequently used algorithms can go wrong when
single precision is employed.

However, before we proceed, let us define σ and x. Suppose we have a set of N data points, repre-
sented by the one-dimensional array x(i), for i = 1,N . The average value is then

x =

∑N
i=1 x(i)

N
,

while

σ =

√∑
i x(i)2 − x

∑
i x(i)

N − 1
.

Let us now assume that
x(i) = i + 105,

and that N = 127, just as a mere example which illustrates the kind of problems which can arise when
the standard deviation is small compared with x. Using single precision results in a standard deviation of
σ = 40.05720139 for the most used algorithm, while the exact answer is σ = 36.80579758, a number
which also results from the above two-step algorithm. With double precision, the two algorithms result
in the same answer.

The reason for such a difference resides in the fact that the first algorithm includes the subtraction of
two large numbers which are squared. Since the average value for this example is x = 100063.00, it is
easy to see that computing

∑
i x(i)2−x

∑
i x(i) can give rise to very large numbers with possible loss of

precision when we perform the subtraction. To see this, consider the case where i = 64. Then we have5

x2
64 − xx64 = 100352,

while the exact answer is
x2

64 − xx64 = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference between x(i) and the average value. The differ-

ence gets thereafter squared. For the second algorithm we have for i = 64

x64 − x = 1,

5Note that this number may be compiler and machine dependent.

28

2.2 – Real numbers and numerical precision

and we have no potential for loss of precision.
The standard text book algorithm is expressed through the following program

/ / program t o c a l c u l a t e t h e mean and s t anda rd d e v i a t i o n o f
/ / a u se r c r e a t e d da ta s e t s t o r e d i n a r ra y x []
us ing namespace s t d ;
inc lude < io s t r e am >
i n t main ()
{

i n t i ;
f l o a t sum , sumsq2 , xbar , sigma1 , sigma2 ;
/ / a r ra y d e c l a r a t i o n w i t h f i x e d d imen s i on
f l o a t x [1 2 7] ;
/ / i n i t i a l i s e t h e da ta s e t
f o r (i =0 ; i < 127 ; i ++) {

x [i] = i + 1 0 0 000 . ;
}
/ / The v a r i a b l e sum i s j u s t t h e sum over a l l e l emen t s
/ / The v a r i a b l e sumsq2 i s t h e sum over x ^2
sum =0 . ;
sumsq2 = 0 . ;
/ / Now we use t h e t e x t book a l g o r i t hm
f o r (i =0 ; i < 127 ; i ++) {

sum += x [i] ;
sumsq2 += pow ((double) x [i] , 2 .) ;

}
/ / c a l c u l a t e t h e average and sigma
xba r =sum / 1 2 7 . ;
sigma1= s q r t ((sumsq2−sum∗ xba r) / 1 2 6 .) ;
/∗
∗∗ Here comes t h e c rude r a l g o r i t hm where we e v a l u a t e
∗∗ s e p a r a t e l y f i r s t t h e average and t h e r e a f t e r t h e
∗∗ sum which d e f i n e s t h e s t anda rd d e v i a t i o n . The average
∗∗ has a l r e a d y been e v a l u a t e d t h rough xbar
∗ /
sumsq2 = 0 . ;
f o r (i =0 ; i < 127 ; i ++) {

sumsq2 += pow((double) (x [i]−xba r) , 2 .) ;
}
sigma2= s q r t (sumsq2 / 1 2 6 .) ;
c ou t <<

The corresponding Fortran 90/95 program is given below.

PROGRAM s t a n d a r d _ d e v i a t i o n
IMPLICIT NONE
REAL (KIND = 4) : : sum , sumsq2 , xba r

29

Introduction to C++ and Fortran 90/95

REAL (KIND = 4) : : sigma1 , sigma2
REAL (KIND = 4) , DIMENSION (1 2 7) : : x
INTEGER : : i

x =0 ;
DO i =1 , 127

x (i) = i + 100000 .
ENDDO
sum =0 . ; sumsq2 =0 .
! s t a nda rd d e v i a t i o n c a l c u l a t e d w i t h t e x t book a l g o r i t hm
DO i =1 , 127

sum = sum +x (i)

sumsq2 = sumsq2+x (i) ∗∗2
ENDDO
! average
xba r=sum / 1 2 7 .
sigma1=SQRT ((sumsq2−sum∗ xba r) / 1 2 6 .)
! second method t o e v a l u a t e t h e s t anda rd d e v i a t i o n
sumsq2 =0 .
DO i =1 , 127

sumsq2=sumsq2 +(x (i)−xba r) ∗∗2
ENDDO
sigma2=SQRT(sumsq2 / 1 2 6 .)
WRITE(∗ , ∗) xbar , sigma1 , sigma2

END PROGRAM s t a n d a r d _ d e v i a t i o n

2.3 Loss of precision

2.3.1 Machine numbers

How can we understand the above mentioned problems? First let us note that a real number x has a
machine representation fl(x)

fl(x) = x(1 + ϵx)

where |ϵx| ≤ ϵM and ϵM is given by the specified machine precision, 10−7 for single and 10−16 for
double precision, respectively. Suppose that we are dealing with a 32-bit word and deal with single
precision real number. This means that the precision is at the 6-7 decimal places. Thus, we cannot
represent all decimal numbers with an exact binary representation in a computer. A typical example is
0.1, whereas 9.90625 has an exact binary representation even with single precision.

In case of a subtraction a = b− c, we have

fl(a) = fl(b)− fl(c) = a(1 + ϵa),

or
fl(a) = b(1 + ϵb)− c(1 + ϵc),

meaning that

fl(a)/a = 1 + ϵb
b

a
− ϵc

c

a
,

30

2.4 – Additional features of C++ and Fortran 90/95

and if b ≈ c we see that there is a potential for an increased error in the machine representation of
fl(a). This is because we are subtracting two numbers of equal size and what remains is only the least
significant part of these numbers. This part is prone to roundoff errors and if a is small we see that (with
b ≈ c)

ϵa ≈
b

a
(ϵb − ϵc),

can become very large. The latter equation represents the relative error of this calculation. To see this,
we define first the absolute error as

|fl(a)− a|,

whereas the relative error is
|fl(a)− a|

a
≤ ϵa.

The above subraction is thus

|fl(a)− a|
a

=
|fl(b)− f(c)− (b− c)|

a
,

yielding
|fl(a)− a|

a
=

|bϵb − cϵc|
a

.

The relative error is the quantity of interest in scientific work. Information about the absolute error is
normally of little use in the absence of the magnitude of the quantity being measured. If we go back to
the algorithm with the alternating sum for computing exp (−x) of program example 3, we do happen to
know the final answer, but an analysis of the contribution to the sum from various terms shows that the
relative error made can be huge. This results in an unstable computation, since small errors made at one
stage are magnified in subsequent stages.

In the next chapter we will make an analysis of how errors propagate in connection with formulae for
the first and second derivatives.

2.4 Additional features of C++ and Fortran 90/95

2.4.1 Operators in C++

In the previous program examples we have seen several types of operators. In the tables below we
summarize the most important ones. Note that the modulus in C++ is represented by the operator %
whereas in Fortran 90/95 we employ the intrinsic function MOD. Note also that the increment operator
++ and the decrement operator −− is not available in Fortran 90/95. In C++ these operators have

the following meaning

++x; or x++; has the same meaning as x = x + 1;
−−x; or x−−; has the same meaning as x = x − 1;

Table 2.5 lists several relational and arithmetic operators. Logical operators in C++ and Fortran 90/95
are listed in 2.6. while Table 2.7 shows bitwise operations.

C++ offers also interesting possibilities for combined operators. These are collected in Table 2.8.
Finally, we show some special operators pertinent to C++ only. The first one is the operator. Its

action can be described through the following example

31

Introduction to C++ and Fortran 90/95

arithmetic operators relation operators
operator effect operator effect
− Subtraction > Greater than
+ Addition >= Greater or equal
∗ Multiplication < Less than
/ Division <= Less or equal

% or MOD Modulus division == Equal
−− Decrement ! = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The relation operators act between two operands. Note
that the increment and decrement operators ++ and −− are not available in Fortran 90/95.

Logical operators
C++ Effect Fortran 90/95
0 False value .FALSE.
1 True value .TRUE.
!x Logical negation .NOT.x

x&& y Logical AND x.AND.y
x||y Logical inclusive x.OR.y

Table 2.6: List of logical operators in C++ and Fortran 90/95.

Bitwise operations
C++ Effect Fortran 90/95
~i Bitwise complement NOT(j)
i&j Bitwise and IAND(i,j)
i^j Bitwise exclusive or IEOR(i,j)
i | j Bitwise inclusive or IOR(i,j)
i<<j Bitwise shift left ISHFT(i,j)
i>>n Bitwise shift right ISHFT(i,-j

Table 2.7: List of bitwise operations.

Expression meaning expression meaning

∧ ∧

Table 2.8: C++ specific expressions.

32

2.4 – Additional features of C++ and Fortran 90/95

Here is computed first. If this is "true" (≠ 0), then is computed and assigned
A. If is "false", then is computed and assigned A.

2.4.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain important types such as pointers and arrays (vectors
and matrices). These are widely used in most C++ program. C++ allows also for pointer algebra, a
feature not included in Fortran 90/95. Pointers and arrays are important elements in C++. To shed light
on these types, consider the following setup

defines an integer variable called . It is given an address in memory
where we can store an integer number.

is the address of a specific place in memory where the integer is
stored. Placing the operator & in front of a variable yields its address in
memory.

defines and an integer pointer and reserves a location in memory for this
specific variable The content of this location is viewed as the address of
another place in memory where we have stored an integer.

Note that in C++ it is common to write int∗ pointer while in C one usually writes int ∗pointer. Here are
some examples of legal C++ expressions.

/* name gets the hexadecimal value hex 56. */
/* pointer points to name. */
/* writes out the address of name. */
/* writes out the value of name. */

Here’s a program which illustrates some of these topics.

1 us ing namespace s t d ;
2 main ()
3 {
4 i n t va r ;
5 i n t ∗ p o i n t e r ;
6
7 p o i n t e r = &va r ;
8 v a r = 421 ;
9 p r i n t f (,& va r) ;
10 p r i n t f (, v a r) ;
11 p r i n t f (, p o i n t e r) ;
12 p r i n t f (,∗ p o i n t e r) ;
13 p r i n t f (,& p o i n t e r) ;
14 }

33

Introduction to C++ and Fortran 90/95

Line Comments

4 • Defi nes an integer variable var.
5 • Defi ne an integer pointer – reserves space in memory.
7 • The content of the adddress of pointer is the address of var.
8 • The value of var is 421.
9 •Writes the address of var in hexadecimal notation for pointers %p.
10 •Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

In the next example we consider the link between arrays and pointers.

defines a matrix with two integer members – og .

is a pointer to .

is a pointer to .

1 us ing namespace s t d ;
2 # i n c l u d e d < io s t r e am >
3 i n t main ()
4 {
5 i n t matr [2] ;
6 i n t ∗ p o i n t e r ;
7 p o i n t e r = &matr [0] ;
8 matr [0] = 321 ;
9 matr [1] = 322 ;
10 p r i n t f (,&matr [0]) ;
11 p r i n t f (, matr [0]) ;
12 p r i n t f (,&matr [1]) ;
13 p r i n t f (, matr [1]) ;
14 p r i n t f (, p o i n t e r) ;
15 p r i n t f (,∗ p o i n t e r) ;
16 p r i n t f (,∗ (p o i n t e r +1)) ;
17 p r i n t f (,& p o i n t e r) ;
18 }

You should especially pay attention to the following

Line

5 • Declaration of an integer array matr with two elements
6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the fi rst element of the array matr.
8–9 • Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

34

2.4 – Additional features of C++ and Fortran 90/95

2.4.3 Macros in C++

In C we can define macros, typically global constants or functions through the defi ne statements shown
in the simple C-example below for

1 . # d e f i n e ONE 1
2 . # d e f i n e TWO ONE + ONE
3 . # d e f i n e THREE ONE + TWO
4 .
5 . main ()
6 . {
7 . p r i n t f (,ONE,TWO,THREE) ;
8 . }

In C++ the usage of macros is discouraged and you should rather use the declaration for constant vari-
ables. You would then replace a statement like #define ONE 1with const int ONE = 1;. There is typically
much less use of macros in C++ than in C. C++ allows also the definition of our own types based on other
existing data types. We can do this using the keyword typedef, whose format is: typedef existing _type
new_type_name ;, where existing_type is a C++ fundamental or compound type and new_type_name is
the name for the new type we are defining. For example:

t ypede f char new_name ;
t ypede f unsigned i n t word ;
t ypede f char ∗ t e s t ;
t ypede f char f i e l d [5 0] ;

In this case we have defined four data types: new_name, word, testand field as char, unsigned int, char*
and char[50] respectively, that we could perfectly use in declarations later as any other valid type

new_name mychar , a n o t h e r c h a r , ∗ p t c1 ;
word myword ;
t e s t p t c2 ;
f i e l d name ;

The use of typedef does not create different types. It only creates synonyms of existing types. That means
that the type of myword can be considered to be either word or unsigned int, since both are in fact the
same type. Using typedef allows to define an alias for a type that is frequently used within a program. It
is also useful to define types when it is possible that we will need to change the type in later versions of
our program, or if a type you want to use has a name that is too long or confusing.

In C we could define macros for functions as well, as seen below.

1 . # d e f i n e MIN(a , b) (((a) < (b)) ? (a) : (b))
2 . # d e f i n e MAX(a , b) (((a) > (b)) ? (a) : (b))

35

Introduction to C++ and Fortran 90/95

3 . # d e f i n e ABS(a) (((a) < 0) ? −(a) : (a))
4 . # d e f i n e EVEN(a) ((a) %2 == 0 ? 1 : 0)
5 . # d e f i n e TOASCII (a) ((a) & 0 x7f)

In C++ we would replace such function definition by employing so-called inline functions. Three of the
above functions could then read

i n l i n e double MIN(double a , double b) (re turn (((a) <(b)) ? (a) : (b)) ;)
i n l i n e double MAX(double a , double b) (re turn (((a) >(b)) ? (a) : (b)) ;)
i n l i n e double ABS(double a) (re turn (((a) <0) ? −(a) : (a)) ;)

where we have defined the transferred variables to be of type double. The functions also return a double
type. These functions could easily be generalized through the use of classes and templates, see chapter
4, to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a signifi-
cant fraction of the total function call cost. When such function call overhead is significant, a function
definition can be preceded by the keyword inline . When this function is called, we expect the compiler
to generate inline code without function call overhead. However, although inline functions eliminate
function call overhead, they can introduce other overheads. When a function is inlined, its code is du-
plicated for each call. Excessive use of inline may thus generate large programs. Large programs can
cause excessive paging in virtual memory systems. Too many inline functions can also lengthen compile
and link times, on the other hand not inlining small functions like the above that do small computations,
can make programs bigger and slower. However, most modern compilers know better than programmer
which functions to inline or not. When doing this, you should also test various compiler options. With
the compiler option −O3 inlining is done automatically by basically all modern compilers.

A good strategy, recommended in many C++ textbooks, is to write a code without inline functions
first. As we also suggested in the introductory chapter, you should first write a as simple and clear
as possible program, without a strong emphasis on computational speed. Thereafter, when profiling
the program one can spot small functions which are called many times. These functions can then be
candidates for inlining. If the overall time comsumption is reduced due to inlining specific functions, we
can proceed to other sections of the program which could be speeded up.

Another problem with inlined functions is that on some systems debugging an inline function is
difficult because the function does not exist at runtime.

2.4.4 Structures in C++ and TYPE in Fortran 90/95

A very important part of a program is the way we organize our data and the flow of data when running
the code. This is often a neglected aspect especially during the development of an algorithm. A clear
understanding of how data are represented makes the program more readable and easier to maintain and
extend upon by other users. Till now we have studied elementary variable declarations through keywords
like int or INTEGER, double or REAL(KIND(8) and char or its Fortran 90 equivalent CHARACTER. These
declarations could also be extended to general multi-dimensional arrays.

However, C++ and Fortran 90/95 offer other ways as well by which we can organize our data in a
more transparent and reusable way. One of these options is through the struct declaration of C++, or the
correspondingly similar TYPE in Fortran 90/95. The latter data type will also be discussed in chapter 4.

The following example illustrates how we could make a general variable which can be reused in
defining other variables as well.

Suppose you would like to make a general program which treats quantum mechanical problems from
both atomic physics and nuclear physics. In atomic and nuclear physics the single-particle degrees are

36

2.4 – Additional features of C++ and Fortran 90/95

represented by quantum numbers such orbital angular momentum, total angular momentum, spin and en-
ergy. An independent particle model is often assumed as the starting point for building up more compli-
cated many-body correlations in systems with many interacting particles. In atomic physics the effective
degrees of freedom are often reduced to electrons interacting with each other, while in nuclear physics
the system is described by neutrons and protons. The structure single_particle_descript contains a list
over different quantum numbers through various pointers which are initialized by a calling function.

s t r u c t s i n g l e _ p a r t i c l e _ d e s c r i p t {
i n t t o t a l _ o r b i t s ;
i n t ∗ n ;
i n t ∗ l o r b ;
i n t ∗ m_l ;
i n t ∗ j a ng ;
i n t ∗ s p i n ;
double ∗ ene rgy ;
char∗ o r b i t _ s t a t u s

} ;

To describe an atom like Neon we would need three single-particle orbits to describe the ground state
wave function if we use a single-particle picture, i.e., the 1s, 2s and 2p single-particle orbits. These
orbits have a degeneray of 2(2l + 1), where the first number stems from the possible spin projections
and the second from the possible projections of the orbital momentum. In total there are 10 possible
single-particle orbits when we account for spin and orbital momentum projections. In this case we would
thus need to allocate memory for arrays containing 10 elements.

The above structure is written in a generic way and it can be used to define other variables as well.
For electrons we could write struct single_particle_descript electrons ; and is a new variable with the
name containing all the elements of .

The following program segment illustrates how we access these elements To access these elements
we could e.g., read from a given device the various quantum numbers:

f o r (i n t i = 0 ; i < e l e c t r o n s . t o t a l _ o r b i t s ; i ++) {
cou t << ‘ ‘ Read i n t h e quantum numbers f o r e l e c t r o n i : ‘ ‘ << i <<

end l ;
c i n >> e l e c t r o n s . n [i] ;
c i n > e l e c t r o n s . l o r b [i] ;
c i n >> e l e c t r o n s . m_l [i] ;
c i n >> e l e c t r o n s . j a ng [i] ;
c i n >> e l e c t r o n s . s p i n [i] ;

}

The structure can also be used for defining quantum numbers of other
particles as well, such as neutrons and protons throughthe new variables struct single_particle_descript
protons and struct single_particle_descript neutrons
The corresponding declaration in Fortran is given by the construct, seen in the following exam-

ple.

TYPE , PUBLIC : : s i n g l e _ p a r t i c l e _ d e s c r i p t
INTEGER : : t o t a l _ o r b i t s
INTEGER , DIMENSION (:) , POINTER : : n , l o r b , jang , sp in , m_l
CHARACTER (LEN=10) , DIMENSION (:) , POINTER : : o r b i t _ s t a t u s
DOUBLE PRECISION , DIMENSION (:) , POINTER : : ene rgy

END TYPE s i n g l e _ p a r t i c l e _ d e s c r i p t

37

Introduction to C++ and Fortran 90/95

This structure can again be used to define variables like , and through the
statement TYPE (single_particle_descript) :: electrons , protons , neutrons. More detailed examples on
the use of these variable declarations, classes and templates will be given in subsequent chapters and in
appendix A.

38

Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of the most frequently needed methods in compu-
tational physics. Quite often we are confronted with the need of evaluating either f ′ or an integral∫

f(x)dx. The aim of this chapter is to introduce some of these methods with a critical eye on numerical
accuracy, following the discussion in the previous chapter.

The next section deals essentially with topics from numerical differentiation. There we present also
the most commonly used formulae for computing first and second derivatives, formulae which in turn find
their most important applications in the numerical solution of ordinary and partial differential equations.
This section serves also the scope of introducing some more advanced C++-programming concepts, such
as call by reference and value, reading and writing to a file and the use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a function f(x) is

df(x)

dx
= lim

h→0

f(x + h)− f(x)

h

where h is the step size. If we use a Taylor expansion for f(x) we can write

f(x + h) = f(x) + hf ′(x) +
h2f ′′(x)

2
+ . . .

We can then set the computed derivative f ′
c(x) as

f ′
c(x) ≈

f(x + h)− f(x)

h
≈ f ′(x) +

hf ′′(x)

2
+ . . .

Assume now that we will employ two points to represent the function f by way of a straight line between
x and x + h. Fig. 3.1 illustrates this subdivision.

This means that we could represent the derivative with

f ′
2(x) =

f(x + h)− f(x)

h
+ O(h),

39

Numerical differentiation

where the suffix 2 refers to the fact that we are using two points to define the derivative and the dominating
error goes like O(h). This is the forward derivative formula. Alternatively, we could use the backward
derivative formula

f ′
2(x) =

f(x)− f(x− h)

h
+ O(h).

If the second derivative is close to zero, this simple two point formula can be used to approximate the
derivative. If we however have a function like f(x) = a + bx2, we see that the approximated derivative
becomes

f ′
2(x) = 2bx + bh,

while the exact answer is 2bx. Unless h is made very small, and b is not too large, we could approach the
exact answer by choosing smaller and smaller and values for h. However, in this case, the subtraction in
the numerator, f(x + h)− f(x) can give rise to roundoff errors.

A better approach in case of a quadratic expression for f(x) is to use a 3-step formula where we
evaluate the derivative on both sides of a chosen point x0 using the above forward and backward two-step
formulae and taking the average afterward. We perform again a Taylor expansion but now around x0±h,
namely

f(x = x0 ± h) = f(x0) ± hf ′ +
h2f ′′

2
±

h3f ′′′

6
+ O(h4),

which we rewrite as
f±h = f0 ± hf ′ +

h2f ′′

2
±

h3f ′′′

6
+ O(h4).

Calculating both f±h and subtracting we obtain that

f ′
3 =

fh − f−h

2h
−

h2f ′′′

6
+ O(h3),

and we see now that the dominating error goes like h2 if we truncate at the scond derivative. We call
the term h2f ′′′/6 the truncation error. It is the error that arises because at some stage in the derivation,
a Taylor series has been truncated. As we will see below, truncation errors and roundoff errors play an
equally important role in the numerical determination of derivatives.

For our expression with a quadratic function f(x) = a + bx2 we see that the three-point formula
f ′
3 for the derivative gives the exact answer 2bx. Thus, if our function has a quadratic behavior in x in
a certain region of space, the three-point formula will result in reliable first derivatives in the interval
[−h, h]. Using the relation

fh − 2f0 + f−h = h2f ′′ + O(h4),

we can also define higher derivatives like e.g.,

f ′′ =
fh − 2f0 + f−h

h2
+ O(h2).

We could also define five-points formulae by expanding to two steps on each side of x0. Using a
Taylor expansion around x0 in a region [−2h, 2h] we have

f±2h = f0 ± 2hf ′ + 2h2f ′′ ±
4h3f ′′′

3
+ O(h4),

with a first derivative given by

f ′
5c =

f−2h − 8f−h + 8fh − f2h

12h
+ O(h4),

40

3.2 – Numerical differentiation

✲

f(x)

x

✻

x0 − 2h x0 − h x0 x0 + h x0 + 2h

Figure 3.1: Demonstration of the subdivision of the x-axis into small steps h. Each point corresponds to
a set of values x, f(x). The value of x is incremented by the step length h. If we use the points x0 and
x0 + h we can draw a straight line and use the slope at this point to determine an approximation to the
first derivative. See text for further discussion.

41

Numerical differentiation

with a dominating error of the order of h4. This formula can be useful in case our function is represented
by a fourth-order polynomial in x in the region [−2h, 2h].

It is possible to show that the widely used formulae for the first and second derivatives of a function
can be written as

fh − f−h

2h
= f ′

0 +
∞∑

j=1

f (2j+1)
0

(2j + 1)!
h2j , (3.1)

and
fh − 2f0 + f−h

h2
= f ′′

0 + 2
∞∑

j=1

f (2j+2)
0

(2j + 2)!
h2j , (3.2)

and we note that in both cases the error goes like O(h2j). These expressions will also be used when we
evaluate integrals.

To show this for the first and second derivatives starting with the three points f−h = f(x0 − h),
f0 = f(x0) and fh = f(x0 + h), we have that the Taylor expansion around x = x0 gives

a−hf−h + a0f0 + ahfh = a−h

∞∑

j=0

f (j)
0

j!
(−h)j + a0f0 + ah

∞∑

j=0

f (j)
0

j!
(h)j , (3.3)

where a−h, a0 and ah are unknown constants to be chosen so that a−hf−h + a0f0 + ahfh is the best
possible approximation for f ′

0 and f ′′
0 . Eq. (3.3) can be rewritten as

a−hf−h + a0f0 + ahfh = [a−h + a0 + ah] f0

+ [ah − a−h] hf ′
0 + [a−h + ah]

h2f ′′
0

2
+

∞∑

j=3

f (j)
0

j!
(h)j

[
(−1)ja−h + ah

]
. (3.4)

To determine f ′
0, we require in the last equation that

a−h + a0 + ah = 0,

−a−h + ah =
1

h
,

and
a−h + ah = 0.

These equations have the solution

a−h = −ah = −
1

2h
,

and
a0 = 0,

yielding
fh − f−h

2h
= f ′

0 +
∞∑

j=1

f (2j+1)
0

(2j + 1)!
h2j .

To determine f ′′
0 , we require in the last equation that

a−h + a0 + ah = 0,

42

3.2 – Numerical differentiation

−a−h + ah = 0,

and
a−h + ah =

2

h2
.

These equations have the solution
a−h = −ah = −

1

h2
,

and
a0 = −

2

h2
,

yielding
fh − 2f0 + f−h

h2
= f ′′

0 + 2
∞∑

j=1

f (2j+2)
0

(2j + 2)!
h2j .

3.2.1 The second derivative of ex

As an example, let us calculate the second derivatives of exp (x) for various values of x. Furthermore, we
will use this section to introduce three important C++-programming features, namely reading and writing
to a file, call by reference and call by value, and dynamic memory allocation. We are also going to split
the tasks performed by the program into subtasks. We define one function which reads in the input data,
one which calculates the second derivative and a final function which writes the results to file.

Let us look at a simple case first, the use of printf and scanf. If we wish to print a variable defined as
double speed_of_sound; we could for example write printf (‘‘ speed_of_sound = %lf\n ’’, speed_of_sound);.

In this case we say that we transfer the value of this specific variable to the function printf . The
function printf can however not change the value of this variable (there is no need to do so in this case).
Such a call of a specific function is called call by value. The crucial aspect to keep in mind is that the
value of this specific variable does not change in the called function.

When do we use call by value? And why care at all? We do actually care, because if a called function
has the possibility to change the value of a variable when this is not desired, calling another function with
this variable may lead to totally wrong results. In the worst cases you may even not be able to spot where
the program goes wrong.

We do however use call by value when a called function simply receives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a called function, we refer to this call as
call by reference. What is transferred then is the address of the first element of the array, and the called
function has now access to where that specific variable ’lives’ and can thereafter change its value.

The function scanf is then an example of a function which receives the address of a variable and is
allowed to modify it. Afterall, when calling scanf we are expecting a new value for a variable. A typical
call could be scanf(‘‘%lf \n ’’, &speed_of_sound);.

Consider now the following program

//
// This program module
// demonstrates memory allocation and data transfer in
// between functions in C++
//

< > // Standard ANSI-C++ include files

43

Numerical differentiation

< >

int main(int argc, char ∗argv[])
{
int a: // line 1
int ∗b; // line 2

a = 10; // line 3
b = new int[10]; // line 4
for(i = 0; i < 10; i++) {
b[i] = i; // line 5

}
func(a,b); // line 6
return 0;

} // End: function main()

void func(int x, int ∗y) // line 7
{

x += 7; // line 8
∗y += 10; // line 9
y[6] += 10; // line 10
return; // line 11

} // End: function func()

There are several features to be noted.

– Lines 1,2: Declaration of two variables a and b. The compiler reserves two locations in memory.
The size of the location depends on the type of variable. Two properties are important for these
locations – the address in memory and the content in the location.
The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.

– Line 3: The value of a is now 10.

– Line 4: Memory to store 10 integers is reserved. The address to the first location is stored in b.
Address to element number 6 is given by the expression (b + 6).

– Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,, b[9] = 9;

– Line 6: The main() function calls the function func() and the program counter transfers to the first
statement in func(). With respect to data the following happens. The content of a (= 10) and the
content of b (a memory address) are copied to a stack (new memory location) associated with the
function func()

– Line 7: The variable x and y are local variables in func(). They have the values – x = 10, y =
address of the first element in b in the main().

– Line 8: The local variable x stored in the stack memory is changed to 17. Nothing happens with
the value a in main().

– Line 9: The value of y is an address and the symbol *y means the position in memory which has
this address. The value in this location is now increased by 10. This means that the value of b[0]
in the main program is equal to 10. Thus func() has modified a value in main().

44

3.2 – Numerical differentiation

– Line 10: This statement has the same effect as line 9 except that it modifies the element b[6] in
main() by adding a value of 10 to what was there originally, namely 5.

– Line 11: The program counter returns to main(), the next expression after func(a,b);. All data on
the stack associated with func() are destroyed.

– The value of a is transferred to func() and stored in a new memory location called x. Any modifi-
cation of x in func() does not affect in any way the value of a in main(). This is called transfer of
data by value. On the other hand the next argument in func() is an address which is transferred to
func(). This address can be used to modify the corresponding value in main(). In the C language it
is expressed as a modification of the value which y points to, namely the first element of b. This is
called transfer of data by reference and is a method to transfer data back to the calling function,
in this case main().

C++ allows however the programmer to use solely call by reference (note that call by reference is
implemented as pointers). To see the difference between C and C++, consider the following simple
examples. In C we would write

i n t n ; n =8 ;
func (&n) ; /∗ &n i s a p o i n t e r t o n ∗ /
. . . .
void func (i n t ∗ i)
{

∗ i = 10 ; /∗ n i s changed t o 10 ∗ /
. . . .

}

whereas in C++ we would write

i n t n ; n =8 ;
func (n) ; / / j u s t t r a n s f e r n i t s e l f
. . . .
void func (i n t& i)
{
i = 10 ; / / n i s changed t o 10
. . . .

}

Note well that the way the have defined the input to the function func(int& i) or func(int ∗i) decides how
we transfer variables to a specific function. The reason why we emphasize the difference between call
by value and call by reference is that it allows the programmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reduces the readability of the code. It is more or less
common in C++ to use call by reference, since it gives a much cleaner code. Recall also that behind the
curtain references are usually implemented as pointers. When we transfer large objects such a matrices
and vectors one should always use call by reference. Copying such objects to a called function slows
down considerably the execution. If you need to keep the value of a call by reference object, you should
use the const declaration.

In programming languages like Fortran90/95 one uses only call by reference, but you can flag whether
a called function or subroutine is allowed or not to change the value by declaring for example an inte-
ger value as INTEGER, INTENT(IN):: i. The local function cannot change the value of i. Declaring a
transferred values as INTEGER, INTENT(OUT):: i. allows the local function to change the variable i.

45

Numerical differentiation

Initialisations and main program

In every program we have to define the functions employed. The style chosen here is to declare these
functions at the beginning, followed thereafter by the main program and the detailed task performed by
each function. Another possibility is to include these functions and their statements before the main
program, meaning that the main program appears at the very end. I find this programming style less read-
able however since I prefer to read a code from top to bottom. A further option, specially in connection
with larger projects, is to include these function definitions in a user defined header file. The following
program shows also (although it is rather unnecessary in this case due to few tasks) how one can split
different tasks into specialized functions. Such a division is very useful for larger projects and programs.

In the first version of this program we use a more C-like style for writing and reading to file. At the
end of this section we include also the corresponding C++ and Fortran files.

/∗
∗∗ Program t o compute t h e second d e r i v a t i v e o f exp (x) .
∗∗ Three c a l l i n g f u n c t i o n s are i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e da ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e second d e r i v a t i v e
∗∗ wh i l e t h e l a s t f u n c t i o n p r i n t s ou t da ta t o s c r e e n .
∗ /
us ing namespace s t d ;
inc lude < io s t r e am >

void i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;
void s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
void ou t p u t (double ∗ , double ∗ , double , i n t) ;

i n t main ()
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
i n t numbe r_o f _ s t ep s ;
double x , i n i t i a l _ s t e p ;
double ∗ h_s tep , ∗ c ompu t e d _ d e r i v a t i v e ;
/ / read i n i n p u t da ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &numbe r_o f _ s t ep s) ;
/ / a l l o c a t e space i n memory f o r t h e one−d imen s i o n a l a r r a y s
/ / h _ s t e p and c omp u t e d _ d e r i v a t i v e
h_ s t e p = new double [n umbe r_o f _ s t ep s] ;
c ompu t e d _ d e r i v a t i v e = new double [n umbe r_o f _ s t ep s] ;
/ / compute t h e second d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (number_o f_s t eps , x , i n i t i a l _ s t e p , h_s t ep ,

c ompu t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e
ou t p u t (h_s t ep , c ompu t e d _ d e r i v a t i v e , x , numbe r_o f _ s t ep s) ;
/ / f r e e memory
d e l e t e [] h _ s t e p ;
d e l e t e [] c ompu t e d _ d e r i v a t i v e ;
re turn 0 ;

} / / end main program

We have defined three additional functions, one which reads in from screen the value of x, the initial step

46

3.2 – Numerical differentiation

length h and the number of divisions by 2 of h. This function is called initialise . To calculate the second
derivatives we define the function second_derivative . Finally, we have a function which writes our results
together with a comparison with the exact value to a given file. The results are stored in two arrays, one
which contains the given step length h and another one which contains the computed derivative.

These arrays are defined as pointers through the statement double ∗h_step , ∗computed_derivative;
A call in the main function to the function second_derivative looks then like this second_derivative (
number_of_steps, x, intial_step , h_step , computed_derivative) ; while the called function is declared in
the following way void second_derivative (int number_of_steps, double x, double ∗h_step,double ∗computed_derivative
) ; indicating that double ∗h_step , double ∗computed_derivative; are pointers and that we transfer the ad-
dress of the first elements. The other variables int number_of_steps, double x; are transferred by value
and are not changed in the called function.

Another aspect to observe is the possibility of dynamical allocation of memory through the new
function. In the included program we reserve space in memory for these three arrays in the following way
h_step = new double[number_of_steps]; and computed_derivative = new double[number_of_steps];When we
no longer need the space occupied by these arrays, we free memory through the declarations delete []
h_step ; and delete [] computed_derivative ;

The function initialise

/ / Read i n from s c r e e n t h e i n i t i a l s t e p , t h e number o f s t e p s
/ / and t h e v a l u e o f x

void i n i t i a l i s e (double ∗ i n i t i a l _ s t e p , double ∗x , i n t ∗ numbe r_o f _ s t ep s)
{

p r i n t f () ;
s c a n f (, i n i t i a l _ s t e p , x , numbe r_o f _ s t ep s) ;
re turn ;

} / / end o f f u n c t i o n i n i t i a l i s e

This function receives the addresses of the three variables double ∗ initial_step , double ∗x, int ∗
number_of_steps; and returns updated values by reading from screen.

The function second_derivative

/ / Th i s f u n c t i o n computes t h e second d e r i v a t i v e

void s e c o n d _ d e r i v a t i v e (i n t number_o f_s t eps , double x ,
double i n i t i a l _ s t e p , double ∗ h_s tep ,
double ∗ c ompu t e d _ d e r i v a t i v e)

{
i n t c o u n t e r ;
double h ;
/ / c a l c u l a t e t h e s t e p s i z e
/ / i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m inu t e s)
/ / and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p ;
/ / s t a r t compu t ing f o r d i f f e r e n t s t e p s i z e s
f o r (c o u n t e r =0 ; c o u n t e r < numbe r_o f _ s t ep s ; c o u n t e r ++)
{

/ / s e t u p a r r a y s w i t h d e r i v a t i v e s and s t e p s i z e s

47

Numerical differentiation

h_ s t e p [c o u n t e r] = h ;
c ompu t e d _ d e r i v a t i v e [c o u n t e r] =

(exp (x+h) −2.∗ exp (x) +exp (x−h)) / (h∗h) ;
h = h ∗ 0 . 5 ;

} / / end o f do loop
re turn ;

} / / end o f f u n c t i o n second d e r i v a t i v e

The loop over the number of steps serves to compute the second derivative for different values of h.
In this function the step is halved for every iteration (you could obviously change this to larger or
smaller step variations). The step values and the derivatives are stored in the arrays h_step and double
computed_derivative.

The output function

This function computes the relative error and writes to a chosen file the results.
The last function here illustrates how to open a file, write and read possible data and then close it.

In this case we have fixed the name of file. Another possibility is obviously to read the name of this file
together with other input parameters. The way the program is presented here is slightly unpractical since
we need to recompile the program if we wish to change the name of the output file.

An alternative is represented by the following program C program. This program reads from screen
the names of the input and output files.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 i n t c o l :
4
5 i n t main (i n t argc , char ∗ a rgv [])
6 {
7 FILE ∗ in , ∗ ou t ;
8 i n t c ;
9 i f (a r g c < 3) {
10 p r i n t f () ;
11 p r i n t f () ;
12 e x i t (1) ;
13 i n = fopen (a rgv [1] ,) ; } / / r e t u r n s p o i n t e r t o t h e i n _ f i l e
14 i f (i n n == NULL) { / / can ’ t f i n d i n _ f i l e
15 p r i n t f (, a rgv [1]) ;
16 e x i t (1) ;
17 }
18 ou t = fopen (a rgv [2] ,) ; / / r e t u r n s a p o i n t e r t o t h e o u t _ f i l e
19 i f (u t == NULL) { / / can ’ t f i n d o u t _ f i l e
20 p r i n t f (, a rgv [2]) ;
21 e x i t (1) ;
22 }

. . . program s t a t em e n t s

23 f c l o s e (i n) ;
24 f c l o s e (ou t) ;
25 re turn 0 ;

48

3.2 – Numerical differentiation

}

This program has several interesting features.

Line Program comments

5 • takes three arguments, given by argc. argv points to the following:
the name of the program, the fi rst and second arguments, in this case fi le
names to be read from screen.

7 • C++ has a called . The pointers and point to spe-
cifi c fi les. They must be of the type .

10 • The command line has to contain 2 fi lenames as parameters.
13–17 • The input fi le has to exit, else the pointer returns NULL. It has only read

permission.
18–22 • Same for the output fi le, but now with write permission only.
23–24 • Both fi les are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own class for
such operations.

/∗
∗∗ Program t o compute t h e second d e r i v a t i v e o f exp (x) .
∗∗ In t h i s v e r s i o n we use C++ o p t i o n s f o r r ead ing and
∗∗ w r i t i n g f i l e s and da ta . The r e s t o f t h e code i s as i n
∗∗ programs / chap t e r3 / program1 . cpp
∗∗ Three c a l l i n g f u n c t i o n s are i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e da ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e second d e r i v a t i v e
∗∗ wh i l e t h e l a s t f u n c t i o n p r i n t s ou t da ta t o s c r e e n .
∗ /
us ing namespace s t d ;
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude <cmath>
void i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;
void s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
void ou t p u t (double ∗ , double ∗ , double , i n t) ;

o f s t r e am o f i l e ;

i n t main (i n t argc , char∗ a rgv [])
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
char ∗ o u t f i l e n am e ;
i n t numbe r_o f _ s t ep s ;
double x , i n i t i a l _ s t e p ;
double ∗ h_s tep , ∗ c ompu t e d _ d e r i v a t i v e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command− l i n e

argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

49

Numerical differentiation

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / read i n i n p u t da ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &numbe r_o f _ s t ep s) ;
/ / a l l o c a t e space i n memory f o r t h e one−d imen s i o n a l a r r a y s
/ / h _ s t e p and c omp u t e d _ d e r i v a t i v e
h_ s t e p = new double [n umbe r_o f _ s t ep s] ;
c ompu t e d _ d e r i v a t i v e = new double [n umbe r_o f _ s t ep s] ;
/ / compute t h e second d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (number_o f_s t eps , x , i n i t i a l _ s t e p , h_s t ep ,

c ompu t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e
ou t p u t (h_s t ep , c ompu t e d _ d e r i v a t i v e , x , numbe r_o f _ s t ep s) ;
/ / f r e e memory
d e l e t e [] h _ s t e p ;
d e l e t e [] c ompu t e d _ d e r i v a t i v e ;
/ / c l o s e o u t p u t f i l e
o f i l e . c l o s e () ;
re turn 0 ;

} / / end main program

The main part of the code includes now an object declaration ofstream ofi le which is included in C++ and
allows the programmer to open and declare files. This is done via the statement ofi le .open(outfi lename) ; .
We close the file at the end of the main program by writing ofi le . close () ; . There is a corresponding
object for reading inputfiles. In this case we declare prior to the main function, or in an evantual header
file, ifstream ifi le and use the corresponding statements ifi le .open(infi lename) ; and ifi le . close () ; for
opening and closing an input file. Note that we have declared two character variables char∗ outfi lename
; and char∗ infi lename ; . In order to use these options we need to include a corresponding library of
functions using # include <fstream>.

One of the problems with C++ is that formatted output is not as easy to use as the printf and scanf
functions in C. The output function using the C++ style is included below.

/ / f u n c t i o n t o w r i t e ou t t h e f i n a l r e s u l t s
void ou t p u t (double ∗ h_s tep , double ∗ c ompu t e d _ de r i v a t i v e , double x ,

i n t numbe r_o f _ s t ep s)
{

i n t i ;
o f i l e << << end l ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
f o r (i =0 ; i < numbe r_o f _ s t ep s ; i ++)
{
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << log10 (h _ s t e p [i]) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) <<
log10 (f a b s (c ompu t e d _ d e r i v a t i v e [i]−exp (x)) / exp (x))) << end l ;
}

} / / end o f f u n c t i o n o u t p u t

50

3.2 – Numerical differentiation

The function setw(15) reserves an output of 15 spaces for a given variable while setprecision (8) yields
eight leading digits. To use these options you have to use the declaration # include <iomanip>

Before we discuss the results of our calculations we list here the corresponding Fortran90 program.
The corresponding Fortran 90/95 example is

! Program t o compute t h e second d e r i v a t i v e o f exp (x) .
! Only one c a l l i n g f u n c t i o n i s i n c l u d e d .
! I t computes t h e second d e r i v a t i v e and i s i n c l u d e d i n t h e
! MODULE f u n c t i o n s as a s e p a r a t e method
! The v a r i a b l e h i s t h e s t e p s i z e . We a l s o f i x t h e t o t a l number
! o f d i v i s i o n s by 2 o f h . The t o t a l number o f s t e p s i s read from
! s c r e e n
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complex v a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))

END MODULE c o n s t a n t s

! Here you can i n c l u d e s p e c i f i c f u n c t i o n s which can be used by
! many s u b r o u t i n e s or f u n c t i o n s

MODULE f u n c t i o n s
USE c o n s t a n t s
IMPLICIT NONE
CONTAINS
SUBROUTINE d e r i v a t i v e (number_o f_s t eps , x , i n i t i a l _ s t e p , h_s t ep , &

compu t e d _ d e r i v a t i v e)
USE c o n s t a n t s
INTEGER , INTENT (IN) : : n umbe r_o f _ s t ep s
INTEGER : : l oop
REAL(DP) , DIMENSION(n umbe r_o f _ s t ep s) , INTENT (INOUT) : : &

compu t e d _ de r i v a t i v e , h _ s t e p
REAL(DP) , INTENT (IN) : : i n i t i a l _ s t e p , x
REAL(DP) : : h
! c a l c u l a t e t h e s t e p s i z e
! i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m inu t e s)
! and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p
! s t a r t compu t ing f o r d i f f e r e n t s t e p s i z e s
DO l oop =1 , numbe r_o f _ s t ep s

! s e t u p a r r a y s w i t h d e r i v a t i v e s and s t e p s i z e s
h_ s t e p (loop) = h
c ompu t e d _ d e r i v a t i v e (loop) = (EXP(x+h) −2.∗EXP(x) +EXP(x−h)) / (h∗h)
h = h ∗0 . 5

ENDDO
END SUBROUTINE d e r i v a t i v e

END MODULE f u n c t i o n s

PROGRAM s e c o n d _ d e r i v a t i v e
USE c o n s t a n t s

51

Numerical differentiation

USE f u n c t i o n s
IMPLICIT NONE
! d e c l a r a t i o n s o f v a r i a b l e s
INTEGER : : number_o f_s t eps , loop
REAL(DP) : : x , i n i t i a l _ s t e p
REAL(DP) , ALLOCATABLE, DIMENSION (:) : : h_ s t ep , c ompu t e d _ d e r i v a t i v e
! read i n i n p u t da ta from s c r e e n
WRITE(∗ , ∗) ’Read in i n i t i a l s t e p , x v a l u e and number o f s t e p s ’
READ(∗ , ∗) i n i t i a l _ s t e p , x , numbe r_o f _ s t ep s
! open f i l e t o w r i t e r e s u l t s on
OPEN(UNIT=7 ,FILE= ’ out . d a t ’)
! a l l o c a t e space i n memory f o r t h e one−d imen s i o n a l a r r a y s
! h _ s t e p and c omp u t e d _ d e r i v a t i v e
ALLOCATE(h _ s t e p (numbe r_o f _ s t ep s) , c ompu t e d _ d e r i v a t i v e (numbe r_o f _ s t ep s))
! compute t h e second d e r i v a t i v e o f exp (x)
! i n i t i a l i z e t h e a r r a y s
h_ s t e p = 0 . 0 _dp ; c ompu t e d _ d e r i v a t i v e = 0 . 0 _dp
CALL d e r i v a t i v e (number_o f_s t eps , x , i n i t i a l _ s t e p , h_s t ep , c ompu t e d _ d e r i v a t i v e

)

! Then we p r i n t t h e r e s u l t s t o f i l e
DO l oop =1 , numbe r_o f _ s t ep s

WRITE(7 , ’ (E16 . 1 0 , 2X, E16 . 1 0) ’) LOG10(h _ s t e p (loop)) ,&
LOG10 (ABS ((c ompu t e d _ d e r i v a t i v e (loop)−EXP(x)) / EXP(x)))

ENDDO
! f r e e memory
DEALLOCATE (h_s t ep , c ompu t e d _ d e r i v a t i v e)
! c l o s e t h e o u t p u t f i l e
CLOSE(7)

END PROGRAM s e c o n d _ d e r i v a t i v e

The MODULE declaration in Fortran allows one to place functions like the one which calculates second
derivatives. Since this is a general method, one could extend its functionality by simply transfering the
name of the function to differentiate. In our case use explicitely the exponential function, but there is
nothing which hinders us from defining any other type of function. Note also the usage of the module
constants where we define double and complex variables. If one wishes to switch to another precision,
one just needs to change the declaration in one part of the program only. This hinders possible errors
which arise if one has to change variable declarations in every function and subroutine. Finally, dynamic
memory allocation and deallocation is in Fortran 90/95 done with the keywords ALLOCATE(array(size))
and DEALLOCATE(array). Although most compilers deallocate and thereby free space in memory when
leaving a function, you should always deallocate an array when it is no longer needed. In case your arrays
are very large, this may block unnecessarily large fractions of the memory. Furthermore, you should also
always initialise arrays. In the example above, we note that Fortran allows us to simply write h_step
= 0.0_dp; computed_derivative = 0.0_dp, which means that all elements of these two arrays are set
to zero. Coding arrays in this manner brings us much closer to the way we deal with mathematics. In
Fortran 90/95 it is irrelevant whether this is a one-dimensional or multi-dimensional array. In the next
next chapter, where we deal with allocation of matrices, we will introduce the numerical library Blitz++
which allows for similar treatments of arrays in C++. By default however, these features are not included
in the ANSI C++ standard.

52

3.2 – Numerical differentiation

Results

In Table 3.1 we present the results of a numerical evaluation for various step sizes for the second deriva-
tive of exp (x) using the approximation f ′′

0 = fh−2f0+f−h

h2 . The results are compared with the exact ones
for various x values. Note well that as the step is decreased we get closer to the exact value. However, if

x h = 0.1 h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1: Result for numerically calculated second derivatives of exp (x). A comparison is made with
the exact value. The step size is also listed.

it is further decreased, we run into problems of loss of precision. This is clearly seen for h = 0.0000001.
This means that even though we could let the computer run with smaller and smaller values of the step,
there is a limit for how small the step can be made before we loose precision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we can find a minimal step length which does not
lead to loss of precision. Furthermore In Fig. 3.2 we have plotted

ϵ = log10

(∣∣∣∣∣
f ′′
computed − f ′′

exact

f ′′
exact

∣∣∣∣∣

)

, (3.5)

as function of log10(h). We used an intial step length of h = 0.01 and fixed x = 10. For large values of
h, that is −4 < log10(h) < −2 we see a straight line with a slope close to 2. Close to log10(h) ≈ −4
the relative error starts increasing and our computed derivative with a step size log10(h) < −4, may no
longer be reliable.

Can we understand this behavior in terms of the discussion from the previous chapter? In chapter 2
we assumed that the total error could be approximated with one term arising from the loss of numerical
precision and another due to the truncation or approximation made, that is

ϵtot = ϵapprox + ϵro. (3.6)

For the computed second derivative, Eq. (3.2), we have

f ′′
0 =

fh − 2f0 + f−h

h2
− 2

∞∑

j=1

f (2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

ϵapprox ≈
f (4)
0

12
h2.

53

Numerical differentiation

Relative error

log10(h)

ϵ

0-2-4-6-8-10-12-14

6

4

2

0

-2

-4

-6

-8

-10

Figure 3.2: Log-log plot of the relative error of the second derivative of ex as function of decreasing step
lengths h. The second derivative was computed for x = 10 in the program discussed above. See text for
further details

If we were not to worry about loss of precision, we could in principle make h as small as possible.
However, due to the computed expression in the above program example

f ′′
0 =

fh − 2f0 + f−h

h2
=

(fh − f0) + (f−h − f0)

h2
,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly equal
numbers becomes crucial. If (f±h − f0) are very close, we have (f±h − f0) ≈ ϵM , where |ϵM | ≤ 10−7

for single and |ϵM | ≤ 10−15 for double precision, respectively.
We have then

∣∣f ′′
0

∣∣ =

∣∣∣∣
(fh − f0) + (f−h − f0)

h2

∣∣∣∣ ≤
2ϵM
h2

.

Our total error becomes

|ϵtot| ≤
2ϵM
h2

+
f (4)
0

12
h2. (3.7)

It is then natural to ask which value of h yields the smallest total error. Taking the derivative of |ϵtot|with
respect to h results in

h =

(
24ϵM

f (4)
0

)1/4

.

With double precision and x = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes over. We note also that
the above qualitative argument agrees seemingly well with the results plotted in Fig. 3.2 and Table 3.1.

54

3.3 – How to make figures with Gnuplot

The turning point for the relative error at approximately h ≈ ×10−4 reflects most likely the point where
roundoff errors take over. If we had used single precision, we would get h ≈ 10−2. Due to the subtractive
cancellation in the expression for f ′′ there is a pronounced detoriation in accuracy as h is made smaller
and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as
(fh − f0) + (f−h − f0) = ex(eh + e−h − 2),

since it is the difference (eh + e−h − 2) which causes the loss of precision. The results, still for x = 10
are shown in the Table 3.2. We note from this table that at h ≈ ×10−8 we have essentially lost all leading

h eh + e−h eh + e−h − 2
10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−4 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Table 3.2: Result for the numerically calculated numerator of the second derivative as function of the step
size h. The calculations have been made with double precision.

digits.
From Fig. 3.2 we can read off the slope of the curve and thereby determine empirically how truncation

errors and roundoff errors propagate. We saw that for −4 < log10(h) < −2, we could extract a slope
close to 2, in agreement with the mathematical expression for the truncation error.

We can repeat this for −10 < log10(h) < −4 and extract a slope ≈ −2. This agrees again with our
simple expression in Eq. (3.7).

3.3 How to make figures with Gnuplot

We end this chapter with a practical guide on making figures to be included in an eventual report file.
Gnuplot is a simple plotting program which follows the Linux/Unix operating system. It is easy to use
and allows also to generate figure files which can be included in a LATEX document. Here we show how
to make simple plots online and how to make postscript versions of the plot or even a figure file which
can be included in a LATEX document. There are other plotting programs such as xmgrace as well which
follow Linux or Unix as operating systems. An excellent alternative which many of you are familiar with
is to use Matlab to read in the data of a calculation and vizualize the results.

In order to check if gnuplot is present type

55

Numerical differentiation

If gnuplot is available, simply write

to start the program. You will then see the following prompt

and type help for a list of various commands and help options. Suppose you wish to plot data points
stored in the filemydata.dat. This file contains two columns of data points, where the first column refers
to the argument x while the second one refers to a computed function value f(x).

If we wish to plot these sets of points with gnuplot we just to need to write

or

since gnuplot assigns as default the first column as the x-axis. The abbreviations w l stand for ’with
lines’. If you prefer to plot the data points only, write

For more plotting options, how to make axis labels etc, type help and choose plot as topic.
Gnuplot will typically display a graph on the screen. If we wish to save this graph as a postscript

file, we can proceed as follows

and you will be the owner of a postscript file called mydata.ps, which you can display with ghostview
through the call

The other alternative is to generate a figure file for the document handling program LATEX. The
advantage here is that the text of your figure now has the same fonts as the remaining LATEX document.
Fig. 3.2 was generated following the steps below. You need to edit a file which ends with .gnu. The file
used to generate Fig. 3.2 is called derivative.gnu and contains the following statements, which are a mix
of LATEX and Gnuplot statements. It generates a file derivative.tex which can be included in a LATEX
document. Writing the following

56

3.3 – How to make figures with Gnuplot

generates a LATEX file derivative.tex. Alternatively, you could write the above commands in a file deriva-
tive.gnu and use Gnuplot as follows

You can then include this file in a LATEX document as shown here

Most figures included in this text have been generated using gnuplot.

57

Chapter 4

Linear algebra

In the training of programming for scientific computation the emphasis has historically
been on squeezing out every drop of floating point performance for a given algorithm.
This practice, however, leads to highly tuned racecarlike software codes: delicate, easily
broken and difficult to maintain, but capable of outperforming more user-friendly family
cars. Smith, Bjorstad and Gropp, An introduction to MPI [16]

4.1 Introduction

In this chapter we deal with basic matrix operations, such as the solution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution of linear equations is an important part of numerical
mathematics and arises in many applications in the sciences. Here we focus in particular on so-called
direct or elimination methods, which are in principle determined through a finite number of arithmetic
operations. Iterative methods will be discussed in connection with eigenvalue problems in chapter 12.

This chapter serves also the purpose of introducing important programming details such as handling
memory allocation for matrices, classes and the usage of the libraries which follow these lectures. The
algorithms1 we describe and their original source codes are taken from the widely used software package
LAPACK [23], which follows two other popular packages developed in the 1970s, namely EISPACK
and LINPACK. The latter was developed for linear equations and least square problems while the for-
mer was developed for solving symmetric, unsymmetric and generalized eigenvalue problems. From
LAPACK’s website it is possible to download for free all source codes from
this library. Both C++ and Fortran versions are available. Another important library is BLAS [24],
which stands for Basic Linear Algebra Subprogram. It contains efficient codes for algebraic operations
on vectors, matrices and vectors and matrices. Basically all modern supercomputer include this library,
with efficient algorithms. Else, Matlab offers a very efficient programming environment for dealing
with matrices. The classic text from where we have taken most of the formalism exposed here is the
book on matrix computations by Golub and Van Loan [25]. Good recent introductory texts are Kincaid
and Cheney [26] and Datta [27]. For more advanced ones see Trefethen and Bau III [28], Kress [29]
and Demmel [30]. Ref. [25] contains an extensive list of textbooks on eigenvalue problems and lin-
ear algebra. LAPACK [23] contains also extensive listings to the research literature on matrix com-
putations. You may also look up the lecture notes of INF-MAT3350 (Numerical Linear Algebra) at

1The various methods included in the library fi les are taken from LAPACK and Numerical Recipes [22] and have been
rewritten in Fortran 90/95 and C++ by us.

59

Linear algebra

. For the introduction of the auxil-
iary library Blitz++ [31] we refer to the online manual at .

4.2 Mathematical intermezzo

The matrices we will deal with are primarily square real symmetric or hermitian ones, assuming thereby
that an n× n matrix A ∈ Rn×n for a real matrix2 and A ∈ Cn×n for a complex matrix. For the sake of
simplicity, we take a matrixA ∈ R4×4 and a corresponding identity matrix I

A =

⎛

⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟⎠ I =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ , (4.1)

where aij ∈ R. The inverse of a matrix, if it exists, is defined by

A−1 · A = I.

In the following discussion, matrices are always two-dimensional arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced capitals letters such as A to represent a general
matrix, which is a two-dimensional array, while aij refers to a matrix element with row number i and
column number j. Similarly, a vector being a one-dimensional array, is labelled x and represented as (for
a real vector)

x ∈ R
n ⇐⇒

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ ,

with pertinent vector elements xi ∈ R. Note that this notation implies xi ∈ R4×1 and that the members
of x are column vectors. The elements of xi ∈ R1×4 are row vectors.

Table 4.2 lists some essential features of various types of matrices one may encounter. Some of the

Table 4.1: Matrix properties

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji
A =

(
A†)−1 unitary

∑
k aika∗jk =

∑
k a∗kiakj = δij

matrices we will encounter are listed here
2A reminder on mathematical symbols may be appropriate here. The symbol R is the set of real numbers. Correspondingly,

N, Z and C represent the set of natural, integer and complex numbers, respectively. A symbol like R
n stands for an n-

dimensional real Euclidean space, while C[a, b] is the space of real or complex-valued continuous functions on the interval
[a, b], where the latter is a closed interval. Similalry, Cm[a, b] is the space of m-times continuously differentiable functions on
the interval [a, b]. For more symbols and notations, see the main text.

60

4.2 – Mathematical intermezzo

1. Diagonal if aij = 0 for i ≠ j,

2. Upper triangular if aij = 0 for i > j, which for a 4× 4 matrix is of the form
⎛

⎜⎜⎝

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 ann

⎞

⎟⎟⎠

3. Lower triangular if aij = 0 for i < j

⎛

⎜⎜⎝

a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

⎞

⎟⎟⎠

4. Upper Hessenberg if aij = 0 for i > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row

⎛

⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 0 a43 a44

⎞

⎟⎟⎠

5. Lower Hessenberg if aij = 0 for i < j + 1

⎛

⎜⎜⎝

a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟⎠

6. Tridiagonal if aij = 0 for |i− j| > 1

⎛

⎜⎜⎝

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44

⎞

⎟⎟⎠

There are many more examples, such as lower banded with bandwidth p for aij = 0 for i > j + p, upper
banded with bandwidth p for aij = 0 for i < j + p, block upper triangular, block lower triangular etc.

For a real n× n matrixA the following properties are all equivalent

1. If the inverse ofA exists, A is nonsingular.

2. The equation Ax = 0 implies x = 0.

3. The rows ofA from a basis of Rn.

4. The columns ofA from a basis of Rn.

61

Linear algebra

5. A is a product of elementary matrices.

6. 0 is not an eigenvalue ofA.

The basic matrix operations that we will deal with are addition and subtraction

A = B± C =⇒ aij = bij ± cij , (4.2)

scalar-matrix multiplication
A = γB =⇒ aij = γbij , (4.3)

vector-matrix multiplication

y = Ax =⇒ yi =
n∑

j=1

aijxj, (4.4)

matrix-matrix multiplication

A = BC =⇒ aij =
n∑

k=1

bikckj , (4.5)

transposition
A = BT =⇒ aij = bji, (4.6)

and ifA ∈ Cn×n, conjugation results in

A = B
T

=⇒ aij = bji, (4.7)

where a variable z = x− ıy denotes the complex conjugate of z = x + ıy. In a similar way we have the
following basic vector operations, namely addition and subtraction

x = y ± z =⇒ xi = yi ± zi, (4.8)

scalar-vector multiplication
x = γy =⇒ xi = γyi, (4.9)

vector-vector multiplication (called Hadamard multiplication)

x = yz =⇒ xi = yizi, (4.10)

the inner or so-called dot product

c = yT z =⇒ c =
n∑

j=1

yjzj , (4.11)

with a c a constant and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj , (4.12)

Other important operations are vector and matrix norms. A class of vector norms are the so-called p-
norms

||x||p = (|x1|p + |x2|p + · · · + |xn|p)
1
p , (4.13)

where p ≥ 1. The most important are the 1, 2 and∞ norms given by

||x||1 = |x1| + |x2| + · · · + |xn|, (4.14)

62

4.2 – Mathematical intermezzo

||x||2 = (|x1|2 + |x2|2 + · · · + |xn|2)
1
2 = (xTx)

1
2 , (4.15)

and
||x||∞ = max |xi|, (4.16)

for 1 ≤ i ≤ n. From these definitions, one can derive several important relations, of which the so-called
Cauchy-Schwartz inequality is of great importance for many algorithms. It reads for any x and y in a
real or complex inner product space satisfy

|xT y| ≤ ||x||2||y||2, (4.17)

and the equality is obeyed only if x and y are linearly dependent. An important relation which follows
from the Cauchy-Schwartz relation is the famous triangle relation, which states that for any x and y in a
real or complex inner product space satisfy

||x + y||2 ≤ ||x||2 + ||y||2. (4.18)

Proofs can be found in for example Ref. [25]. As discussed in chapter 2, the analysis of the relative
error is important in our studies of loss of numerical precision. Using a vector norm we can define the
relative error for the machine representation of a vector x. We assume that fl(x) ∈ Rn is the machine
representation of a vector x ∈ Rn. If x ≠ 0, we define the relative error as

ϵ =
||fl(x)− x||

||x||
. (4.19)

Using the ∞-norm one can define a relative error that can be translated into a statement on the correct
significant digits of fl(x),

||fl(x)− x||∞
||x||∞

≈ 10−l, (4.20)

where the largest component of fl(x) has roughly l correct significant digits.
We can define similar matrix norms as well. The most frequently used are the Frobenius norm

||A||F =

√√√√
m∑

i=1

n∑

j=1

|aij |2, (4.21)

and the p-norms

||A||p =
||Ax||p
||x||p

, (4.22)

assuming that x ≠ 0. We refer the reader to the text of Golub and Van Loan [25] for a further discussion
of these norms.

The way we implement these operations will be discussed below, as it depends on the programming
language we opt for.

63

Linear algebra

4.3 Programming details

Many programming problems arise from improper treatment of arrays. In this section we will discuss
some important points such as array declaration, memory allocation and array transfer between func-
tions. We distinguish between two cases: (a) array declarations where the array size is given at compi-
lation time, and (b) where the array size is determined during the execution of the program, so-called
dymanic memory allocation. Useful references on C++ programming details, in particular on the use
of pointers and memory allocation, are Reek’s text [32] on pointers in C, Berryhill’s monograph [33]
on scientific programming in C++ and finally Franek’s text [34] on memory as a programming con-
cept in C and C++. Good allround texts on C++ programming in engineering and science are the
books by Flowers [19] and Barton and Nackman [20]. See also the online lecture notes on C++ at

. For Fortran 90/95 we recommend the online lec-
tures at . These web pages contain extensive refer-
ences to other C++ and Fortran 90/95 resources. Both web pages contain enough material, lecture notes
and exercises, in order to serve as material for own studies.

Figure 4.1: Segmentation fault, again and again! Alas, this is a situation you must likely will end up
in, unless you initialize, access, allocate or deallocate properly your arrays. Many program development
environments such as Dev C++ at provide debugging possibilities. Another possi-
bility, discussed in appendix A is to use the debugger GDB within the text editor emacs. Beware however
that there may be segmentation errors which occur due to errors in libraries of the operating system.
This author spent two weeks on tracing a segmentation error from a program which run perfectly prior
to an upgrade of the operating system. There was a bug in the library glibc of the new linux distribution.
(Drawing: courtesy by Victoria Popsueva 2003.)

64

4.3 – Programming details

4.3.1 Declaration of fixed-sized vectors and matrices

Table 4.2 presents a small program which treats essential features of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compiler reserves memory to store
five integers. The elements are vec[0], vec[1],....,vec[4]. Note that the numbering of elements starts with
zero. Declarations of other data types are similar, including structure data.

The symbol vec is an element in memory containing the address to the first element vec[0] and is a
pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements start with
zero, matr[0][0], matr[0][1],, matr[0][4], matr[1][0],.... . This sequence of elements also shows how
data are stored in memory. For example, the element matr[1][0] follows matr[0][4]. This is important in
order to produce an efficient code and avoid memory stride.

There is one further important point concerning matrix declaration. In a similar way as for the symbol
vec,matr is an element in memory which contains an address to a vector of three elements, but now these
elements are not integers. Each element is a vector of five integers. This is the correct way to understand
the declaration in line b. With respect to pointers this means that matr is pointer-to-a-pointer-to-an-
integer which we can write ∗∗matr. Furthermore ∗matr is a-pointer-to-a-pointer of five integers. This
interpretation is important when we want to transfer vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). To be specific, we transfer the
addresses of vec[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). The int vec[] is a pointer to an integer. Alterna-
tively we could write int ∗vec. The first version is better. It shows that it is a vector of several integers,
but not how many. The second version could equally well be used to transfer the address to a single
integer element. Such a declaration does not distinguish between the two cases.

The next definition is int matr[][5]. This is a pointer to a vector of five elements and the compiler
must be told that each vector element contains five integers. Here an alternative version could be int
(∗matr)[5] which clearly specifies that matr is a pointer to a vector of five integers.

There is at least one drawback with such a matrix declaration. If we want to change the dimension
of the matrix and replace 5 by something else we have to do the same change in all functions where this
matrix occurs.

There is another point to note regarding the declaration of variables in a function which includes
vectors and matrices. When the execution of a function terminates, the memory required for the variables
is released. In the present case memory for all variables in main() are reserved during the whole program
execution, but variables which are declared in sub_1() are released when the execution returns to main().

4.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size declaration of vectors and matrices before com-
pilation is in many cases bad. You may not know beforehand the actually needed sizes of vectors and
matrices. In large projects where memory is a limited factor it could be important to reduce memory re-
quirement for matrices which are not used any more. In C an C++ it is possible and common to postpone
size declarations of arrays untill you really know what you need and also release memory reservations
when it is not needed any more. The details are shown in Table 4.3.

In line a we declare a pointer to an integer which later will be used to store an address to the first
element of a vector. Similarily, line b declares a pointer-to-a-pointer which will contain the address to a
pointer of row vectors, each with col integers. This will then become a matrix[col][col]

65

Linear algebra

Table 4.2: Matrix handling program where arrays are defined at compilation time

int main()
{
int k,m, row = 3, col = 5;
int vec[5]; // line a
int matr[3][5]; // line b

for(k = 0; k < col; k++) vec[k] = k; // data into vector[]
for(m = 0; m < row; m++) { // data into matr[][]
for(k = 0; k < col ; k++) matr[m][k] = m + 10 ∗ k;

}
printf(\ \ \); // print vector data
for(k = 0; k < col; k++) printf(= ,k, vec[k]);
printf(\ \);
for(m = 0; m < row; m++) {

printf(\);
for(k = 0; k < col; k++)

printf(= ,m,k,matr[m][k]);
}

}
printf(\);
sub_1(row, col, vec, matr); // line c
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int matr[][5]) // line d
{
int k,m;

printf(\ \ \); // print vector data
for(k = 0; k < col; k++) printf(= ,k, vec[k]);
printf(\ \);
for(m = 0; m < row; m++) {

printf(\);
for(k = 0; k < col; k++) {

printf(= ,m, k, matr[m][k]);
}

}
printf(\);

} // End: function sub_1()

66

4.3 – Programming details

Table 4.3: Matrix handling program with dynamic array allocation.

int main()
{
int ∗vec; // line a
int ∗∗matr; // line b
int m, k, row, col, total = 0;

printf(\ \ =); // line c
scanf(,&row);
printf(\ \ =);
scanf(, &col);

vec = new int [col]; // line d
matr = (int ∗∗)matrix(row, col, sizeof(int)); // line e
for(k = 0; k < col; k++) vec[k] = k; // store data in vector[]
for(m = 0; m < row; m++) { // store data in array[][]
for(k = 0; k < col; k++) matr[m][k] = m + 10 ∗ k;

}
printf(\ \ \); // print vector data
for(k = 0; k < col; k++) printf(= ,k,vec[k]);
printf(\ \);
for(m = 0; m < row; m++) {

printf(\);
for(k = 0; k < col; k++) {

printf(= ,m, k, matr[m][k]);
}

}
printf(\);
for(m = 0; m < row; m++) { // access the array
for(k = 0; k < col; k++) total += matr[m][k];

}
printf(\ \ = \ ,total);
sub_1(row, col, vec, matr);
free_matrix((void ∗∗)matr); // line f
delete [] vec; // line g
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int ∗∗matr) // line h
{
int k,m;

printf(\ \ \); // print vector data
for(k = 0; k < col; k++) printf(= ,k, vec[k]);
printf(\ \);
for(m = 0; m < row; m++) {

printf(\);
for(k = 0; k < col; k++) {

printf(= ,m,k,matr[m][k]);
}

}
printf(\);

} // End: function sub_1()

67

Linear algebra

In line c we read in the size of vec[] and matr[][] through the numbers row and col.
Next we reserve memory for the vector in line d. In line e we use a user-defined function to reserve

necessary memory for matrix[row][col] and again matr contains the address to the reserved memory
location.

The remaining part of the function main() are as in the previous case down to line f. Here we have a
call to a user-defined function which releases the reserved memory of the matrix. In this case this is not
done automatically.

In line g the same procedure is performed for vec[]. In this case the standard C++ library has the
necessary function.

Next, in line h an important difference from the previous case occurs. First, the vector declaration is
the same, but the matr declaration is quite different. The corresponding parameter in the call to sub_1[]
in line g is a double pointer. Consequently, matr in line h must be a double pointer.

Except for this difference sub_1() is the same as before. The new feature in Table 4.3 is the call to the
user-defined functions matrix and free_matrix. These functions are defined in the library file lib.cpp.
The code for the dynamic memory allocation is given below.

/∗
∗ The f u n c t i o n
∗ vo i d ∗∗ma t r i x ()
∗ r e s e r v e s dynamic memory f o r a two−d imen s i o n a l ma t r i x
∗ u s i n g t h e C++ command new . No i n i t i a l i z a t i o n o f t h e e l emen t s .
∗ I n p u t da ta :
∗ i n t row − number o f rows
∗ i n t c o l − number o f co lumns
∗ i n t num_bytes− number o f b y t e s f o r each
∗ e l emen t
∗ Re tu rn s a vo id ∗∗ p o i n t e r t o t h e r e s e r v e d memory l o c a t i o n .
∗ /

void ∗∗ma t r i x (i n t row , i n t co l , i n t num_bytes)
{
i n t i , num ;
char ∗∗ p o i n t e r , ∗ p t r ;

p o i n t e r = new (no throw) char∗ [row] ;
i f (! p o i n t e r) {
cou t << ;
cou t << << row << << end l ;
re turn NULL;

}
i = (row ∗ c o l ∗ num_bytes) / s i z e o f (char) ;
p o i n t e r [0] = new (no throw) char [i] ;
i f (! p o i n t e r [0]) {
cou t << ;
cou t << << i << << end l ;
re turn NULL;

}
p t r = p o i n t e r [0] ;
num = co l ∗ num_bytes ;
f o r (i = 0 ; i < row ; i ++ , p t r += num) {

68

4.3 – Programming details

double ∗ ∗A =⇒ double ∗ A[0 . . . 3]

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[0]

A[1]

A[2]

A[2]

Figure 4.2: Conceptual representation of the allocation of a matrix in C++.

p o i n t e r [i] = p t r ;
}
re turn (void ∗∗) p o i n t e r ;
} / / end : f u n c t i o n vo i d ∗∗ma t r i x ()

As an alternative, you could write your own allocation and deallocation of matrices. This can be
done rather straightforwardly with the following statements. Recall first that a matrix is represented by
a double pointer that points to a contiguous memory segment holding a sequence of double* pointers in
case our matrix is a double precision variable. Then each double* pointer points to a row in the matrix.
A declaration like double∗∗ A; means that A[i] is a pointer to the i + 1-th row A[i] and A[i][j] is matrix
entry (i, j). The way we would allocate memory for such a matrix of dimensionality n×n is for example
using the following piece of code

i n t n ;
double ∗∗ A;

A = new double ∗ [n]
f o r (i = 0 ; i < n ; i ++)

A[i] = new double [N] ;

When we declare a matrix (a two-dimensional array) we must first declare an array of double variables.
To each of this variables we assign an allocation of a single-dimensional array. A conceptual picture on
how a matrixA is stored in memory is shown in Fig. 4.2.

Allocated memory should always be deleted when it is no longer needed. We free memory using the

69

Linear algebra

statements

f o r (i = 0 ; i < n ; i ++)
d e l e t e [] A[i] ;

d e l e t e [] A;

delete [] A;, which frees an array of pointers to matrix rows.
However, including a library like Blitz++ makes life much easier

when dealing with matrices. This is discussed below.

4.3.3 Matrix operations and C++ and Fortran 90/95 features of matrix handling

Many program libraries for scientific computing are written in Fortran, often also in older version such
Fortran 77. When using functions from such program libraries, there are some differences between C++
and Fortran 90/95 encoding of matrices and vectors worth noticing. Here are some simple guidelines in
order to avoid some of the most common pitfalls.

First of all, when we think of an n× n matrix in Fortran and C++, we typically would have a mental
picture of a two-dimensional block of stored numbers. The computer stores them however as sequential
strings of numbers. The latter could be stored as row-major order or column-major order. What do
we mean by that? Recalling that for our matrix elements aij , i refers to rows and j to columns, we
could store a matrix in the sequence a11a12 . . . a1na21a22 . . . a2n . . . ann if it is row-major order (we go
along a given row i and pick up all column elements j) or it could be stored in column-major order
a11a21 . . . an1a12a22 . . . an2 . . . ann.

Fortran stores matrices in the latter way, i.e., by column-major, while C++ stores them by row-major.
It is crucial to keep this in mind when we are dealing with matrices, because if we were to organize the
matrix elements in the wrong way, important properties like the transpose of a real matrix or the inverse
can be wrong, and obviously yield wrong physics. Fortran subscripts begin typically with 1, although
it is no problem in starting with zero, while C++ starts with 0 for the first element. This means that
A(1, 1) in Fortran is equivalent to A[0][0] in C++. Moreover, since the sequential storage in memory
means that nearby matrix elements are close to each other in the memory locations (and thereby easier to
fetch) , operations involving e.g., additions of matrices may take more time if we do not respect the given
ordering.

To see this, consider the following coding of matrix addition in C++ and Fortran 90/95. We have
n × n matrices A, B and C and we wish to evaluate A = B + C according to Eq. (4.2). In C++ this
would be coded like

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

a [i] [j]= b [i] [j]+ c [i] [j]
}

}

while in Fortran 90/95 we would have

DO j =1 , n
DO i =1 , n

a (i , j) =b (i , j) +c (i , j)
ENDDO

ENDDO

Fig. 4.3 shows how a 3× 3 matrixA is stored in both row-major and column-major ways.

70

4.3 – Programming details

a11 a12 a13

a21 a22 a23

a31 a32 a33

=⇒⇐=

a11

a12

a13

a21

a22

a23

a31

a32

a33

a11

a21

a31

a12

a22

a32

a13

a23

a33

Figure 4.3: Row-major storage of a matrix to the left (C++ way) and column-major to the right (Fortran
way).

71

Linear algebra

Interchanging the order of i and j can lead to a considerable enhancement in process time. In Fortran
90/95 we would write the above statements in a much simpler way a=b+c. However, the addition still
involves ∼ n2 operations. Matrix multiplication or taking the inverse requires ∼ n3 operations. The
matrix multiplication of Eq. (4.5) of two matrices A = BC could then take the following form in C++

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

f o r (k=0 ; k < n ; k++) {
a [i] [j]+=b [i] [k]∗ c [k] [j]

}
}

}

and in Fortran 90/95 we have

DO j =1 , n
DO i =1 , n

DO k = 1 , n
a (i , j) =a (i , j) +b (i , k) ∗c (i , j)

ENDDO
ENDDO

ENDDO

However, Fortran 90/95 has an intrisic function called MATMUL, and the above three loops can be coded
in a single statement a=MATMUL(b,c). Fortran 90/95 contains several array manipulation statements, such
as dot product of vectors, the transpose of a matrix etc etc. The outer product of two vectors is however
not included in Fortran 90/95. The coding of Eq. (4.12) takes then the following form in C++

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

a [i] [j]+=x [i]∗ y [j]
}

}

and in Fortran 90/95 we have

DO j =1 , n
DO i =1 , n

a (i , j) =a (i , j) +x (j) ∗y (i)
ENDDO

ENDDO

A matrix-matrix multiplication of a general n× n matrix with

a(i, j) = a(i, j) + b(i, k) ∗ c(i, j),

in its inner loops requires a multiplication and an addition. We define now a flop (floating point operation)
as one of the following floating point arithmetic operations, viz addition, subtraction, multiplication and
division. The above two floating point operations (flops) are done n3 times meaning that a general matrix
multiplication requires 2n3 flops if we have a square matrix. If we assume that our computer performs
109 flops per second, then to perform a matrix multiplication of a 1000 × 1000 case should take two

72

4.3 – Programming details

seconds. This can be reduced if we multiply two matrices which are upper triangular such as

A =

⎛

⎜⎜⎝

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎞

⎟⎟⎠ .

The multiplication of two upper triangular matrices BC yields another upper triangular matrixA, result-
ing in the following C++ code

f o r (i =0 ; i < n ; i ++) {
f o r (j = i ; j < n ; j ++) {

f o r (k= i ; k < j ; k++) {
a [i] [j]+=b [i] [k]∗ c [k] [j]

}
}

}

The fact that we have the constraint i ≤ j leads to the requirement for the computation of aij of 2(j−i+1)
flops. The total number of flops is then

n∑

i=1

n∑

j=1

2(j − i + 1) =
n∑

i=1

n−i+1∑

j=1

2j ≈
n∑

i=1

2(n− i + 1)2

2
,

where we used that
∑n

j=1 j = n(n + 1)/2 ≈ n2/2 for large n values. Using in addition that
∑n

j=1 j2 ≈
n3/3 for large n values, we end up with approximately n3/3 flops for the multiplication of two upper
triangular matrices. This means that if we deal with matrix multiplication of upper triangular matrices,
we reduce the number of flops by a factor six if we code our matrix multiplication in an efficient way.

It is also important to keep in mind that computers are finite, we can thus not store infinitely large
matrices. To calculate the space needed in memory for an n× n matrix with double precision, 64 bits or
8 bytes for every matrix element, one needs simply compute n × n × 8 bytes . Thus, if n = 10000, we
will need close to 1GB of storage. Decreasing the precision to single precision, only halves our needs.

A further point we would like to stress, is that one should in general avoid fixed (at compilation
time) dimensions of matrices. That is, one could always specify that a given matrix A should have size
A[100][100], while in the actual execution one may use only A[10][10]. If one has several such matrices,
one may run out of memory, while the actual processing of the program does not imply that. Thus, we will
always recommend that you use dynamic memory allocation, and deallocation of arrays when they are
no longer needed. In Fortran 90/95 one uses the intrisic functions ALLOCATE and DEALLOCATE,
while C++ employs the functions new and delete.

Fortran 90/95 allocate statement and mathematical operations on arrays

An array is declared in the declaration section of a program, module, or procedure using the dimension
attribute. Examples include

REAL, DIMENSION (1 0) : : x , y
REAL, DIMENSION (1 : 1 0) : : x , y
INTEGER , DIMENSION (−10:10) : : p rob
INTEGER , DIMENSION (1 0 , 1 0) : : s p i n

73

Linear algebra

The default value of the lower bound of an array is 1. For this reason the first two statements are equivalent
to the first. The lower bound of an array can be negative. The last two statements are examples of two-
dimensional arrays.

Rather than assigning each array element explicitly, we can use an array constructor to give an array
a set of values. An array constructor is a one-dimensional list of values, separated by commas, and
delimited by "(/" and "/)". An example is

a (1 : 3) = (/ 2 . 0 , −3.0 , −4.0 /)

is equivalent to the separate assignments

a (1) = 2 . 0
a (2) = −3.0
a (3) = −4.0

One of the better features of Fortran 90/95 is dynamic storage allocation. That is, the size of an array
can be changed during the execution of the program. To see how the dynamic allocation works in Fortran
90/95, consider the following simple example where we set up a 4× 4 unity matrix.

.
IMPLICIT NONE

! The d e f i n i t i o n o f t h e ma tr i x , u s i n g dynamic a l l o c a t i o n
REAL, ALLOCATABLE, DIMENSION (: , :) : : u n i t y

! The s i z e o f t h e ma t r i x
INTEGER : : n

! Here we s e t t h e dim n=4
n=4

! A l l o c a t e now p l a c e i n memory f o r t h e ma t r i x
ALLOCATE (u n i t y (n , n))

! a l l e l emen t s a re s e t equa l z e ro
u n i t y =0 .

! s e t u p i d e n t i t y ma t r i x
DO i =1 , n

u n i t y (i , i) =1 .
ENDDO
DEALLOCATE (u n i t y)
.

We always recommend to use the deallocation statement, since this frees space in memory. If the matrix
is transferred to a function from a calling program, one can transfer the dimensionality n of that matrix
with the call. Another possibility is to determine the dimensionality with the function. Writing a
statement like n=SIZE(unity,DIM=1) gives the number of rows, while using DIM=2 gives the number of
columns. Note however that this involves an extra call to a function. If speed matters, one should avoid
such calls.

4.4 Linear Systems

In this section we outline some of the most used algorithms to solve sets of linear equations. These
algorithms are based on Gaussian elimination [25, 29] and will allow us to catch several birds with a

74

4.4 – Linear Systems

stone. We will show how to rewrite a matrix A in terms of an upper and a lower triangular matrix,
from which we easily can solve linear equation, compute the inverse of A and obtain the determinant.
We start with Gaussian elimination, move to the more efficient LU-algorithm, which forms the basis
for many linear algebra applications, and end the discussion with special cases such as the Cholesky
decomposition and linear system of equations with a tridiagonal matrix.

We begin however with an example which demonstrates the importance of being able to solve linear
equations. Suppose we want to solve the following boundary value equation

−
d2u(x)

dx2
= f(x, u(x)),

with x ∈ (a, b) and with boundary conditions u(a) = u(b) = 0. We assume that f is a continuous
function in the domain x ∈ (a, b). Since, except the few cases where it is possible to find analytic
solutions, we will seek after approximate solutions, we choose to represent the approximation to the
second derivative from the previous chapter

f ′′ =
fh − 2f0 + f−h

h2
+ O(h2).

We subdivide our interval x ∈ (a, b) into n subintervals by setting xi = ih, with i = 0, 1, . . . , n+1. The
step size is then given by h = (b− a)/(n + 1) with n ∈ N. For the internal grid points i = 1, 2, . . . n we
replace the differential operator with the above formula resulting in

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
,

which we rewrite as
u

′′

i ≈
ui+1 − 2ui + ui−i

h2
.

We can rewrite our original differential equation in terms of a discretized equation with approximations
to the derivatives as

−
ui+1 − 2ui + ui−i

h2
= f(xi, u(xi)),

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+1. If we define a matrix

A =
1

h2

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟⎟⎟⎠

and the corresponding vectors u = (u1, u2, . . . , un)T and f(u) = f(x1, x2, . . . , xn, u1, u2, . . . , un)T we
can rewrite the differential equation including the boundary conditions as a system of linear equations
with a large number of unknowns

Au = f(u). (4.23)

We assume that the solution u exists and is unique for the exact differential equation, viz that the boundary
value problem has a solution. But the discretization of the above differential equation leads to several

75

Linear algebra

questions, such as how well does the approximate solution resemble the exact one as h → 0, or does a
given small value of h allow us to establish existence and uniqueness of the solution.

Here we specialize to two particular cases. Assume first that the function f does not depend on u(x).
Then our linear equation reduces to

Au = f , (4.24)

which is nothing but a simple linear equation with a tridiagonal matrix A. We will solve such a system
of equations in subsection 4.4.3.

If we assume that our boundary value problem is that of a quantum mechanical particle confined by
a harmonic oscillator potential, then our function f takes the form (assuming that all constants m = ! =
ω = 1) f(xi, u(xi)) = −x2

i u(xi)+2λu(xi)with λ being the eigenvalue. Inserting this into our equation,
we define first a new matrixA as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

.
− 1

h2
2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.25)

which leads to the following eigenvalue problem
⎛

⎜⎜⎜⎜⎜⎜⎝

2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

.
− 1

h2
2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

u1

u2

un

⎞

⎟⎟⎟⎟⎟⎟⎠
= 2λ

⎛

⎜⎜⎜⎜⎜⎜⎝

u1

u2

un

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We will solve this type of equations in chapter 12. These lecture notes contain however several other
examples of rewriting mathematical expressions into matrix problems. In chapter 7 we show how a set of
linear integral equation when discretized can be transformed into a simple matrix inversion problem. The
specific example we study in that chapter is the rewriting of Schrödinger’s equation for scattering prob-
lems. Other examples of linear equations will appear in our discussion of ordinary and partial differential
equations.

4.4.1 Gaussian elimination

Any discussion on the solution of linear equations should start with Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax = w.

We assume also that the matrixA is non-singular and that the matrix elements along the diagonal satisfy
aii ≠ 0. We discuss later how to handle such cases. In the discussion we limit ourselves again to a matrix
A ∈ R4×4, resulting in a set of linear equations of the form

⎛

⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

w1

w2

w3

w4

⎞

⎟⎟⎠ .

76

4.4 – Linear Systems

or

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The basic idea of Gaussian elimination is to use the first equation to eliminate the first unknown x1 from
the remaining n−1 equations. Then we use the new second equation to eliminate the second unknown x2

from the remaining n− 2 equations. With n− 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

b11x1 + b12x2 + b13x3 + b14x4 = y1

b22x2 + b23x3 + b24x4 = y2

b33x3 + b34x4 = y3

b44x4 = y4.

We can solve this system of equations recursively starting from xn (in our case x4) and proceed with
what is called a backward substitution. This process can be expressed mathematically as

xm =
1

bmm

(

ym −
n∑

k=m+1

bmkxk

)

m = n− 1, n − 2, . . . , 1.

To arrive at such an upper triangular system of equations, we start by eliminating the unknown x1 for
j = 2, n. We achieve this by multiplying the first equation by aj1/a11 and then subtract the result from
the jth equation. We assume obviously that a11 ≠ 0 and that A is not singular. We will come back to
this problem below.

Our actual 4× 4 example reads after the first operation
⎛

⎜⎜⎝

a11 a12 a13 a14

0 (a22 − a21a12

a11
) (a23 − a21a13

a11
) (a24 − a21a14

a11
)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)
0 (a42 − a41a12

a11
) (a43 − a41a13

a11
) (a44 − a41a14

a11
)

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

y1

w(2)
2

w(2)
3

w(2)
4

⎞

⎟⎟⎟⎠
.

or

b11x1 + b12x2 + b13x3 + b14x4 = y1

a(2)
22 x2 + a(2)

23 x3 + a(2)
24 x4 = w(2)

2

a(2)
32 x2 + a(2)

33 x3 + a(2)
34 x4 = w(2)

3

a(2)
42 x2 + a(2)

43 x3 + a(2)
44 x4 = w(2)

4 ,

(4.26)

with the new coefficients
b1k = a(1)

1k k = 1, . . . , n,

where each a(1)
1k is equal to the original a1k element. The other coefficients are

a(2)
jk = a(1)

jk −
a(1)

j1 a(1)
1k

a(1)
11

j, k = 2, . . . , n,

77

Linear algebra

with a new right-hand side given by

y1 = w(1)
1 , w(2)

j = w(1)
j −

a(1)
j1 w(1)

1

a(1)
11

j = 2, . . . , n.

We have also set w(1)
1 = w1, the original vector element. We see that the system of unknowns x1, . . . , xn

is transformed into an (n− 1)× (n− 1) problem.
This step is called forward substitution. Proceeding with these substitutions, we obtain the general

expressions for the new coefficients

a(m+1)
jk = a(m)

jk −
a(m)

jm a(m)
mk

a(m)
mm

j, k = m + 1, . . . , n,

withm = 1, . . . , n − 1 and a right-hand side given by

w(m+1)
j = w(m)

j −
a(m)

jm w(m)
m

a(m)
mm

j = m + 1, . . . , n.

This set of n−1 elimations leads us to Eq. (4.26), which is solved by back substitution. If the arithmetics
is exact and the matrixA is not singular, then the computed answer will be exact. However, as discussed
in the two preceeding chapters, computer arithmetics is not necessarily exact. We will always have
to cope with truncations and possible losses of precision. Even though the matrix elements along the
diagonal are not zero, numerically small numbers may appear and subsequent divisions may lead to large
numbers, which, if added to a small number may yield losses of precision. Suppose for example that our
first division in (a22−a21a12/a11) results in−10−7 and that a22 is one. one. We are then adding 107 +1.
With single precision this results in 107. Already at this stage we see the potential for producing wrong
results.

The solution to this set of problems is called pivoting, and we distinguish between partial and full
pivoting. Pivoting means that if small values (especially zeros) do appear on the diagonal we remove
them by rearranging the matrix and vectors by permuting rows and columns. As a simple example, let us
assume that at some stage during a calculation we have the following set of linear equations

⎛

⎜⎜⎝

1 3 4 6
0 10−8 198 19
0 −91 51 9
0 7 76 541

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y1

y2

y3

y4

⎞

⎟⎟⎠ .

The element at row i = 2 and column 2 is 10−8 and may cause problems for us in the next forward
substitution. The element i = 2, j = 3 is the largest in the second row and the element i = 3, j = 2 is
the largest in the third row. The small element can be removed by rearranging the rows and/or columns
to bring a larger value into the i = 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand side to bring the
numerically largest value in the column onto the diagonal. For our example matrix the largest value of
column two is in element i = 3, j = 2 and we interchange rows 2 and 3 to give

⎛

⎜⎜⎝

1 3 4 6
0 −91 51 9
0 10−8 198 19
0 7 76 541

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y1

y3

y2

y4

⎞

⎟⎟⎠ .

78

4.4 – Linear Systems

Note that our unknown variables xi remain in the same order which simplifies the implementation of
this procedure. The right-hand side vector, however, has been rearranged. Partial pivoting may be im-
plemented for every step of the solution process, or only when the diagonal values are sufficiently small
as to potentially cause a problem. Pivoting for every step will lead to smaller errors being introduced
through numerical inaccuracies, but the continual reordering will slow down the calculation.

The philosophy behind full pivoting is much the same as that behind partial pivoting. The main
difference is that the numerically largest value in the column or row containing the value to be replaced.
In our example above the magnitude of element i = 2, j = 3 is the greatest in row 2 or column 2. We
could rearrange the columns in order to bring this element onto the diagonal. This will also entail a
rearrangement of the solution vector x. The rearranged system becomes, interchanging columns two and
three, ⎛

⎜⎜⎝

1 6 3 4
0 198 10−8 19
0 51 −91 9
0 76 7 541

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x3

x2

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y1

y2

y3

y4

⎞

⎟⎟⎠ .

The ultimate degree of accuracy can be provided by rearranging both rows and columns so that the
numerically largest value in the submatrix not yet processed is brought onto the diagonal. This process
may be undertaken for every step, or only when the value on the diagonal is considered too small relative
to the other values in the matrix. In our case, the matrix element at i = 4, j = 4 is the largest. We could
here interchange rows two and four and then columns two and four to bring this matrix element at the
diagonal position i = 2, j = 2. When interchanging columns and rows, one needs to keep track of all
permutations performed. Partial and full pivoting are discussed in most texts on numerical linear algebra.
For an in depth discussion we recommend again the text of Golub and Van Loan [25], in particular chapter
three. See also the discussion of chapter two in Ref. [22]. The library functions you end up using, be it
via Matlab, the library included with this text or other ones, do all include pivoting.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal, then the
matrix A is singular and no solution exists.

Gaussian elimination requires however many floating point operations. An n× n matrix requires for
the simultaneous solution of a set of r different right-hand sides, a total of n3/3 + rn2 − n/3 multi-
plications. Adding the cost of additions, we end up with 2n3/3 + O(n2) floating point operations, see
Kress [29] for a proof. An n × n matrix of dimensionalty n = 103 requires, on a modern PC with a
processor that allows for something like 109 floating point operations per second (flops), approximately
one second. If you increase the size of the matrix to n = 104 you need 1000 seconds, or roughly 16
minutes.

Although the direct Gaussian elmination algorithm allows you to compute the determinant of A via
the product of the diagonal matrix of the triangular matrix, it is seldomly used in normal applications.
The more practical elimination is provided by what is called lower and upper decomposition. Once
decomposed, one can use this matrix to solve many other linear systems which use the same matrixA, viz
with different right-hand sides. With an LU decomposed matrix, the number of floating point operations
for solving a set of linear equations scales asO(n2). One should however remember that to obtain the LU
decompsed matrix requires roughly O(n3) floating point operations. Finally, LU decomposition allows
for an efficient computation of the inverse ofA.

4.4.2 LU decomposition of a matrix

A frequently used form of Gaussian elimination is L(ower)U(pper) factorisation also known as LU De-
composition or Crout or Dolittle factorisation. In this section we describe how one can decompose a

79

Linear algebra

matrix A in terms of a matrix B with elements only below the diagonal (and thereby the naming lower)
and a matrix C which contains both the diagonal and matrix elements above the diagonal (leading to the
labelling upper). Consider again the matrix A given in Eq. (4.1). The LU decomposition method means
that we can rewrite this matrix as the product of two matrices B and C where

A = BC =

⎛

⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

c11 c12 c13 c14

0 c22 c23 c24

0 0 c33 c34

0 0 0 c44

⎞

⎟⎟⎠ . (4.27)

LU decomposition forms the backbone of other algorithms in linear algebra, such as the solution of
linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The above set of equations is conveniently solved by using LU decomposition as an intermediate step,
see the next subsection for more details on how to solve linear equations with an LU decomposed matrix.

The matrix A ∈ Rn×n has an LU factorization if the determinant is different from zero. If the LU
factorization exists and A is non-singular, then the LU factorization is unique and the determinant is
given by

det{A} = c11c22 . . . cnn.

For a proof of this statement, see chapter 3.2 of Ref. [25].
The algorithm for obtaining B and C is actually quite simple. We start always with the first column.

In our simple (4× 4) case we obtain then the following equations for the first column

a11 = c11

a21 = b21c11

a31 = b31c11

a41 = b41c11,

which determine the elements c11, b21, b31 and b41 in B and C. Writing out the equations for the second
column we get

a12 = c12

a22 = b21c12 + c22

a32 = b31c12 + b32c22

a42 = b41c12 + b42c22.

Here the unknowns are c12, c22, b32 and b42 which all can be evaluated by means of the results from
the first column and the elements of A. Note an important feature. When going from the first to the
second column we do not need any further information from the matrix elements ai1. This is a general
property throughout the whole algorithm. Thus the memory locations for the matrix A can be used to
store the calculated matrix elements of B and C. This saves memory.

We can generalize this procedure into three equations

i < j : bi1c1j + bi2c2j + · · · + biicij = aij

i = j : bi1c1j + bi2c2j + · · · + biicjj = aij

i > j : bi1c1j + bi2c2j + · · · + cijcjj = aij

80

4.4 – Linear Systems

which gives the following algorithm:
Calculate the elements in B and C columnwise starting with column one. For each column (j):

– Compute the first element c1j by
c1j = a1j .

– Next, we calculate all elements cij , i = 2, . . . , j − 1

cij = aij −
i−1∑

k=1

bikckj.

– Then calculate the diagonal element cjj

cjj = ajj −
j−1∑

k=1

bjkckj . (4.28)

– Finally, calculate the elements bij, i > j

bij =
1

cjj

(

aij −
i−1∑

k=1

bikckj

)

, (4.29)

The algorithm is known as Doolittle’s algorithm since the diagonal matrix elements of B are 1 along
the diagonal. For the case where the diagonal elements of C are 1 along the diagonal, we have what is
called Crout’s algorithm. For the case where C = BT so that cii = bii for 1 ≤ i ≤ n we can use what
is called the Cholesky factorization algorithm. In this case the matrix A has to fulfil several features;
namely, it should be real, symmetric and positive definite. A matrix is positive definite if the quadratic
form xTAx > 0. Establishing this feature is not easy since it implies the use of an arbitrary vector
x ≠ 0. If the matrix is positive definite and symmetric, its eigenvalues are always real and positive. We
discuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the case where cjj is close to or equals zero,
a case which can lead to serious problems. Consider the following simple 2 × 2 example taken from
Ref. [28]

A =

(
0 1
1 1

)
.

The algorithm discussed above fails immediately, the first step simple states that c11 = 0. We could
change slightly the above matrix by replacing 0 with 10−20 resulting in

A =

(
10−20 1

1 1

)
,

yielding
c11 = 10−20

b21 = 1020

and c12 = 1 and
c11 = a11 − b21 = 1− 1020,

81

Linear algebra

we obtain
B =

(
1 0

1020 1

)
,

and
C =

(
10−20 1

0 1− 1020

)
,

With the change from 0 to a small number like 10−20 we see that the LU decomposition is now stable,
but it is not backward stable. What do we mean by that? First we note that the matrix C has an element
c22 = 1 − 1020. Numerically, since we do have a limited precision, which for double precision is
approximately ϵM ∼ 10−16 it means that this number is approximated in the machine as c22 ∼ −1020

resulting in a machine representation of the matrix as

C =

(
10−20 1

0 −1020

)
.

If we multiply the matrices BC we have
(

1 0
1020 1

)(
10−20 1

0 −1020

)
=

(
10−20 1

1 0

)
≠ A.

We do not get back the original matrixA!
The solution is pivoting (interchanging rows) around the largest element in a column j. Then we are

actually decomposing a rowwise permutation of the original matrix A. The key point to notice is that
Eqs. (4.28) and (4.29) are equal except for the case that we divide by cjj in the latter one. The upper
limits are always the same k = j − 1(= i − 1). This means that we do not have to choose the diagonal
element cjj as the one which happens to fall along the diagonal in the first instance. Rather, we could
promote one of the undivided bij’s in the column i = j + 1, . . . N to become the diagonal of C . The
partial pivoting in Crout’s or Doolittle’s methods means then that we choose the largest value for cjj (the
pivot element) and then do the divisions by that element. Then we need to keep track of all permutations
performed. For the above matrix A it would have sufficed to interchange the two rows and start the LU
decomposition with

A =

(
1 1
0 1

)
.

The error which is done in the LU decomposition of an n×nmatrix if no zero pivots are encountered
is given by, see chapter 3.3 of Ref. [25],

BC = A + H,

with
|H| ≤ 3(n− 1)u (|A| + |B||C|) + O(u2),

with |H| being the absolute value of a matrix and u is the error done in representing the matrix elements
of the matrixA as floating points in a machine with a given precision ϵM , viz. every matrix element of u
is

|fl(aij)− aij| ≤ uij,

with |uij | ≤ ϵM resulting in
|fl(A)−A| ≤ u|A|.

The programs which perform the above described LU decomposition are called as follows

82

4.4 – Linear Systems

C++: ludcmp(double ∗∗a, int n, int ∗indx, double ∗d)
Fortran 90/95: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input the matrix to be LU decomposed. In C++ this
is given by the double pointer ∗∗a. Further, both functions need the size of the matrix n. It returns the
determinant d, a pointer indx with the number of permutations and the LU decomposed matrix. Note
that the original matrix is destroyed. If you need to care of it during the calculations, you should transfer
another matrix variable.

The codes are listed in the program libraries, see under programs/cplusplus Library/lib.cpp and pro-
grams/Fortran90 Library/f90lib.f90 for the C++ and Fortran 90/95 libraries, respectively.

Cholesky’s factorization

If the matrixA is real, symmetric and positive definite, then it has a unique factorization (called Cholesky
factorization)

A = LU = LLT

where LT is the upper matrix, implying that

LT
ij = Lji.

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

– Calculate the diagonal element Lii by setting up a loop for i = 0 to i = n − 1 (C++ indexing of
matrices and vectors)

Lii =

(

Aii −
i−1∑

k=0

L2
ik

)1/2

.

– within the loop over i, introduce a new loop which goes from j = i + 1 to n− 1 and calculate

Lji =
1

Lii

(

Aij −
i−1∑

k=0

Likljk

)

.

For the Cholesky algorithm we have always that Lii > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need for pivoting.

To decide whether a matrix is positive definite or not needs some careful analysis. To find criteria
for positive definiteness, one needs two statements from matrix theory, see Golub and Van Loan [25] for
examples. First, the leading principal submatrices of a positive definite matrix are positive definite and
non-singular and secondly a matrix is positive definite if and only if it has an LDLT factorization with
positive diagonal elements only in the diagonal matrixD. A positive definite matrix has to be symmetric
and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is positive definite or not is to solve the eigenvalue
problem Ax = λx and check that all eigenvalues are positive.

83

Linear algebra

4.4.3 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a system of linear equations

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

This can be written in matrix form as
Ax = w.

whereA and w are known and we have to solve for x. Using the LU dcomposition we write

Ax ≡ BCx = w. (4.30)

This equation can be calculated in two steps

By = w; Cx = y. (4.31)

To show that this is correct we use to the LU decomposition to rewrite our system of linear equations as

BCx = w,

and since the determinat of B is equal to 1 (by construction since the diagonals of B equal 1) we can use
the inverse of B to obtain

Cx = B−1w = y,

which yields the intermediate step
B−1w = y

and multiplying with B on both sides we reobtain Eq. (4.31). As soon as we have y we can obtain x

through Cx = y.
For our four-dimentional example this takes the form

y1 = w1

b21y1 + y2 = w2

b31y1 + b32y2 + y3 = w3

b41y1 + b42y2 + b43y3 + y4 = w4.

and

c11x1 + c12x2 + c13x3 + c14x4 = y1

c22x2 + c23x3 + c24x4 = y2

c33x3 + c34x4 = y3

c44x4 = y4

This example shows the basis for the algorithm needed to solve the set of n linear equations. The algo-
rithm goes as follows

84

4.4 – Linear Systems

– Set up the matrix A and the vector w with their correct dimensions. This determines
the dimensionality of the unknown vector x.

– Then LU decompose the matrix A through a call to the function

C++: ludcmp(double ∗∗a, int n, int ∗indx, double ∗d)
Fortran 90/95: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed matrix A, its determinant and the vector
indx which keeps track of the number of interchanges of rows. If the determinant is
zero, the solution is malconditioned.

– Thereafter you call the function

C++: lubksb(double ∗∗a, int n, int ∗indx, double ∗w
Fortran 90/95: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matrix A and the vector w and returns x in the same
place as w. Upon exit the original content in w is destroyed. If you wish to keep this
information, you should make a backup of it in your calling function.

The codes are listed in the program libraries, see under programs/cplusplus Library/lib.cpp and pro-
grams/Fortran90 Library/f90lib.f90 for the C++ and Fortran 90/95 libraries, respectively.

4.4.4 Inverse of a matrix and the determinant

The basic definition of the determinant of A is

det{A} =
∑

p

(−)pa1p1 · a2p2 · · · anpn ,

where the sum runs over all permutations p of the indices 1, 2, . . . , n, altogether n! terms. Also to
calculate the inverse of A is a formidable task. Here we have to calculate the complementary cofactor a ij

of each element aij which is the (n − 1)determinant obtained by striking out the row i and column j in
which the element aij appears. The inverse of A is then constructed as the transpose a matrix with the
elements (−)i+jaij . This involves a calculation of n2 determinants using the formula above. A simplified
method is highly needed.

With the LU decomposed matrix A in Eq. (4.27) it is rather easy to find the determinant

det{A} = det{B} × det{C} = det{C},

since the diagonal elements of B equal 1. Thus the determinant can be written

det{A} =
N∏

k=1

ckk.

The inverse is slightly more difficult to obtain from the LU decomposition. It is formally defined as

A−1 = C−1B−1.

85

Linear algebra

We use this form since the computation of the inverse goes through the inverse of the matrices B and
C. The reason is that the inverse of a lower (upper) triangular matrix is also a lower (upper) triangular
matrix. If we callD for the inverse of B, we can determine the matrix elements of D through the equation

⎛

⎜⎜⎝

1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0 0 0
d21 1 0 0
d31 d32 1 0
d41 d42 d43 1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,

which gives the following general algorithm

dij = −bij −
i−1∑

k=j+1

bikdkj , (4.32)

which is valid for i > j. The diagonal is 1 and the upper matrix elements are zero. We solve this equation
column by column (increasing order of j). In a similar way we can define an equation which gives us the
inverse of the matrix C, labelled E in the equation below. This contains only non-zero matrix elements
in the upper part of the matrix (plus the diagonal ones)

⎛

⎜⎜⎝

e11 e12 e13 e14

0 e22 e23 e24

0 0 e33 e34

0 0 0 e44

⎞

⎟⎟⎠

⎛

⎜⎜⎝

c11 c12 c13 c14

0 c22 c23 c24

0 0 c33 c34

0 0 0 c44

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,

with the following general equation

eij = −
1

cjj

j−1∑

k=1

eikckj. (4.33)

for i ≤ j.
A calculation of the inverse of a matrix could then be implemented in the following way:

– Set up the matrix to be inverted.

– Call the LU decomposition function.

– Check whether the determinant is zero or not.

– Then solve column by column Eqs. (4.32, 4.33).

The following codes compute the inverse of a matrix using either C++ or Fortran 90/95 as programming
languages. They are both included in the library packages, but we include them explicitely here as well
as two distinct programs. We list first the C++ code

/∗ The f u n c t i o n
∗∗ i n v e r s e ()

86

4.4 – Linear Systems

∗∗ per fo rm a mtx i n v e r s i o n o f t h e i n p u t ma t r i x a [] [] w i t h
∗∗ d imen s i on n . The method i s d e s c r i b e d i n Numer ica l Rec i p e s
∗∗ s e c t . 2 . 3 , page 48 .
∗ /
void i n v e r s e (double ∗∗a , i n t n)
{
i n t i , j , ∗ i ndx ;
double d , ∗ co l , ∗∗y ;

/ / a l l o c a t e space i n memory
i ndx = new i n t [n] ;
c o l = new double [n] ;
y = (double ∗∗) ma t r i x (n , n , s i z e o f (double)) ;
/ / f i r s t we need t o LU decompose t h e ma t r i x
ludcmp (a , n , indx , &d) ;
/ / f i n d i n v e r s e o f a [] [] by co lumns
f o r (j = 0 ; j < n ; j ++) {

/ / i n i t i a l i z e r i g h t−s i d e o f l i n e a r e q u a t i o n s
f o r (i = 0 ; i < n ; i ++) c o l [i] = 0 . 0 ;
c o l [j] = 1 . 0 ;
l u bk sb (a , n , indx , c o l) ;
/ / save r e s u l t i n y [] []
f o r (i = 0 ; i < n ; i ++) y [i] [j] = c o l [i] ;

}
/ / r e t u r n t h e i n v e r s e ma t r i x i n a [] []

f o r (i = 0 ; i < n ; i ++) {
f o r (j = 0 ; j < n ; j ++) a [i] [j] = y [i] [j] ;

}
f r e e _m a t r i x ((void ∗∗) y) ; / / r e l e a s e l o c a l memory
d e l e t e [] c o l ;
d e l e t e [] indx ;

} / / End : f u n c t i o n i n v e r s e ()

We first need to LU decompose the matrix. Thereafter we solve Eqs. (4.32) and (4.33) by using the back
substitution method calling the function lubksb and obtain finally the inverse matrix.

An example of a C++ function which calls this function is also given in the program and reads

/ / S imp le ma t r i x i n v e r s i o n example
inc lude < io s t r e am >
inc lude <new>
inc lude < c s t d i o >
inc lude < c s t d l i b >
inc lude <cmath>
inc lude < c s t r i n g >
inc lude

us ing namespace s t d ;

/∗ f u n c t i o n d e c l a r a t i o n s ∗ /

87

Linear algebra

void i n v e r s e (double ∗∗ , i n t) ;
/∗
∗∗ Th i s program s e t s up a s imp l e 3 x3 symme t r i c ma t r i x
∗∗ and f i n d s i t s d e t e rm i n a n t and i n v e r s e
∗ /

i n t main ()
{
i n t i , j , k , r e s u l t , n = 3 ;
double ∗∗matr , sum ,
a [3] [3] = { {1 . 0 , 3 . 0 , 4 . 0 } ,

{ 3 . 0 , 4 . 0 , 6 . 0 } ,
{ 4 . 0 , 6 . 0 , 8 . 0 } } ;

/ / memory f o r i n v e r s e ma t r i x
matr = (double ∗∗) ma t r i x (n , n , s i z e o f (double)) ;
/ / v a r i o u s p r i n t s t a t em e n t s i n t h e o r i g i n a l code are om i t t e d

i n v e r s e (matr , n) ; / / c a l c u l a t e and r e t u r n i n v e r s e ma t r i x
. . . .
re turn 0 ;

} / / End : f u n c t i o n main ()

In order to use the program library you need to include the lib.h file using the #include
statement. This function utilizes the library functionmatrix and free_matrix to allocate and free memory
during execution. The matrix a[3][3] is set at compilation time. The corresponding Fortran 90/95 program
for the inverse of a matrix reads

!
! R o u t i n e s t o do mtx i n v e r s i o n , from Numer ica l
! Rec ipes , T e u k o l s k y e t a l . R o u t i n e s i n c l u d e d
! below are MATINV , LUDCMP and LUBKSB . See chap 2
! o f Numer ica l Rec i p e s f o r f u r t h e r d e t a i l s
!
SUBROUTINE mat inv (a , n , indx , d)
IMPLICIT NONE
INTEGER , INTENT (IN) : : n
INTEGER : : i , j
REAL(DP) , DIMENSION(n , n) , INTENT (INOUT) : : a
REAL(DP) , ALLOCATABLE : : y (: , :)
REAL(DP) : : d
INTEGER , , INTENT (INOUT) : : i ndx (n)

ALLOCATE (y (n , n))
y =0 .
! s e t u p i d e n t i t y ma t r i x
DO i =1 , n

y (i , i) =1 .
ENDDO
! LU decompose t h e ma t r i x j u s t once
CALL lu_decompose (a , n , indx , d)

! Find i n v e r s e by co lumns

88

4.4 – Linear Systems

DO j =1 , n
CALL l u _ l i n e a r _ e q u a t i o n (a , n , indx , y (: , j))

ENDDO
! The o r i g i n a l ma t r i x a was de s t ro y ed , now we equa t e i t w i t h t h e

i n v e r s e y
a=y
DEALLOCATE (y)

END SUBROUTINE mat inv

The Fortran 90/95 program matinv receives as input the same variables as the C++ program and calls
the function for LU decomposition lu_decompose and the function to solve sets of linear equations
lu_linear_equation. The program listed under programs/chapter4/program1.f90 performs the same ac-
tion as the C++ listed above. In order to compile and link these programs it is convenient to use a so-called
makefile. Examples of these are found under the same catalogue as the above programs.

Inverse of the Vandermonde matrix

In chapter 6 we discuss how to interpolate a function f which is known only at n+1 points x0, x1, x2, . . . , xn

with corresponding values f(x0), f(x1), f(x2), . . . , f(xn). The latter is often a typical outcome of a
large scale computation or from an experiment. In most cases in the sciences we do not have a closed
form expressions for a function f . The function is only known at specific points.

We seek a functional form for a function f which passes through the above pairs of values (x0, f(x0)),(x1, f(x1)),
(x2, f(x2)), . . . , (xn, f(xn)). This is normally achieved by expanding the function f(x) in terms of
well-known polynomials φi(x), such as Legendre, Chebyshev, Laguerre etc. The function is then ap-
proximated by a polynomial of degree n pn(x)

f(x) ≈ pn(x) =
n∑

i=0

aiφi(x),

where ai are unknown coefficients and φi(x) are a priori well-known functions. The simplest possible
case is to assume that φi(x) = xi, resulting in an approximation

f(x) ≈ a0 + a1x + a2x
2 + · · · + anxn.

Our function is known at the points n+1 points x0, x1, x2, . . . , xn, leading to n+1 equations of the type

f(xi) ≈ a0 + a1xi + a2x
2
i + · · · + anxn

i .

We can then obtain the unknown coefficients by rewriting our problem as
⎛

⎜⎜⎜⎜⎜⎜⎝

1 x0 x2
0 xn

0
1 x1 x2

1 xn
1

1 x2 x2
2 xn

2

1 x3 x2
3 xn

3

.
1 xn x2

n xn
n

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

a3

. . .
an

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

f(x0)
f(x1)
f(x2)
f(x3)
. . .

f(xn)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

an expression which can be rewritten in a more compact form as

Xa = f ,

89

Linear algebra

with

X =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 x0 x2
0 xn

0
1 x1 x2

1 xn
1

1 x2 x2
2 xn

2
1 x3 x2

3 xn
3

.
1 xn x2

n xn
n

⎞

⎟⎟⎟⎟⎟⎟⎠
.

. This matrix is called a Vandermonde matrix and is by definition non-singular since all points xi are
different. The inverse exists and we can obtain the unknown coefficients by inverting X, resulting in

a = X−1f .

Although this algorithm for obtaining an interpolating polynomial which approximates our data set
looks very simple, it is an inefficient algorithm since the computation of the inverse requires O(n3) flops.
The methods we will discuss in chapter 6 are much more effective from a numerical point of view. There
is also another subtle point. Although we have a data set with n+1 points, this does not necessarily mean
that our function f(x) is well represented by a polynomial of degree n. On the contrary, our function
f(x) may be a parabola (second-order in n), meaning that we have a large excess of data points. In such
cases a least-square fit or a spline interpolation may be better approaches to represent the function. These
techniques are discussed in chapter 6.

4.4.5 Tridiagonal systems of linear equations

We start with the linear set of equations from Eq. (4.24), viz

Au = f ,

whereA is a tridiagonal matrix which we rewrite as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.34)

where a, b, c are one-dimensional arrays of length 1 : n. In the example of Eq. (4.24) the arrays a and c
are equal, namely ai = ci = −1/h2. We can rewrite Eq. (4.24) as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

u1

u2

. . .

. . .

. . .
un

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

f1

f2

. . .

. . .

. . .
fn

⎞

⎟⎟⎟⎟⎟⎟⎠
.

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except for those
on and immediately above and below the leading diagonal. The above tridiagonal system can be written
as

aiui−1 + biui + ciui+1 = fi,

90

4.4 – Linear Systems

for i = 1, 2, . . . , n. We see that u−1 and un+1 are not required and we can set a1 = cn = 0. In many
applications the matrix is symmetric and we have ai = ci. The algorithm for solving this set of equations
is rather simple and requires two steps only, a forward substitution and a backward substitution. These
steps are also common to the algorithms based on Gaussian elimination that we will discussed previously.
However, due to its simplicity, the number of floating point operations is in this case proportional with
O(n) while Gaussian elimination requires 2n3/3 + O(n2) floating point operations. In case your system
of equations leads to a tridiagonal matrix, it is clearly an overkill to employ Gaussian elimination or the
standard LU decomposition. You will encounter several applications involving tridiagonal matrices in
our discussion of partial differential equations in chapter 15.

Our algorithm starts with forward substitution with a loop over of the elements i and can be expressed
via the following code piece of code taken from the Numerical Recipe text of Teukolsky et al [22]

btemp = b [1] ;
u [1] = f [1] / btemp ;
f o r (i =2 ; i <= n ; i ++) {

temp [i] = c [i −1]/ btemp ;
btemp = b [i]−a [i]∗ temp [i] ;
u [i] = (f [i] − a [i]∗ u [i −1]) / btemp ;

}

Note that you should avoid cases with b1 = 0. If that is the case, you should rewrite the equations as a set
of order n− 1 with u2 eliminated. Finally we perform the backsubstitution leading to the following code

f o r (i =n−1 ; i >= 1 ; i−−) {
u [i] −= temp [i +1]∗u [i + 1] ;

}

Note that our sums start with i = 1 and that one should avoid cases with b1 = 0. If that is the case, you
should rewrite the equations as a set of order n − 1 with u2 eliminated. However, a tridiagonal matrix
problem is not a guarantee that we can find a solution. The matrixA which rephrases a second derivative
in a discretized form

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0
0 0 0 −1 2 −1
0 0 0 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an| and |bk| ≥
|ak| + |ck| for k = 2, 3, . . . , n − 1. This is a relevant but not sufficient condition to guarantee that the
matrix A yields a solution to a linear equation problem. The matrix needs also to be irreducible. A
tridiagonal irreducible matrix means that all the elements ai and ci are non-zero. If these two conditions
are present, thenA is nonsingular and has a unique LU decomposition.

We can obviously extend our boundary value problem to include a first derivative as well

−
d2u(x)

dx2
+ g(x)

du(x)

dx
+ h(x)u(x) = f(x),

with x ∈ [a, b] and with boundary conditions u(a) = u(b) = 0. We assume athat f , g and h are
continuous functions in the domain x ∈ [a, b] and that h(x) ≥ 0. Then the differential equation has
a unique solution. We subdivide our interval x ∈ [a, b] into n subintervals by setting xi = ih, with

91

Linear algebra

i = 0, 1, . . . , n + 1. The step size is then given by h = (b− a)/(n + 1) with n ∈ N. For the internal grid
points i = 1, 2, . . . n we replace the differential operators with

u
′′

i ≈
ui+1 − 2ui + ui−i

h2
.

for the second derivative while the first derivative is given by

u
′

i ≈
ui+1 − ui−i

2h
.

We rewrite our original differential equation in terms of a discretized equation as

−
ui+1 − 2ui + ui−i

h2
+ gi

ui+1 − ui−i

2h
+ hiui = fi,

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+1. This equation can again be rewritten as a tridiagonal matrix problem. We leave it as
an exercise to the reader to find the matrix elements, find the conditions for having weakly dominant
diagonal elements and that the matrix is irreducible.

4.5 Singular value decomposition

In preparation, Fall 2008

4.6 QR decomposition

In preparation, Fall 2008

4.7 Handling sparse matrices

In preparation, Fall 2008

4.8 Classes, templates and Blitz++

In the above pseudocode for solving a system of linear equations, we started our indexing from i = 1.
This was done because in many mathematical expressions the indices of vectors and matrices would
typically start from i = 1. Quite often we would like our codes to mimick the mathematical expressions
we derive as much as possible.

In Fortran a vector or matrix start with 1, but it is to change a vector so that it starts with zero or even
a negative number. If we have a double precision Fortran vector which starts at −10 and ends at 10, we
could declare it as REAL(KIND=8):: vector(−10:10). Similarly, if we want to start at zero and end at 10
we could write REAL(KIND=8):: vector (0:10) . We have also seen that Fortran 90/95 allows us to write a
matrix addition A = B + C as A = B + C. This means that we have overloaded the addition operator so
that it translates this operation into two loops and an addition of two matrix elements aij = bij + cij .

92

4.8 – Classes, templates and Blitz++

The way the matrix addition is written is very close to the way we express this relation mathemat-
ically. The benefit for the programmer is that our code is easier to read. Furthermore, such a way of
coding makes it more likely to spot eventual errors as well.

In Ansi C and C++ arrays start by default from i = 0. Moreover, if we wish to add two matrices we
need to explicitely write out the two loops as

f o r (i =0 ; i < n ; i ++) {
f o r (j =0 ; j < n ; j ++) {

a [i] [j]= b [i] [j]+ c [i] [j]
}

}

However, the strength of C++ over programming languages like C and Fortran 77 is the possibility
to define new data types, tailored to some particular problem. Via new data types and overloading of
operations such as addition and subtraction, we can easily define sets of operations and data types which
allow us to write a matrix addition in exactly the same way as we would do in Fortran 90/95. We could
also change the way we declare a C++ matrix elements aij , from a[i][j] to say a(i, j), as we would do in
Fortran 90/95. Similarly, we could also change the default range from 0 : n− 1 to 1 : n.

To achieve this we need to introduce two important entities in C++ programming, classes and tem-
plates. Till now, except for a brief encounter in the previous chapter on how to handle files in C++, we
have not defined properly this programming feature.

The function and class declarations are fundamental concepts within C++. Functions are abstractions
which encapsulate an algorithm or parts of it and perform specific tasks in a program. We have already
met several examples on how to use functions. Classes can be defined as abstractions which encapsulate
data and operations on these data. The data can be very complex data structures and the class can contain
particular functions which operate on these data. Classes allow therefore for a higher level of abstrac-
tion in computing. The elements (or components) of the data type are the class data members, and the
procedures are the class member functions.

Classes are user-defined tools used to create multi-purpose software which can be reused by other
classes or functions. These user-defined data types contain data (variables) and functions operating on
the data.

A simple example is that of a point in two dimensions. The data could be the x and y coordinates
of a given point. The functions we define could be simple read and write functions or the possibility to
compute the distance between two points.

The two examples we elaborate on below3 demonstrate most of the features of classes. We develop
first a class called Complex which allows us to perform various operations on complex variables. In
appendix A we extend our discussion of classes to define a class vector_operations which allows us to
perform various operations on a user-specified one-dimesional array, from declarations of a vector to
mathematical operations such as additions of vectors.

The classes we define are easy to use in other codes and/or other classes and many of the details which
would be present in C (or Fortran 77) codes are hidden inside the class. The reuse of a well-written and
functional class is normally rather simple. However, to write a given class is often complicated, especially
if we deal with complicated matrix operations. In this text we will rely on ready-made classes in C++ for
dealing with matrix operations. We have chosen to use the Blitz++ library, discussed below. This library
hides for us many low-level operations with matrices and vectors, such as matrix-vector multiplications

3These examples are taken from the course INF-VERK3830, see for
more information.

93

Linear algebra

or allocation and deallocation of memory. Such libraries make it then easier to build our own high-level
classes out of well-tested lower-level classes.

The way we use classes in this text is close to theMODULE data type in Fortran90/95 and we provide
some simple demonstrations of the latter as well in appendix A.

In this text we will mainly use classes to encapsulate specific operations, but will not use the full
power such as inheritance and other object-oriented programming concepts. For examples of the latter
see Refs. [20, 19, 21]

4.8.1 The Complex class

As remarked in chapter 2, C++ has a class complex in its standard template library (STL). The standard
usage in a given function could then look like

/ / Program t o c a l c u l a t e a d d i t i o n and m u l t i p l i c a t i o n o f two complex numbers
us ing namespace s t d ;
inc lude < io s t r e am >
inc lude <cmath>
inc lude <complex >
i n t main ()
{
complex <double > x (6 . 1 , 8 . 2) , y (0 . 5 , 1 . 3) ;
/ / w r i t e ou t x+y
cou t << x + y << x∗y << end l ;
re turn 0 ;

}

where we add and multiply two complex numbers x = 6.1 + ı8.2 and y = 0.5 + ı1.3 with the obvious
results z = x + y = 6.6 + ı9.5 and z = x · y = −7.61 + ı12.03. In Fortran90/95 we would declare the
above variables as COMPLEX(DPC):: x(6.1,8.2), y (0.5,1.3) .

The library Blitz++ includes an extension of the complex class to operations on vectors, matrices
and higher-dimensional arrays. We recommend the use of Blitz++ when you develop your own codes.
However, writing a complex class yourself is a good pedagogical exercise.

We proceed by splitting our task in three files.

– We define first a header file complex.h which contains the declarations of the class. The header
file contains the class declaration (data and functions), declaration of stand-alone functions, and all
inlined functions, starting as follows

i f n d e f Complex_H
de f i n e Complex_H
/ / v a r i o u s i n c l u d e s t a t em e n t s and d e f i n i t i o n s
inc lude < io s t r e am > / / S tandard ANSI−C++ i n c l u d e f i l e s
inc lude <new>
inc lude

c l a s s Complex
{ . . .
d e f i n i t i o n o f v a r i a b l e s and t h e i r c h a r a c t e r
} ;
/ / d e c l a r a t i o n s o f v a r i o u s f u n c t i o n s used by t h e c l a s s
. . .
end i f

94

4.8 – Classes, templates and Blitz++

– Next we provide a file complex.cpp where the code and algorithms of different functions (except
inlined functions) declared within the class are written. The files complex.h and complex.cpp are
normally placed in a directory with other classes and libraries we have defined.

– Finally,we discuss here an example of a main program which uses this particular class. An example
of a program which uses our complex class is given below. In particular we would like our class
to perform tasks like declaring complex variables, writing out the real and imaginary part and
performing algebraic operations such as adding or multiplying two complex numbers.
inc lude
. . . o t h e r i n c l u d e and d e c l a r a t i o n s
i n t main ()
{
Complex a (0 . 1 , 1 . 3) ; / / we d e c l a r e a complex v a r i a b l e a
Complex b (3 . 0) , c (5 . 0 , −2 . 3) ; / / we d e c l a r e complex v a r i a b l e s b and

c
Complex d = b ; / / we d e c l a r e a new complex v a r i a b l e d
cou t << << d << << a << << b << end l ;
d = a∗c + b / a ; / / we add , m u l t i p l y and d i v i d e two complex numbers
cou t << << d . Re () << << d . Im () << end l ; / / w r i t e

ou t o f t h e r e a l and imag ina ry p a r t s
}

We include the header file complex.h and define four different complex variables. These are a =
0.1 + ı1.3, b = 3.0 + ı0 (note that if you don’t define a value for the imaginary part this is set to
zero), c = 5.0− ı2.3 and d = b. Thereafter we have defined standard algebraic operations and the
member functions of the class which allows us to print out the real and imaginary part of a given
variable.

To achieve these features, let us see how we could define the complex class. In C++ we could define
a complex class as follows
c l a s s Complex
{
pr i v a t e :

double re , im ; / / r e a l and imag ina ry p a r t
pub l i c :

Complex () ; / / Complex c ;
Complex (double re , double im = 0 . 0) ; / / D e f i n i t i o n o f a complex v a r i a b l e

;
Complex (cons t Complex& c) ; / / Usage : Complex c (a) ; / /

e qua t e two complex v a r i a b l e s
Complex& opera tor= (cons t Complex& c) ; / / c = a ; / / e qua t e two complex

v a r i a b l e s , same as p r e v i o u s
~Complex () {} / / d e s t r u c t o r
double Re () cons t ; / / doub le r e a l _ p a r t = a . Re () ;
double Im () cons t ; / / doub le imag_par t = a . Im () ;
double abs () cons t ; / / doub le m = a . abs () ; / / modulus
f r i e nd Complex opera tor+ (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex operator− (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex opera tor∗ (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex opera tor / (cons t Complex& a , cons t Complex& b) ;

} ;

95

Linear algebra

The class is defined via the statement class Complex. We must first use the key word class , which in
turn is followed by the user-defined variable name Complex. The body of the class, data and functions, is
encapsulated within the parentheses {...};.

Data and specific functions can be private, which means that they cannot be accessed from outside
the class. This means also that access cannot be inherited by other functions outside the class. If we
use protected instead of private, then data and functions can be inherited outside the class. The key
word public means that data and functions can be accessed from outside the class. Here we have defined
several functions which can be accessed by functions outside the class. The declaration friend means that
stand-alone functions can work on privately declared variables of the type (re , im). Data members of a
class should be declared as private variables.

The first public function we encounter is a so-called constructor, which tells how we declare a variable
of type Complex and how this variable is initialized. We have chose three possibilities in the example
above:

1. A declaration like Complex c; calls the member function Complex() which can have the following
implementation

Complex : : Complex () { r e = im = 0 . 0 ; }

meaning that it sets the real and imaginary parts to zero. Note the way a member function is
defined. The constructor is the first function that is called when an object is instantiated.

2. Another possibility is

Complex : : Complex () {}

which means that there is no initialization of the real and imaginary parts. The drawback is that a
given compiler can then assign random values to a given variable.

3. A call like Complex a (0.1,1.3) ; means that we could call the member function Complex(double,
double)as

Complex : : Complex (double re_a , double im_a)
{ r e = r e_ a ; im = im_a ; }

The simplest member function are those we defined to extract the real and imaginary part of a variable.
Here you have to recall that these are private data, that is they invisible for users of the class. We obtain
a copy of these variables by defining the functions

double Complex : : Re () cons t { re turn r e ; }} / / g e t t i n g t h e r e a l p a r t
double Complex : : Im () cons t { re turn im ; } / / and t h e imag ina ry p a r t
\ end { l s t l i s t i n g l i n e }
Note t h a t we have i n t r o d u c e d t h e d e c l a r a t i o n \ l s t i n l i n e { cons t } . What

does i t mean?
Th i s d e c l a r a t i o n means t h a t a v a r i b a l e c anno t be changed w i t h i n a c a l l e d

f u n c t i o n .
I f we d e f i n e a v a r i a b l e as
\ l s t i n l i n e { cons t double p = 3 ;} and t h en t r y t o change i t s va lue , we w i l l

g e t an e r r o r when we
compi l e ou r program . Th i s means t h a t c o n s t a n t a rgumen t s i n f u n c t i o n s c anno t

be changed .
\ b eg i n { l s t l i s t i n g }

96

4.8 – Classes, templates and Blitz++

/ / c o n s t a rgumen t s (i n f u n c t i o n s) canno t be changed :
void myfunc (cons t Complex& c)
{ c . r e = 0 . 2 ; /∗ ILLEGAL ! ! comp i l e r e r r o r . . . ∗ / }

If we declare the function and try to change the value to 0.2, the compiler will complain by sending an
error message. If we define a function to compute the absolute value of complex variable like

double Complex : : ab s () { re turn s q r t (r e ∗ r e + im∗ im) ; }

without the constant declaration and define thereafter a function myabs as

double myabs (cons t Complex& c)
{ re turn c . abs () ; } / / Not ok because c . abs () i s no t a c o n s t f u n c .

the compiler would not allow the c.abs() call in myabs since Complex::abs is not a constant member
function. Constant functions cannot change the object’s state. To avoid this we declare the function abs
as

double Complex : : ab s () cons t { re turn s q r t (r e ∗ r e + im∗ im) ; }

Overloading operators

C++ (and Fortran 90/95) allow for overloading of operators. That means we can define algebraic op-
erations on for example vectors or any arbitrary object. As an example, a vector addition of the type
c = a + b means that we need to write a small part of code with a for-loop over the dimension of the
array. We would rather like to write this statement as c = a+b; as this makes the code much more read-
able and close to eventual equations we want to code. To achieve this we need to extend the definition of
operators.

Let us study the declarations in our complex class. In our main function we have a statement like
d = b;, which means that we call d.operator= (b) and we have defined a so-called assignment operator as
a part of the class defined as

Complex& Complex : : opera tor= (cons t Complex& c)
{

r e = c . r e ;
im = c . im ;
re turn ∗ t h i s ;

}

With this function, statements like Complex d = b; or Complex d(b); make a new object d, which becomes
a copy of b. We can make simple implementations in terms of the assignment

Complex : : Complex (cons t Complex& c)
{ ∗ t h i s = c ; }

which is a pointer to "this object", ∗ this is the present object, so ∗ this = c; means setting the present
object equal to c, that is this−>operator= (c);.

The meaning of the addition operator + for Complex objects is defined in the function Complex
operator+ (const Complex& a, const Complex& b); // a+bThe compiler translates c = a + b; into c = operator
+ (a , b) ; . Since this implies the call to function, it brings in an additional overhead. If speed is crucial
and this function call is performed inside a loop, then it is more difficult for a given compiler to perform
optimizations of a loop. The solution to this is to inline functions. We discussed inlining in chapter 2.

97

Linear algebra

Inlining means that the function body is copied directly into the calling code, thus avoiding calling the
function. Inlining is enabled by the inline keyword

i n l i n e Complex opera tor+ (cons t Complex& a , cons t Complex& b)
{ re turn Complex (a . r e + b . re , a . im + b . im) ; }

Inline functions, with complete bodies must be written in the header file complex.h. Consider the case c
= a + b; that is, c.operator= (operator+ (a ,b)) ; If operator+, operator= and the constructor Complex(r,i)
all are inline functions, this transforms to

c . r e = a . r e + b . r e ;
c . im = a . im + b . im ;

by the compiler, i.e., no function calls
The stand-alone function operator+ is a friend of the Complex class

c l a s s Complex
{

. . .
f r i e nd Complex opera tor+ (cons t Complex& a , cons t Complex& b) ;
. . .

} ;

so it can read (and manipulate) the private data parts re and im via

i n l i n e Complex opera tor+ (cons t Complex& a , cons t Complex& b)
{ re turn Complex (a . r e + b . re , a . im + b . im) ; }

Since we do not need to alter the re and im variables, we can get the values by Re() and Im(), and there
is no need to be a friend function

i n l i n e Complex opera tor+ (cons t Complex& a , cons t Complex& b)
{ re turn Complex (a . Re () + b . Re () , a . Im () + b . Im ()) ; }

The multiplication functionality can now be extended to imaginary numbers by the following code

i n l i n e Complex opera tor∗ (cons t Complex& a , cons t Complex& b)
{
re turn Complex (a . r e ∗b . r e − a . im∗b . im , a . im∗b . r e + a . r e ∗b . im) ;

}

It will be convenient to inline all functions used by this operator. To inline the complete expression a∗b;,
the constructors and operator=must also be inlined. This can be achieved via the following piece of code

i n l i n e Complex : : Complex () { r e = im = 0 . 0 ; }
i n l i n e Complex : : Complex (double re_ , double im_)
{ . . . }
i n l i n e Complex : : Complex (cons t Complex& c)
{ . . . }
i n l i n e Complex : : opera tor= (cons t Complex& c)
{ . . . }
/ / e , c , d are complex
e = c∗d ;
/ / f i r s t c omp i l e r t r a n s l a t i o n :
e . opera tor= (opera tor∗ (c , d)) ;
/ / r e s u l t o f n e s t e d i n l i n e f u n c t i o n s

98

4.8 – Classes, templates and Blitz++

/ / o p e r a t o r = , o p e r a t o r ∗ , Complex (double , doub le =0) :
e . r e = c . r e ∗d . r e − c . im∗d . im ;
e . im = c . im∗d . r e + c . r e ∗d . im ;

The definitions operator− and operator/ follow the same set up.
Finally, if we wish to write to file or another device a complex number using the simple syntax

cout << c;, we obtain this by defining the effect of << for a Complex object as
o s t r e am& operator << (o s t r e am& o , cons t Complex& c)
{ o << << c . Re () << << c . Im () << ; re turn o ; }

Templates

The reader may have noted that all variables and some of the functions defined in our class are declared
as doubles. What if we wanted to make a class which takes integers or floating point numbers with single
precision? A simple way to achieve this is copy and paste our class and replace double with for example
int .

C++ allows us to do this automatically via the usage of templates, which are the C++ constructs for
parameterizing parts of classes. Class templates is a template for producing classes. The declaration
consists of the keyword template followed by a list of template arguments enclosed in brackets. We can
therefore make a more general class by rewriting our original example as
template < c l a s s T>
c l a s s Complex
{
pr i v a t e :

T re , im ; / / r e a l and imag ina ry p a r t
pub l i c :

Complex () ; / / Complex c ;
Complex (T re , T im = 0) ; / / D e f i n i t i o n o f a complex v a r i a b l e ;
Complex (cons t Complex& c) ; / / Usage : Complex c (a) ; / /

e qua t e two complex v a r i a b l e s
Complex& opera tor= (cons t Complex& c) ; / / c = a ; / / e qua t e two complex

v a r i a b l e s , same as p r e v i o u s
~Complex () {} / / d e s t r u c t o r
T Re () cons t ; / / T r e a l _ p a r t = a . Re () ;
T Im () cons t ; / / T imag_par t = a . Im () ;
T abs () cons t ; / / T m = a . abs () ; / / modulus
f r i e nd Complex opera tor+ (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex operator− (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex opera tor∗ (cons t Complex& a , cons t Complex& b) ;
f r i e nd Complex opera tor / (cons t Complex& a , cons t Complex& b) ;

} ;

What it says is that Complex is a parameterized type with T as a parameter and T has to be a type such as
double or float. The class complex is now a class template and we would define variables in a code as
Complex<double > a (1 0 . 0 , 5 . 1) ;
Complex< i n t > b (1 , 0) ;

Member functions of our class are defined by preceding the name of the function with the template
keyword. Consider the function we defined as Complex:: Complex (double re_a, double im_a). We would
rewrite this function as

99

Linear algebra

template < c l a s s T>
Complex<T> : : Complex (T re_a , T im_a)
{ r e = r e_ a ; im = im_a ; }

The member functions are otherwise defined following ordinary member function definitions.
To write a class like the above is rather straightforward. The class for handling one-dimensional

arrays, presented in appendix A shows some of the additional possibilities which C++ offers. However,
it can be rather difficult to write good classes for handling matrices or more complex objects. For such
applications we recommend therefore the usage of ready-made libraries like Blitz++

Blitz++ is a C++ library whose two main goals are to im-
prove the numerical efficiency of C++ and to extend the conventional dense array model to incorporate
new and useful features. Some examples of such extensions are flexible storage formats, tensor notation
and index placeholders. It allows you also to write several operations involving vectors and matrices in
a simple and clear (from a mathematical point of view) way. The way you would code the addition of
two matrices looks very similar to the way it is done in Fortran90/95. The C++ programming language
offers many features useful for tackling complex scientific computing problems: inheritance, polymor-
phism, generic programming, and operator overloading are some of the most important. Unfortunately,
these advanced features came with a hefty performance pricetag: until recently, C++ lagged behind For-
tran’s performance by anywhere from 20% to a factor of ten. It was not uncommon to read in textbooks on
high-performance computing that if performance matters, then one should resort to Fortran, preferentially
Fortran 77. As a result, untill very recently, the adoption of C++ for scientific computing has been slow.
This has changed quite a lot in the last years and modern C++ compilers with numerical libraries have
improved the situation considerably. Recent benchmarks show C++ encroaching steadily on Fortran’s
high-performance monopoly, and for some benchmarks, C++ is even faster than Fortran! These results
are being obtained not through better optimizing compilers, preprocessors, or language extensions, but
through the use of template techniques. By using templates cleverly, optimizations such as loop fusion,
unrolling, tiling, and algorithm specialization can be performed automatically at compile time.

The features of Blitz++ which are useful for our studies are the dynamical allocation of vectors and
matrices and algebraic operations on these objects. In particular, if you access the Blitz++ webpage at

, we recommend that you study chapters two and three.
In this section we discuss several applications of the Blitz++ library and demonstrate the benefits

when handling arrays and mathematical expressions involving arrays.
At you will find examples of

makefiles, simple examples like those discussed here and the C++ library which contains the algorithms
discussed in this text. You can choose whether you want to employ Blitz++ fully or just use the more
old-fashioned C++ codes.

The example included here shows some of the versatility of Blitz++ when handling matrices. Note
that you need to define the path where you have store Blitz++. We recommend that you study the exam-
ples available at the Blitz++ web page and the examples which follow this text.

As an example, a float matrix is defined simply as Array<float ,2> A(r, r) ; . As the example shows
we can even change the range of the matrix from the standard which starts at 0 and ends at n− 1 to one
which starts at 1 and ends at n. This can be useful if you deal with matrices from a Fortran code or if you
wish to code your matrix operation following the way you index the matrix elements.

You can also easily initialise to zero your matrix by simply writing A=0.;. Note also the way you can
fill in matrix elements and print out elements using one single statement, instead of for example two for
loops. The following example illustrates some of these features.

100

4.8 – Classes, templates and Blitz++

/ / S imp le t e s t ca se o f ma t r i x o p e r a t i o n s
/ / u s i n g B l i t z++
inc lude < b l i t z / a r r a y . h>
inc lude < io s t r e am >
us ing namespace s t d ;
us ing namespace b l i t z ;

i n t main ()
{

/ / Crea te two 4x4 a r r a y s . We want them t o l oo k l i k e ma t r i c e s , so
/ / we ’ l l make t h e v a l i d i n d e x range 1 . . 4 (r a t h e r than 0 . . 3 which i s
/ / t h e d e f a u l t) .

Range r (1 , 4) ;
Array < f l o a t ,2 > A(r , r) , B(r , r) ;

/ / The f i r s t w i l l be a H i l b e r t ma t r i x :
/ /
/ / a = 1
/ / i j −−−−−
/ / i+j−1
/ /
/ / B l i t z++ p r o v i d e s a s e t o f t y p e s { f i r s t I n d e x , second Index , . . . }
/ / which a c t as p l a c e h o l d e r s f o r i n d i c e s . These can be used d i r e c t l y
/ / i n e x p r e s s i o n s . For example , we can f i l l o u t t h e A ma t r i x l i k e t h i s :

f i r s t I n d e x i ; / / P l a c e h o l d e r f o r t h e f i r s t i n d e x
s e cond Index j ; / / P l a c e h o l d e r f o r t h e second i n d e x

A = 1 .0 / (i + j −1) ;
cou t << << A << end l ;
/ / Now t h e A ma t r i x has each e l emen t equa l t o a _ i j = 1 / (i+j −1) .
/ /
/ / The ma t r i x B w i l l be t h e p e rmu t a t i o n ma t r i x
/ /
/ / [0 0 0 1]
/ / [0 0 1 0]
/ / [0 1 0 0]
/ / [1 0 0 0]
/ /
/ / Here are two ways o f f i l l i n g ou t B:

B = (i == (5− j)) ; / / Using an e q u a t i o n −− a b i t c r y p t i c

cou t << << B << end l ;

B = 0 , 0 , 0 , 1 , / / Using an i n i t i a l i z e r l i s t
0 , 0 , 1 , 0 ,
0 , 1 , 0 , 0 ,
1 , 0 , 0 , 0 ;

101

Linear algebra

cou t << << B << end l ;
}

More examples are discussed in appendix A.

4.9 Single-value decomposition

Topic for fall 2008.

4.10 QR decomposition

Topic for fall 2008.

4.11 Physics project, the one-dimensional Poisson equation

The aim of this project is to get familiar with various matrix operations, from dynamic memory allocation
to the usage of programs in the library package of the course. For Fortran users memory handling and
most matrix and vector operations are included in the ANSI standard of Fortran 90/95. For C++ user
however, there are three possible options

1. Make your own functions for dynamic memory allocation of a vector and a matrix. Use then the
library package lib.cpp with its header file lib.hpp for obtaining LU-decomposed matrices, solve
linear equations etc.

2. Use the library package lib.cpp with its header file lib.hpp which includes a function for
dynamic memory allocation. This program package includes all the other functions discussed
during the lectures for solving systems of linear equations, obatining the determinant, getting the
inverse etc.

3. Finally, we provide on the web-page of the course a library package which uses Blitz++’s classes
for array handling. You could then, since Blitz++ is installed on all machines at the lab, use these
classes for handling arrays.

Your program, whether it is written in C++ or Fortran 90/95, should include dynamic memory han-
dling of matrices and vectors. You should also read the matrix from a file and write your results to a file.
Make sure your code includes these options.

(a) Consider the linear system of equations

a11x1 + a12x2 + a13x3 = w1

a21x1 + a22x2 + a23x3 = w2

a31x1 + a32x2 + a33x3 = w3.

This can be written in matrix form as
Ax = w.

102

4.11 – Physics project, the one-dimensional Poisson equation

Use the included programs for LU decomposition to solve the system of equations

− x1 + x2 − 4x3 = 0

2x1 + 2x2 = 1

3x1 + 3x2 + 2x3 = 1
2 .

Use first standard Gaussian elimination and compute the result analytically. Compare thereafter
your analytical results with the numerical ones obtained using the LU programs in the program
library.

(b) In the rest of this project we will solve the one-dimensional Poisson equation with Dirichlet bound-
ary conditions by rewriting it as a set of linear equations.

The three-dimensional Poisson equation is a partial differential equation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −

ρ(x, y, z)

ϵ0
,

whose solution we will discuss in chapter 15. The function ρ(x, y, z) is the charge density and φ
is the electrostatic potential. In this project we consider the one-dimensional case since there are a
few situations, possessing a high degree of symmetry, where it is possible to find analytic solutions.
Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of the various quantities in the y- and z-directions.
In this case, Poisson’s equation reduces to an ordinary differential equation in x, the solution of
which is relatively straightforward. Consider for example a vacuum diode, in which electrons are
emitted from a hot cathode and accelerated towards an anode. The anode is held at a large positive
potential V0 with respect to the cathode. We can think of this as an essentially one-dimensional
problem. Suppose that the cathode is at x = 0 and the anode at x = d. Poisson’s equation takes
the form

d2φ

dx2
= −

ρ(x)

ϵ0
,

where φ(x) satisfies the boundary conditions φ(0) = 0 and φ(d) = V0. By energy conservation,
an electron emitted from rest at the cathode has an x-velocity v(x) which satisfies

1

2
mev

2(x)− eφ(x) = 0.

Furthermore, we assume that the current I is independent of x between the anode and cathode,
otherwise, charge will build up at some points. From electromagnetism one can then show that
the current I is given by I = −ρ(x)v(x)A, where A is the cross-sectional area of the diode. The
previous equations can be combined to give

d2φ

dx2
=

I

ϵ0A

(me

2e

)1/2
φ−1/2.

The solution of the above equation which satisfies the boundary conditions is

φ = V0

(x

d

)4/3
,

103

Linear algebra

with

I =
4

9

ϵ0A

d2

(
2e

me

)1/2

V 3/2
0 .

This relationship between the current and the voltage in a vacuum diode is called the Child-
Langmuir law.

Another physics example in one dimension is the famous Thomas-Fermi model, widely used as a
mean-field model in simulations of quantum mechanical systems [35, 36], see Lieb for a newer and
updated discussion [37]. Thomas and Fermi assumed the existence of an energy functional, and
derived an expression for the kinetic energy based on the density of electrons, ρ(r) in an infinite
potential well. For a large atom or molecule with a large number of electrons. Schrödinger’s equa-
tion, which would give the exact density and energy, cannot be easily handled for large numbers
of interacting particles. Since the Poisson equation connects the electrostatic potential with the
charge density, one can derive the following equation for potential V

d2V

dx2
=

V 3/2

√
x

,

with V (0) = 1.
In our case we will rewrite Poisson’s equation in terms of dimensional variables. We can then
rewrite the equation as

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

and we define the discretized approximation to u as vi with grid points xi = ih in the interval from
x0 = 0 to xn+1 = 1. The step length or spacing is defined as h = 1/(n + 1). We have then the
boundary conditions v0 = vn+1 = 0. We approximate the second derivative of u with

−
vi+1 + vi−1 − 2vi

h2
= fi for i = 1, . . . , n,

where fi = f(xi). Show that you can rewrite this equation as a linear set of equations of the form

Av = b̃,

whereA is an n× n tridiagonal matrix which we rewrite as

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0
−1 2 −1 0
0 −1 2 −1 0 . . .

.
0 . . . −1 2 −1
0 . . . 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.35)

and b̃i = h2fi.
In our case we will assume that f(x) = (3x + x2)ex, and keep the same interval and boundary
conditions. Then the above differential equation has an analytic solution given by u(x) = x(1 −
x)ex (convince yourself that this is correct by inserting the solution in the Poisson equation). We
will compare our numerical solution with this analytic result in the next exercise.

104

4.11 – Physics project, the one-dimensional Poisson equation

(c) We can rewrite our matrixA in terms of one-dimensional vectors a, b, c of length 1 : n. Our linear
equation reads

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

b1 c1 0
a2 b2 c2

a3 b3 c3
.

an−2 bn−1 cn−1

an bn

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

v1

v2

. . .

. . .

. . .
vn

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

b̃1

b̃2

. . .

. . .

. . .
b̃n

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.36)

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except for
those on and immediately above and below the leading diagonal. The above tridiagonal system can
be written as

aivi−1 + bivi + civi+1 = b̃i, (4.37)

for i = 1, 2, . . . , n. The algorithm for solving this set of equations is rather simple and requires
two steps only, a decomposition and forward substitution and finally a backward substitution.
Your first task is to set up the algorithm for solving this set of linear equations. Find also the
number of operations needed to solve the above equations. Show that they behave like O(n) with
n the dimensionality of the problem. Compare this with standard Gaussian elimination.
Then you should code the above algorithm and solve the problem for matrices of the size 10× 10,
100 × 100 and 1000 × 1000. That means that you choose n = 10, n = 100 and n = 1000 grid
points.
Compare your results (make plots) with the analytic results for the different number of grid points
in the interval x ∈ (0, 1). The different number of grid points corresponds to different step lengths
h.
Compute also the maximal relative error in the data set i = 1, . . . , n,by setting up

ϵi = log10

(∣∣∣∣
vi − ui

ui

∣∣∣∣

)
,

as function of log10(h) for the function values ui and vi. For each step length extract the max value
of the relative error. Try to increase n to n = 10000 and n = 105. Comment your results.

(d) Compare your results with those from the LU decomposition codes for the matrix of size 1000 ×
1000. Use for example the unix function time when you run your codes and compare the time
usage between LU decomposition and your tridiagonal solver. Can you run the standard LU de-
composition for a matrix of the size 105 × 105? Comment your results.

4.11.1 Solution to exercise c)

The program listed below encodes a possible solution to part c) of the above project. Note that we have
employed Blitz++ as library and that the range of the various vectors are now shifted from their default
ranges (0 : n − 1) to (1 : n) and that we access vector elements as a(i) instead of the standard C++
declaration a[i].

The program reads from screen the name of the ouput file and the dimension of the problem, which in
our case corresponds to the number of mesh points as well, in addition to the two endpoints. The function
f(x) = (3x + x2) exp (x) is included explicitely in the code. An obvious change is to define a separate
function, allowing thereby for a generalization to other function f(x).

105

Linear algebra

/∗
Program t o s o l v e t h e one−d imen s i o n a l Po i s son e q u a t i o n
−u ’ ’ (x) = f (x) r e w r i t t e n as a s e t o f l i n e a r e q u a t i o n s
A u = f where A i s an n x n ma tr i x , and u and f a re 1 x n v e c t o r s
In t h i s problem f (x) = (3 x+x∗x) exp (x) w i t h s o l u t i o n u (x) = x(1−x) exp (x)
The program read s from s c r e e n t h e name o f t h e o u t p u t f i l e .
B l i t z++ i s used here , w i t h a r r a y s s t a r t i n g from 1 t o n

∗ /
inc lude <iomanip >
inc lude < f s t r e am >
inc lude < b l i t z / a r r a y . h>
inc lude < io s t r e am >
us ing namespace s t d ;
us ing namespace b l i t z ;

o f s t r e am o f i l e ;
/ / Main program only , no o t h e r f u n c t i o n s
i n t main (i n t argc , char∗ a rgv [])
{
char ∗ o u t f i l e n am e ;
i n t i , j , n ;
double h , btemp ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command− l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
cou t << << end l ;
c i n >> n ;
h = 1 . 0 / ((double) n +1) ;
/ / Use B l i t z t o a l l o c a t e a r r a y s
/ / Use range t o change d e f a u l t a r r a y s from 0: n−1 t o 1 : n
Range r (1 , n) ;
Array <double ,1 > a (r) , b (r) , c (r) , y (r) , f (r) , temp (r) ;
/ / s e t up t h e ma t r i x d e f i n e d by t h r e e arrays , d iagona l , upper and lower

d i agona l band
b = 2 . 0 ; a = −1.0 ; c = −1.0;
/ / Then d e f i n e t h e v a l u e o f t h e r i g h t hand s i d e f (m u l t i p l i e d by h∗h)
f o r (i =1 ; i <= n ; i ++) {

/ / E x p l i c i t e x p r e s s i o n f o r f , c ou l d code as s e p a r a t e f u n c t i o n
f (i) = h∗h ∗ (i ∗h ∗3 . 0+ (i ∗h) ∗ (i ∗h)) ∗ exp (i ∗h) ;

}
/ / s o l v e t h e t r i d i a g o n a l sy s t em , f i r s t fo rward s u b s t i t u t i o n
btemp = b (1) ;
f o r (i = 2 ; i <= n ; i ++) {
temp (i) = c (i −1) / btemp ;
btemp = b (i) − a (i) ∗ temp (i) ;

106

4.11 – Physics project, the one-dimensional Poisson equation

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u(x)

x

Numerical solution
Analytical solution

Figure 4.4: Numerical solution obtained with n = 10 compared with the analytical solution.

y (i) = (f (i) − a (i) ∗ y (i −1)) / btemp ;
}
/ / t h en backward s u b s t i t u t i o n , t h e s o l u t i o n i s i n y ()
f o r (i = n−1; i >= 1 ; i−−) {
y (i) −= temp (i +1) ∗ y (i +1) ;

}
/ / w r i t e r e s u l t s t o t h e o u t p u t f i l e
f o r (i = 1 ; i <= n ; i ++) {
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << i ∗h ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << y (i) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << i ∗h∗ (1 .0− i ∗h) ∗ exp (i ∗h) << end l ;

}
o f i l e . c l o s e () ;

}

The program writes also the exact solution to file. In Fig. 4.4 we show the results obtained with n = 10.
Even with so few points, the numerical solution is very close to the analytic answer. With n = 100 it is
almost impossible to distinguish the numerical solution from the analytical one, as shown in Fig. 4.5. It
is therefore instructive to study the relative error, which we display in Table 4.4 as function of the step
length h = 1/(n + 1).

The mathematical truncation we made when computing the second derivative goes like O(h2). Our
results for n from n = 10 to somewhere between n = 104 and n = 105 result in a slope which is
almost exactly equal 2,in good agreement with the mathematical truncation made. Beyond n = 105

the relative error becomes bigger, telling us that there is no point in increasing n. For most practical
application a relative error between 10−6 and 10−8 is more than sufficient, meaning that n = 104 may
be an acceptable number of mesh points. Beyond n = 105, numerical round off errors take over, as
discussed in the previous chapter as well.

107

Linear algebra

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u(x)

x

Numerical solution
Analytical solution

Figure 4.5: Numerical solution obtained with n = 10 compared with the analytical solution.

Table 4.4: log10 values for the relative error and the step length h computed at x = 0.5.
n log10(h) ϵi = log10 (|(vi − ui)/ui|)
10 -1.04 -2.29
100 -2.00 -4.19
1000 -3.00 -6.18
104 -4.00 -8.18
105 -5.00 -9.19
106 -6.00 -6.08

108

Chapter 5

Non-linear equations and roots of
polynomials

5.1 Introduction

In Physics we often encounter the problem of determining the root of a function f(x). Especially, we
may need to solve non-linear equations of one variable. Such equations are usually divided into two
classes, algebraic equations involving roots of polynomials and transcendental equations. When there
is only one independent variable, the problem is one-dimensional, namely to find the root or roots of a
function. Except in linear problems, root finding invariably proceeds by iteration, and this is equally true
in one or in many dimensions. This means that we cannot solve exactly the equations at hand. Rather,
we start with some approximate trial solution. The chosen algorithm will in turn improve the solution
until some predetermined convergence criterion is satisfied. The algoritms we discuss below attempt to
implement this strategy. We will deal mainly with one-dimensional problems.

Youmay have encountered examples of so-called transcendental equations when solving the Schrödinger
equation (SE) for a particle in a box potential. The one-dimensional SE for a particle with massm is

−
!2

2m

d2u

drx2
+ V (x)u(x) = Eu(x), (5.1)

and our potential is defined as

V (r) =

{
−V0 0 ≤ x < a
0 x > a

(5.2)

Bound states correspond to negative energy E and scattering states are given by positive energies. The
SE takes the form (without specifying the sign of E)

d2u(x)

dx2
+

2m

!2
(V0 + E) u(x) = 0 x < a, (5.3)

and
d2u(x)

dx2
+

2m

!2
Eu(x) = 0 x > a. (5.4)

If we specialize to bound states E < 0 and implement the boundary conditions on the wave function we
obtain

u(r) = Asin(
√

2m(V0 − |E|)r/!) r < a, (5.5)

109

Non-linear equations and roots of polynomials

-100

-50

0

50

100

0 1 2 3 4 5

f(E) [MeV]

|E| [MeV]

f(x)

Figure 5.1: Plot of f(E) Eq. (5.8) as function of energy |E| in MeV. f(E) has dimension MeV. Note well
that the energy E is for bound states.

and
u(r) = B exp (−

√
2m|E|r/!) r > a, (5.6)

where A and B are constants. Using the continuity requirement on the wave function at r = a one
obtains the transcendental equation

√
2m(V0 − |E|)cot(

√
2ma2(V0 − |E|)/!) = −

√
2m|E|. (5.7)

This equation is an example of the kind of equations which could be solved by some of the methods
discussed below. The algorithms we discuss are the bisection method, the secant, false position and
Brent’s methods and Newton-Raphson’s method.

In order to find the solution for Eq. (5.7), a simple procedure is to define a function

f(E) =
√

2m(V0 − |E|)cot(
√

2ma2(V0 − |E|)/!) +
√

2m|E|. (5.8)

and with chosen or given values for a and V0 make a plot of this function and find the approximate region
along the E−axis where f(E) = 0. We show this in Fig. 5.1 for V0 = 20MeV, a = 2 fm andm = 938
MeV. Fig. 5.1 tells us that the solution is close to |E| ≈ 2.2 (the binding energy of the deuteron). The
methods we discuss below are then meant to give us a numerical solution for E where f(E) = 0 is
satisfied and with E determined by a given numerical precision.

5.2 Iteration methods

To solve an equation of the type f(x) = 0means mathematically to find all numbers s1 so that f(s) = 0.
In all actual calculations we are always limited by a given precision when doing numerics. Through an

1In the following discussion, the variable s is reserved for the value of x where we have a solution.

110

5.2 – Iteration methods

iterative search of the solution, the hope is that we can approach, within a given tolerance ϵ, a value x0

which is a solution to f(s) = 0 if
|x0 − s| < ϵ, (5.9)

and f(s) = 0. We could use other criteria as well like
∣∣∣∣
x0 − s

s

∣∣∣∣ < ϵ, (5.10)

and |f(x0)| < ϵ or a combination of these. However, it is not given that the iterative process will converge
and we would like to have some conditions on f which ensures a solution. This condition is provided by
the so-called Lipschitz criterion. If the function f , defined on the interval [a, b] satisfies for all x1 and x2

in the chosen interval the following condition

|f(x1)− f(x2)| ≤ k |x1 − x2| , (5.11)

with k a constant, then f is continuous in the interval [a, b]. If f is continuous in the interval [a, b], then
the secant condition gives

f(x1)− f(x2) = f ′(ξ)(x1 − x2), (5.12)

with x1, x2 within [a, b] and ξ within [x1, x2]. We have then

|f(x1)− f(x2)| ≤ |f ′(ξ)| |x1 − x2| . (5.13)

The derivative can be used as the constant k. We can now formulate the sufficient conditions for the
convergence of the iterative search for solutions to f(s) = 0.

1. We assume that f is defined in the interval [a, b].

2. f satisfies the Lipschitz condition with k < 1.

With these conditions, the equation f(x) = 0 has only one solution in the interval [a, b] and it coverges
after n iterations towards the solution s irrespective of choice for x0 in the interval [a, b]. If we let xn be
the value of x after n iterations, we have the condition

|s− xn| ≤
k

1− k
|x1 − x2| . (5.14)

The proof can be found in the text of Bulirsch and Stoer. Since it is difficult numerically to find exactly
the point where f(s) = 0, in the actual numerical solution one implements three tests of the type

1.
|xn − s| < ϵ, (5.15)

and

2.
|f(s)| < δ, (5.16)

3. and a maximum number of iterations Nmaxiter in actual calculations.

111

Non-linear equations and roots of polynomials

5.3 Bisection method

This is an extremely simple method to code. The philosophy can best be explained by choosing a region
in e.g., Fig. 5.1 which is close to where f(E) = 0. In our case |E| ≈ 2.2. Choose a region [a, b] so that
a = 1.5 and b = 3. This should encompass the point where f = 0. Define then the point

c =
a + b

2
, (5.17)

and calculate f(c). If f(a)f(c) < 0, the solution lies in the region [a, c] = [a, (a + b)/2]. Change then
b← c and calculate a new value for c. If f(a)f(c) > 0, the new interval is in [c, b] = [(a+ b)/2, b]. Now
you need to change a← c and evaluate then a new value for c. We can continue to halve the interval till
we have reached a value for c which fulfils f(c) = 0 to a given numerical precision. The algorithm can
be simply expressed in the following program

.
f a = f (a) ;
f b = f (b) ;

/ / check i f your i n t e r v a l i s c o r r e c t , i f n o t r e t u r n t o main
i f (f a ∗ fb > 0) {

cou t << ‘ ‘ \ n E r r o r , r o o t not i n i n t e r v a l << end l ;
re turn ;

}
f o r (j =1 ; j <= i t e r _max ; j ++) {

c =(a+b) / 2 ;
f c = f (c)

/ / i f t h i s t e s t i s s a t i s f i e d , we have t h e r o o t c
i f ((ab s (a−b) < e p s i l o n) | | f c < d e l t a) ; re turn t o main
i f (f a ∗ f c < 0) {

b=c ; fb= f c ;
}
e l s e {

a=c ; f a = f c ;
}

}
.

Note that one needs to define the values of δ, ϵ and when calling this function.
The bisection method is an almost foolproof method, although it may converge slowly towards the

solution due to the fact that it halves the intervals. After n divisions by 2 we have a possible solution in
the interval with length

1

2n
|b− a| , (5.18)

and if we set x0 = (a + b)/2 and let xn be the midpoints in the intervals we obtain after n iterations that
Eq. (5.14) results in

|s− xn| ≤=
1

2n+1
|b− a| , (5.19)

since the nth interval has length |b − a|/2n. Note that this convergence criterion is independent of the
actual function f(x) as long as this function fulfils the conditions discussed in the conditions discussed
in the previous subsection.

112

5.4 – Newton-Raphson’s method

As an example, suppose we wish to find how many iteration steps are needed in order to obtain a
relative precision of 10−12 for xn in the interval [50, 63], that is

|s− xn|
|s|

≤ 10−12. (5.20)

It suffices in our case to study s ≥ 50, which results in

|s− xn|
50

≤ 10−12, (5.21)

and with Eq. (5.19) we obtain
13

2n+150
≤ 10−12, (5.22)

meaning n ≥ 37.

5.4 Newton-Raphson’s method

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton’s method, also called
the Newton-Raphson method. This method is distinguished from the previously discussed methods by
the fact that it requires the evaluation of both the function f and its derivative f ′ at arbitrary points. In
this sense, it is taylored to cases with e.g., transcendental equations of the type shown in Eq. (5.8) where
it is rather easy to evaluate the derivative. If you can only calculate the derivative numerically and/or your
function is not of the smooth type, we discourage the use of this method.

The Newton-Raphson formula consists geometrically of extending the tangent line at a current point
until it crosses zero, then setting the next guess to the abscissa of that zero-crossing. The mathematics
behind this method is rather simple. Employing a Taylor expansion for x sufficiently close to the solution
s, we have

f(s) = 0 = f(x) + (s− x)f ′(x) +
(s− x)2

2
f ′′(x) + (5.23)

For small enough values of the function and for well-behaved functions, the terms beyond linear are
unimportant, hence we obtain

f(x) + (s− x)f ′(x) ≈ 0, (5.24)

yielding

s ≈ x−
f(x)

f ′(x)
. (5.25)

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn −
f(xn)

f ′(xn)
. (5.26)

This is Newton-Raphson’s method. It has a simple geometric interpretation, namely xn+1 is the point
where the tangent from (xn, f(xn)) crosses the x−axis. Close to the solution, Newton-Raphson con-
verges fast to the desired result. However, if we are far from a root, where the higher-order terms in the
series are important, the Newton-Raphson formula can give grossly inaccurate results. For instance, the
initial guess for the root might be so far from the true root as to let the search interval include a local
maximum or minimum of the function. If an iteration places a trial guess near such a local extremum, so

113

Non-linear equations and roots of polynomials

-5

0

5

10

15

20

0 2 4 6 8 10

f(x)

x

f(x) = x− 2cos(x)
c = x1
c = x2

Figure 5.2: Example of a case where Newton-Raphson’s method does not converge. For the function
f(x) = x− 2cos(x), we see that if we start at x = 7, the first iteration gives us that the first point where
we cross the x−axis is given by x1. However, using x1 as a starting point for the next iteration results
in a point x2 which is close to a local minimum. The tangent here is close to zero and we will never
approach the point where f(x) = 0.

that the first derivative nearly vanishes, then Newton-Raphson may fail totally. An example is shown in
Fig. 5.2

It is also possible to extract the convergence behavior of this method. Assume that the function f has
a continuous second derivative around the solution s. If we define

en+1 = xn+1 − s = xn −
f(xn)

f ′(xn)
− s, (5.27)

and using Eq. (5.23) we have

en+1 = en +
−enf ′(xn) + e2

n/2f ′′(ξ)

f ′(xn)
=

e2
n/2f ′′(ξ)

f ′(xn)
. (5.28)

This gives
|en+1|
|en|2

=
1

2

|f ′′(ξ)|
|f ′(xn)|2

=
1

2

|f ′′(s)|
|f ′(s)|2

(5.29)

when xn → s. Our error constant k is then proportional to |f ′′(s)|/|f ′(s)|2 if the second derivative is
different from zero. Clearly, if the first derivative is small, the convergence is slower. In general, if we are
able to start the iterative procedure near a root and we can easily evaluate the derivative, this is the method
of choice. In cases where we may need to evaluate the derivative numerically, the previously described
methods are easier and most likely safer to implement with respect to loss of numerical precision. Recall
that the numerical evaluation of derivatives involves differences between function values at different xn.

We can rewrite the last equation as

|en+1| = C|en|2, (5.30)

114

5.4 – Newton-Raphson’s method

with C a constant. If we assume that C ∼ 1 and let en ∼ 10−8, this results in en+1 ∼ 10−16, and
demonstrates clearly why Newton-Raphson’s method may converge faster than the bisection method.

Summarizing, this method has a solution when f ′′ is continuous and s is a simple zero of f . Then
there is a neighborhood of s and a constant C such that if Newton-Raphson’s method is started in that
neighborhood, the successive points become steadily closer to s and satisfy

|s− xn+1| ≤ C|s− xn|2,

with n ≥ 0. In some situations, the method guarantees to converge to a desired solution from an arbitrary
starting point. In order for this to take place, the function f has to belong toC 2(R), be increasing, convex
and having a zero. Then this zero is unique and Newton’s method converges to it from any starting point.

As a mere curiosity, suppose we wish to compute the square root of a number R, i.e.,
√

R. LetR > 0
and define a function

f(x) = x2 −R.

The variable x is a root if f(x) = 0. Newton-Raphson’s method yields then the following iterative
approach to the root

xn+1 =
1

2

(
xn +

R

xn

)
, (5.31)

a formula credited to Heron, a Greek engineer and architect who lived sometime between 100 B.C. and
A.D. 100.

Suppose we wish to compute
√

13 = 3.6055513 and start with x0 = 5. The first iteration gives
x1 = 3.8, x2 = 3.6105263, x3 = 3.6055547 and x4 = 3.6055513. With just four iterations and a not
too optimal choice of x0 we obtain the exact root to a precision of 8 digits. The above equation, together
with range reduction , is used in the intrisic computational function which computes square roots.

Newton’s method can be generalized to systems of several non-linear equations and variables. Con-
sider the case with two equations

f1(x1, x2) = 0
f2(x1, x2) = 0

, (5.32)

which we Taylor expand to obtain

0 = f1(x1 + h1, x2 + h2) = f1(x1, x2) + h1∂f1/∂x1 + h2∂f1/∂x2 + . . .
0 = f2(x1 + h1, x2 + h2) = f2(x1, x2) + h1∂f2/∂x1 + h2∂f2/∂x2 + . . .

. (5.33)

Defining the Jacobian matrix Ĵ we have

Ĵ =

(
∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

)
, (5.34)

we can rephrase Newton’s method as
(

xn+1
1

xn+1
2

)
=

(
xn

1
xn

2

)
+

(
hn

1
hn

2

)
, (5.35)

where we have defined (
hn

1
hn

2

)
= −Ĵ−1

(
f1(xn

1 , xn
2)

f2(xn
1 , xn

2)

)
. (5.36)

We need thus to compute the inverse of the Jacobian matrix and it is to understand that difficulties may
arise in case Ĵ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more than two non-linear equa-
tions.

115

Non-linear equations and roots of polynomials

-100

-50

0

50

100

0 1 2 3 4 5

f(E) [MeV]

|E| [MeV]

f(E)
Eq. ()

Figure 5.3: Plot of f(E) Eq. (5.8) as function of energy |E|. The point c is determined by where the
straight line from (a, f(a)) to (b, f(b)) crosses the x− axis.

5.5 The secant method and other methods

For functions that are smooth near a root, the methods known respectively as false position (or regula
falsi) and secant method generally converge faster than bisection but slower than Newton-Raphson. In
both of these methods the function is assumed to be approximately linear in the local region of interest,
and the next improvement in the root is taken as the point where the approximating line crosses the axis.

The algorithm for obtaining the solution for the secant method is rather simple. We start with the
definition of the derivative

f ′(xn) =
f(xn)− f(xn−1)

xn − xn−1

and combine it with the iterative expression of Newton-Raphson’s

xn+1 = xn −
f(xn)

f ′(xn)
,

to obtain

xn+1 = xn − f(xn)

(
xn − xn−1

f(xn)− f(xn−1)

)
, (5.37)

which we rewrite to
xn+1 =

f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
. (5.38)

This is the secant formula, implying that we are drawing a straight line from the point (xn−1, f(xn−1))
to (xn, f(xn)). Where it crosses the x− axis we have the new point xn+1. This is illustrated in Fig. 5.3.

In the numerical implementation found in the program library, the quantities xn−1, xn, xn+1 are
changed to a, b and c respectively, i.e., we determine c by the point where a straight line from the point

116

5.5 – The secant method and other methods

-20

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4

f(x)

x

f(x) = 25x4 − x2/2 − 2
c = x1
c = x2
c = x3

Figure 5.4: Plot of f(x) = 25x4 − x2/2 − 2. The various straight lines correspond to the determination
of the point c after each iteration. c is determined by where the straight line from (a, f(a)) to (b, f(b))
crosses the x − axis. Here we have chosen three values for c, x1, x2 and x3 which refer to the first,
second and third iterations respectively.

(a, f(a)) to (b, f(b)) crosses the x− axis, that is

c =
f(b)a− f(a)b

f(b)− f(a)
. (5.39)

We then see clearly the difference between the bisection method and the secant method. The convergence
criterion for the secant method is

|en+1| ≈ A|en|α, (5.40)

with α ≈ 1.62. The convergence is better than linear, but not as good as Newton-Raphson’s method
which converges quadratically.

While the secant method formally converges faster than bisection, one finds in practice pathological
functions for which bisection converges more rapidly. These can be choppy, discontinuous functions, or
even smooth functions if the second derivative changes sharply near the root. Bisection always halves the
interval, while the secant method can sometimes spend many cycles slowly pulling distant bounds closer
to a root. We illustrate the weakness of this method in Fig. 5.4 where we show the results of the first three
iterations, i.e., the first point is c = x1, the next iteration gives c = x2 while the third iterations ends with
c = x3. We may risk that one of the endpoints is kept fixed while the other one only slowly converges to
the desired solution.

The search for the solution s proceeds in much of the same fashion as for the bisection method,
namely after each iteration one of the previous boundary points is discarded in favor of the latest estimate
of the root. A variation of the secant method is the so-called false position method (regula falsi from
Latin) where the interval [a,b] is chosen so that f(a)f(b) < 0, else there is no solution. This is rather
similar to the bisection method. Another possibility is to determine the starting point for the iterative
search using three points (a, f(a)), (b, f(b)) and (c, f(c)). One can use Lagrange’s interpolation formula

117

Non-linear equations and roots of polynomials

for a polynomial, see the discussion in next chapter. This procedure leads to Brent’s method. You will
find a function in the program library which computes the zeros according to the latter method as well.

5.5.1 Calling the various functions

In the program library you will find the following functions

r t b i s (double (∗ func) (double) , double x1 , double x2 , double xacc)
r t s e c (double (∗ func) (double) , double x1 , double x2 , double xacc)
r t n ew t (void (∗ funcd) (double , double ∗ , double ∗) , double x1 ,

double x2 , double xacc)
z b r e n t (double (∗ func) (double) , double x1 , double x2 , double xacc)

In all of these functions we transfer the lower and upper limit of the interval where we seek the
solution, [x1, x2]. The variable is the precision we opt for. Note that in these function, not in any
case is the test f(s) < δ implemented. Rather, the test is done through f(s) = 0, which not necessarily
is a good option.

Note also that these functions transfer a pointer to the name of the given function through e.g., double
(*func)(double). For Newton-Raphson’s method we need a function which returns both the function and
its derivative at a point x. This is then done by transferring .

118

Chapter 6

Numerical interpolation, extrapolation and
fi tting of data

6.1 Introduction

Numerical interpolation and extrapolation is perhaps one of the most used tools in numerical applications
to physics. The often encountered situation is that of a function f at a set of points x1 . . . xn where an
analytic form is missing. The function f may represent some data points from experiment or the result of
a lengthy large-scale computation of some physical quantity that cannot be cast into a simple analytical
form.

We may then need to evaluate the function f at some point x within the data set x1 . . . xn, but where
x differs from the tabulated values. In this case we are dealing with interpolation. If x is outside we are
left with the more troublesome problem of numerical extrapolation. Below we will concentrate on two
methods for interpolation and extrapolation, namely polynomial interpolation and extrapolation and the
qubic spline interpolation approach.

6.2 Interpolation and extrapolation

6.2.1 Polynomial interpolation and extrapolation

Let us assume that we have a set of N + 1 points y0 = f(x0), y1 = f(x1), . . . , yN = f(xN) where none
of the xi values are equal. We wish to determine a polynomial of degree n so that

PN (xi) = f(xi) = yi, i = 0, 1, . . . ,N (6.1)

for our data points. If we then write Pn on the form

PN (x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · + aN (x− x0) . . . (x− xN−1), (6.2)

then Eq. (6.1) results in a triangular system of equations

a0 = f(x0)
a0+ a1(x1 − x0) = f(x1)
a0+ a1(x2 − x0)+ a2(x2 − x0)(x2 − x1) = f(x2)
.

. (6.3)

119

Numerical interpolation, extrapolation and fitting of data

The coefficients a0, . . . , aN are then determined in a recursive way, starting with a0, a1,
The classic of interpolation formulae was created by Lagrange and is given by

PN (x) =
N∑

i=0

∏

k≠i

x− xk

xi − xk
yi. (6.4)

If we have just two points (a straight line) we get

P1(x) =
x− x0

x1 − x0
y1 +

x− x1

x0 − x1
y0, (6.5)

and with three points (a parabolic approximation) we have

P3(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
y1 +

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 (6.6)

and so forth. It is easy to see from the above equations that when x = xi we have that f(x) = f(xi) It is
also possible to show that the approximation error (or rest term) is given by the second term on the right
hand side of

f(x) = PN (x) +
ωN+1(x)f (N+1)(ξ)

(N + 1)!
. (6.7)

The function ωN+1(x) is given by

ωN+1(x) = aN (x− x0) . . . (x− xN), (6.8)

and ξ = ξ(x) is a point in the smallest interval containing all interpolation points xj and x. The algorithm
we provide however (the code POLINT in the program library) is based on divided differences. The recipe
is quite simple. If we take x = x0 in Eq. (6.2), we then have obviously that a0 = f(x0) = y0. Moving
a0 over to the left-hand side and dividing by x− x0 we have

f(x)− f(x0)

x− x0
= a1 + a2(x− x1) + · · · + aN (x− x1)(x− x2) . . . (x− xN−1), (6.9)

where we hereafter omit the rest term

f (N+1)(ξ)

(N + 1)!
(x− x1)(x− x2) . . . (x− xN). (6.10)

The quantity

f0x =
f(x)− f(x0)

x− x0
, (6.11)

is a divided difference of first order. If we then take x = x1, we have that a1 = f01. Moving a1 to the
left again and dividing by x− x1 we obtain

f0x − f01

x− x1
= a2 + · · · + aN (x− x2) . . . (x− xN−1). (6.12)

and the quantity

f01x =
f0x − f01

x− x1
, (6.13)

120

6.2 – Interpolation and extrapolation

is a divided difference of second order. We note that the coefficient

a1 = f01, (6.14)

is determined from f0x by setting x = x1. We can continue along this line and define the divided
difference of order k + 1 as

f01...kx =
f01...(k−1)x − f01...(k−1)k

x− xk
, (6.15)

meaning that the corresponding coefficient ak is given by

ak = f01...(k−1)k. (6.16)

With these definitions we see that Eq. (6.7) can be rewritten as

f(x) = a0 +
∑

k=1

Nf01...k(x− x0) . . . (x− xk−1) +
ωN+1(x)f (N+1)(ξ)

(N + 1)!
. (6.17)

If we replace x0, x1, . . . , xk in Eq. (6.15) with xi+1, xi+2, . . . , xk, that is we count from i+1 to k instead
of counting from 0 to k and replace x with xi, we can then construct the following recursive algorithm
for the calculation of divided differences

fxixi+1...xk =
fxi+1...xk − fxixi+1...xk−1

xk − xi
. (6.18)

Assuming that we have a table with function values (xj , f(xj) = yj) and need to construct the coeffi-
cients for the polynomial PN (x). We can then view the last equation by constructing the following table
for the case where N = 3.

x0 y0

fx0x1

x1 y1 fx0x1x2

fx1x2 fx0x1x2x3

x2 y2 fx1x2x3

fx2x3

x3 y3

. (6.19)

The coefficients we are searching for will then be the elements along the main diagonal. We can under-
stand this algorithm by considering the following. First we construct the unique polynomial of order zero
which passes through the point x0, y0. This is just a0 discussed above. Therafter we construct the unique
polynomial of order one which passes through both x0y0 and x1y1. This corresponds to the coefficient a1

and the tabulated value fx0x1 and together with a0 results in the polynomial for a straight line. Likewise
we define polynomial coefficients for all other couples of points such as fx1x2 and fx2x3 . Furthermore, a
coefficient like a2 = fx0x1x2 spans now three points, and adding together fx0x1 we obtain a polynomial
which represents three points, a parabola. In this fashion we can continue till we have all coefficients. The
function POLINT included in the library is based on an extension of this algorithm, knowns as Neville’s
algorithm. It is based on equidistant interpolation points. The error provided by the call to the function
POLINT is based on the truncation error in Eq. (6.7).

Exercise 6.1
Use the function f(x) = x3 to generate function values at four points x0 = 0, x1 = 1, x2 =
5 and x3 = 6. Use the above described method to show that the interpolating polynomial
becomes P3(x) = x + 6x(x − 1) + x(x − 1)(x − 5). Compare the exact answer with the
polynomial P3 and estimate the rest term.

121

Numerical interpolation, extrapolation and fitting of data

6.3 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precision of our mathematical truncation, without
too many additional function evaluations. We will again study the evaluation of the first and second
derivatives of exp (x) at a given point x = ξ. In Eqs. (3.1) and (3.2) for the first and second derivatives,
we noted that the truncation error goes like O(h2j).

Employing the mid-point approximation to the derivative, the various derivatives D of a given func-
tion f(x) can then be written as

D(h) = D(0) + a1h
2 + a2h

4 + a3h
6 + . . . , (6.20)

where D(h) is the calculated derivative, D(0) the exact value in the limit h→ 0 and ai are independent
of h. By choosing smaller and smaller values for h, we should in principle be able to approach the exact
value. However, since the derivatives involve differences, we may easily loose numerical precision as
shown in the previous sections. A possible cure is to apply Richardson’s deferred approach, i.e., we
perform calculations with several values of the step h and extrapolate to h = 0. The philososphy is to
combine different values of h so that the terms in the above equation involve only large exponents for h.
To see this, assume that we mount a calculation for two values of the step h, one with h and the other
with h/2. Then we have

D(h) = D(0) + a1h
2 + a2h

4 + a3h
6 + . . . , (6.21)

and
D(h/2) = D(0) +

a1h2

4
+

a2h4

16
+

a3h6

64
+ . . . , (6.22)

and we can eliminate the term with a1 by combining

D(h/2) +
D(h/2) −D(h)

3
= D(0)−

a2h4

4
−

5a3h6

16
. (6.23)

We see that this approximation toD(0) is better than the two previous ones since the error now goes like
O(h4). As an example, let us evaluate the first derivative of a function f using a step with lengths h and
h/2. We have then

fh − f−h

2h
= f ′

0 + O(h2), (6.24)

fh/2 − f−h/2

h
= f ′

0 + O(h2/4), (6.25)

which can be combined, using Eq. (6.23) to yield

−fh + 8fh/2 − 8f−h/2 + f−h

6h
= f ′

0 −
h4

480
f (5). (6.26)

In practice, what happens is that our approximations toD(0) goes through a series of steps

D(0)
0

D(1)
0 D(0)

1

D(2)
0 D(1)

1 D(0)
2

D(3)
0 D(2)

1 D(1)
2 D(0)

3
.

, (6.27)

122

6.4 – Qubic spline interpolation

where the elements in the first column represent the given approximations

D(k)
0 = D(h/2k). (6.28)

This means that D(0)
1 in the second column and row is the result of the extrapolating based on D(0)

0 and
D(1)

0 . An element D(k)
m in the table is then given by

D(k)
m = D(k)

m−1 +
D(k+1)

m−1 −D(k)
m−1

4m − 1
(6.29)

with m > 0. I.e., it is a linear combination of the element to the left of it and the element right over the
latter.

In Table 3.1 we presented the results for various step sizes for the second derivative of exp (x) using
f ′′
0 = fh−2f0+f−h

h2 . The results were compared with the exact ones for various x values. Note well that
as the step is decreased we get closer to the exact value. However, if it is further increased, we run into
problems of loss of precision. This is clearly seen for h = 0000001. This means that even though we
could let the computer run with smaller and smaller values of the step, there is a limit for how small the
step can be made before we loose precision. Consider now the results in Table 6.1 where we choose to
employ Richardson’s extrapolation scheme. In this calculation we have computed our function with only
three possible values for the step size, namely h, h/2 and h/4 with h = 0.1. The agreement with the
exact value is amazing! The extrapolated result is based upon the use of Eq. (6.29). We will use this

x h = 0.1 h = 0.05 h = 0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.00000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00000001
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00000003
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0.00000009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0.00000024
5.0 148.53687797 148.44408109 148.42088912 148.41315910 0.00000064

Table 6.1: Result for numerically calculated second derivatives of exp (x) using extrapolation. The first
three values are those calculated with three different step sizes, h, h/2 and h/4 with h = 0.1. The
extrapolated result to h = 0 should then be compared with the exact ones from Table 3.1.

method to obtain improved eigenvalues in chapter 12.

6.4 Qubic spline interpolation

Qubic spline interpolation is among one of the mostly used methods for interpolating between data points
where the arguments are organized as ascending series. In the library program we supply such a function,
based on the so-called qubic spline method to be described below.

A spline function consists of polynomial pieces defined on subintervals. The different subintervals
are connected via various continuity relations.

Assume we have at our disposal n + 1 points x0, x1, . . . xn arranged so that x0 < x1 < x2 <
. . . xn−1 < xn (such points are called knots). A spline function s of degree k with n + 1 knots is defined
as follows

123

Numerical interpolation, extrapolation and fitting of data

– On every subinterval [xi−1, xi) s is a polynomial of degree ≤ k.

– s has k − 1 continuous derivatives in the whole interval [x0, xn].

As an example, consider a spline function of degree k = 1 defined as follows

s(x) =

⎧
⎪⎪⎨

⎪⎪⎩

s0(x) = a0x + b0 x ∈ [x0, x1)
s1(x) = a1x + b1 x ∈ [x1, x2)

.
sn−1(x) = an−1x + bn−1 x ∈ [xn−1, xn]

(6.30)

In this case the polynomial consists of series of straight lines connected to each other at every end-
point. The number of continuous derivatives is then k − 1 = 0, as expected when we deal with straight
lines. Such a polynomial is quite easy to construct given n+1 points x0, x1, . . . xn and their correspond-
ing function values.

The most commonly used spline function is the one with k = 3, the so-called qubic spline function.
Assume that we have in adddition to the n + 1 knots a series of functions values y0 = f(x0), y1 =
f(x1), . . . yn = f(xn). By definition, the polynomials si−1 and si are thence supposed to interpolate the
same point i, i.e.,

si−1(xi) = yi = si(xi), (6.31)

with 1 ≤ i ≤ n− 1. In total we have n polynomials of the type

si(x) = ai0 + ai1x + ai2x
2 + ai2x

3, (6.32)

yielding 4n coefficients to determine. Every subinterval provides in addition the 2n conditions

yi = s(xi), (6.33)

and
s(xi+1) = yi+1, (6.34)

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i(xi), (6.35)

yields n− 1 conditions. Similarly,
s′′i−1(xi) = s′′i (xi), (6.36)

results in additional n− 1 conditions. In total we have 4n coefficients and 4n− 2 equations to determine
them, leaving us with 2 degrees of freedom to be determined.

Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi, (6.37)

and
s′′i (xi+1) = fi+1, (6.38)

and setting up a straight line between fi and fi+1 we have

s′′i (x) =
fi

xi+1 − xi
(xi+1 − x) +

fi+1

xi+1 − xi
(x− xi), (6.39)

124

6.4 – Qubic spline interpolation

and integrating twice one obtains

si(x) =
fi

6(xi+1 − xi)
(xi+1 − x)3 +

fi+1

6(xi+1 − xi)
(x− xi)

3 + c(x− xi) + d(xi+1 − x). (6.40)

Using the conditions si(xi) = yi and si(xi+1) = yi+1 we can in turn determine the constants c and d
resulting in

si(x) = fi
6(xi+1−xi)

(xi+1 − x)3 + fi+1

6(xi+1−xi)
(x− xi)3

+ (yi+1

xi+1−xi
− fi+1(xi+1−xi)

6)(x− xi) + (yi
xi+1−xi

− fi(xi+1−xi)
6)(xi+1 − x). (6.41)

How to determine the values of the second derivatives fi and fi+1? We use the continuity assumption
of the first derivatives

s′i−1(xi) = s′i(xi), (6.42)

and set x = xi. Defining hi = xi+1 − xi we obtain finally the following expression

hi−1fi−1 + 2(hi + hi−1)fi + hifi+1 =
6

hi
(yi+1 − yi)−

6

hi−1
(yi − yi−1), (6.43)

and introducing the shorthands ui = 2(hi + hi−1), vi = 6
hi

(yi+1 − yi) − 6
hi−1

(yi − yi−1), we can
reformulate the problem as a set of linear equations to be solved through e.g., Gaussian elemination,
namely

⎡

⎢⎢⎢⎢⎢⎢⎣

u1 h1 0 . . .
h1 u2 h2 0 . . .
0 h2 u3 h3 0 . . .

.
. . . 0 hn−3 un−2 hn−2

0 hn−2 un−1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

. . .
fn−2

fn−1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

. . .
vn−2

vn−1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (6.44)

Note that this is a set of tridiagonal equations and can be solved through only O(n) operations. The
functions supplied in the program library are spline and splint. In order to use qubic spline interpolation
you need first to call

s p l i n e (double x [] , double y [] , i n t n , double yp1 , double yp2 , double y2 [])

This function takes as input x[0, .., n − 1] and y[0, .., n − 1] containing a tabulation yi = f(xi) with
x0 < x1 < .. < xn−1 together with the first derivatives of f(x) at x0 and xn−1, respectively. Then the
function returns y2[0, .., n − 1] which contanin the second derivatives of f(xi) at each point xi. n is the
number of points. This function provides the qubic spline interpolation for all subintervals and is called
only once. Thereafter, if you wish to make various interpolations, you need to call the function

s p l i n t (double x [] , double y [] , double y2a [] , i n t n , double x , double ∗y)

which takes as input the tabulated values x[0, .., n − 1] and y[0, .., n − 1] and the output y2a[0,..,n - 1]
from spline. It returns the value y corresponding to the point x.

125

Chapter 7

Numerical integration

7.1 Introduction

In this chapter we discuss some of the classic formulae such as the trapezoidal rule and Simpson’s rule
for equally spaced abscissas and formulae based on Gaussian quadrature. The latter are more suitable
for the case where the abscissas are not equally spaced. The emphasis is on methods for evaluating one-
dimensional integrals. In chapter 8 we show how Monte Carlo methods can be used to compute multi-
dimensional integrals. We discuss also how to compute singular integrals and outline a physics project
which combines numerical integration techniques and inverse of a matrix to solve quantum mechanical
scattering problems.

We end this chapter with an extensive discussion on MPI and parallel computing. The examples focus
on parallilization of algorithms for computing integrals.

The integral

I =

∫ b

a
f(x)dx (7.1)

has a very simple meaning. If we consider Fig. 7.1 the integral I simply represents the area enscribed
by the function f(x) starting from x = a and ending at x = b. Two main methods will be discussed
below, the first one being based on equal (or allowing for slight modifications) steps and the other on
more adaptive steps, namely so-called Gaussian quadrature methods. Both main methods encompass a
plethora of approximations and only some of them will be discussed here.

7.2 Newton-Cotes quadrature: equal step methods

In considering equal step methods, our basic tool is the Taylor expansion of the function f(x) around a
point x and a set of surrounding neighbouring points. The algorithm is rather simple, and the number of
approximations unlimited!

– Choose a step size

h =
b− a

N

where N is the number of steps and a and b the lower and upper limits of integration.

– Choose then to stop the Taylor expansion of the function f(x) at a certain derivative. You should
also choose how many points around x are to be included in the evaluation of the derivatives.

127

Numerical integration

✲

f(x)

x

✻

a a + h a + 2h a + 3h b

Figure 7.1: Area enscribed by the function f(x) starting from x = a to x = b. It is subdivided in several
smaller areas whose evaluation is to be approximated by the techniques discussed in the text. The areas
under the curve can for example be approximated by rectangular boxes or trapezoids.

128

7.2 – Newton-Cotes quadrature: equal step methods

– With these approximations to f(x) perform the integration.

Such a small measure may seemingly allow for the derivation of various integrals. To see this, let us
briefly recall the discussion in the previous section and especially Fig. 3.1. First, we can rewrite the
desired integral as

∫ b

a
f(x)dx =

∫ a+2h

a
f(x)dx +

∫ a+4h

a+2h
f(x)dx + . . .

∫ b

b−2h
f(x)dx.

The strategy then is to find a reliable Taylor expansion for f(x) in the smaller sub intervals. Consider
e.g., evaluating ∫ +h

−h
f(x)dx (7.2)

where we will Taylor expand f(x) around a point x0, see Fig. 3.1. The general form for the Taylor
expansion around x0 goes like

f(x = x0 ± h) = f(x0) ± hf ′ +
h2f ′′

2
±

h3f ′′′

6
+ O(h4).

Let us now suppose that we split the integral in Eq. (7.2) in two parts, one from −h to x0 and the other
from x0 to h. Next we assume that we can use the two-point formula for the derivative, that is we can
approximate f(x) in these two regions by a straight line, as indicated in the figure. This means that
every small element under the function f(x) looks like a trapezoid, and as you may expect, the pertinent
numerical approach to the integral bears the predictable name ’trapezoidal rule’. It means also that we
are trying to approximate our function f(x) with a first order polynomial, that is f(x) = a + bx. The
constant b is the slope given by the first derivative at x = x0

f ′ =
f(x0 + h)− f(x0)

h
+ O(h),

or
f ′ =

f(x0)− f(x0 − h)

h
+ O(h),

and if we stop the Taylor expansion at that point our function becomes,

f(x) = f0 +
fh − f0

h
x + O(x2),

for x = x0 to x = x0 + h and

f(x) = f0 +
f0 − f−h

h
x + O(x2),

for x = x0 − h to x = x0. The error goes like O(x2). If we then evaluate the integral we obtain
∫ +h

−h
f(x)dx =

h

2
(fh + 2f0 + f−h) + O(h3), (7.3)

which is the well-known trapezoidal rule. Concerning the error in the approximation made, O(h3) =
O((b − a)3/N3), you should note the following. This is the local error! Since we are splitting the
integral from a to b in N pieces, we will have to perform approximately N such operations. This means

129

Numerical integration

that the global error goes like ≈ O(h2). To see that, we use the trapezoidal rule to compute the integral
of Eq. (7.1),

I =

∫ b

a
f(x)dx = h (f(a)/2 + f(a + h) + f(a + 2h) + · · · + f(b− h) + fb/2) , (7.4)

with a global error which goes like O(h2). The correct mathematical expression for the local error for
the trapezoidal rule is ∫ b

a
f(x)dx−

b− a

2
[f(a) + f(b)] = −

h3

12
f (2)(ξ),

and the global error reads ∫ b

a
f(x)dx− Th(f) = −

b− a

12
h2f (2)(ξ),

where Th is the trapezoidal result and ξ ∈ [a, b]. It can easily be implemented numerically through the
following simple algorithm

– Choose the number of mesh points and fix the step.

– calculate f(a) and f(b) and multiply with h/2

– Perform a loop over n = 1 to n− 1 (f(a) and f(b) are known) and sum up the terms
f(a+h)+f(a+2h)+f(a+3h)+ · · ·+f(b−h). Each step in the loop corresponds
to a given value a + nh.

– Multiply the final result by h and add hf(a)/2 and hf(b)/2.

A simple function which implements this algorithm is as follows

double t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double (∗ func) (double))
{

double t r apez_sum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
f a =(∗ func) (a) / 2 . ;
f b =(∗ func) (b) / 2 . ;
t r apez_sum =0 . ;
f o r (j =1 ; j <= n−1; j ++) {

x= j ∗ s t e p +a ;
t r apez_sum +=(∗ func) (x) ;

}
t r apez_sum =(t r apez_sum+ fb+ f a) ∗ s t e p ;
re turn t r apez_sum ;

} / / end t r a p e z o i d a l _ r u l e

The function returns a new value for the specific integral through the variable trapez_sum. There is one
new feature to note here, namely the transfer of a user defined function called func in the definition

130

7.2 – Newton-Cotes quadrature: equal step methods

void t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double ∗ t r apez_sum ,
double (∗ func) (double))

What happens here is that we are transferring a pointer to the name of a user defined function, which
has as input a double precision variable and returns a double precision number. The function trape-
zoidal_rule is called as

t r a p e z o i d a l _ r u l e (a , b , n , &myfunc t ion)

in the calling function. We note that a, b and n are called by value, while trapez_sum and the user
defined function my_function are called by reference.

Another very simple approach is the so-called midpoint or rectangle method. In this case the integra-
tion area is split in a given number of rectangles with length h and heigth given by the mid-point value
of the function. This gives the following simple rule for approximating an integral

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2), (7.5)

where f(xi−1/2) is the midpoint value of f for a given rectangle. We will discuss its truncation error
below. It is easy to implement this algorithm, as shown here

double r e c t a n g l e _ r u l e (double a , double b , i n t n , double (∗ func) (double))
{

double r e c t a n g l e _ s um ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
r e c t a n g l e _ s um =0 . ;
f o r (j = 0 ; j <= n ; j ++) {

x = (j + 0 . 5) ∗ s t e p + ; / / m idpo in t o f a g i v e n r e c t a n g l e
r e c t a n g l e _ s um+=(∗ func) (x) ; / / add v a l u e o f f u n c t i o n .

}
r e c t a n g l e _ s um ∗= s t e p ; / / m u l t i p l y w i t h s t e p l e n g t h .
re turn r e c t a n g l e _ s um ;

} / / end r e c t a n g l e _ r u l e

The correct mathematical expression for the local error for the rectangular rule Ri(h) for element i is
∫ h

−h
f(x)dx−Ri(h) = −

h3

24
f (2)(ξ),

and the global error reads ∫ b

a
f(x)dx−Rh(f) = −

b− a

24
h2f (2)(ξ),

where Rh is the result obtained with rectangular rule and ξ ∈ [a, b].
Instead of using the above linear two-point approximations for f , we could use the three-point for-

mula for the derivatives. This means that we will choose formulae based on function values which lie
symmetrically around the point where we preform the Taylor expansion. It means also that we are ap-
proximating our function with a second-order polynomial f(x) = a + bx + cx2. The first and second

131

Numerical integration

derivatives are given by
fh − f−h

2h
= f ′

0 +
∞∑

j=1

f (2j+1)
0

(2j + 1)!
h2j ,

and
fh − 2f0 + f−h

h2
= f ′′

0 + 2
∞∑

j=1

f (2j+2)
0

(2j + 2)!
h2j ,

and we note that in both cases the error goes like O(h2j). With the latter two expressions we can now
approximate the function f as

f(x) = f0 +
fh − f−h

2h
x +

fh − 2f0 + f−h

2h2
x2 + O(x3).

Inserting this formula in the integral of Eq. (7.2) we obtain
∫ +h

−h
f(x)dx =

h

3
(fh + 4f0 + f−h) + O(h5),

which is Simpson’s rule. Note that the improved accuracy in the evaluation of the derivatives gives a
better error approximation, O(h5) vs. O(h3) . But this is just the local error approximation. Using
Simpson’s rule we can easily compute the integral of Eq. (7.1) to be

I =

∫ b

a
f(x)dx =

h

3
(f(a) + 4f(a + h) + 2f(a + 2h) + · · · + 4f(b− h) + fb) , (7.6)

with a global error which goes like O(h4). More formal expressions for the local and global errors are
for the local error

∫ b

a
f(x)dx−

b− a

6
[f(a) + 4f((a + b)/2) + f(b)] = −

h5

90
f (4)(ξ),

and for the global error ∫ b

a
f(x)dx− Sh(f) = −

b− a

180
h4f (4)(ξ).

with ξ ∈ [a, b] and Sh the results obtained with Simpson’s method. The method can easily be imple-
mented numerically through the following simple algorithm

– Choose the number of mesh points and fix the step.

– calculate f(a) and f(b)

– Perform a loop over n = 1 to n− 1 (f(a) and f(b) are known) and sum up the terms
4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + · · · + 4f(b − h). Each step in the loop
corresponds to a given value a + nh. Odd values of n give 4 as factor while even
values yield 2 as factor.

– Multiply the final result by h
3 .

132

7.3 – Gaussian quadrature

In more general terms, what we have done here is to approximate a given function f(x) with a
polynomial of a certain degree. One can show that given n + 1 distinct points x0, . . . , xn ∈ [a, b] and
n + 1 values y0, . . . , yn there exists a unique polynomial Pn(x) with the property

pn(xj) = yj j = 0, . . . , n

In the Lagrange representation discussed in chapter 6, this interpolating polynomial is given by

Pn =
n∑

k=0

lkyk,

with the Lagrange factors

lk(x) =
n∏

i = 0
i ≠ k

x− xi

xk − xi
k = 0, . . . , n,

see for example the text of Kress [29] or Burlich and Stoer [11] for details. If we for example set n = 1,
we obtain

P1(x) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0
=

y1 − y0

x1 − x0
x−

y1x0 + y0x1

x1 − x0
,

which we recognize as the equation for a straight line.
The polynomial interpolatory quadrature of order n with equidistant quadrature points xk = a + kh

and step h = (b− a)/n is called the Newton-Cotes quadrature formula of order n. The integral is

∫ b

a
f(x)dx ≈

∫ b

a
pn(x)dx =

n∑

k=0

wkf(xk)

with

wk = h
(−1)n−k

k!(n − k)!

∫ n

0

n∏

j = 0
j ≠ k

(z − j)dz,

for k = 0, . . . , n.

7.2.1 Romberg integration

To be included fall 2008

7.3 Gaussian quadrature

The methods we have presented hitherto are taylored to problems where the mesh points xi are equidis-
tantly spaced, xi differing from xi+1 by the step h. These methods are well suited to cases where the
integrand may vary strongly over a certain region or if we integrate over the solution of a differential
equation.

133

Numerical integration

If however our integrand varies only slowly over a large interval, then the methods we have discussed
may only slowly converge towards a chosen precision1 . As an example,

I =

∫ b

1
x−2f(x)dx,

may converge very slowly to a given precision if b is large and/or f(x) varies slowly as function of x at
large values. One can obviously rewrite such an integral by changing variables to t = 1/x resulting in

I =

∫ 1

b−1

f(t−1)dt,

which has a small integration range and hopefully the number of mesh points needed is not that large.
However there are cases where no trick may help, and where the time expenditure in evaluating an

integral is of importance. For such cases, we would like to recommend methods based on Gaussian
quadrature. Here one can catch at least two birds with a stone, namely, increased precision and fewer
(less time) mesh points. But it is important that the integrand varies smoothly over the interval, else we
have to revert to splitting the interval into many small subintervals and the gain achieved may be lost. The
mathematical details behind the theory for Gaussian quadrature formulae is quite terse. If you however
are interested in the derivation, we advice you to consult the text of Stoer and Bulirsch [3], see especially
section 3.6. Here we limit ourselves to merely delineate the philosophy and show examples of practical
applications.

The basic idea behind all integration methods is to approximate the integral

I =

∫ b

a
f(x)dx ≈

N∑

i=1

ωif(xi),

where ω and x are the weights and the chosen mesh points, respectively. In our previous discussion,
these mesh points were fixed at the beginning, by choosing a given number of points N . The weigths ω
resulted then from the integration method we applied. Simpson’s rule, see Eq. (7.6) would give

ω : {h/3, 4h/3, 2h/3, 4h/3, . . . , 4h/3, h/3} ,

for the weights, while the trapezoidal rule resulted in

ω : {h/2, h, h, . . . , h, h/2} .

In general, an integration formula which is based on a Taylor series usingN points, will integrate exactly
a polynomial P of degree N − 1. That is, the N weights ωn can be chosen to satisfy N linear equations,
see chapter 3 of Ref. [3]. A greater precision for a given amount of numerical work can be achieved if
we are willing to give up the requirement of equally spaced integration points. In Gaussian quadrature
(hereafter GQ), both the mesh points and the weights are to be determined. The points will not be equally
spaced2. The theory behind GQ is to obtain an arbitrary weight ω through the use of so-called orthogonal
polynomials. These polynomials are orthogonal in some interval say e.g., [-1,1]. Our points xi are chosen
in some optimal sense subject only to the constraint that they should lie in this interval. Together with
the weights we have then 2N (N the number of points) parameters at our disposal.

1You could e.g., impose that the integral should not change as function of increasing mesh points beyond the sixth digit.
2Typically, most points will be located near the origin, while few points are needed for large x values since the integrand is

supposed to vary smoothly there. See below for an example.

134

7.3 – Gaussian quadrature

Even though the integrand is not smooth, we could render it smooth by extracting from it the weight
function of an orthogonal polynomial, i.e., we are rewriting

I =

∫ b

a
f(x)dx =

∫ b

a
W (x)g(x)dx ≈

N∑

i=1

ωif(xi), (7.7)

where g is smooth and W is the weight function, which is to be associated with a given orthogonal
polynomial.

The weight function W is non-negative in the integration interval x ∈ [a, b] such that for any n ≥ 0∫ b
a |x|nW (x)dx is integrable. The naming weight function arises from the fact that it may be used to give
more emphasis to one part of the interval than another. A quadrature formula

∫ b

a
W (x)f(x)dx ≈

N∑

i=1

ωif(xi), (7.8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature formula if it integrates
all polynomials p ∈ P2N−1 exactly, that is

∫ b

a
W (x)p(x)dx =

N∑

i=1

ωip(xi), (7.9)

It is assumed thatW (x) is continuous and positive and that the integral
∫ b

a
W (x)dx

exists. Note that the replacement of f → Wg is normally a better approximation due to the fact that we
may isolate possible singularities ofW and its derivatives at the endpoints of the interval.

The quadrature weights or just weights (not to be confused with the weight function) are positive and
the sequence of Gaussian quadrature formulae is convergent if the sequence QN of quadrature formulae

QN (f)→ Q(f) =

∫ b

a
f(x)dx,

in the limit n→∞. Then we say that the sequence

QN (f) =
N∑

i=1

ω(N)
i f(x(N)

i),

is convergent for all polynomials p, that is

QN (p) = Q(p)

if there exits a constant C such that
N∑

i=1

|ω(N)
i | ≤ C,

for all N which are natural numbers.

135

Numerical integration

The error for the Gaussian quadrature formulae of order N is given by

∫ b

a
W (x)f(x)dx−

N∑

k=1

wkf(xk) =
f2N(ξ)

(2N)!

∫ b

a
W (x)[qN (x)]2dx

where qN is the chosen orthogonal polynomial and ξ is a number in the interval [a, b]. We have assumed
that f ∈ C2N [a, b], viz. the space of all real or complex 2N times continuously differentiable functions.

In physics there are several important orthogonal polynomials which arise from the solution of dif-
ferential equations. These are Legendre, Hermite, Laguerre and Chebyshev polynomials. They have the
following weight functions

Weight function Interval Polynomial
W (x) = 1 x ∈ [−1, 1] Legendre

W (x) = e−x2 −∞ ≤ x ≤ ∞ Hermite
W (x) = e−x 0 ≤ x ≤ ∞ Laguerre

W (x) = 1/(
√

1− x2) −1 ≤ x ≤ 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be summarized
as follows.

– As stated above, methods based on Taylor series usingN points will integrate exactly a polynomial
P of degree N − 1. If a function f(x) can be approximated with a polynomial of degree N − 1

f(x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.

– Gaussian quadrature methods promise more than this. We can get a better polynomial approxima-
tion with order greater thanN to f(x) and still get away with onlyN mesh points. More precisely,
we approximate

f(x) ≈ P2N−1(x),

and with only N mesh points these methods promise that

∫
f(x)dx ≈

∫
P2N−1(x)dx =

N−1∑

i=0

P2N−1(xi)ωi,

The reason why we can represent a function f(x) with a polynomial of degree 2N − 1 is due to
the fact that we have 2N equations, N for the mesh points and N for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of order N , and the weights are
determined from the inverse of a matrix. An orthogonal polynomials of degree N defined in an interval
[a, b] has precisely N distinct zeros on the open interval (a, b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let us revisit
some features of orthogonal polynomials by specializing to Legendre polynomials. In the text below,
we reserve hereafter the labelling LN for a Legendre polynomial of order N , while PN is an arbitrary
polynomial of order N . These polynomials form then the basis for the Gauss-Legendre method.

136

7.3 – Gaussian quadrature

7.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in physics, namely

C(1− x2)P −m2
l P + (1− x2)

d

dx

(
(1− x2)

dP

dx

)
= 0.

C is a constant. Forml = 0 we obtain the Legendre polynomials as solutions, whereasml ≠ 0 yields the
so-called associated Legendre polynomials. This differential equation arises in for example the solution
of the angular dependence of Schrödinger’s equation with spherically symmetric potentials such as the
Coulomb potential.

The corresponding polynomials P are

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1)k k = 0, 1, 2, . . . ,

which, up to a factor, are the Legendre polynomials Lk. The latter fulfil the orthorgonality relation
∫ 1

−1
Li(x)Lj(x)dx =

2

2i + 1
δij , (7.10)

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj(x) = 0. (7.11)

It is common to choose the normalization condition

LN (1) = 1.

With these equations we can determine a Legendre polynomial of arbitrary order with input polynomials
of order N − 1 and N − 2.

As an example, consider the determination of L0, L1 and L2. We have that

L0(x) = c,

with c a constant. Using the normalization equation L0(1) = 1 we get that

L0(x) = 1.

For L1(x) we have the general expression

L1(x) = a + bx,

and using the orthorgonality relation
∫ 1

−1
L0(x)L1(x)dx = 0,

we obtain a = 0 and with the condition L1(1) = 1, we obtain b = 1, yielding

L1(x) = x.

137

Numerical integration

We can proceed in a similar fashion in order to determine the coefficients of L2

L2(x) = a + bx + cx2,

using the orthorgonality relations ∫ 1

−1
L0(x)L2(x)dx = 0,

and ∫ 1

−1
L1(x)L2(x)dx = 0,

and the condition L2(1) = 1 we would get

L2(x) =
1

2

(
3x2 − 1

)
. (7.12)

We note that we have three equations to determine the three coefficients a, b and c.
Alternatively, we could have employed the recursion relation of Eq. (7.11), resulting in

2L2(x) = 3xL1(x)− L0,

which leads to Eq. (7.12).
The orthogonality relation above is important in our discussion on how to obtain the weights and

mesh points. Suppose we have an arbitrary polynomial QN−1 of orderN −1 and a Legendre polynomial
LN (x) of order N . We could represent QN−1 by the Legendre polynomials through

QN−1(x) =
N−1∑

k=0

αkLk(x), (7.13)

where αk’s are constants.
Using the orthogonality relation of Eq. (7.10) we see that

∫ 1

−1
LN (x)QN−1(x)dx =

N−1∑

k=0

∫ 1

−1
LN (x)αkLk(x)dx = 0. (7.14)

We will use this result in our construction of mesh points and weights in the next subsection.
In summary, the first few Legendre polynomials are

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2 − 1)/2,

L3(x) = (5x3 − 3x)/2,

and
L4(x) = (35x4 − 30x2 + 3)/8.

The following simple function implements the above recursion relation of Eq. (7.11). for computing
Legendre polynomials of order N .

138

7.3 – Gaussian quadrature

/ / Th i s f u n c t i o n computes t h e Legendre po l ynom ia l o f degree N

double l e g e n d r e (i n t n , double x)
{

double r , s , t ;
i n t m;
r = 0 ; s = 1 . ;
/ / Use r e c u r s i o n r e l a t i o n t o g e n e r a t e p1 and p2
f o r (m=0 ; m < n ; m++)
{

t = r ; r = s ;
s = (2∗m+1)∗x∗ r − m∗ t ;
s /= (m+1) ;

} / / end o f do loop
re turn s ;

} / / end o f f u n c t i o n l e g e n d r e

The variable s represents Lj+1(x), while r holds Lj(x) and t the value Lj−1(x).

7.3.2 Mesh points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polynomial of degree
2N−1 (since we have 2N variables at hand, the mesh points and weights forN points). This polynomial
can be represented through polynomial division by

P2N−1(x) = LN (x)PN−1(x) + QN−1(x),

where PN−1(x) and QN−1(x) are some polynomials of degree N − 1 or less. The function LN (x) is a
Legendre polynomial of order N .

Recall that we wanted to approximate an arbitrary function f(x) with a polynomial P2N−1 in order
to evaluate ∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx,

we can use Eq. (7.14) to rewrite the above integral as
∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
(LN (x)PN−1(x) + QN−1(x))dx =

∫ 1

−1
QN−1(x)dx,

due to the orthogonality properties of the Legendre polynomials. We see that it suffices to evaluate the
integral over

∫ 1
−1 QN−1(x)dx in order to evaluate

∫ 1
−1 P2N−1(x)dx. In addition, at the points xk where

LN is zero, we have
P2N−1(xk) = QN−1(xk) k = 0, 1, . . . ,N − 1,

and we see that through these N points we can fully define QN−1(x) and thereby the integral. Note that
we have chosen to let the numbering of the points run from 0 toN − 1. The reason for this choice is that
we wish to have the same numbering as the order of a polynomial of degree N − 1. This numbering will
be useful below when we introduce the matrix elements which define the integration weights wi.

We develope then QN−1(x) in terms of Legendre polynomials, as done in Eq. (7.13),

QN−1(x) =
N−1∑

i=0

αiLi(x). (7.15)

139

Numerical integration

Using the orthogonality property of the Legendre polynomials we have

∫ 1

−1
QN−1(x)dx =

N−1∑

i=0

αi

∫ 1

−1
L0(x)Li(x)dx = 2α0,

where we have just inserted L0(x) = 1! Instead of an integration problem we need now to define the
coefficient α0. Since we know the values of QN−1 at the zeros of LN , we may rewrite Eq. (7.15) as

QN−1(xk) =
N−1∑

i=0

αiLi(xk) =
N−1∑

i=0

αiLik k = 0, 1, . . . ,N − 1. (7.16)

Since the Legendre polynomials are linearly independent of each other, none of the columns in the ma-
trix Lik are linear combinations of the others. This means that the matrix Lik has an inverse with the
properties

L−1L = I.

Multiplying both sides of Eq. (7.16) with
∑N−1

j=0 L−1
ji results in

N−1∑

i=0

(L−1)kiQN−1(xi) = αk, (7.17)

and since ∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx = 2α0 = 2

N−1∑

i=0

(L−1)0iP2N−1(xi),

we see that if we identify the weights with 2(L−1)0i, where the points xi are the zeros of L, we have an
integration formula of the type

∫ 1

−1
P2N−1(x)dx =

N−1∑

i=0

ωiP2N−1(xi)

and if our function f(x) can be approximated by a polynomial P of degree 2N − 1, we have finally that

∫ 1

−1
f(x)dx ≈

∫ 1

−1
P2N−1(x)dx =

N−1∑

i=0

ωiP2N−1(xi).

In summary, the mesh points xi are defined by the zeros of L while the weights are given by 2(L−1)0i.

7.3.3 Application to the case N = 2

Let us visualize the above formal results for the case N = 2. This means that we can approximate a
function f(x) with a polynomial P3(x) of order 2N − 1 = 3.

The mesh points are the zeros of L2(x) = 1/2(3x2 − 1). These points are x0 = −1/
√

3 and
x1 = 1/

√
3.

Specializing Eq. (7.16)

QN−1(xk) =
N−1∑

i=0

αiLi(xk) k = 0, 1, . . . ,N − 1.

140

7.3 – Gaussian quadrature

to N = 2 yields
Q1(x0) = α0 − α1

1√
3
,

and
Q1(x1) = α0 + α1

1√
3
,

since L0(x = ±1/
√

3) = 1 and L1(x = ±1/
√

3) = ±1/
√

3.
The matrix Lik defined in Eq. (7.16) is then

Lik =

(
1 − 1√

3
1 1√

3

)

,

with an inverse given by

(L)−1
ik =

√
3

2

(
1√
3

1√
3

−1 1

)

.

The weights are given by the matrix elements 2(L0k)−1. We have thence ω0 = 1 and ω1 = 1.
Obviously, there is no problem in changing the numbering of the matrix elements i, k = 0, 1, 2, . . . ,N−

1 to i, k = 1, 2, . . . ,N . We have chosen to start from zero, since we deal with polynomials of degree
N − 1.

Summarizing, for Legendre polynomials with N = 2 we have weights

ω : {1, 1} ,

and mesh points

x :

{
−

1√
3
,

1√
3

}
.

If we wish to integrate ∫ 1

−1
f(x)dx,

with f(x) = x2, we approximate

I =

∫ 1

−1
x2dx ≈

N−1∑

i=0

ωix
2
i .

The exact answer is 2/3. Using N = 2 with the above two weights and mesh points we get

I =

∫ 1

−1
x2dx =

1∑

i=0

ωix
2
i =

1

3
+

1

3
=

2

3
,

the exact answer!
If we were to emply the trapezoidal rule we would get

I =

∫ 1

−1
x2dx =

b− a

2

(
(a)2 + (b)2

)
/2 =

1− (−1)

2

(
(−1)2 + (1)2

)
/2 = 1!

With just two points we can calculate exactly the integral for a second-order polynomial since our meth-
ods approximates the exact function with higher order polynomial. How many points do you need with
the trapezoidal rule in order to achieve a similar accuracy?

141

Numerical integration

7.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always through a
change of variable

t =
b− a

2
x +

b + a

2
,

rewrite the integral for an interval [a,b]
∫ b

a
f(t)dt =

b− a

2

∫ 1

−1
f

(
(b− a)x

2
+

b + a

2

)
dx.

If we have an integral on the form ∫ ∞

0
f(t)dt,

we can choose new mesh points and weights by using the mapping

x̃i = tan
{π

4
(1 + xi)

}
,

and
ω̃i =

π

4

ωi

cos2
(

π
4 (1 + xi)

) ,

where xi and ωi are the original mesh points and weights in the interval [−1, 1], while x̃i and ω̃i are the
new mesh points and weights for the interval [0,∞].

To see that this is correct by inserting the the value of xi = −1 (the lower end of the interval [−1, 1])
into the expression for x̃i. That gives x̃i = 0, the lower end of the interval [0,∞]. For xi = 1, we obtain
x̃i = ∞. To check that the new weights are correct, recall that the weights should correspond to the
derivative of the mesh points. Try to convince yourself that the above expression fulfils this condition.

7.3.5 Other orthogonal polynomials

Laguerre polynomials

If we are able to rewrite our integral of Eq. (7.7) with a weight function W (x) = xαe−x with integration
limits [0,∞], we could then use the Laguerre polynomials. The polynomials form then the basis for the
Gauss-Laguerre method which can be applied to integrals of the form

I =

∫ ∞

0
f(x)dx =

∫ ∞

0
xαe−xg(x)dx.

These polynomials arise from the solution of the differential equation
(

d2

dx2
−

d

dx
+
λ

x
−

l(l + 1)

x2

)
L(x) = 0,

where l is an integer l ≥ 0 and λ a constant. This equation arises e.g., from the solution of the radial
Schrödinger equation with a centrally symmetric potential such as the Coulomb potential. The first few
polynomials are

L0(x) = 1,

L1(x) = 1− x,

142

7.3 – Gaussian quadrature

L2(x) = 2− 4x + x2,

L3(x) = 6− 18x + 9x2 − x3,

and
L4(x) = x4 − 16x3 + 72x2 − 96x + 24.

They fulfil the orthorgonality relation
∫ ∞

−∞
e−xLn(x)2dx = 1,

and the recursion relation

(n + 1)Ln+1(x) = (2n + 1− x)Ln(x)− nLn−1(x).

Hermite polynomials

In a similar way, for an integral which goes like

I =

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
e−x2

g(x)dx.

we could use the Hermite polynomials in order to extract weights and mesh points. The Hermite polyno-
mials are the solutions of the following differential equation

d2H(x)

dx2
− 2x

dH(x)

dx
+ (λ− 1)H(x) = 0. (7.18)

A typical example is again the solution of Schrödinger’s equation, but this time with a harmonic oscillator
potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12,

and
H4(x) = 16x4 − 48x2 + 12.

They fulfil the orthorgonality relation
∫ ∞

−∞
e−x2

Hn(x)2dx = 2nn!
√
π,

and the recursion relation
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

143

Numerical integration

Table 7.1: Mesh points and weights for the integration interval [0,100] with N = 10 using the Gauss-
Legendre method.

i xi ωi

1 1.305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42.556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.253 7.473
10 98.695 3.334

7.3.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since the mesh
points are not evenly distributed, a careful analysis of the behavior of the integrand as function of x and
the location of mesh points is mandatory. To give you an example, in the Table below we show the mesh
points and weights for the integration interval [0,100] forN = 10 points obtained by the Gauss-Legendre
method. Clearly, if your function oscillates strongly in any subinterval, this approach needs to be refined,
either by choosing more points or by choosing other integration methods. Note also that for integration
intervals like for example x ∈ [0,∞], the Gauss-Legendre method places more points at the beginning
of the integration interval. If your integrand varies slowly for large values of x, then this method may be
appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s method
and the Gauss-Legendre approach. We choose two functions to integrate:

∫ 100

1

exp (−x)

x
dx,

and ∫ 3

0

1

2 + x2
dx.

A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre method is
included here. The corresponding Fortran 90/95 program is located as programs/chapter7/program1.f90.

inc lude < io s t r e am >
inc lude
us ing namespace s t d ;
/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

144

7.3 – Gaussian quadrature

i n t n ;
double a , b ;
cou t << << end l ;
c i n >> n ;
cou t << << end l ;
c i n >> a >> b ;

/ / r e s e r v e space i n memory f o r v e c t o r s c o n t a i n i n g t h e mesh p o i n t s
/ / w e i g h t s and f u n c t i o n v a l u e s f o r t h e use o f t h e gauss−l e g e n d r e
/ / method

double ∗x = new double [n] ;
double ∗w = new double [n] ;

/ / s e t up t h e mesh p o i n t s and we i g h t s
gau l eg (a , b , x ,w, n) ;

/ / e v a l u a t e t h e i n t e g r a l w i t h t h e Gauss−Legendre method
/ / Note t h a t we i n i t i a l i z e t h e sum

double i n t _ g a u s s = 0 . ;
f o r (i n t i = 0 ; i < n ; i ++) {

i n t _ g a u s s +=w[i]∗ i n t _ f u n c t i o n (x [i]) ;
}

/ / f i n a l o u t p u t
cou t << << t r a p e z o i d a l _ r u l e (a , b , n , i n t _ f u n c t i o n)

<< end l ;
c ou t << << simpson (a , b , n , i n t _ f u n c t i o n)

<< end l ;
c ou t << << i n t _ g a u s s << end l ;
d e l e t e [] x ;
d e l e t e [] w;
re turn 0 ;

} / / end o f main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x)
{
double v a l u e = 4 . / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

To be noted in this program is that we can transfer the name of a given function to integrate. In Table
7.2 we show the results for the first integral using various mesh points, while Table 7.3 displays the
corresponding results obtained with the second integral. We note here that, since the area over where we

Table 7.2: Results for
∫ 100
1 exp (−x)/xdx using three different methods as functions of the number of

mesh points N .
N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

integrate is rather large and the integrand goes slowly to zero for large values of x, both the trapezoidal

145

Numerical integration

rule and Simpson’s method need quite many points in order to approach the Gauss-Legendre method.
This integrand demonstrates clearly the strength of the Gauss-Legendre method (and other GQ methods
as well), viz., few points are needed in order to achieve a very high precision.

The second Table however shows that for smaller integration intervals, both the trapezoidal rule and
Simpson’s method compare well with the results obtained with the Gauss-Legendre approach.

Table 7.3: Results for
∫ 3
0 1/(2+ x2)dx using three different methods as functions of the number of mesh

points N .
N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

7.4 Treatment of singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions for scat-
tering to dispersion relations. Dispersion relations are often related to measurable quantities and provide
important consistency checks in atomic, nuclear and particle physics. A PV integral is defined as

I(x) = P

∫ b

a
dt

f(t)

t− x
= lim

ϵ→0+

[∫ x−ϵ

a
dt

f(t)

t− x
+

∫ b

x+ϵ
dt

f(t)

t− x

]
,

and arises in applications of Cauchy’s residue theorem when the pole x lies on the real axis within the
interval of integration [a, b].

An important assumption is that the function f(t) is continuous on the interval of integration.
In case f(t) is an analytic expression or it has an analytic continuation in the complex plane, it may

be possible to obtain an expression on closed form for the above integral.
However, the situation which we are often confronted with is that f(t) is only known at some points

ti with corresponding values f(ti). In order to obtain I(x) we need to resort to a numerical evaluation.
To evaluate such an integral, let us first rewrite it as

P

∫ b

a
dt

f(t)

t− x
=

∫ x−∆

a
dt

f(t)

t− x
+

∫ b

x+∆
dt

f(t)

t− x
+ P

∫ x+∆

x−∆
dt

f(t)

t− x
,

where we have isolated the principal value part in the last integral.
Defining a new variable u = t− x, we can rewrite the principal value integral as

I∆(x) = P

∫ +∆

−∆
du

f(u + x)

u
. (7.19)

One possibility is to Taylor expand f(u + x) around u = 0, and compute derivatives to a certain order
as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers of u in the Taylor

146

7.4 – Treatment of singular Integrals

expansion dissapear, we have that

I∆(x) ≈
Nmax∑

n=0

f (2n+1)(x)
∆2n+1

(2n + 1)(2n + 1)!
.

To evaluate higher-order derivatives may be both time consuming and delicate from a numerical point
of view, since there is always the risk of loosing precision when calculating derivatives numerically.
Unless we have an analytic expression for f(u+ x) and can evaluate the derivatives in a closed form, the
above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (7.19). Let us first
introduce a new variable s = u/∆ and rewrite Eq. (7.19) as

I∆(x) = P

∫ +1

−1
ds

f(∆s + x)

s
. (7.20)

The integration limits are now from −1 to 1, as for the Legendre polynomials. The principal value
in Eq. (7.20) is however rather tricky to evaluate numerically, mainly since computers have limited pre-
cision. We will here use a subtraction trick often used when dealing with singular integrals in numerical
calculations. We introduce first the calculus relation

∫ +1

−1

ds

s
= 0.

It means that the curve 1/(s) has equal and opposite areas on both sides of the singular point s = 0.
If we then note that f(x) is just a constant, we have also

f(x)

∫ +1

−1

ds

s
=

∫ +1

−1
f(x)

ds

s
= 0.

Subtracting this equation from Eq. (7.20) yields

I∆(x) = P

∫ +1

−1
ds

f(∆s + x)

s
=

∫ +1

−1
ds

f(∆s + x)− f(x)

s
, (7.21)

and the integrand is now longer singular since we have that lims→x(f(s + x) − f(x)) = 0 and for the
particular case s = 0 the integrand is now finite.

Eq. (7.21) is now rewritten using the Gauss-Legendre method resulting in

∫ +1

−1
ds

f(∆s + x)− f(x)

s
=

N∑

i=1

ωi
f(∆si + x)− f(x)

si
, (7.22)

where si are the mesh points (N in total) and ωi are the weights.
In the selection of mesh points for a PV integral, it is important to use an even number of points, since

an odd number of mesh points always picks si = 0 as one of the mesh points. The sum in Eq. (7.22) will
then diverge.

Let us apply this method to the integral

I(x) = P

∫ +1

−1
dt

et

t
. (7.23)

147

Numerical integration

The integrand diverges at x = t = 0. We rewrite it using Eq. (7.21) as

P

∫ +1

−1
dt

et

t
=

∫ +1

−1

et − 1

t
, (7.24)

since ex = e0 = 1. With Eq. (7.22) we have then

∫ +1

−1

et − 1

t
≈

N∑

i=1

ωi
eti − 1

ti
. (7.25)

The exact results is 2.11450175075..... With just two mesh points we recall from the previous sub-
section that ω1 = ω2 = 1 and that the mesh points are the zeros of L2(x), namely x1 = −1/

√
3 and

x2 = 1/
√

3. Setting N = 2 and inserting these values in the last equation gives

I2(x = 0) =
√

3
(
e1/

√
3 − e−1/

√
3
)

= 2.1129772845.

With six mesh points we get even the exact result to the tenth digit

I6(x = 0) = 2.11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we modify the
integration limits to ±∞ and use the fact that

∫ ∞

−∞

dk

k − k0
= 0.

It means that the curve 1/(k − k0) has equal and opposite areas on both sides of the singular point k0.
If we break the integral into one over positive k and one over negative k, a change of variable k → −k
allows us to rewrite the last equation as

∫ ∞

0

dk

k2 − k2
0

= 0.

We can use this to express a principal values integral as

P
∫ ∞

0

f(k)dk

k2 − k2
0

=

∫ ∞

0

(f(k)− f(k0))dk

k2 − k2
0

, (7.26)

where the right-hand side is no longer singular at k = k0, it is proportional to the derivative df/dk, and
can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations, as discussed in the next section.

7.5 Adaptive quadrature methods

In preparation, Fall 2008

7.6 Multi-dimensional integrals

In preparation, Fall 2008

148

7.7 – Parallel computing

7.7 Parallel computing

We end this chapter by discussing modern supercomputing concepts like parallel computing. In particu-
lar, we will introduce you to the usage of the Message Passing Interface (MPI) library. MPI is a library,
not a programming language. It specifies the names, calling sequences and results of functions or sub-
routines to be called from C++ or Fortran programs, and the classes and methods that make up the MPI
C++ library. The programs that users write in Fortran or C++ are compiled with ordinary compilers and
linked with the MPI library. MPI programs should be able to run on all possible machines and run all MPI
implementetations without change. An excellent reference is the text by Karniadakis and Kirby II [17].

7.7.1 Brief survey of supercomputing concepts and terminologies

Since many discoveries in science are nowadays obtained via large-scale simulations, there is an ever-
lasting wish and need to do larger simulations using shorter computer time. The development of the
capacity for single-processor computers (even with increased processor speed and memory) can hardly
keep up with the pace of scientific computing. The solution to the needs of the scientific computing and
high-performance computing (HPC) communities has therefore been parallel computing.

The basic ideas of parallel computing is that multiple processors are involved to solve a global prob-
lem. The essence is to divide the entire computation evenly among collaborative processors.

Today’s supercomputers are parallel machines and can achieve peak performances almost up to 1015

floating point operations per second, so-called peta-scale computers, see for example the list over the
top 500 supercomputers in world at . This list gets updated twice per year and sets up
the ranking according to a given supercomputer’s performance on a benchmark code from the LINPACK
library. The benchmark solves a set of linear equations using the best software for a given platform.

To understand the basic philosophy, it is useful to have a rough picture of how to classify different
hardware models. We distinguish betwen three major groups, (i) conventional single-processor com-
puters, normally called SISD (single-instruction-single-data) machines, (ii) so-called SIMD machines
(single-instruction-multiple-data), which incorporate the idea of parallel processing using a large num-
ber of processing units to execute the same instruction on different data and finally (iii) modern parallel
computers, so-called MIMD (multiple-instruction- multiple-data) machines that can execute different
instruction streams in parallel on different data. On a MIMD machine the different parallel process-
ing units perform operations independently of each others, only subject to synchronization via a given
message passing interface at specified time intervals. MIMD machines are the dominating ones among
present supercomputers, and we distinguish between two types of MIMD computers, namely shared
memory machines and distributed memory machines. In shared memory systems the central processing
units (CPU) share the same address space. Any CPU can access any data in the global memory. In dis-
tributed memory systems each CPU has its own memory. The CPUs are connected by some network and
may exchange messages. A recent trend are so-called ccNUMA (cache-coherent-non-uniform-memory-
access) systems which are clusters of SMP (symmetric multi-processing) machines and have a virtual
shared memory.

Distributed memory machines, in particular those based on PC clusters, are nowadays the most widely
used and cost-effective, although farms of PC clusters require large infrastuctures and yield additional
expenses for cooling. PC clusters with Linux as operating systems are easy to setup and offer several ad-
vantages, since they are built from standard commodity hardware with the open source software (Linux)
infrastructure. The designer can improve performance proportionally with added machines. The com-
modity hardware can be any of a number of mass-market, stand-alone compute nodes as simple as two
networked computers each running Linux and sharing a file system or as complex as thousands of nodes

149

Numerical integration

with a high-speed, low-latency network. In addition to the increased speed of present individual proces-
sors (and most machines come today with dual cores) the position of such commodity supercomputers
has been strenghtened by the fact that a library like MPI has made parallel computing portable and easy.
Although there are several implementations, they share the same core commands. Message-passing is a
mature programming paradigm and widely accepted. It often provides an efficient match to the hardware.

7.7.2 Parallelism

When we discuss parallelism, it is common to subdivide different algorithms in three major groups.

– Task parallelism:the work of a global problem can be divided into a number of independent tasks,
which rarely need to synchronize. Monte Carlo simulations and numerical integration are exam-
ples of possible applications. Since there is more or less no communication between different
processors, task parallelism results in almost a perfect mathematical parallelism and is commonly
dubbed embarassingly parallel (EP). The examples in this chapter fall under that category. The use
of the MPI library is then limited to some few function calls and the programming is normally very
simple.

– Data parallelism: use of multiple threads (e.g., one thread per processor) to dissect loops over
arrays etc. This paradigm requires a single memory address space. Communication and synchro-
nization between the processors are often hidden, and it is thus easy to program. However, the user
surrenders much control to a specialized compiler. An example of data parallelism is compiler-
based parallelization.

– Message-passing: all involved processors have an independent memory address space. The user is
responsible for partitioning the data/work of a global problem and distributing the subproblems to
the processors. Collaboration between processors is achieved by explicit message passing, which
is used for data transfer plus synchronization.

This paradigm is the most general one where the user has full control. Better parallel efficiency
is usually achieved by explicit message passing. However, message-passing programming is more
difficult. We will meet examples of this in connection with the solution eigenvalue problems in
chapter 12 and of partial differential equations in chapter 15.

Before we proceed, let us look at two simple examples. We will also use these simple examples to
define the speedup factor of a parallel computation. The first case is that of the additions of two vectors
of dimension n,

z = αx + βy,

where α and β are two real or complex numbers and z,x,y ∈ Rn or ∈ Cn. For every element we have
thus

zi = αxi + βyi.

For every element zi we have three floating point operations, two multiplications and one addition. If we
assume that these operations take the same time∆t, then the total time spent by one processor is

T1 = 3n∆t.

Suppose now that we have access to a parallel supercomputer with P processors. Assume also that P ≤
n. We split then these addition and multiplication operations on every processor so that every processor

150

7.7 – Parallel computing

performs 3n/P operations in total, resulting in a time TP = 3n∆t/P for every single processor. We also
assume that the time needed to gather together these subsums is neglible

If we have a perfect parallelism, our speedup should be P , the number of processors available. We
see that this is case by computing the relation between the time used in case of only one processor and
the time used if we can access P processors. The speedup SP is defined as

SP =
T1

TP
=

3n∆t

3n∆t/P
= P,

a perfect speedup. As mentioned above, we call calculations that yield a perfect speedup for embarass-
ingly parallel. The efficiency is defined as

η(P) =
S(P)

P
.

Our next example is that of the inner product of two vectors defined in Eq. (4.11),

c =
n∑

j=1

xjyj.

We assume again that P ≤ n and define I = n/P . Each processor is assigned with its own subset of
local multiplications cP =

∑
p xpyp, where p runs over all possible terms for processor P. As an example,

assume that we have four processors. Then we have

c1 =

n/4∑

j=1

xjyj, c2 =

n/2∑

j=n/4+1

xjyj,

c3 =

3n/4∑

j=n/2+1

xjyj, c4 =
n∑

j=3n/4+1

xjyj.

We assume again that the time for every operation is∆t. If we have only one processor, the total time is
T1 = (2n−1)∆t. For four processors, we must now add the time needed to add c1 + c2 + c3 + c4, which
is 3∆t (three additions) and the time needed to communicate the local result cP to all other processors.
This takes roughly (P − 1)∆tc, where ∆tc need not equal ∆t.

The speedup for four processors becomes now

S4 =
T1

T4
=

(2n − 1)∆t

(n/2− 1)∆t + 3∆t + 3∆tc
=

4n − 2

10 + n
,

if ∆t = ∆tc. For n = 100, the speedup is S4 = 3.62 < 4. For P processors the inner products yields a
speedup

SP =
(2n − 1)

(2I + P − 2)) + (P − 1)γ
,

with γ = ∆tc/∆t. Even with γ = 0, we see that the speedup is less than P .
The communication time ∆tc can reduce significantly the speedup. However, even if it is small,

there are other factors as well which may reduce the efficiency ηp. For example, we may have an uneven
load balance, meaning that not all the processors can perform useful work at all time, or that the number
of processors doesn’t match properly the size of the problem, or memory problems, or that a so-called
startup time penalty known as latency may slow down the transfer of data. Crucial here is the rate at
which messages are transferred

151

Numerical integration

7.7.3 MPI with simple examples

When we want to parallelize a sequential algorithm, there are at least two aspects we need to consider,
namely

– Identify the part(s) of a sequential algorithm that can be executed in parallel. This can be difficult.

– Distribute the global work and data among P processors. Stated differently, here you need to
understand how you can get computers to run in parallel. From a practical point of view it means
to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is then a tool for writing programs to run in
parallel, without needing to know much (in most cases nothing) about a given machine’s architecture.
MPI programs work on both shared memory and distributed memory machines. Furthermore, MPI is a
very rich and complicated library. But it is not necessary to use all the features. The basic and most used
functions have been optimized for most machine architectures

Before we proceed, we need to clarify some concepts, in particular the usage of the words process
and processor. We refer to process as a logical unit which executes its own code, in an MIMD style. The
processor is a physical device on which one or several processes are executed. The MPI standard uses the
concept process consistently throughout its documentation. However, since we only consider situations
where one processor is responsible for one process, we therefore use the two terms interchangeably in
the discussion below, hopefully without creating ambiguities.

The six most important MPI functions are

– MPI_ Init - initiate an MPI computation

– MPI_Finalize - terminate the MPI computation and clean up

– MPI_Comm_size - how many processes participate in a given MPI computation.

– MPI_Comm_rank - which rank does a given process have. The rank is a number between 0 and
size-1, the latter representing the total number of processes.

– MPI_Send - send a message to a particular process within an MPI computation

– MPI_Recv - receive a message from a particular process within an MPI computation.

The first MPI C++ program is a rewriting of our ’hello world’ program (without the computation of
the sine function) from chapter 2. We let every process write "Hello world" on the standard output.

/ / F i r s t C++ example o f MPI He l l o world
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < io s t r e am >

i n t main (i n t na rgs , char∗ a r g s [])
{

i n t numprocs , my_rank ;
/ / MPI i n i t i a l i z a t i o n s

MPI_In i t (&nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;

152

7.7 – Parallel computing

cou t << << my_rank << <<
numprocs << end l ;

/ / End MPI
MPI_F in a l i z e () ;

re turn 0 ;
}

The corresponding Fortran95 program reads

PROGRAM h e l l o
INCLUDE
INTEGER : : numprocs , my_rank , i e r r

CALL MPI_INIT (i e r r)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs , i e r r)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank , i e r r)
WRITE(∗ , ∗) , my_rank , , numprocs
CALL MPI_FINALIZE(i e r r)

END PROGRAM h e l l o

MPI is a message-passing library where all the routines have a corresponding C++-bindings3 MPI_Command_name
or Fortran-bindings (function names are by convention in uppercase, but can also be in lower case)
MPI_COMMAND_NAME

To use the MPI library you must include header files which contain definitions and declarations that
are needed by the MPI library routines. The following line must appear at the top of any source code
file that will make an MPI call. For Fortran you must put in the beginning INCLUDE ’mpif.h’ while for
C++ you need to include the statement #include . These header files contain the declarations of
functions, variabels etc. needed by the MPI library.

The first MPI call must be MPI_INIT, which initializes the message passing routines, as defined in
for example INTEGER:: ierr and CALLMPI_INIT(ierr) for the Fortran example. The variable ierr is an
integer which holds an error code when the call returns. The value of ierr is however of little use since,
by default, MPI aborts the program when it encounters an error. However, ierr must be included when
MPI starts. For the C++ code we have the call to the function int MPI_Init(int ∗argc, char ∗argv) where
argc and argv are arguments passed to main. MPI does not use these arguments in any way, however, and
in MPI-2 implementations, NULL may be passed instead. When you have finished you must call the
function MPI_Finalize. In Fortran you use the statement CALLMPI_FINALIZE(ierr) while for C++ we use
the function int MPI_Finalize(void).

In addition to these calls, we have also included calls to so-called inquiry functions. Theee are
two MPI calls that are usually made soon after initialization. They are for C++, MPI_COMM_SIZE
((MPI_COMM_WORLD, &numprocs) and CALLMPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
for Fortran 90/95. The function MPI_COMM_SIZE returns the number of tasks in a specified MPI com-
municator (comm when we refer to it in generic function calls below).

In MPI, you can divide your total number of tasks into groups, called communicators. What does
that mean? All MPI communication is associated with what one calls a communicator that describes a
group of MPI processes with a name (context). The communicator designates a collection of processes
which can communicate with each other. Every process is then identified by its rank. The rank is only

3The C++ bindings used in practice are the same as the C bindings, although reading older texts like [16, 15, 17] one fi nds
extensive discussions on the difference between C and C++ bindings. Throughout this text we will use the C bindings.

153

Numerical integration

meaningful within a particular communicator. A communicator is thus used as a mechanism to identify
subsets of processes. MPI has the flexibility to allow you to define different types of communicators, see
for example [16]. However, here we have used the communicator MPI_COMM_WORLD that contains all
the MPI processes that are initiated when we run the program.

The variable numprocs refers to the number of processes we have at our disposal. The function
MPI_COMM_RANK returns the rank (the name or identifier) of the tasks running the code. Each task (or
processor) in a communicator is assigned a number my_rank from 0 to numprocs− 1.

We are now ready to perform our first MPI calculations.

Running codes with MPI

To compile and load the above C++ code (after having understood how to use a local cluster), we can use
the command

and try to run with ten nodes using the command

If we wish to use the Fortran 90/95 version we need to replace the C++ compiler statement mpiccwith
mpif90 or equivalent compilers. The name of the compiler is obviously system dependent. The command
mpirun may be instead of mpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executable version of the code and all processes
are running exactly the same code. The question is then how can we tell the difference between our
parallel code running on a given number of processes and a serial code? There are two major distinctions
you should keep in mind: (i) MPI lets each process have a particular rank to determine which instructions
are run on a particular process and (ii) the processes communicate with each other in order to finalize a
task. Even if all processes receive the same set of instructions, they will normally not execute the same
instructions.We will exemplify this in connection with our integration example below.

The above example spits out the following output

The output to screen is not ordered since all processes are trying to write to screen simultaneously. It
is then the operating system which opts for an ordering. If we wish to have an organized output, starting
from the first process, we may rewrite our program as follows

/ / Second C++ example o f MPI He l l o world
us ing namespace s t d ;
inc lude <mpi . h>

154

7.7 – Parallel computing

inc lude < io s t r e am >

i n t main (i n t na rgs , char∗ a r g s [])
{

i n t numprocs , my_rank , i ;
/ / MPI i n i t i a l i z a t i o n s

MPI_In i t (&nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
f o r (i = 0 ; i < numprocs ; i ++) {
MPI_Bar r i e r (MPI_COMM_WORLD) ;
i f (i == my_rank) {
cou t << << my_rank << <<

numprocs << end l ;
f f l u s h (s t d o u t) ;

}
}

/ / End MPI
MPI_F in a l i z e () ;

re turn 0 ;
}

Here we have used the MPI_Barrier function to ensure that that every process has completed its set of
instructions in a particular order. A barrier is a special collective operation that does not allow the
processes to continue until all processes in the communicator (here MPI_COMM_WORLD) have called
MPI_Barrier. The output is now

The barriers make sure that all processes have reached the same point in the code. Many of the collective
operations like MPI_ALLREDUCE to be discussed later, have the same property; viz. no process can exit
the operation until all processes have started. However, this is slightly more time-consuming since the
processes synchronize between themselves as many times as there are processes. In the next Hello world
example we use the send and receive functions in order to a have a synchronized action.

/ / Th i rd C++ example o f MPI He l l o world
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < io s t r e am >

i n t main (i n t na rgs , char∗ a r g s [])
{

i n t numprocs , my_rank , f l a g ;

155

Numerical integration

/ / MPI i n i t i a l i z a t i o n s
MPI_Sta tu s s t a t u s ;
MPI_ In i t (&nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
/ / Send and Rece i v e example
i f (my_rank > 0)
MPI_Recv (& f l a g , 1 , MPI_INT , my_rank−1 , 100 , MPI_COMM_WORLD, &s t a t u s)

;
c ou t << << my_rank << <<

numprocs << end l ;
i f (my_rank < numprocs−1)

MPI_Send (&my_rank , 1 , MPI_INT , my_rank+1 , 100 , MPI_COMM_WORLD) ;
/ / End MPI

MPI_F in a l i z e () ;
re turn 0 ;

}

The basic sending of messages is given by the function MPI_SEND, which in C++ is defined as int
MPI_Send(void ∗buf, int count , MPI_Datatype datatype, int dest , int tag , MPI_Comm comm)while in For-
tran 90/95 wewould call this function with the following parameters CALL MPI_SEND(buf, count, MPI_TYPE
, dest, tag, comm, ierr). This single command allows the passing of any kind of variable, even a large array,
to any group of tasks. The variable buf is the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value, this should be 1. If we transfer an array,
it is the overall size of the array. For example, if we want to send a 10 by 10 array, count would be
10× 10 = 100 since we are actually passing 100 values.

We define the type of variable using MPI_TYPE in order to let MPI function know what to expect.
The destination of the send is declared via the variable dest , which gives the ID number of the task we are
sending the message to. The variable tag is a way for the receiver to verify that it is getting the message
it expects. The message tag is an integer number that we can assign any value, normally a large number
(larger than the expected number of processes). The communicator comm is the group ID of tasks that the
message is going to. For complex programs, tasks may be divided into groups to speed up connections
and transfers. In small programs, this will more than likely be in MPI_COMM_WORLD.

Furthermore, when an MPI routine is called, the Fortran 90/95 or C++ data type which is passed
must match the corresponding MPI integer constant. An integer is defined as MPI_INT in C++ and
MPI_INTEGER in Fortran 90/95. A double precision real isMPI_DOUBLE in C++ andMPI_DOUBLE_PRECISION
in Fortran 90/95 and single precision real is MPI_FLOAT in C++ and MPI_REAL in Fortran 90/95. For
further definitions of data types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on another task. The function MPI_RECV is sim-
ilar to the send call. In C++ we would define this as int MPI_Recv(void ∗buf, int count , MPI_Datatype
datatype, int source , int tag , MPI_Comm comm, MPI_Status ∗status) while in Fortran 90/95 we would
use the call CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, status, ierr). The arguments that
are different from those inMPI_SEND are buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the send command. This is the return ID of the
sender.

Finally, we have used MPI_Status status ; where one can check if the receive was completed. The
source or tag of a received message may not be known if wildcard values are used in the receive function.
In C++, MPI Status is a structure that contains further information. One can obtain this information using
MPI_Get_count (MPI_Status ∗status , MPI_Datatype datatype, int ∗count)

156

7.7 – Parallel computing

The output of this code is the same as the previous example, but now process 0 sends a message to
process 1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetings, we are now ready for serious work.

7.7.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to send and receive data types. This means
also that we need to specify which data types to send to MPI functions.

The program listed here integrates

π =

∫ 1

0
dx

4

1 + x2

by simply adding up areas of rectangles according to the algorithm discussed in Eq. (7.5), rewritten here

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2),

where f(x) = 4/(1+x2). This is a brute force way of obtaining an integral but suffices to demonstrate our
first application of MPI to mathematical problems. What we do is to subdivide the integration range x ∈
[0, 1] into n rectangles. Increasing n should obviously increase the precision of the result, as discussed in
the beginning of this chapter. The parallel part proceeds by letting every process collect a part of the sum
of the rectangles. At the end of the computation all the sums from the processes are summed up to give
the final global sum. The program below serves thus as a simple example on how to integrate in parallel.
We will refine it in the next examples and we will also add a simple example on how to implement the
trapezoidal rule.

1 / / R ea c t ang l e r u l e and numer i ca l i n t e g r a t i o n u s i n g MPI send and
Rece i v e

2 us ing namespace s t d ;
3 # i n c l u d e <mpi . h>
4 # i n c l u d e < io s t r e am >

5 i n t main (i n t na rgs , char∗ a r g s [])
6 {
7 i n t numprocs , my_rank , i , n = 1000 ;
8 double l o ca l_ sum , r e c t ang l e_ sum , x , h ;
9 / / MPI i n i t i a l i z a t i o n s
10 MPI_ In i t (&nargs , &a r g s) ;
11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
13 / / Read from s c r e e n a p o s s i b l e new vaue o f n
14 i f (my_rank == 0 && na r g s > 1) {
15 n = a t o i (a r g s [1]) ;
16 }
17 h = 1 . 0 / n ;
18 / / B roadca s t n and h t o a l l p r o c e s s e s
19 MPI_Bcast (&n , 1 , MPI_INT , 0 , MPI_COMM_WORLD) ;
20 MPI_Bcast (&h , 1 , MPI_DOUBLE, 0 , MPI_COMM_WORLD) ;
21 / / Every p r o c e s s s e t s up i t s c o n t r i b u t i o n t o t h e i n t e g r a l
22 lo c a l _ sum = 0 . ;

157

Numerical integration

23 f o r (i = my_rank ; i < n ; i += numprocs) {
24 x = (i + 0 . 5) ∗h ;
25 l o c a l _ sum += 4 . 0 / (1 . 0 + x∗x) ;
26 }
27 lo c a l _ sum ∗= h ;
28 i f (my_rank == 0) {
29 MPI_Sta tu s s t a t u s ;
30 r e c t a n g l e _ s um = lo ca l _ sum ;
31 f o r (i =1 ; i < numprocs ; i ++) {
32 MPI_Recv(& loca l_ sum , 1 ,MPI_DOUBLE,MPI_ANY_SOURCE , 5 0 0 ,

MPI_COMM_WORLD,& s t a t u s) ;
33 r e c t a n g l e _ s um += lo ca l _ sum ;
34 }
35 cou t << << r e c t a n g l e _ s um << end l ;
36 } e l s e
37 MPI_Send(& loca l_ sum , 1 ,MPI_DOUBLE, 0 , 5 0 0 ,MPI_COMM_WORLD) ;
38 / / End MPI
39 MPI_F in a l i z e () ;
40 re turn 0 ;
41 }

After the standard initializations withMPI such asMPI_Init,MPI_Comm_size andMPI_Comm_rank,MPI_COMM_WORLD
contains now the number of processes defined by using for example

In line 4 we check if we have read in from screen the number of mesh points n. Note that in line 7 we
fix n = 1000, however we have the possibility to run the code with a different number of mesh points as
well. If my_rank equals zero, which correponds to the master node, then we read a new value of n if the
number of arguments is larger than two. This can be done as follows when we run the code

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast function MPI_Bcast
. We use this particular function because we want data on one processor (our master node) to be shared
with all other processors. The broadcast function sends data to a group of processes. The MPI rou-
tine MPI_Bcast transfers data from one task to a group of others. The format for the call is in C++
given by the parameters of MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);. MPI_Bcast (&h, 1,
MPI_DOUBLE, 0, MPI_COMM_WORLD); in a case of a double. The general structure of this function
is int MPI_Bcast(void ∗buf, int count , MPI_Datatype datatype, int root , MPI_Comm comm). All pro-
cesses call this function, both the process sending the data (with rank zero) and all the other processes in
MPI_COMM_WORLD. Every process has now copies of n and h, the number of mesh points and the step
length, respectively.

We transfer the addresses of n and h. The second argument represents the number of data sent. In
case of a one-dimensional array, one needs to transfer the number of array elements. If you have an
n×mmatrix, you must transfer n×m. We need also to specify whether the variable type we transfer is
a non-numerical such as a logical or character variable or numerical of the integer, real or complex type.

We transfer also an integer variable int root. This variable specifies the process which has the original
copy of the data. Since we fix this value to zero in the call in lines 19 and 20, it means that it is the master
process which keeps this information. For Fortran 90/95, this function is called via the statement CALL
MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

158

7.7 – Parallel computing

In lines 23-27, every process sums its own part of the final sum used by the rectangle rule. The receive
statement collects the sums from all other processes in case my_rank == 0, else an MPI send is performed.

The above function is not very elegant. Furthermore, the MPI instructions can be simplified by
using the functions MPI_Reduce orMPI_Allreduce. The first function takes information from all processes
and sends the result of the MPI operation to one process only, typically the master node. If we use
MPI_Allreduce, the result is sent back to all processes, a feature which is useful when all nodes need the
value of a joint operation. We limit ourselves to MPI_Reduce since it is only one process which will print
out the final number of our calculation, The arguments to MPI_Allreduce are the same.

The MPI_Reduce function is defined as follows int MPI_Bcast(void ∗senddata , void∗ resultdata ,
int count , MPI_Datatype datatype, MPI_Op, int root , MPI_Comm comm). The two variables senddata and
resultdata are obvious, besides the fact that one sends the address of the variable or the first element
of an array. If they are arrays they need to have the same size. The variable count represents the total
dimensionality, 1 in case of just one variable, while MPI_Datatype defines the type of variable which is
sent and received. The new feature is MPI_Op. MPI_Op defines the type of operation we want to do.
There are many options, see again Refs. [16, 17, 15] for full list. In our case, since we are summing
the rectangle contributions from every process we define MPI_Op = MPI_SUM. If we have an array or
matrix we can search for the largest og smallest element by sending either MPI_MAX orMPI_MIN. If we
want the location as well (which array element) we simply transfer MPI_MAXLOC orMPI_MINOC. If we
want the product we write MPI_PROD. MPI_Allreduce is defined as int MPI_Bcast(void ∗senddata , void∗
resultdata , int count , MPI_Datatype datatype, MPI_Op, MPI_Comm comm).
The function we list in the next example is the MPI extension of program1.cpp. The difference is that

we employ only the trapezoidal rule. It is easy to extend this code to include gaussian quadrature or other
methods.

It is also worth noting that every process has now its own starting and ending point. We read in
the number of integration points n and the integration limits a and b. These are called a and b. They
serve to define the local integration limits used by every process. The local integration limits are defined
as local_a = a + my_rank ∗(b−a)/numprocs and local_b = a + (my_rank−1)∗(b−a)/numprocs. These two
variables are transfered to the method for the trapezoidal rule. These two methods return the local sum
variable local_sum. MPI_Reduce collects all the local sums and returns the total sum, which is written out
by the master node. The program below implements this. We have also added the possibility to measure
the total time used by the code via the calls to MPI_Wtime.

/ / T r a p e z o i d a l r u l e and numer i ca l i n t e g r a t i o n u s i n g MPI wi t h MPI_Reduce
us ing namespace s t d ;
inc lude <mpi . h>
inc lude < io s t r e am >

/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program

double i n t _ f u n c t i o n (double) ;
double t r a p e z o i d a l _ r u l e (double , double , i n t , double (∗) (double)) ;

/ / Main f u n c t i o n b e g i n s here
i n t main (i n t na rgs , char∗ a r g s [])
{
i n t n , l o c a l _ n , numprocs , my_rank ;
double a , b , h , l o c a l _ a , l o c a l _ b , t o t a l _ sum , l o c a l _ sum ;
double t i m e _ s t a r t , t ime_end , t o t a l _ t i m e ;
/ / MPI i n i t i a l i z a t i o n s

159

Numerical integration

MPI_In i t (&nargs , &a r g s) ;
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;
t i m e _ s t a r t = MPI_Wtime () ;
/ / F ixed v a l u e s f o r a , b and n
a = 0 . 0 ; b = 1 . 0 ; n = 1000 ;
h = (b−a) / n ; / / h i s t h e same f o r a l l p r o c e s s e s
l o c a l _ n = n / numprocs ; / / make su re n > numprocs , e l s e i n t e g e r d i v i s i o n

g i v e s z e ro
/ / Leng th o f each p ro c e s s ’ i n t e r v a l o f
/ / i n t e g r a t i o n = l o c a l _ n ∗h .
l o c a l _ a = a + my_rank∗ l o c a l _ n ∗h ;
l o c a l _ b = l o c a l _ a + l o c a l _ n ∗h ;
t o t a l _ s um = 0 . 0 ;
l o c a l _ sum = t r a p e z o i d a l _ r u l e (l o c a l _ a , l o c a l _ b , l o c a l _ n , &i n t _ f u n c t i o n) ;
MPI_Reduce (& loca l_ sum , &to t a l _ sum , 1 , MPI_DOUBLE, MPI_SUM, 0 ,

MPI_COMM_WORLD) ;
t ime_end = MPI_Wtime () ;
t o t a l _ t i m e = t ime_end− t i m e _ s t a r t ;
i f (my_rank == 0) {
cou t << << t o t a l _ s um << end l ;
c ou t << << t o t a l _ t i m e << <<

numprocs << end l ;
}
/ / End MPI
MPI_F in a l i z e () ;
re turn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x)
{
double v a l u e = 4 . / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

/ / t h i s f u n c t i o n d e f i n e s t h e t r a p e z o i d a l r u l e
double t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double (∗ func) (double))
{
double t r apez_sum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =(b−a) / ((double) n) ;
f a =(∗ func) (a) / 2 . ;
f b =(∗ func) (b) / 2 . ;
t r apez_sum =0 . ;
f o r (j =1 ; j <= n−1; j ++) {
x= j ∗ s t e p +a ;
t r apez_sum +=(∗ func) (x) ;

}
t r apez_sum =(t r apez_sum+fb+ f a) ∗ s t e p ;
re turn t r apez_sum ;

} / / end t r a p e z o i d a l _ r u l e

160

7.8 – Physics project: quantum mechanical scattering via integral equations

An obvious extension of this code is to read from file or screen the integration variables. One could also
use the program library to call a particular integration method.

7.8 Physics project: quantum mechanical scattering via integral equations

(This section will be completed fall 2008.)
Integral equations arise frequently in physics problems. An example is the Schrödinger equation in

momentum space for the scattering of two particles such as a proton and a neutron, or two protons or
two electrons. There we assume that these particles interact via some potential to be defined below. For
a scattering problem, the particles have only kinetic energy and the total energy of the two particles E
is larger than zero. The Schrödinger equation for this system, called the Lippman-Schwinger equation,
results in an integral equation. We limit ourselves to just one partial wave and to scattering in the center
of mass system. With relative momenta k and k ′ for the incoming and outgoing quantum mechanical
states, we obtain an integral equation with the amplitude R(k, k ′) (reaction matrix) defined through

R(k, k′) = V (k, k′) +
2

π
P
∫ ∞

0
dqq2V (k, q)

1

E − q2/m
R(q, k′), (7.27)

where the total kinetic energy of the two incoming particles in the center-of-mass system is

E =
k2
0

m
,

and V (k, k′) is the interaction acting between the two particles, in momentum space. The symbol P
indicates that Cauchy’s principal-value prescription is used in order to avoid the singularity arising from
the zero of the denominator. Eq. (7.27) represents then the problem you will have to solve numerically.
The principal value in Eq. (7.27) is rather tricky to evaluate numerically, mainly since computers have
limited precision. We will here use a subtraction trick often used when dealing with singular integrals in
numerical calculations. We express the principal value integral as

P
∫ ∞

0

f(k)dk

k2 − k2
0

=

∫ ∞

0

(f(k)− f(k0))dk

k2 − k2
0

,

where the right-hand side is no longer singular at k = k0, it is proportional to the derivative df/dk, and
can be evaluated numerically as any other integral.

We can then use the trick in Eq. (7.8) to rewrite Eq. (7.27) as

R(k, k′) = V (k, k′) +
2

π

∫ ∞

0
dq

q2V (k, q)R(q, k′)− k2
0V (k, k0)R(k0, k′)

(k2
0 − q2)/m

. (7.28)

Using the mesh points kj and the weights ωj , we can rewrite Eq. (7.28) as

R(k, k′) = V (k, k′) +
2

π

N∑

j=1

ωjk2
j V (k, kj)R(kj , k′)

(k2
0 − k2

j)/m
−

2

π
k2
0V (k, k0)R(k0, k

′)
N∑

n=1

ωn

(k2
0 − k2

n)/m
.

(7.29)
This equation contains now the unknowns R(ki, kj) (with dimensionN×N) andR(k0, k0). We can turn
Eq. (7.29) into an equation with dimension (N + 1) × (N + 1) with a mesh which contains the original

161

Numerical integration

mesh points kj for j = 1,N and the point which corresponds to the energy k0. Consider the latter as the
’observable’ point. The mesh points become then kj for j = 1, n and kN+1 = k0. With these new mesh
points we define the matrix

Ai,j = δi,j + V (ki, kj)uj , (7.30)

where δ is the Kroenecker δ and

uj =
2

π

ωjk2
j

(k2
0 − k2

j)/m
j = 1,N

and

uN+1 = −
2

π

N∑

j=1

k2
0ωj

(k2
0 − k2

j)/m
.

With the matrix A we can rewrite Eq. (7.29) as a matrix problem of dimension (N + 1) × (N + 1).
All matrices R, A and V have this dimension and we get

Ai,lRl,j = Vi,j ,

or just
AR = V. (7.31)

Since we already have defined A and V (these are stored as (N + 1) × (N + 1) matrices) Eq. (7.31)
involves only the unknown R. We obtain it by matrix inversion, i.e.,

R = A−1V. (7.32)

Thus, to obtain R, we need to set up the matrices A and V and invert the matrix A. To do that one can
use the function matinv in the program library. With the inverse A−1, performing a matrix multiplication
with V results in R.

With R we obtain subsequently the phaseshifts, which are experimental quantities, using the relation

R(kN+1, kN+1) = R(k0, k0) = −
tanδ

mk0
.

162

Chapter 8

Outline of the Monte-Carlo strategy

’Iacta Alea est’, the die is cast, is what Julius Caesar is reported by Suetonius to have
said on January 10, 49 BC as he led his army across the River Rubicon in Northern Italy.
(Twelve Ceasars)Gaius Suetonius

8.1 Introduction

Monte Carlo methods are nowadays widely used, from the integration of multi-dimensional integrals
to solving ab initio problems in chemistry, physics, medicine, biology, or even Dow-Jones forecasting.
Computational finance is one of the novel fields where Monte Carlo methods have found a new field of
applications, with financial engineering as an emerging field, see for example Refs. [38, 39]. Emerging
fields like econophysics [40, 41, 42] are new examples of wide applications of Monte Carlo methods.

Numerical methods that are known as Monte Carlo methods can be loosely described as statistical
simulation methods, where statistical simulation is defined in quite general terms to be any method that
utilizes sequences of random numbers to perform the simulation. As mentioned in the introduction to
this text, a central algorithm in Monte Carlo methods is the Metropolis algorithm, ranked as one of the
top ten algorithms in the last century. We discuss this algorithm in the next chapter.

Statistical simulation methods may be contrasted to conventional numerical discretization methods,
which typically are applied to ordinary or partial differential equations that describe some underlying
physical or mathematical system. In many applications of Monte Carlo, the physical process is simulated
directly, and there is no need to even write down the differential equations that describe the behavior of the
system. The only requirement is that the physical (or mathematical) system be described by probability
distribution functions (PDF’s). Once the PDF’s are known, the Monte Carlo simulation can proceed by
random sampling from the PDF’s. Many simulations are then performed (multiple “trials” or “histories”)
and the desired result is taken as an average over the number of observations (which may be a single
observation or perhaps millions of observations). In many practical applications, one can predict the
statistical error (the “variance”) in this average result, and hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we assume that the physical system can be described by a
given probability density function, then the Monte Carlo simulation can proceed by sampling from these
PDF’s, which necessitates a fast and effective way to generate random numbers uniformly distributed on
the interval [0,1]. The outcomes of these random samplings, or trials, must be accumulated or tallied
in an appropriate manner to produce the desired result, but the essential characteristic of Monte Carlo is
the use of random sampling techniques (and perhaps other algebra to manipulate the outcomes) to arrive

163

Outline of the Monte-Carlo strategy

at a solution of the physical problem. In contrast, a conventional numerical solution approach would
start with the mathematical model of the physical system, discretizing the differential equations and then
solving a set of algebraic equations for the unknown state of the system. It should be kept in mind though,
that this general description of Monte Carlo methods may not directly apply to some applications. It is
natural to think that Monte Carlo methods are used to simulate random, or stochastic, processes, since
these can be described by PDF’s. However, this coupling is actually too restrictive because many Monte
Carlo applications have no apparent stochastic content, such as the evaluation of a definite integral or the
inversion of a system of linear equations. However, in these cases and others, one can pose the desired
solution in terms of PDF’s, and while this transformation may seem artificial, this step allows the system
to be treated as a stochastic process for the purpose of simulation and hence Monte Carlo methods can
be applied to simulate the system.

There are, at least four ingredients which are crucial in order to understand the basic Monte-Carlo
strategy. These are

1. Random variables,

2. probability distribution functions (PDF),

3. moments of a PDF

4. and its pertinent variance σ.

All these topics will be discussed at length below. We feel however that a brief explanation may be
appropriate in order to convey the strategy behind a Monte-Carlo calculation. Let us first demistify the
somewhat obscure concept of a random variable. The example we choose is the classic one, the tossing
of two dice, its outcome and the corresponding probability. In principle, we could imagine being able to
determine exactly the motion of the two dice, and with given initial conditions determine the outcome of
the tossing. Alas, we are not capable of pursuing this ideal scheme. However, it does not mean that we
do not have a certain knowledge of the outcome. This partial knowledge is given by the probablity of
obtaining a certain number when tossing the dice. To be more precise, the tossing of the dice yields the
following possible values

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. (8.1)

These values are called the domain. To this domain we have the corresponding probabilities

[1/36, 2/36/3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36]. (8.2)

The numbers in the domain are the outcomes of the physical process tossing the dice. We cannot tell be-
forehand whether the outcome is 3 or 5 or any other number in this domain. This defines the randomness
of the outcome, or unexpectedness or any other synonimous word which encompasses the uncertitude of
the final outcome. The only thing we can tell beforehand is that say the outcome 2 has a certain probabil-
ity. If our favorite hobby is to spend an hour every evening throwing dice and registering the sequence of
outcomes, we will note that the numbers in the above domain

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], (8.3)

appear in a random order. After 11 throws the results may look like

[10, 8, 6, 3, 6, 9, 11, 8, 12, 4, 5]. (8.4)

164

8.1 – Introduction

Eleven new attempts may results in a totally different sequence of numbers and so forth. Repeating this
exercise the next evening, will most likely never give you the same sequences. Thus, we say that the
outcome of this hobby of ours is truely random.

Random variables are hence characterized by a domain which contains all possible values that the
random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spare time activities, consider the radioac-
tive decay of an α-particle from a certain nucleus. Assume that you have at your disposal a Geiger-counter
which registers every 10 ms whether an α-particle reaches the counter or not. If we record a hit as 1 and
no observation as zero, and repeat this experiment for a long time, the outcome of the experiment is also
truely random. We cannot form a specific pattern from the above observations. The only possibility to
say something about the outcome is given by the PDF, which in this case is the well-known exponential
function

λ exp−(λx), (8.5)

with λ being proportional to the half-life of the given nucleus which decays.
Good texts on Monte Carlo methods are the monographs of Robert and Casella, Johnson and Fish-

man, see Refs. [43, 44, 45].

8.1.1 First illustration of the use of Monte-Carlo methods, crude integration

With this definition of a random variable and its associated PDF, we attempt now a clarification of the
Monte-Carlo strategy by using the evaluation of an integral as our example.

In chapter 7 we discussed standard methods for evaluating an integral like

I =

∫ 1

0
f(x)dx ≈

N∑

i=1

ωif(xi), (8.6)

where ωi are the weights determined by the specific integration method (like Simpson’s or Taylor’s meth-
ods) with xi the given mesh points. To give you a feeling of how we are to evaluate the above integral
using Monte-Carlo, we employ here the crudest possible approach. Later on we will present slightly more
refined approaches. This crude approach consists in setting all weights equal 1, ωi = 1. That corresponds
to the rectangle method presented in Eq. (7.5), displayed again here

I =

∫ b

a
f(x)dx ≈ h

N∑

i=1

f(xi−1/2),

where f(xi−1/2) is the midpoint value of f for a given value xi−1/2. Setting h = (b−a)/N where b = 1,
a = 0, we can then rewrite the above integral as

I =

∫ 1

0
f(x)dx ≈

1

N

N∑

i=1

f(xi), (8.7)

where xi are the midpoint values of x. Introducing the concept of the average of the function f for a
given PDF p(x) as

⟨f⟩ =
1

N

N∑

i=1

f(xi)p(xi), (8.8)

165

Outline of the Monte-Carlo strategy

and identify p(x) with the uniform distribution, viz p(x) = 1when x ∈ [0, 1] and zero for all other values
of x. The integral is is then the average of f over the interval x ∈ [0, 1]

I =

∫ 1

0
f(x)dx ≈ ⟨f⟩. (8.9)

In addition to the average value ⟨f⟩ the other important quantity in a Monte-Carlo calculation is the
variance σ2 and the standard deviation σ. We define first the variance of the integral with f for a uniform
distribution in the interval x ∈ [0, 1] to be

σ2
f =

1

N

N∑

i=1

(f(xi)− ⟨f⟩)2p(xi), (8.10)

amd inserting the uniform distribution this yields

σ2
f =

1

N

N∑

i=1

f(xi)
2 −

(
1

N

N∑

i=1

f(xi)

)2

, (8.11)

or
σ2

f =
(
⟨f2⟩ − ⟨f⟩2

)
. (8.12)

which is nothing but a measure of the extent to which f deviates from its average over the region of
integration. The standard deviation is defined as the square root of the variance. If we consider the above
results for a fixed value of N as a measurement, we could however recalculate the above average and
variance for a series of different measurements. If each such measumerent produces a set of averages for
the integral I denoted ⟨f⟩l, we have forM measurements that the integral is given by

⟨I⟩M =
1

M

M∑

l=1

⟨f⟩l. (8.13)

We show in section 8.3 that if we can consider the probability of correlated events to be zero, we can
rewrite the variance of these series of measurements as (equating M = N)

σ2
N ≈

1

N

(
⟨f2⟩ − ⟨f⟩2

)
=
σ2

f

N
. (8.14)

We note that the standard deviation is proportional with the inverse square root of the number of mea-
surements

σN ∼
1√
N

. (8.15)

The aim of Monte Carlo calculations is to have σN as small as possible after N samples. The results
from one sample represents, since we are using concepts from statistics, a ’measurement’.

The scaling in the previous equation is clearly unfavorable compared even with the trapezoidal rule.
In the previous chapter we saw that the trapezoidal rule carries a truncation error O(h2), with h the step
length. In general, methods based on a Taylor expansion such as the trapezoidal rule or Simpson’s rule
have a truncation error which goes like ∼ O(hk), with k ≥ 1. Recalling that the step size is defined as
h = (b− a)/N , we have an error which goes like ∼ N−k.

However, Monte Carlo integration is more efficient in higher dimensions. To see this, let us assume
that our integration volume is a hypercube with side L and dimension d. This cube contains hence

166

8.1 – Introduction

N = (L/h)d points and therefore the error in the result scales as N−k/d for the traditional methods.
The error in the Monte carlo integration is however independent of d and scales as σ ∼ 1/

√
N , always!

Comparing this error with that of the traditional methods, shows that Monte Carlo integration is more
efficient than an order-k algorithm when d > 2k. In order to expose this, consider the definition of the
quantum mechanical energy of a system consisting of 10 particles in three dimensions. The energy is the
expectation value of the Hamiltonian H and reads

E =

∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

where Ψ is the wave function of the system and Ri are the coordinates of each particle. If we want to
compute the above integral using for example Gaussian quadrature and use for example ten mesh points
for the ten particles, we need to compute a ten-dimensional integral with a total of 1030 mesh points.
As an amusing exercise, assume that you have access to today’s fastest computer with a theoretical peak
capacity of more than 100 Teraflops, that is 1014 floating point operations per second. Assume also that
every mesh point corresponds to one floating operation per second. Estimate then the time needed to
compute this integral with a traditional method like Gaussian quadrature and compare this number with
the estimated lifetime of the universe, T ≈ 4.7 × 1017s. Do you have the patience to wait?

We end this first part with a discussion of a brute force Monte Carlo program which integrates
∫ 1

0
dx

4

1 + x2
= π, (8.16)

where the input is the desired number of Monte Carlo samples. Note that we transfer the variable idum in
order to initialize the random number generator from the function ran0. The variable idum gets changed
for every sampling. This variable is called the seed.

What we are doing is to employ a random number generator to obtain numbers xi in the interval
[0, 1] through a call to one of the library functions ran0, ran1, ran2 or ran3 which generate random
numbers in the interval x ∈ [0, 1]. These functions will be discussed in the next section. Here we simply
employ these functions in order to generate a random variable. All random number generators produce
pseudo-random numbers in the interval [0, 1] using the so-called uniform probability distribution p(x)
defined as

p(x) =
1

b− a
Θ(x− a)Θ(b− x), (8.17)

with a = 0 og b = 1. If we have a general interval [a, b], we can still use these random number generators
through a change of variables

z = a + (b− a)x, (8.18)

with x in the interval [0, 1].
The present approach to the above integral is often called ’crude’ or ’Brute-Force’ Monte-Carlo.

Later on in this chapter we will study refinements to this simple approach. The reason for doing so is that
a random generator produces points that are distributed in a homogenous way in the interval [0, 1]. If our
function is peaked around certain values of x, we may end up sampling function values where f(x) is
small or near zero. Better schemes which reflect the properties of the function to be integrated are thence
needed.

The algorithm is as follows

– Choose the number of Monte Carlo samples N .

167

Outline of the Monte-Carlo strategy

– Perform a loop overN and for each step generate a a random number xi in the interval [0, 1] trough
a call to a random number generator.

– Use this number to evaluate f(xi).

– Evaluate the contributions to the mean value and the standard deviation for each loop.

– After N samples calculate the final mean value and the standard deviation.

The following C/C++ program1 implements the above algorithm using the library function ran0 to com-
pute π. Note again the inclusion of the lib.h file which has the random number generator function ran0.

inc lude < io s t r e am >
inc lude
us ing namespace s t d ;

/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t h e main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e

double func (double x) ;

/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t i , n ;
long idum ;
double crude_mc , x , sum_sigma , fx , v a r i a n c e ;
cou t << << end l ;
c i n >> n ;
crude_mc = sum_sigma =0 . ; idum=−1 ;

/ / e v a l u a t e t h e i n t e g r a l w i t h t h e a crude Monte−Carlo method
f o r (i = 1 ; i <= n ; i ++) {

x= ran0 (&idum) ;
fx= func (x) ;
crude_mc += fx ;
sum_sigma += fx ∗ fx ;

}
crude_mc = crude_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−crude_mc∗ crude_mc ;

/ / f i n a l o u t p u t
cou t << << v a r i a n c e <<

<< crude_mc << << M_PI << end l ;
} / / end o f main program
/ / t h i s f u n c t i o n d e f i n e s t h e f u n c t i o n t o i n t e g r a t e
double func (double x)
{
double v a l u e ;

1The Fortran 90/95 programs are not listed in the main text, they are found under the corresponding chapter as program-
s/chapter8/programn.f90.

168

8.1 – Introduction

Table 8.1: Results for I =
∫ 1
0 dx1/(1+x2) as function of number of Monte Carlo samples N . The exact

answer is 3.14159E + 00 for the integral and 4.13581E − 01 for the variance with six leading digits.
N I σN

10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01

109 3.14162E+00 4.13581E-01

v a l u e = 4 / (1 . + x∗x) ;
re turn v a l u e ;

} / / end o f f u n c t i o n t o e v a l u a t e

We note that as N increases, the integral itself never reaches more than an agreement to the fourth or
fifth digit. The variance also oscillates around its exact value 4.13581E − 01. Note well that the variance
need not be zero but one can, with appropriate redefinitions of the integral be made smaller. A smaller
variance yields also a smaller standard deviation. Improvements to this crude Monte Carlo approach will
be discussed in the coming sections.

As an alternative, we could have used the random number generator provided by the C/C++ compiler
through the functions srand and rand. In this case we initialise it via the function srand. The random
number generator is called via the function rand, which returns an integer from 0 to its the maximum
value, defined by the variable RAND_MAX as demonstrated in the next few lines of code.
i n v e r s _ p e r i o d = 1 . /RAND_MAX;
/ / i n i t i a l i s e t h e random number g e n e r a t o r
s r a n d (t ime (NULL)) ;
/ / o b t a i n a f l o a t i n g number x i n [0 , 1]

x = double (r and ()) ∗ i n v e r s _ p e r i o d ;

8.1.2 Second illustration, particles in a box

We give here an example of how a system evolves towards a well defined equilibrium state.
Consider a box divided into two equal halves separated by a wall. At the beginning, time t = 0, there

are N particles on the left side. A small hole in the wall is then opened and one particle can pass through
the hole per unit time.

After some time the system reaches its equilibrium state with equally many particles in both halves,
N/2. Instead of determining complicated initial conditions for a system of N particles, we model the
system by a simple statistical model. In order to simulate this system, which may consist of N ≫ 1
particles, we assume that all particles in the left half have equal probabilities of going to the right half.
We introduce the label nl to denote the number of particles at every time on the left side, and nr = N−nl

for those on the right side. The probability for a move to the right during a time step ∆t is n l/N . The
algorithm for simulating this problem may then look like as follows

– Choose the number of particles N .

169

Outline of the Monte-Carlo strategy

– Make a loop over time, where the maximum time should be larger than the number of particles N .

– For every time step∆t there is a probability nl/N for a move to the right. Compare this probability
with a random number x.

– If x ≤ nl/N , decrease the number of particles in the left half by one, i.e., nl = nl − 1. Else, move
a particle from the right half to the left, i.e., nl = nl + 1.

– Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time unit ∆t.
The following simple C/C++-program illustrates this model.

/ / P a r t i c l e s i n a box
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;

o f s t r e am o f i l e ;
i n t main (i n t argc , char∗ a rgv [])
{
char ∗ o u t f i l e n am e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , t ime , random_n , n l e f t ;
long idum ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command− l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / Read i n da ta
cou t << << end l ;
c i n >> i n i t i a l _ n _ p a r t i c l e s ;
/ / s e t u p o f i n i t i a l c o n d i t i o n s
n l e f t = i n i t i a l _ n _ p a r t i c l e s ;
max_time = 10∗ i n i t i a l _ n _ p a r t i c l e s ;
idum = −1;
/ / samp l ing over number o f p a r t i c l e s
f o r (t ime =0 ; t ime <= max_time ; t ime ++) {
random_n = ((i n t) i n i t i a l _ n _ p a r t i c l e s ∗ r an0 (&idum)) ;
i f (random_n <= n l e f t) {
n l e f t −= 1 ;

}
e l s e {
n l e f t += 1 ;

}

170

8.1 – Introduction

o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (1 5) << t ime ;
o f i l e << se tw (1 5) << n l e f t << end l ;

}
re turn 0 ;

} / / end main f u n c t i o n

The enclosed figure shows the development of this system as function of time steps. We note that
for N = 1000 after roughly 2000 time steps, the system has reached the equilibrium state. There are
however noteworthy fluctuations around equilibrium.

If we denote ⟨nl⟩ as the number of particles in the left half as a time average after equilibrium is
reached, we can define the standard deviation as

σ =
√
⟨n2

l ⟩ − ⟨nl⟩2. (8.19)

This problem has also an analytic solution to which we can compare our numerical simulation. If
nl(t) are the number of particles in the left half after t moves, the change in nl(t) in the time interval ∆t
is

∆n =

(
N − nl(t)

N
−

nl(t)

N

)
∆t, (8.20)

and assuming that nl and t are continuous variables we arrive at

dnl(t)

dt
= 1−

2nl(t)

N
, (8.21)

whose solution is
nl(t) =

N

2

(
1 + e−2t/N

)
, (8.22)

with the initial condition nl(t = 0) = N .

8.1.3 Radioactive decay

Radioactive decay is among one of the classical examples on use of Monte-Carlo simulations. Assume
that a the time t = 0 we have N(0) nuclei of type X which can decay radioactively. At a time t > 0 we
are left withN(t) nuclei. With a transition probability ω, which expresses the probability that the system
will make a transition to another state during a time step of one second, we have the following first-order
differential equation

dN(t) = −ωN(t)dt, (8.23)

whose solution is
N(t) = N(0)e−ωt, (8.24)

where we have defined the mean lifetime τ of X as

τ =
1

ω
. (8.25)

If a nucleus X decays to a daugther nucleus Y which also can decay, we get the following coupled
equations

dNX(t)

dt
= −ωXNX(t), (8.26)

171

Outline of the Monte-Carlo strategy

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000

nl(∆t)

∆t

MC simulation with N=1000
Exact result

Figure 8.1: Number of particles in the left half of the container as function of the number of time steps.
The solution is compared with the analytic expression. N = 1000.

and
dNY (t)

dt
= −ωY NY (t) + ωXNX(t). (8.27)

The program example in the next subsection illustrates how we can simulate such the decay process of
one type of nuclei through a Monte Carlo sampling procedure.

8.1.4 Program example for radioactive decay of one type of nucleus

The program is split in four tasks, a main program with various declarations,

/ / R a d i o a c t i v e decay o f n u c l e i
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;
o f s t r e am o f i l e ;
/ / Func t i o n t o read i n da ta from s c r e e n
void i n i t i a l i s e (i n t&, i n t&, i n t&, double&) ;
/ / The Mc samp l ing f o r n u c l e a r decay
void mc_sampling (i n t , i n t , i n t , double , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
void ou t p u t (i n t , i n t , i n t ∗) ;
i n t main (i n t argc , char∗ a rgv [])
{
char ∗ o u t f i l e n am e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , number_cyc le s ;

172

8.1 – Introduction

double d e c a y _ p r o b a b i l i t y ;
i n t ∗ ncumu l a t i v e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command−l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / Read i n da ta
i n i t i a l i s e (i n i t i a l _ n _ p a r t i c l e s , max_time , number_cycle s ,

d e c a y _ p r o b a b i l i t y) ;
n cumu l a t i v e = new i n t [max_time +1] ;
/ / Do t h e mc samp l ing
mc_sampling (i n i t i a l _ n _ p a r t i c l e s , max_time , number_cycles ,

d e c a y _ p r o b a b i l i t y , n cumu l a t i v e) ;
/ / P r i n t ou t r e s u l t s
ou t p u t (max_time , number_cycles , n cumu l a t i v e) ;
d e l e t e [] n cumu l a t i v e ;
re turn 0 ;

} / / end o f main f u n c t i o n

followed by a part which performs the Monte Carlo sampling

void mc_sampling (i n t i n i t i a l _ n _ p a r t i c l e s , i n t max_time ,
i n t number_cyc le s , double d e c a y _ p r o b a b i l i t y ,
i n t ∗ ncumu l a t i v e)

{
i n t cy c l e s , t ime , np , n _ u n s t a b l e , p a r t i c l e _ l i m i t ;
long idum ;

idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
/ / l oop over monte c a r l o c y c l e s
/ / One monte c a r l o loop i s one sample
f o r (c y c l e s = 1 ; c y c l e s <= number_cyc le s ; c y c l e s ++) {
n _ u n s t a b l e = i n i t i a l _ n _ p a r t i c l e s ;
/ / a ccumu la te t h e number o f p a r t i c l e s per t ime s t e p per t r i a l
ncumu l a t i v e [0] += i n i t i a l _ n _ p a r t i c l e s ;
/ / l oop over each t ime s t e p
f o r (t ime =1 ; t ime <= max_time ; t ime ++){

/ / f o r each t ime s t ep , we check each p a r t i c l e
p a r t i c l e _ l i m i t = n _ u n s t a b l e ;
f o r (np = 1 ; np <= p a r t i c l e _ l i m i t ; np++) {
i f (r an0 (&idum) <= d e c a y _ p r o b a b i l i t y) {
n _ u n s t a b l e= n _ un s t a b l e −1;

}
} / / end o f loop over p a r t i c l e s
ncumu l a t i v e [t ime] += n _ u n s t a b l e ;

} / / end o f loop over t ime s t e p s
} / / end o f loop over MC t r i a l s

173

Outline of the Monte-Carlo strategy

} / / end mc_sampl ing f u n c t i o n

and finally functions for reading input and writing output data. The latter are not listed here, see under
program/chapter8/program3.cpp for a full listing. The input variables are the number of Monte Carlo
cycles, the maximum number of time steps, the initial number of particles and the decay probability. The
output consists of the number of remaining nuclei at each time step.

8.1.5 Brief summary

In essence the Monte Carlo method contains the following ingredients

– A PDF which characterizes the system

– Random numbers which are generated so as to cover in a as uniform as possible way on the unity
interval [0,1].

– A sampling rule

– An error estimation

– Techniques for improving the errors

In the next section we discuss various PDF’s which may be of relevance here, thereafter we discuss
how to compute random numbers. Section 8.4 discusses Monte Carlo integration in general, how to
choose the correct weighting function and how to evaluate integrals with dimensions d > 1.

8.2 Probability distribution functions

Hitherto, we have tacitly used properties of probability distribution functions in our computation of ex-
pectation values. Here and there we have referred to the uniform PDF. It is now time to present some
general features of PDFs which we may encounter when doing physics and how we define various ex-
pectation values. In addition, we derive the central limit theorem and discuss its meaning in the light of
properties of various PDFs.

The following table collects properties of probability distribution functions. In our notation we re-
serve the label p(x) for the probability of a certain event, while P (x) is the cumulative probability.

Table 8.2: Important properties of PDFs.
Discrete PDF Continuous PDF

Domain {x1, x2, x3, . . . , xN} [a, b]
Probability p(xi) p(x)dx
Cumulative Pi =

∑i
l=1 p(xl) P (x) =

∫ x
a p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P (x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ xj P (xi) ≥ P (xj) if xi ≥ xj

Normalization PN = 1 P (b) = 1

174

8.2 – Probability distribution functions

With a PDF we can compute expectation values of selected quantities such as

⟨xk⟩ =
1

N

N∑

i=1

xk
i p(xi), (8.28)

if we have a discrete PDF or

⟨xk⟩ =

∫ b

a
xkp(x)dx, (8.29)

in the case of a continuous PDF. We have already defined the mean value µ and the variance σ2.
The expectation value of a quantity f(x) is then given by for example

⟨f⟩ =
∫ b

a
f(x)p(x)dx. (8.30)

We have already seen the use of the last equation when we applied the crude Monte Carlo approach to
the evaluation of an integral.

There are at least three PDFs which one may encounter. These are the

1. uniform distribution
p(x) =

1

b− a
Θ(x− a)Θ(b− x), (8.31)

yielding probabilities different from zero in the interval [a, b]. The mean value and the variance for
this distribution are discussed in section 8.3.

2. The exponential distribution
p(x) = αe−αx, (8.32)

yielding probabilities different from zero in the interval [0,∞) and with mean value

µ =

∫ ∞

0
xp(x)dx =

∫ ∞

0
xαe−αxdx =

1

α
(8.33)

and variance
σ2 =

∫ ∞

0
x2p(x)dx− µ2 =

1

α2
. (8.34)

3. Finally, we have the so-called univariate normal distribution, or just the normal distribution

p(x) =
1

b
√

2π
exp

(
−

(x− a)2

2b2

)
(8.35)

with probabilities different from zero in the interval (−∞,∞). The integral
∫∞
−∞ exp

(
−(x2

)
dx

appears in many calculations, its value is
√
π, a result we will need when we compute the mean

value and the variance. The mean value is

µ =

∫ ∞

0
xp(x)dx =

1

b
√

2π

∫ ∞

−∞
x exp

(
−

(x− a)2

2b2

)
dx, (8.36)

which becomes with a suitable change of variables

µ =
1

b
√

2π

∫ ∞

−∞
b
√

2(a + b
√

2y) exp−y2dy = a. (8.37)

175

Outline of the Monte-Carlo strategy

Similarly, the variance becomes

σ2 =
1

b
√

2π

∫ ∞

−∞
(x− µ)2 exp

(
−

(x− a)2

2b2

)
dx, (8.38)

and inserting the mean value and performing a variable change we obtain

σ2 =
1

b
√

2π

∫ ∞

−∞
b
√

2(b
√

2y)2 exp
(
−y2

)
dy =

2b2

√
π

∫ ∞

−∞
y2 exp

(
−y2

)
dy, (8.39)

and performing a final integration by parts we obtain the well-known result σ2 = b2. It is useful
to introduce the standard normal distribution as well, defined by µ = a = 0, viz. a distribution
centered around zero and with a variance σ2 = 1, leading to

p(x) =
1√
2π

exp

(
−

x2

2

)
. (8.40)

The exponential and uniform distributions have simple cumulative functions, whereas the normal
distribution does not, being proportional to the so-called error function erf(x), given by

P (x) = .
1√
2π

∫ x

−∞
exp

(
−

t2

2

)
dt, (8.41)

which is difficult to evaluate in a quick way. Later in this chapter we will present an algorithm by Box and
Mueller which allows us to compute the cumulative distribution using random variables sampled from
the uniform distribution.

Some other PDFs which one encounters often in the natural sciences are the binomial distribution

p(x) =

(
n
x

)
yx(1− y)n−x x = 0, 1, . . . , n, (8.42)

where y is the probability for a specific event, such as the tossing of a coin or moving left or right in case
of a random walker. Note that x is a discrete stochastic variable.

The sequence of binomial trials is characterized by the following definitions

– Every experiment is thought to consist of N independent trials.

– In every independent trial one registers if a specific situation happens or not, such as the jump to
the left or right of a random walker.

– The probability for every outcome in a single trial has the same value, for example the outcome of
tossing a coin is always 1/2.

In the next chapter we will show that the probability distribution for a random walker approaches the
binomial distribution.

In order to compute the mean and variance we need to recall Newton’s binomial formula

(a + b)m =
m∑

n=0

(
m
n

)
anbm−n,

176

8.2 – Probability distribution functions

which can be used to show that
n∑

x=0

(
n
x

)
yx(1− y)n−x = (y + 1− y)n = 1, (8.43)

the PDF is normalized to one. The mean value is

µ =
n∑

x=0

x

(
n
x

)
yx(1− y)n−x =

n∑

x=0

x
n!

x!(n − x)!
yx(1− y)n−x, (8.44)

resulting in

µ =
n∑

x=0

x
(n− 1)!

(x− 1)!(n − 1− (x− 1))!
yx−1(1− y)n−1−(x−1), (8.45)

which we rewrite as

µ = ny
n∑

ν=0

(
n− 1
ν

)
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny. (8.46)

The variance is slightly trickier to get, see the next exercises. It reads σ2 = ny(1− y).
Another important distribution with discrete stochastic variables x is the Poisson model, which re-

sembles the exponential distribution and reads

p(x) =
λx

x!
e−λ x = 0, 1, . . . , ;λ > 0. (8.47)

In this case both the mean value and the variance are easier to calculate,

µ =
∞∑

x=0

x
λx

x!
e−λ = λe−λ

∞∑

x=1

λx−1

(x− 1)!
= λ, (8.48)

and the variance is σ2 = λ. Example of applications of the Poisson distribution is the counting of
the number of α-particles emitted from a radioactive source in a given time interval. In the limit of
n → ∞ and for small probabilities y, the binomial distribution approaches the Poisson distribution.
Setting λ = ny, with y the probability for an event in the binomial distribution we can show that

lim
n→∞

(
n
x

)
yx(1− y)n−xe−λ

∞∑

x=1

=
λx

x!
e−λ, (8.49)

see for example Refs. [43, 44] for a proof.

Exercise 8.1
Calculate the cumulative functions P (x) for the binomial and the Poisson distributions and
their variances.

8.2.1 Multivariable Expectation Values

Let us recapitulate some of the above concepts using a discrete PDF (which is what we end up doing
anyway on a computer). The mean value of a random variable X with range x1, x2, . . . ,N is

⟨x⟩ = µ =
1

N

N∑

i=1

xip(xi),

177

Outline of the Monte-Carlo strategy

and the variance is

⟨σ2⟩ =
1

N

N∑

i=1

(xi − ⟨x⟩)2p(xi) =
1

N

N∑

i=1

⟨(xi − µi)
2⟩.

Assume now that we have two independent sets of measurements X1 and X2 with corresponding mean
and variance µ1 and µ2 and ⟨σ2⟩X1 and ⟨σ2⟩X2 . It follows that if we define the new stochastic variable

Y = X1 + X2, (8.50)

we have
µY = µ1 + µ2, (8.51)

and

⟨σ2⟩Y = ⟨(Y − µY)2⟩ = ⟨(X1 − µ1)
2⟩+ ⟨(X2 − µ2)

2⟩+ 2⟨(X1 − µ1)(X2 − µ2)⟩. (8.52)

It is useful to define the so-called covariance, given by

⟨cov(X1,X2)⟩ = ⟨(X1 − µ1)(X2 − µ2)⟩ (8.53)

where we consider the averages µ1 and µ2 as the outcome of two separate measurements. The covariance
measures thus the degree of correlation between variables. We can then rewrite the variance of Y as

⟨σ2⟩Y =
2∑

j=1

⟨(Xj − µj)
2⟩+ 2cov(X1,X2), (8.54)

which in our notation becomes

⟨σ2⟩Y = ⟨σ2⟩X1 + ⟨σ2⟩X2 + 2cov(X1,X2). (8.55)

If X1 and X2 are two independent variables we can show that the covariance is zero, but one cannot
deduce from a zero covariance whether the variables are independent or not. If our random variables
which we generate are truely random numbers, then the covariance should be zero. We will see tests of
standard random number generators in the next section. A way to measure the correlation between two
sets of stochastic variables is the so-called correlation function ρ(X1,X2) defined as

ρ(X1,X2) =
⟨cov(X1,X2)⟩√
⟨σ2⟩X1⟨σ2⟩X2

. (8.56)

Obviously, if the covariance is zero due to the fact that the variables are independent, then the correlation
is zero. This quantity is often called the correlation coefficient between X1 and X2. We can extend this
analysis to a set of stochastic variables Y = (X1 + X2 + · · · + XN). We now assume that we have N
different measurements of the mean and variance of a given variable. Each measurement consists again
of N measurements, although we could have chosen the latter to be different from N . As an example,
every evening for N days you measure N throws of two dice. The mean and variance are defined as
above. The total mean value is defined as

⟨µY ⟩ =
N∑

i=1

⟨µi⟩. (8.57)

178

8.2 – Probability distribution functions

The total variance is however now defined as

⟨σ2⟩Y = ⟨(Y − µY)2⟩ =
N∑

j=1

⟨(Xj − µj)⟩2 =
N∑

j=1

⟨σ2⟩Xj + 2
N∑

j<k

⟨(Xj − µj)⟩⟨(Xk − µk)⟩, (8.58)

or

⟨σ2⟩Y =
N∑

j=1

⟨σ2⟩Xj + 2
N∑

j<k

cov(Xj ,Xk). (8.59)

If the variables are independent, the covariance is zero and the variance is reduced to

⟨σ2⟩Y =
N∑

j=1

⟨σ2⟩Xj , (8.60)

and if we assume that all sets of measurements produce the same variance ⟨σ2⟩, we end up with

⟨σ2⟩Y = N⟨σ2⟩. (8.61)

In the next subsection we combine these results with the central limit theorem in order to obtain the
classical expression for the standard deviation.

8.2.2 The central limit theorem

Suppose we have a PDF p(x) from which we generate a series N of averages ⟨xi⟩. Each mean value ⟨xi⟩
is viewed as the average of a specific measurement, e.g., throwing dice 100 times and then taking the
average value, or producing a certain amount of random numbers. For notational ease, we set ⟨xi⟩ = xi

in the discussion which follows.
If we compute the mean z of N such mean values xi

z =
x1 + x2 + · · · + xN

N
, (8.62)

the question we pose is which is the PDF of the new variable z.
The probability of obtaining an average value z is the product of the probabilities of obtaining arbi-

trary individual mean values xi, but with the constraint that the average is z. We can express this through
the following expression

p̃(z) =

∫
dx1p(x1)

∫
dx2p(x2) . . .

∫
dxNp(xN)δ(z −

x1 + x2 + · · · + xN

N
), (8.63)

where the δ-function enbodies the constraint that the mean is z. All measurements that lead to each
individual xi are expected to be independent, which in turn means that we can express p̃ as the product
of individual p(xi).

If we use the integral expression for the δ-function

δ(z −
x1 + x2 + · · · + xN

N
) =

1

2π

∫ ∞

−∞
dqe

“

iq(z−x1+x2+···+xN
N

)
”

, (8.64)

and inserting eiµq−iµq where µ is the mean value we arrive at

p̃(z) =
1

2π

∫ ∞

−∞
dqe(iq(z−µ))

[∫ ∞

−∞
dxp(x)e(iq(µ−x)/N)

]N

, (8.65)

179

Outline of the Monte-Carlo strategy

with the integral over x resulting in
∫ ∞

−∞
dxp(x) exp (iq(µ− x)/N) =

∫ ∞

−∞
dxp(x)

[
1 +

iq(µ− x)

N
−

q2(µ− x)2

2N2
+ . . .

]
. (8.66)

The second term on the rhs disappears since this is just the mean and employing the definition of σ2 we
have ∫ ∞

−∞
dxp(x)e(iq(µ−x)/N) = 1−

q2σ2

2N2
+ . . . , (8.67)

resulting in [∫ ∞

−∞
dxp(x) exp (iq(µ− x)/N)

]N

≈
[
1−

q2σ2

2N2
+ . . .

]N

, (8.68)

and in the limit N →∞ we obtain

p̃(z) =
1

√
2π(σ/

√
N)

exp

(
−

(z − µ)2

2(σ/
√

N)2

)
, (8.69)

which is the normal distribution with variance σ2
N = σ2/N , where σ is the variance of the PDF p(x) and

µ is also the mean of the PDF p(x).
Thus, the central limit theorem states that the PDF p̃(z) of the average of N random values corre-

sponding to a PDF p(x) is a normal distribution whose mean is the mean value of the PDF p(x) and
whose variance is the variance of the PDF p(x) divided by N , the number of values used to compute z.

The theorem is satisfied by a large class of PDFs. Note however that for a finite N , it is not always
possible to find a closed expression for p̃(x). The central limit theorem leads then to the well-known
expression for the standard deviation, given by

σN =
σ√
N

. (8.70)

The latter is true only if the average value is known exactly. This is obtained in the limit N → ∞ only.
Because the mean and the variance are measured quantities we obtain the familiar expression in statistics

σN ≈
σ√

N − 1
. (8.71)

8.3 Random numbers

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1), with any one
number in the range just as likely as any other. They are, in other words, what you probably think random
numbers are. However, we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean and standard deviation.
These other sorts of deviates are almost always generated by performing appropriate operations on one
or more uniform deviates, as we will see in subsequent sections. So, a reliable source of random uniform
deviates, the subject of this section, is an essential building block for any sort of stochastic modeling
or Monte Carlo computer work. A disclaimer is however appropriate. It should be fairly obvious that
something as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithm are in reality pseudo random numbers, hopefully
abiding to the following criteria:

180

8.3 – Random numbers

c = 3.98
c = 3.2

i

x

100806040200

1.2
1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Figure 8.2: Plot of the logistic mapping xi+1 = cxi(1− xi) for x0 = 0.1 and c = 3.2 and c = 3.98.

1. they produce a uniform distribution in the interval [0,1].

2. correlations between random numbers are negligible

3. the period before the same sequence of random numbers is repeated is as large as possible and
finally

4. the algorithm should be fast.

That correlations, see below for more details, should be as small as possible resides in the fact that
every event should be independent of the other ones. As an example, a particular simple system that
exhibits a seemingly random behavior can be obtained from the iterative process

xi+1 = cxi(1− xi), (8.72)

which is often used as an example of a chaotic system. c is constant and for certain values of c and x0 the
system can settle down quickly into a regular periodic sequence of values x1, x2, x3, For x0 = 0.1
and c = 3.2 we obtain a periodic pattern as shown in Fig. 8.2. Changing c to c = 3.98 yields a sequence
which does not converge to any specific pattern. The values of xi seem purely random. Although the
latter choice of c yields a seemingly random sequence of values, the various values of x harbor subtle
correlations that a truly random number sequence would not possess.

The most common random number generators are based on so-called Linear congruential relations
of the type

Ni = (aNi−1 + c)MOD(M), (8.73)

which yield a number in the interval [0,1] through

xi = Ni/M (8.74)

181

Outline of the Monte-Carlo strategy

The numberM is called the period and it should be as large as possible andN0 is the starting value, or
seed. The functionMOD means the remainder, that is if we were to evaluate (13)MOD(9), the outcome
is the remainder of the division 13/9, namely 4.

The problem with such generators is that their outputs are periodic; they will start to repeat themselves
with a period that is at most M . If however the parameters a and c are badly chosen, the period may be
even shorter.

Consider the following example

Ni = (6Ni−1 + 7)MOD(5), (8.75)

with a seedN0 = 2. This generator produces the sequence 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, , i.e., a sequence
with period 5. However, increasingM may not guarantee a larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54), (8.76)

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a period of just 2.
Typical periods for the random generators provided in the program library are of the order of ∼ 109

or larger. Other random number generators which have become increasingly popular are so-called shift-
register generators. In these generators each successive number depends on many preceding values (rather
than the last values as in the linear congruential generator). For example, you could make a shift register
generator whose lth number is the sum of the l − ith and l − jth values with moduloM ,

Nl = (aNl−i + cNl−j)MOD(M). (8.77)

Such a generator again produces a sequence of pseudorandom numbers but this time with a period much
larger thanM . It is also possible to construct more elaborate algorithms by including more than two past
terms in the sum of each iteration. One example is the generator of Marsaglia and Zaman [46] which
consists of two congruential relations

Nl = (Nl−3 −Nl−1)MOD(231 − 69), (8.78)

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232), (8.79)

which according to the authors has a period larger than 294.
Moreover, rather than using modular addition, we could use the bitwise exclusive-OR (⊕) operation

so that
Nl = (Nl−i)⊕ (Nl−j) (8.80)

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result is 0 whereas if Nl−i ≠ Nl−j the
result is 1. As an example, consider the case where Nl−i = 6 and Nl−j = 11. The first one has a bit
representation (using 4 bits only) which reads 0110 whereas the second number is 1011. Employing the
⊕ operator yields 1101, or 23 + 22 + 20 = 13.

In Fortran90, the bitwise ⊕ operation is coded through the intrinsic function IEOR(m,n) where m
and n are the input numbers, while in C it is given by m ∧ n. The program below (from Numerical
Recipes, chapter 7.1) shows the function ran0 implements

Ni = (aNi−1)MOD(M). (8.81)

182

8.3 – Random numbers

However, since a and Ni−1 are integers and their multiplication could become greater than the standard
32 bit integer, there is a trick via Schrage’s algorithm which approximates the multiplication of large
integers through the factorization

M = aq + r,

where we have defined
q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and r are chosen so that
r < q. To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M), (8.82)

since we can add or subtract any integer multiple ofM from aNi−1. The last term [Ni−1/q]MMOD(M)
is zero since the integer division [Ni−1/q] just yields a constant which is multiplied withM . We can now
rewrite Eq. (8.82) as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M), (8.83)

which results in

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M), (8.84)

yielding
(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M). (8.85)

The term [Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < q we obtain always a number
smaller than Ni−1, which is smaller than M . And since the number Ni−1MOD(q) is between zero and
q − 1 then a(Ni−1MOD(q)) < aq. Combined with our definition of q = [M/a] ensures that this term
is also smaller than M meaning that both terms fit into a 32-bit signed integer. None of these two terms
can be negative, but their difference could. The algorithm below adds M if their difference is negative.
Note that the program uses the bitwise ⊕ operator to generate the starting point for each generation of a
random number. The period of ran0 is ∼ 2.1 × 109. A special feature of this algorithm is that is should
never be called with the initial seed set to 0.

/∗
∗∗ The f u n c t i o n
∗∗ ran0 ()
∗∗ i s an " Minimal " random number g e n e r a t o r o f Park and M i l l e r
∗∗ (s e e Numer ica l r e c i p e page 279) . S e t or r e s e t t h e i n p u t v a l u e
∗∗ idum t o any i n t e g e r v a l u e (e x c e p t t h e u n l i k e l y v a l u e MASK)
∗∗ t o i n i t i a l i z e t h e sequence ; idum must no t be a l t e r e d be tween
∗∗ c a l l s f o r s u c e s s i v e d e v i a t e s i n a sequence .
∗∗ The f u n c t i o n r e t u r n s a un i f o rm d e v i a t e be tween 0 . 0 and 1 . 0 .
∗ /

double r an0 (long &idum)
{

cons t i n t a = 16807 , m = 2147483647 , q = 127773 ;
cons t i n t r = 2836 , MASK = 123459876;
cons t double am = 1 . /m;

183

Outline of the Monte-Carlo strategy

long k ;
double ans ;
idum ^= MASK;
k = (∗ idum) / q ;
idum = a ∗ (idum − k∗q) − r ∗k ;
/ / add m i f n e g a t i v e d i f f e r e n c e
i f (idum < 0) idum += m;
ans=am∗ (idum) ;
idum ^= MASK;
re turn ans ;

} / / End : f u n c t i o n ran0 ()

The other random number generators ran1, ran2 and ran3 are described in detail in chapter 7.1 of
Numerical Recipes. Here we limit ourselves to study selected properties of these generators.

8.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the generation of random numbers is the uniform
distribution, meaning that the probability for finding a number x in the interval [0,1] is p(x) = 1.

A random number generator should produce numbers which uniformly distributed in this interval.
Table 8.3 shows the distribution of N = 10000 random numbers generated by the functions in the
program library. We note in this table that the number of points in the various intervals 0.0 − 0.1,
0.1− 0.2 etc are fairly close to 1000, with some minor deviations.

Two additional measures are the standard deviation σ and the mean µ = ⟨x⟩.
For the uniform distribution with N points we have that the average ⟨xk⟩ is

⟨xk⟩ =
1

N

N∑

i=1

xk
i p(xi), (8.86)

and taking the limit N →∞ we have

⟨xk⟩ =

∫ 1

0
dxp(x)xk =

∫ 1

0
dxxk =

1

k + 1
, (8.87)

since p(x) = 1. The mean value µ is then

µ = ⟨x⟩ =
1

2
(8.88)

while the standard deviation is

σ =
√
⟨x2⟩ − µ2 =

1√
12

= 0.2886. (8.89)

The various random number generators produce results which agree rather well with these limiting
values. In the next section, in our discussion of probability distribution functions and the central limit
theorem, we are to going to see that the uniform distribution evolves towards a normal distribution in the
limit N →∞.

There are many other tests which can be performed. Often a picture of the numbers generated may
reveal possible patterns.

184

8.3 – Random numbers

Table 8.3: Number of x-values for various intervals generated by 4 random number generators, their cor-
responding mean values and standard deviations. All calculations have been initialized with the variable
idum = −1.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026

µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

Since our random numbers, which are typically generated via a linear congruential algorithm, are
never fully independent, we can then define an important test which measures the degree of correlation,
namely the so-called auto-correlation function Ck

Ck =
⟨xi+kxi⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (8.90)

with C0 = 1. Recall that σ2 = ⟨x2
i ⟩ − ⟨xi⟩2. The non-vanishing of Ck for k ≠ 0 means that the random

numbers are not independent. The independence of the random numbers is crucial in the evaluation of
other expectation values. If they are not independent, our assumption for approximating σN in Eq. (8.14)
is no longer valid.

The expectation values which enter the definition of Ck are given by

⟨xi+kxi⟩ =
1

N − k

N−k∑

i=1

xixi+k. (8.91)

Fig. 8.3 compares the auto-correlation function calculated from ran0 and ran1. As can be seen, the
correlations are non-zero, but small. The fact that correlations are present is expected, since all random
numbers do depend in some way on the previous numbers.

Exercise 8.2
Make a program which computes random numbers according to the algorithm of Marsaglia
and Zaman, Eqs. (8.78) and (8.79). Compute the correlation function Ck and compare with
the auto-correlation function from the function ran0.

185

Outline of the Monte-Carlo strategy

Ck with ran1
Ck with ran0

k

C
k

30002500200015001000500

0.1

0.05

0

-0.05

-0.1

Figure 8.3: Plot of the auto-correlation function Ck for various k-values forN = 10000 using the random
number generators ran0 and ran1.

8.4 Improved Monte Carlo integration

In section 8.1 we presented a simple brute force approach to integration with the Monte Carlo method.
There we sampled over a given number of points distributed uniformly in the interval [0, 1]

I =

∫ 1

0
f(x)dx ≈

N∑

i=1

ωif(xi) =
1

N

N∑

i=1

f(xi) = ⟨f⟩,

with the weights ωi = 1 .
Here we introduce two important topics which in most cases improve upon the above simple brute

force approach with the uniform distribution p(x) = 1 for x ∈ [0, 1]. With improvements we think of a
smaller variance and the need for fewer Monte Carlo samples, although each new Monte Carlo sample
will most likely be more times consuming than corresponding ones of the brute force method.

– The first topic deals with change of variables, and is linked to the cumulative function P (x) of a
PDF p(x). Obviously, not all integration limits go from x = 0 to x = 1, rather, in physics we are
often confronted with integration domains like x ∈ [0,∞) or x ∈ (−∞,∞) etc. Since all random
number generators give numbers in the interval x ∈ [0, 1], we need a mapping from this integration
interval to the explicit one under consideration.

– The next topic deals with the shape of the integrand itself. Let us for the sake of simplicity just
assume that the integration domain is again from x = 0 to x = 1. If the function to be integrated
f(x) has sharp peaks and is zero or small for many values of x ∈ [0, 1], most samples of f(x) give
contributions to the integral I which are negligible. As a consequence we need manyN samples to
have a sufficient accuracy in the region where f(x) is peaked. What do we do then? We try to find
a new PDF p(x) chosen so as to match f(x) in order to render the integrand smooth. The new PDF

186

8.4 – Improved Monte Carlo integration

p(x) has in turn an x domain which most likely has to be mapped from the domain of the uniform
distribution.

Why care at all and not be content with just a change of variables in cases where that is needed?
Below we show several examples of how to improve a Monte Carlo integration through smarter choices
of PDFs which render the integrand smoother. However one classic example from quantum mechanics
illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution function is given by p(x) = Ψ(x)∗Ψ(x), where
Ψ(x) is the eigenfunction arising from the solution of e.g., the time-independent Schrödinger equation.
If Ψ(x) is an eigenfunction, the corresponding energy eigenvalue is given by

H(x)Ψ(x) = EΨ(x), (8.92)

where H(x) is the hamiltonian under consideration. The expectation value of H , assuming that the
quantum mechanical PDF is normalized, is given by

⟨H⟩ =

∫
dxΨ(x)∗H(x)Ψ(x). (8.93)

We could insert Ψ(x)/Ψ(x) right to the left ofH and rewrite the last equation as

⟨H⟩ =

∫
dxΨ(x)∗Ψ(x)

H(x)

Ψ(x)
Ψ(x), (8.94)

or
⟨H⟩ =

∫
dxp(x)H̃(x), (8.95)

which is on the form of an expectation value with

H̃(x) =
H(x)

Ψ(x)
Ψ(x). (8.96)

The crucial point to note is that ifΨ(x) is the exact eigenfunction itself with eigenvalue E, then H̃(x)
reduces just to the constant E and we have

⟨H⟩ =
∫

dxp(x)E = E, (8.97)

since p(x) is normalized.
However, in most cases of interest we do not have the exact Ψ. But if we have made a clever choice

for Ψ(x), the expression H̃(x) exhibits a smooth behavior in the neighbourhood of the exact solution.
The above example encompasses the main essence of the Monte Carlo philosophy. It is a trial approach,
where intelligent guesses lead to hopefully better results.

8.4.1 Change of variables

The starting point is always the uniform distribution

p(x)dx =

{
dx 0 ≤ x ≤ 1
0 else

(8.98)

187

Outline of the Monte-Carlo strategy

with p(x) = 1 and satisfying ∫ ∞

−∞
p(x)dx = 1. (8.99)

All random number generators provided in the program library generate numbers in this domain.
When we attempt a transformation to a new variable x→ y we have to conserve the probability

p(y)dy = p(x)dx, (8.100)

which for the uniform distribution implies

p(y)dy = dx. (8.101)

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1with x ∈ [0, 1]. If we integrate
the last expression we arrive at

x(y) =

∫ y

0
p(y′)dy′, (8.102)

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P (y) =

∫ y

0
p(y′)dy′. (8.103)

This is an important result which has consequences for eventual improvements over the brute force
Monte Carlo.

To illustrate this approach, let us look at some examples.

Example 1

Suppose we have the general uniform distribution

p(y)dy =

{ dy
b−a a ≤ y ≤ b
0 else

(8.104)

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b− a
= dx, (8.105)

and integrating we obtain the cumulative function

x(y) =

∫ y

a

dy′

b− a
, (8.106)

yielding
y = a + (b− a)x, (8.107)

a well-known result!

188

8.4 – Improved Monte Carlo integration

Example 2, the exponential distribution

Assume that
p(y) = e−y, (8.108)

which is the exponential distribution, important for the analysis of e.g., radioactive decay. Again, p(x)
is given by the uniform distribution with x ∈ [0, 1], and with the assumption that the probability is
conserved we have

p(y)dy = e−ydy = dx, (8.109)

which yields after integration

x(y) = P (y) =

∫ y

0
exp (−y′)dy′ = 1− exp (−y), (8.110)

or
y(x) = −ln(1− x). (8.111)

This gives us the new random variable y in the domain y ∈ [0,∞) determined through the random
variable x ∈ [0, 1] generated by functions like ran0.

This means that if we can factor out exp (−y) from an integrand we may have

I =

∫ ∞

0
F (y)dy =

∫ ∞

0
exp (−y)G(y)dy (8.112)

which we rewrite as

∫ ∞

0
exp (−y)G(y)dy =

∫ ∞

0

dx

dy
G(y)dy ≈

1

N

N∑

i=1

G(y(xi)), (8.113)

where xi is a random number in the interval [0,1]. Note that in practical implementations, our random
number generators for the uniform distribution never return exactly 0 or 1, but we we may come very
close. We should thus in principle set x ∈ (0, 1).

The algorithm for the last example is rather simple. In the function which sets up the integral, we
simply need to call one of the random number generators like ran0, ran1, ran2 or ran3 in order to
obtain numbers in the interval [0,1]. We obtain y by the taking the logarithm of (1 − x). Our calling
function which sets up the new random variable y may then include statements like

Exercise 8.4
Make a function exp_random which computes random numbers for the exponential distri-
bution p(y) = e−αy based on random numbers generated from the function ran0.

189

Outline of the Monte-Carlo strategy

Example 3

Another function which provides an example for a PDF is

p(y)dy =
dy

(a + by)n
, (8.114)

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is invertible,
allowing thereby the expression of a new variable in terms of the old one. The integral

∫ ∞

0

dy

(a + by)n
=

1

(n− 1)ban−1
, (8.115)

gives

p(y)dy =
(n− 1)ban−1

(a + by)n
dy, (8.116)

which in turn gives the cumulative function

x(y) = P (y) =

∫ y

0

(n− 1)ban−1

(a + bx)n
dy′ =, (8.117)

resulting in
x(y) = 1−

1

(1 + b/ay)n−1
, (8.118)

or
y =

a

b

(
(1− x)−1/(n−1) − 1

)
. (8.119)

With the random variable x ∈ [0, 1] generated by functions like ran0, we have again the appropriate
random variable y for a new PDF.

Example 4, the normal distribution

For the normal distribution, expressed here as

g(x, y) = exp (−(x2 + y2)/2)dxdy. (8.120)

it is rather difficult to find an inverse since the cumulative distribution is given by the error function
erf(x).

If we however switch to polar coordinates, we have for x and y

r =
(
x2 + y2

)1/2
θ = tan−1 x

y
, (8.121)

resulting in
g(r, θ) = r exp (−r2/2)drdθ, (8.122)

where the angle θ could be given by a uniform distribution in the region [0, 2π]. Following example 1
above, this implies simply multiplying random numbers x ∈ [0, 1] by 2π. The variable r, defined for
r ∈ [0,∞) needs to be related to to random numbers x′ ∈ [0, 1]. To achieve that, we introduce a new
variable

u =
1

2
r2, (8.123)

190

8.4 – Improved Monte Carlo integration

and define a PDF
exp (−u)du, (8.124)

with u ∈ [0,∞). Using the results from example 2, we have that

u = −ln(1− x′), (8.125)

where x′ is a random number generated for x′ ∈ [0, 1]. With

x = rcos(θ) =
√

2ucos(θ), (8.126)

and
y = rsin(θ) =

√
2usin(θ), (8.127)

we can obtain new random numbers x, y through

x =
√
−2ln(1− x′)cos(θ), (8.128)

and
y =

√
−2ln(1− x′)sin(θ), (8.129)

with x′ ∈ [0, 1] and θ ∈ 2π[0, 1].
A function which yields such random numbers for the normal distribution would include statements

like

Exercise 8.4
Make a function normal_random which computes random numbers for the normal distri-
bution based on random numbers generated from the function ran0.

8.4.2 Importance sampling

With the aid of the above variable transformations we address now one of the most widely used ap-
proaches to Monte Carlo integration, namely importance sampling.

Let us assume that p(y) is a PDF whose behavior resembles that of a function F defined in a certain
interval [a, b]. The normalization condition is

∫ b

a
p(y)dy = 1. (8.130)

We can rewrite our integral as

I =

∫ b

a
F (y)dy =

∫ b

a
p(y)

F (y)

p(y)
dy. (8.131)

191

Outline of the Monte-Carlo strategy

This integral resembles our discussion on the evaluation of the energy for a quantum mechanical system
in Eq. (8.94).

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1], we need to
perform a change of variables x→ y through

x(y) =

∫ y

a
p(y′)dy′, (8.132)

where we used
p(x)dx = dx = p(y)dy. (8.133)

If we can invert x(y), we find y(x) as well.
With this change of variables we can express the integral of Eq. (8.131) as

I =

∫ b

a
p(y)

F (y)

p(y)
dy =

∫ b

a

F (y(x))

p(y(x))
dx, (8.134)

meaning that a Monte Carlo evalutaion of the above integral gives
∫ b

a

F (y(x))

p(y(x))
dx =

1

N

N∑

i=1

F (y(xi))

p(y(xi))
. (8.135)

The advantage of such a change of variables in case p(y) follows closely F is that the integrand becomes
smooth and we can sample over relevant values for the integrand. It is however not trivial to find such a
function p. The conditions on p which allow us to perform these transformations are

1. p is normalizable and positive definite,

2. it is analytically integrable and

3. the integral is invertible, allowing us thereby to express a new variable in terms of the old one.

The variance is now with the definition

F̃ =
F (y(x))

p(y(x))
, (8.136)

given by

σ2 =
1

N

N∑

i=1

(
F̃
)2
−

(
1

N

N∑

i=1

F̃

)2

. (8.137)

The algorithm for this procedure is

– Use the uniform distribution to find the random variable y in the interval [0,1]. p(x) is a user
provided PDF.

– Evaluate thereafter
I =

∫ b

a
F (x)dx =

∫ b

a
p(x)

F (x)

p(x)
dx, (8.138)

by rewriting ∫ b

a
p(x)

F (x)

p(x)
dx =

∫ b

a

F (x(y))

p(x(y))
dy, (8.139)

since
dy

dx
= p(x). (8.140)

192

8.4 – Improved Monte Carlo integration

– Perform then a Monte Carlo sampling for
∫ b

a

F (x(y))

p(x(y))
dy,≈

1

N

N∑

i=1

F (x(yi))

p(x(yi))
, (8.141)

with yi ∈ [0, 1],

– and evaluate the variance as well according to Eq. (8.137).

Exercise 8.5

(a) Calculate the integral

I =

∫ 1

0
e−x2

dx,

using brute force Monte Carlo with p(x) = 1 and importance sampling with p(x) =
ae−x where a is a constant.

(b) Calculate the integral

I =

∫ π

0

1

x2 + cos2(x)
dx,

with p(x) = ae−x where a is a constant. Determine the value of a which minimizes
the variance.

8.4.3 Acceptance-Rejection method

This is rather simple and appealing method after von Neumann. Assume that we are looking at an interval
x ∈ [a, b], this being the domain of the PDF p(x). Suppose also that the largest value our distribution
function takes in this interval isM , that is

p(x) ≤M x ∈ [a, b]. (8.142)

Then we generate a random number x from the uniform distribution for x ∈ [a, b] and a corresponding
number s for the uniform distribution between [0,M]. If

p(x) ≥ s, (8.143)

we accept the new value of x, else we generate again two new random numbers x and s and perform the
test in the latter equation again.

As an example, consider the evaluation of the integral

I =

∫ 3

0
exp (x)dx.

Obviously to derive it analytically is much easier, however the integrand could pose some more difficult
challenges. The aim here is simply to show how to implent the acceptance-rejection algorithm. The
integral is the area below the curve f(x) = exp (x). If we uniformly fill the rectangle spanned by
x ∈ [0, 3] and y ∈ [0, exp (3)], the fraction below the curve obatained from a uniform distribution,
and multiplied by the area of the rectangle, should approximate the chosen integral. It is rather easy to
implement this numerically, as shown in the following code.

193

Outline of the Monte-Carlo strategy

Acceptance-Rejection algorithm
/ / Loop over Monte Carlo t r i a l s n

i n t e g r a l = 0 . ;
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / F inds a random va l u e f o r x i n t h e i n t e r v a l [0 , 3]
x = 3∗ r an0 (&idum) ;

/ / F inds y−v a l u e be tween [0 , exp (3)]
y = exp (3 . 0) ∗ r an0 (&idum) ;

/ / i f t h e v a l u e o f y a t exp (x) i s below t h e curve , we a c c e p t
i f (y < exp (x)) s = s+ 1 . 0 ;

/ / The i n t e g r a l i s area e n c l o s e d below t h e l i n e f (x)=exp (x)
}

/ / Then we m u l t i p l y w i t h t h e area o f t h e r e c t a n g l e and d i v i d e by t h e number
o f c y c l e s
I n t e g r a l = 3 .∗ exp (3 .) ∗ s / n

8.5 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the form

I =

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxdg(x1, . . . , xd), (8.144)

with xi defined in the interval [ai, bi] we would typically need a transformation of variables of the form

xi = ai + (bi − ai)ti,

if we were to use the uniform distribution on the interval [0, 1]. In this case, we need a Jacobi determinant

d∏

i=1

(bi − ai),

and to convert the function g(x1, . . . , xd) to

g(x1, . . . , xd)→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad)td).

As an example, consider the following sixth-dimensional integral
∫ ∞

−∞
dxdyg(x,y), (8.145)

where
g(x,y) = exp (−x2 − y2 − (x− y)2/2), (8.146)

with d = 6.
We can solve this integral by employing our brute force scheme, or using importance sampling and

random variables distributed according to a gaussian PDF. For the latter, if we set the mean value µ = 0
and the standard deviation σ = 1/

√
2, we have

1√
π

exp (−x2), (8.147)

194

8.5 – Monte Carlo integration of multidimensional integrals

and through

π3
∫ 6∏

i=1

(
1√
π

exp (−x2
i)

)
exp (−(x− y)2/2)dx1. . . . dx6, (8.148)

we can rewrite our integral as

∫
f(x1, . . . , xd)F (x1, . . . , xd)

6∏

i=1

dxi, (8.149)

where f is the gaussian distribution.
Below we list two codes, one for the brute force integration and the other employing importance

sampling with a gaussian distribution.

8.5.1 Brute force integration

inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;

double b ru te_ fo rce_MC (double ∗) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t n ;
double x [6] , y , fx ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma= 0 . ; long idum=−1 ;
double l e n g t h = 5 . ; / / we f i x t h e max s i z e o f t h e box t o L=5
double volume=pow ((2∗ l e n g t h) , 6) ;
c ou t << << end l ;
c i n >> n ;

/ / e v a l u a t e t h e i n t e g r a l w i t h impo r t an ce samp l ing
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / x [] c o n t a i n s t h e random numbers f o r a l l d imen s i on s
f o r (i n t j = 0 ; j < 6 ; j ++) {

x [j]=− l e n g t h +2∗ l e n g t h ∗ r an0 (&idum) ;
}
fx=b ru te_ fo rce_MC (x) ;
in t_mc += fx ;
sum_sigma += fx ∗ fx ;

}
in t_mc = in t_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−i n t_mc∗ i n t_mc ;

/ / f i n a l o u t p u t
cou t << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
c ou t << << setw (1 0) << s e t p r e c i s i o n (8) <<

volume∗ i n t_mc ;

195

Outline of the Monte-Carlo strategy

cou t << << setw (1 0) << s e t p r e c i s i o n (8) << volume∗ s q r t (
v a r i a n c e / ((double) n)) << end l ;

re turn 0 ;
} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t h e i n t e g r a n d t o i n t e g r a t e

double b ru te_ fo rce_MC (double ∗x)
{

double a = 1 . ; double b = 0 . 5 ;
/ / e v a l u a t e t h e d i f f e r e n t t e rms o f t h e e x p o n e n t i a l

double xx=x [0]∗ x [0]+ x [1]∗ x [1]+ x [2]∗ x [2] ;
double yy=x [3]∗ x [3]+ x [4]∗ x [4]+ x [5]∗ x [5] ;
double xy=pow ((x [0]−x [3]) , 2) +pow ((x [1]−x [4]) , 2) +pow ((x [2]−x [5]) , 2) ;
re turn exp(−a∗xx−a∗yy−b∗xy) ;

} / / end f u n c t i o n f o r t h e i n t e g r a n d

8.5.2 Importance sampling

This code includes a call to the function normal_random, which produces random numbers from a
gaussian distribution.

/ / impo r t an ce samp l ing w i t h gau s s i an d e v i a t e s
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;

double gaussian_MC (double ∗) ;
double g a u s s i a n _ d e v i a t e (long ∗) ;
/ / Main f u n c t i o n b e g i n s here
i n t main ()
{

i n t n ;
double x [6] , y , fx ;
cou t << << end l ;
c i n >> n ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma= 0 . ; long idum=−1 ;
double l e n g t h = 5 . ; / / we f i x t h e max s i z e o f t h e box t o L=5
double volume=pow(acos (−1 .) , 3 .) ;
double s q r t 2 = 1 . / s q r t (2 .) ;

/ / e v a l u a t e t h e i n t e g r a l w i t h impo r t an ce samp l ing
f o r (i n t i = 1 ; i <= n ; i ++) {

/ / x [] c o n t a i n s t h e random numbers f o r a l l d imen s i on s
f o r (i n t j = 0 ; j < 6 ; j ++) {
x [j] = g a u s s i a n _ d e v i a t e (&idum) ∗ s q r t 2 ;

}
fx=gaussian_MC (x) ;
in t_mc += fx ;

196

8.5 – Monte Carlo integration of multidimensional integrals

sum_sigma += fx ∗ fx ;
}
in t_mc = in t_mc / ((double) n) ;
sum_sigma = sum_sigma / ((double) n) ;
v a r i a n c e =sum_sigma−i n t_mc∗ i n t_mc ;

/ / f i n a l o u t p u t
cou t << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
c ou t << << setw (1 0) << s e t p r e c i s i o n (8) <<

volume∗ i n t_mc ;
cou t << << setw (1 0) << s e t p r e c i s i o n (8) << volume∗ s q r t (

v a r i a n c e / ((double) n)) << end l ;
re turn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t h e i n t e g r a n d t o i n t e g r a t e

double gaussian_MC (double ∗x)
{

double a = 0 . 5 ;
/ / e v a l u a t e t h e d i f f e r e n t t e rms o f t h e e x p o n e n t i a l

double xy=pow ((x [0]−x [3]) , 2) +pow ((x [1]−x [4]) , 2) +pow ((x [2]−x [5]) , 2) ;
re turn exp(−a∗xy) ;

} / / end f u n c t i o n f o r t h e i n t e g r a n d

/ / random numbers w i t h gau s s i an d i s t r i b u t i o n
double g a u s s i a n _ d e v i a t e (long ∗ idum)
{
s t a t i c i n t i s e t = 0 ;
s t a t i c double g s e t ;
double f ac , r sq , v1 , v2 ;

i f (idum < 0) i s e t =0 ;
i f (i s e t == 0) {
do {
v1 = 2 .∗ r an0 (idum) −1.0;
v2 = 2 .∗ r an0 (idum) −1.0;
r s q = v1∗v1+v2∗v2 ;

} whi le (r s q >= 1 . 0 | | r s q == 0 .) ;
f a c = s q r t (−2.∗ l o g (r s q) / r s q) ;
g s e t = v1∗ f a c ;
i s e t = 1 ;
re turn v2∗ f a c ;

} e l s e {
i s e t =0 ;
re turn g s e t ;

}
} / / end f u n c t i o n f o r gau s s i an d e v i a t e s

The following table lists the results from the above two programs as function of the number of Monte
Carlo samples. The suffix cr stands for the brute force approach while gd stands for the use of a Gaussian
distribution function. One sees clearly that the approachwith a Gaussian distribution function yields a
much improved numerical result, with fewer samples.

197

Outline of the Monte-Carlo strategy

Table 8.4: Results for as function of number of Monte Carlo samplesN . The exact answer is I ≈ 10.9626
for the integral. The suffix cr stands for the brute force approach while gd stands for the use of a Gaussian
distribution function. All calculations use ran0 as function to generate the uniform distribution.

N Icr Igd

10000 1.15247E+01 1.09128E+01
100000 1.29650E+01 1.09522E+01
1000000 1.18226E+01 1.09673E+01
10000000 1.04925E+01 1.09612E+01

8.6 Physics Project: Decay of 210Bi and 210Po

In this project we are going to simulate the radioactive decay of these nuclei using sampling through
random numbers. We assume that at t = 0 we have NX(0) nuclei of the type X which can decay
radioactively. At a given time t we are left with NX(t) nuclei. With a transition rate ωX , which is the
probability that the system will make a transition to another state during a time step of one second, we
get the following differential equation

dNX(t) = −ωXNX(t)dt,

whose solution is
NX(t) = NX(0)e−ωX t,

and where the mean lifetime of the nucleus X is

τ =
1

ωX
.

If the nucleus X decays to Y , which can also decay, we get the following coupled equations

dNX(t)

dt
= −ωXNX(t),

and
dNY (t)

dt
= −ωY NY (t) + ωXNX(t).

We assume that at t = 0 we have NY (0) = 0. In the beginning we will have an increase of NY

nuclei, however, they will decay thereafter. In this project we let the nucleus 210Bi represent X. It decays
through β-decay to 210Po, which is the Y nucleus in our case. The latter decays through emision of an
α-particle to 206Pb, which is a stable nucleus. 210Bi has a mean lifetime of 7.2 days while 210Po has a
mean lifetime of 200 days.

a) Find analytic solutions for the above equations assuming continuous variables and setting the num-
ber of 210Po nuclei equal zero at t = 0.

b) Make a program which solves the above equations. What is a reasonable choice of timestep ∆t?
You could use the program on radioactive decay from the web-page of the course as an example
and make your own for the decay of two nuclei. Compare the results from your program with the
exact answer as function of NX(0) = 10, 100 and 1000. Make plots of your results.

c) When 210Po decays it produces an α particle. At what time does the production of α particles reach
its maximum? Compare your results with the analytic ones for NX(0) = 10, 100 and 1000.

198

8.7 – Physics project: Numerical integration of the correlation energy of the helium atom

8.7 Physics project: Numerical integration of the correlation energy of the helium atom

The task of this project is to integrate in a brute force manner a six-dimensional integral which is used to
determine the ground state correlation energy between two electrons in a helium atom. We will employ
both Gauss-Legendre quadrature and Monte-Carlo integration. Furthermore, you will need to parallelize
your code for the Monte-Carlo integration.

We assume that the wave function of each electron can be modelled like the single-particle wave
function of an electron in the hydrogen atom. The single-particle wave function for an electron i in the
1s state is given in terms of a dimensionless variable (the wave function is not properly normalized)

ri = xiex + yiey + ziez,

as
ψ1s(ri) = e−αri ,

where α is a parameter and
ri =

√
x2

i + y2
i + z2

i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.
The ansatz for the wave function for two electrons is then given by the product of two 1s wave

functions as
Ψ(r1, r2) = e−α(r1+r2).

Note that it is not possible to find an analytic solution to Schrödinger’s equation for two interacting
electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correlation energy
between two electrons, namely

⟨
1

|r1 − r2|
⟩ =

∫ ∞

−∞
dr1dr2e

−2α(r1+r2) 1

|r1 − r2|
. (8.150)

Note that our wave function is not normalized. There is a normalization factor missing, but for this project
we don’t need to worry about that.

a) Use Gauss-Legendre quadrature and compute the integral by integrating for each variable x1, y1,
z1, x2, y2, z2 from −∞ to∞. How many mesh points do you need before the results converges at
the level of the fourth leading digit? Hint: the single-particle wave function e−αri is more or less
zero at ri ≈ 10 − 15. You can therefore replace the integration limits −∞ and ∞ with −10 and
10, respectively. You need to check that this approximation is satisfactory.

b) Compute the same integral but now with brute force Monte Carlo and compare your results with
those from the previous point. Discuss the differences. With bruce force we mean that you should
use the uniform distribution.

c) Improve your brute force Monte Carlo calculation by using importance sampling. Hint: use the
exponential distribution. Does the variance decrease? Does the CPU time used compared with the
brute force Monte Carlo decrease in order to achieve the same accuracy? Comment your results.

d) Parallelize your code from the previous point and compare the CPU time needed with that from
point [c)]. Do you achieve a good speedup?

e) The integral of Eq. (8.150) has an analytical expression. Can you find it?

199

Chapter 9

Random walks and the Metropolis
algorithm

Nel mezzo del cammin di nostra vita, mi ritrovai per una selva oscura, ché la diritta via
era smarrita. (Divina Commedia, Inferno, Canto I, 1-3)Dante Alighieri

The way that can be spoken of is not the constant way. (Tao Te Ching, Book I, I.1)Lao
Tzu

9.1 Motivation

In the previous chapter we discussed technical aspects of Monte Carlo integration such as algorithms
for generating random numbers and integration of multidimensional integrals. The latter topic served to
illustrate two key topics in Monte Carlo simulations, namely a proper selection of variables and impor-
tance sampling. An intelligent selection of variables, good sampling techniques and guiding functions
can be crucial for the outcome of our Monte Carlo simulations. Examples of this will be demonstrated
in the chapters on statistical and quantum physics applications. Here we make a detour however from
this main area of applications. The focus is on diffusion and random walks. The rationale for this is that
the tricky part of an actual Monte Carlo simulation resides in the appropriate selection of random states,
and thereby numbers, according to the probability distribution (PDF) at hand. With appropriate there is
however much more to the picture than meets the eye.

Suppose our PDF is given by the well-known normal distribution. Think of for example the velocity
distribution of an ideal gas in a container. In our simulations we could then accept or reject new moves
with a probability proportional to the normal distribution. This would parallel our example on the sixth
dimensional integral in the previous chapter. However, in this case we would end up rejecting basically
all moves since the probabilities are exponentially small in most cases. The result would be that we
barely moved from the initial position. Our statistical averages would then be significantly biased and
most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markov processes in order to generate new
random states. A Markov process is a random walk with a selected probability for making a move. The
new move is independent of the previous history of the system. The Markov process is used repeatedly
in Monte Carlo simulations in order to generate new random states. The reason for choosing a Markov
process is that when it is run for a long enough time starting with a random state, we will eventually
reach the most likely state of the system. In thermodynamics, this means that after a certain number of

201

Random walks and the Metropolis algorithm

Markov processes we reach an equilibrium distribution. This mimicks the way a real system reaches its
most likely state at a given temperature of the surroundings.

To reach this distribution, the Markov process needs to obey two important conditions, that of ergod-
icity and detailed balance. These conditions impose then constraints on our algorithms for accepting or
rejecting new random states. The Metropolis algorithm discussed here abides to both these constraints
and is discussed in more detail in Section 9.5. The Metropolis algorithm is widely used in Monte Carlo
simulations of physical systems and the understanding of it rests within the interpretation of random
walks and Markov processes. However, before we do that we discuss the intimate link between random
walks, Markov processes and the diffusion equation. In section 9.3 we show that a Markov process is
nothing but the discretized version of the diffusion equation. Diffusion and random walks are discussed
from a more experimental point of view in the next section. There we show also a simple algorithm for
random walks and discuss eventual physical implications. We end this chapter with a discussion of one
of the most used algorithms for generating new steps, namely the Metropolis algorithm. This algorithm,
which is based on Markovian random walks satisfies both the ergodicity and detailed balance require-
ments and is widely in applications of Monte Carlo simulations in the natural sciences. The Metropolis
algorithm is used in our studies of phase transitions in statistical physics and the simulations of quantum
mechanical systems.

9.2 Diffusion equation and random walks

Physical systems subject to random influences from the ambient have a long history, dating back to the
famous experiments by the British Botanist R. Brown on pollen of different plants dispersed in water. This
lead to the famous concept of Brownian motion. In general, small fractions of any system exhibit the same
behavior when exposed to random fluctuations of the medium. Although apparently non-deterministic,
the rules obeyed by such Brownian systems are laid out within the framework of diffusion and Markov
chains. The fundamental works on Brownian motion were developed by A. Einstein at the turn of the last
century.

Diffusion and the diffusion equation are central topics in both Physics and Mathematics, and their
ranges of applicability span from stellar dynamics to the diffusion of particles governed by Schrödinger’s
equation. The latter is, for a free particle, nothing but the diffusion equation in complex time!

Let us consider the one-dimensional diffusion equation. We study a large ensemble of particles
performing Brownian motion along the x-axis. There is no interaction between the particles.

We define w(x, t)dx as the probability of finding a given number of particles in an interval of length
dx in x ∈ [x, x+dx] at a time t. This quantity is our probability distribution function (PDF). The quantum
physics equivalent of w(x, t) is the wave function itself. This diffusion interpretation of Schrödinger’s
equation forms the starting point for diffusion Monte Carlo techniques in quantum physics.

Good overview texts are the books of Robert and Casella and Karatsas, see Refs. [43, 47].

9.2.1 Diffusion equation

From experiment there are strong indications that the flux of particles j(x, t), viz., the number of par-
ticles passing x at a time t is proportional to the gradient of w(x, t). This proportionality is expressed
mathematically through

j(x, t) = −D
∂w(x, t)

∂x
, (9.1)

202

9.2 – Diffusion equation and random walks

where D is the so-called diffusion constant, with dimensionality length2 per time. If the number of
particles is conserved, we have the continuity equation

∂j(x, t)

∂x
= −

∂w(x, t)

∂t
, (9.2)

which leads to
∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
, (9.3)

which is the diffusion equation in one dimension.
With the probability distribution function w(x, t)dx we can use the results from the previous chapter

to compute expectation values such as the mean distance

⟨x(t)⟩ =

∫ ∞

−∞
xw(x, t)dx, (9.4)

or
⟨x2(t)⟩ =

∫ ∞

−∞
x2w(x, t)dx, (9.5)

which allows for the computation of the variance σ2 = ⟨x2(t)⟩−⟨x(t)⟩2. Note well that these expectation
values are time-dependent. In a similar way we can also define expectation values of functions f(x, t) as

⟨f(x, t)⟩ =

∫ ∞

−∞
f(x, t)w(x, t)dx. (9.6)

Since w(x, t) is now treated as a PDF, it needs to obey the same criteria as discussed in the previous
chapter. However, the normalization condition

∫ ∞

−∞
w(x, t)dx = 1 (9.7)

imposes significant constraints on w(x, t). These are

w(x = ±∞, t) = 0
∂nw(x, t)

∂xn
|x=±∞ = 0, (9.8)

implying that when we study the time-derivative ∂⟨x(t)⟩/∂t, we obtain after integration by parts and
using Eq. (9.3)

∂⟨x⟩
∂t

=

∫ ∞

−∞
x
∂w(x, t)

∂t
dx = D

∫ ∞

−∞
x
∂2w(x, t)

∂x2
dx, (9.9)

leading to
∂⟨x⟩
∂t

= Dx
∂w(x, t)

∂x
|x=±∞ −D

∫ ∞

−∞

∂w(x, t)

∂x
dx, (9.10)

implying that
∂⟨x⟩
∂t

= 0. (9.11)

This means in turn that ⟨x⟩ is independent of time. If we choose the initial position x(t = 0) = 0,
the average displacement ⟨x⟩ = 0. If we link this discussion to a random walk in one dimension with
equal probability of jumping to the left or right and with an initial position x = 0, then our probability

203

Random walks and the Metropolis algorithm

distribution remains centered around ⟨x⟩ = 0 as function of time. However, the variance is not necessarily
0. Consider first

∂⟨x2⟩
∂t

= Dx2∂w(x, t)

∂x
|x=±∞ − 2D

∫ ∞

−∞
x
∂w(x, t)

∂x
dx, (9.12)

where we have performed an integration by parts as we did for ∂⟨x⟩
∂t . A further integration by parts results

in
∂⟨x2⟩
∂t

= −Dxw(x, t)|x=±∞ + 2D

∫ ∞

−∞
w(x, t)dx = 2D, (9.13)

leading to
⟨x2⟩ = 2Dt, (9.14)

and the variance as
⟨x2⟩ − ⟨x⟩2 = 2Dt. (9.15)

The root mean square displacement after a time t is then
√
⟨x2⟩ − ⟨x⟩2 =

√
2Dt. (9.16)

This should be contrasted to the displacement of a free particle with initial velocity v0. In that case the
distance from the initial position after a time t is x(t) = vt whereas for a diffusion process the root mean
square value is

√
⟨x2⟩ − ⟨x⟩2 ∝

√
t. Since diffusion is strongly linked with random walks, we could say

that a random walker escapes much more slowly from the starting point than would a free particle. We
can vizualize the above in the following figure. In Fig. 9.1 we have assumed that our distribution is given
by a normal distribution with variance σ2 = 2Dt, centered at x = 0. The distribution reads

w(x, t)dx =
1√

4πDt
exp (−

x2

4Dt
)dx. (9.17)

At a time t = 2s the new variance is σ2 = 4Ds, implying that the root mean square value is
√
⟨x2⟩ − ⟨x⟩2 =

2
√

D. At a further time t = 8 we have
√
⟨x2⟩ − ⟨x⟩2 = 4

√
D. While time has elapsed by a factor of

4, the root mean square has only changed by a factor of 2. Fig. 9.1 demonstrates the spreadout of the
distribution as time elapses. A typical example can be the diffusion of gas molecules in a container or
the distribution of cream in a cup of coffee. In both cases we can assume that the the initial distribution
is represented by a normal distribution.

9.2.2 Random walks

Consider now a random walker in one dimension, with probability R of moving to the right and L for
moving to the left. At t = 0 we place the walker at x = 0, as indicated in Fig. 9.2. The walker can
then jump, with the above probabilities, either to the left or to the right for each time step. Note that
in principle we could also have the possibility that the walker remains in the same position. This is not
implemented in this example. Every step has length ∆x = l. Time is discretized and we have a jump
either to the left or to the right at every time step. Let us now assume that we have equal probabilities for
jumping to the left or to the right, i.e., L = R = 1/2. The average displacement after n time steps is

⟨x(n)⟩ =
n∑

i

∆xi = 0 ∆xi = ±l, (9.18)

204

9.2 – Diffusion equation and random walks

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-10 -5 0 5 10

w(x, t)dx

x

Figure 9.1: Time development of a normal distribution with variance σ2 = 2Dt and with D = 1m2/s.
The solid line represents the distribution at t = 2s while the dotted line stands for t = 8s.

• • • • • • • •
.. −3l −2 −l x = 0 l 2l 3l

Figure 9.2: One-dimensional walker which can jump either to the left or to the right. Every step has
length ∆x = l.

205

Random walks and the Metropolis algorithm

since we have an equal probability of jumping either to the left or to right. The value of ⟨x(n)2⟩ is

⟨x(n)2⟩ =

(
n∑

i

∆xi

)2

=
n∑

i

∆x2
i +

n∑

i≠j

∆xi∆xj = l2n. (9.19)

For many enough steps the non-diagonal contribution is

N∑

i≠j

∆xi∆xj = 0, (9.20)

since ∆xi,j = ±l. The variance is then

⟨x(n)2⟩ − ⟨x(n)⟩2 = l2n. (9.21)

It is also rather straightforward to compute the variance for L ≠ R. The result is

⟨x(n)2⟩ − ⟨x(n)⟩2 = 4LRl2n. (9.22)

In Eq. (9.21) the variable n represents the number of time steps. If we define n = t/∆t, we can then
couple the variance result from a random walk in one dimension with the variance from the diffusion
equation of Eq. (9.15) by defining the diffusion constant as

D =
l2

∆t
. (9.23)

In the next section we show in detail that this is the case.
The program below demonstrates the simplicity of the one-dimensional random walk algorithm. It is

straightforward to extend this program to two or three dimensions as well. The input is the number of time
steps, the probability for a move to the left or to the right and the total number of Monte Carlo samples. It
computes the average displacement and the variance for one random walker for a given number of Monte
Carlo samples. Each sample is thus to be considered as one experiment with a given number of walks.
The interesting part of the algorithm is described in the function mc_sampling. The other functions read
or write the results from screen or file and are similar in structure to programs discussed previously. The
main program reads the name of the output file from screen and sets up the arrays containing the walker’s
position after a given number of steps. The corresponding program for a two-dimensional random walk
(not listed in the main text) is found under programs/chapter9/program2.cpp

/∗
1−dim random walk program .
A wa lker makes s e v e r a l t r i a l s s t e p s w i t h
a g i v e n number o f wa lk s per t r i a l

∗ /
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;

/ / Func t i o n t o read i n da ta from screen , no t e c a l l by r e f e r e n c e

206

9.2 – Diffusion equation and random walks

void i n i t i a l i s e (i n t&, i n t&, double&) ;
/ / The Mc samp l ing f o r random walks
void mc_sampling (i n t , i n t , double , i n t ∗ , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
void ou t p u t (i n t , i n t , i n t ∗ , i n t ∗) ;

i n t main ()
{
i n t max_ t r i a l s , number_walks ;
double move_p r o b a b i l i t y ;
/ / Read i n da ta
i n i t i a l i s e (max_ t r i a l s , number_walks , mov e_ p r o b a b i l i t y) ;
i n t ∗wa lk_cumu l a t i v e = new i n t [number_walks +1] ;
i n t ∗wa lk2_cumu l a t i v e = new i n t [number_walks +1] ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {
wa lk_cumu l a t i v e [walks] = wa lk2_cumu l a t i v e [walks] = 0 ;

} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t h e mc samp l ing
mc_sampling (max_ t r i a l s , number_walks , move_p robab i l i t y ,

wa lk_cumula t ive , wa lk2_cumu l a t i ve) ;
/ / P r i n t ou t r e s u l t s
ou t p u t (max_ t r i a l s , number_walks , wa lk_cumula t ive ,

wa lk2_cumu l a t i v e) ;
d e l e t e [] wa lk_ cumu l a t i v e ; / / f r e e memory
d e l e t e [] wa lk2_cumu l a t i v e ;
re turn 0 ;

} / / end main f u n c t i o n

The input and output functions are

void i n i t i a l i s e (i n t& max_ t r i a l s , i n t& number_walks , double& move_p r o b a b i l i t y
)

{
cou t << ;
c i n >> ma x _ t r i a l s ;
c ou t << ;
c i n >> number_walks ;
cou t << ;
c i n >> mov e_ p r o b a b i l i t y ;

} / / end o f f u n c t i o n i n i t i a l i s e

void ou t p u t (i n t max_ t r i a l s , i n t number_walks ,
i n t ∗walk_cumula t ive , i n t ∗wa lk2_cumu l a t i v e)

{
o f s t r e am o f i l e () ;
f o r (i n t i = 1 ; i <= number_walks ; i ++) {
double xave r ag e = wa lk_cumu l a t i v e [i] / ((double) m a x _ t r i a l s) ;
double x2ave r ag e = wa lk2_cumu l a t i v e [i] / ((double) m a x _ t r i a l s) ;
double v a r i a n c e = x2ave r ag e − xave r ag e∗ xave r ag e ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (6) << i ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << xave r ag e ;

207

Random walks and the Metropolis algorithm

o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << v a r i a n c e << end l ;
}
o f i l e . c l o s e () ;

} / / end o f f u n c t i o n o u t p u t

The algorithm is in the function mc_sampling and tests the probability of moving to the left or to the right
by generating a random number.

void mc_sampling (i n t max_ t r i a l s , i n t number_walks ,
double move_p robab i l i t y , i n t ∗walk_cumula t ive ,
i n t ∗wa lk2_cumu l a t i ve)

{
long idum ;
idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
f o r (i n t t r i a l =1 ; t r i a l <= ma x _ t r i a l s ; t r i a l ++) {
i n t p o s i t i o n = 0 ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {
i f (r an0 (&idum) <= mov e_ p r o b a b i l i t y) {
p o s i t i o n += 1 ;

}
e l s e {
p o s i t i o n −= 1 ;

}
wa lk_cumu l a t i v e [walks] += p o s i t i o n ;
wa lk2_cumu l a t i ve [walks] += p o s i t i o n ∗ p o s i t i o n ;

} / / end o f loop over wa lks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 9.3 shows that the variance increases linearly as function of the number of time steps, as expected
from the analytic results. Similarly, the mean displacement in Fig. 9.4 oscillates around zero.

Exercise 9.1
Extend the above program to a two-dimensional random walk with probability 1/4 for a
move to the right, left, up or down. Compute the variance for both the x and y directions
and the total variance.

9.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as the diffusion equation numerically, the derivatives are
always discretized. Recalling our discussions from Chapter 3, we can rewrite the time derivative as

∂w(x, t)

∂t
≈

w(i, n + 1)− w(i, n)

∆t
, (9.24)

whereas the gradient is approximated as

D
∂2w(x, t)

∂x2
≈ D

w(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
, (9.25)

208

9.3 – Microscopic derivation of the diffusion equation

0

20

40

60

80

100

0 20 40 60 80 100

σ2

Time steps t

Figure 9.3: Time development of σ2 for a random walker. 100000 Monte Carlo samples were used with
the function ran1 and a seed set to −1.

-0.04

-0.02

0

0.02

0.04

0 20 40 60 80 100

⟨x(t)⟩

Time steps t

Figure 9.4: Time development of ⟨x(t)⟩ for a random walker. 100000 Monte Carlo samples were used
with the function ran1 and a seed set to −1.

209

Random walks and the Metropolis algorithm

resulting in the discretized diffusion equation

w(i, n + 1)− w(i, n)

∆t
= D

w(i + 1, n) + w(i− 1, n)− 2w(i, n)

(∆x)2
, (9.26)

where n represents a given time step and i a step in the x-direction. We will come back to the solution of
such equations in our chapter on partial differential equations, see Chapter 15. The aim here is to show
that we can derive the discretized diffusion equation from a Markov process and thereby demonstrate the
close connection between the important physical process diffusion and random walks. Random walks
allow for an intuitive way of picturing the process of diffusion. In addition, as demonstrated in the
previous section, it is easy to simulate a random walk.

9.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic description of Brownian motion. As with the
random walk studied in the previous section, we consider a particle which moves along the x-axis in the
form of a series of jumps with step length ∆x = l. Time and space are discretized and the subsequent
moves are statistically indenpendent, i.e., the new move depends only on the previous step and not on the
results from earlier trials. We start at a position x = jl = j∆x and move to a new position x = i∆x
during a step ∆t = ϵ, where i ≥ 0 and j ≥ 0 are integers. The original probability distribution function
(PDF) of the particles is given by wi(t = 0) where i refers to a specific position on the grid in Fig. 9.2,
with i = 0 representing x = 0. The function wi(t = 0) is now the discretized version of w(x, t). We can
regard the discretized PDF as a vector. For the Markov process we have a transition probability from a
position x = jl to a position x = il given by

Wij(ϵ) = W (il − jl, ϵ) =

{
1
2 |i− j| = 1
0 else

(9.27)

We call Wij for the transition probability and we can represent it, see below, as a matrix. Our new PDF
wi(t = ϵ) is now related to the PDF at t = 0 through the relation

wi(t = ϵ) = W (j → i)wj(t = 0). (9.28)

This equation represents the discretized time-development of an original PDF. It is a microscopic way of
representing the process shown in Fig. 9.1. Since both W and w represent probabilities, they have to be
normalized, i.e., we require that at each time step we have

∑

i

wi(t) = 1, (9.29)

and ∑

j

W (j → i) = 1. (9.30)

The further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for remaining at the
same place is in general not necessarily equal zero. In our Markov process we allow only for jumps to
the left or to the right.

The time development of our initial PDF can now be represented through the action of the transition
probability matrix applied n times. At a time tn = nϵ our initial distribution has developed into

wi(tn) =
∑

j

Wij(tn)wj(0), (9.31)

210

9.3 – Microscopic derivation of the diffusion equation

and defining
W (il − jl, nϵ) = (W n(ϵ))ij (9.32)

we obtain
wi(nϵ) =

∑

j

(W n(ϵ))ijwj(0), (9.33)

or in matrix form
ŵ(nϵ) = Ŵ n(ϵ)ŵ(0). (9.34)

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1

2

(
L̂ + R̂

)
, (9.35)

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right, respectively. For a
4× 4 case we could write these matrices as

R̂ =

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟⎟⎠ , (9.36)

and

L̂ =

⎛

⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ . (9.37)

However, in principle these are infinite dimensional matrices since the number of time steps are very
large or infinite. For the infinite case we can write these matrices Rij = δi,(j+1) and Lij = δ(i+1),j ,
implying that

L̂R̂ = R̂L̂ = I, (9.38)

and
L̂ = R̂−1 (9.39)

To see that L̂R̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
∑

k

L̂ikR̂kj =
∑

k

δ(i+1),kδk,(j+1) = δi+1,j+1 = δi,j, (9.40)

and only the diagonal matrix elements are different from zero.
For the first time step we have thus

Ŵ =
1

2

(
L̂ + R̂

)
, (9.41)

and using the properties in Eqs. (9.38) and (9.39) we have after two time steps

Ŵ 2(2ϵ) =
1

4

(
L̂2 + R̂2 + 2R̂L̂

)
, (9.42)

and similarly after three time steps

Ŵ 3(3ϵ) =
1

8

(
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

)
. (9.43)

211

Random walks and the Metropolis algorithm

Using the binomial formula
n∑

k=0

(
n
k

)
âk b̂n−k = (a + b)n, (9.44)

we have that the transition matrix after n time steps can be written as

Ŵ n(nϵ)) =
1

2n

n∑

k=0

(
n
k

)
R̂kL̂n−k, (9.45)

or

Ŵ n(nϵ)) =
1

2n

n∑

k=0

(
n
k

)
L̂n−2k =

1

2n

n∑

k=0

(
n
k

)
R̂2k−n, (9.46)

and using Rm
ij = δi,(j+m) and Lm

ij = δ(i+m),j we arrive at

W (il − jl, nϵ) =

⎧
⎨

⎩

1
2n

(
n

1
2(n + i− j)

)
|i− j| ≤ n

0 else
, (9.47)

and n+ i− j has to be an even number. We note that the transition matrix for a Markov process has three
important properties:

– It depends only on the difference in space i− j, it is thus homogenous in space.

– It is also isotropic in space since it is unchanged when we go from (i, j) to (−i,−j).

– It is homogenous in time since it depends only the difference between the initial time and final
time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with wi(0) = δi,0. Using
Eq. (9.34) we have

wi(nϵ) =
∑

j

(W n(ϵ))ijwj(0) =
∑

j

1

2n

(
n

1
2(n + i− j)

)
δj,0, (9.48)

resulting in

wi(nϵ) =
1

2n

(
n

1
2(n + i)

)
|i| ≤ n (9.49)

Using the recursion relation for the binomials
(

n + 1
1
2(n + 1 + i))

)
=

(
n

1
2(n + i + 1)

)
+

(
n

1
2(n + i)− 1

)
(9.50)

we obtain, defining x = il, t = nϵ and setting

w(x, t) = w(il, nϵ) = wi(nϵ), (9.51)

w(x, t + ϵ) =
1

2
w(x + l, t) +

1

2
w(x− l, t), (9.52)

212

9.3 – Microscopic derivation of the diffusion equation

and adding and subtracting w(x, t) and multiplying both sides with l2/ϵ we have

w(x, t + ϵ)− w(x, t)

ϵ
=

l2

2ϵ

w(x + l, t)− 2w(x, t) + w(x− l, t)

l2
, (9.53)

and identifying D = l2/2ϵ and letting l = ∆x and ϵ = ∆t we see that this is nothing but the discretized
version of the diffusion equation. Taking the limits ∆x→ 0 and ∆t→ 0 we recover

∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
,

the diffusion equation.

An illustrative example

The following simple example may help in understanding the meaning of the transition matrix Ŵ and
the vector ŵ. Consider the 3× 3 matrix Ŵ

Ŵ =

⎛

⎝
1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3

⎞

⎠ ,

and we choose our initial state as

ŵ(t = 0) =

⎛

⎝
1
0
0

⎞

⎠ .

We note that both the vector and the matrix are properly normalized. Summing the vector elements gives
one and summing over columns for the matrix results also in one. We act then on ŵ with Ŵ . The first
iteration is

wi(t = ϵ) = W (j → i)wj(t = 0),

resulting in

ŵ(t = ϵ) =

⎛

⎝
1/4
3/4
0

⎞

⎠ .

The next iteration results in

wi(t = 2ϵ) = W (j → i)wj(t = ϵ),

resulting in

ŵ(t = 2ϵ) =

⎛

⎝
5/23
21/32
6/32

⎞

⎠ .

Note that the vector ŵ is always normalized to 1. We find the steady state of the system by solving the
linear set of equations

w(t =∞) = Ww(t =∞).

This linear set of equations reads

W11w1(t =∞) + W12w2(t =∞) + W13w3(t =∞) = w1(t =∞)

W21w1(t =∞) + W22w2(t =∞) + W23w3(t =∞) = w2(t =∞)

W31w1(t =∞) + W32w2(t =∞) + W33w3(t =∞) = w3(t =∞)

(9.54)

213

Random walks and the Metropolis algorithm

Table 9.1: Convergence to the steady state as function of number of iterations.

Iteration w1 w2 w3

0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.62625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005
10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000

ŵ(t =∞) 0.26667 0.53333 0.20000

with the constraint that ∑

i

wi(t =∞) = 1,

yielding as solution

ŵ(t =∞) =

⎛

⎝
4/15
8/15
3/15

⎞

⎠ .

Table 9.1 demonstrates the convergence as a function of the number of iterations or time steps. We have
after t-steps

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix. We can always
expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) =
∑

i

αiv̂i,

resulting in

ŵ(t) = Ŵtŵ(0) = Ŵt
∑

i

αiv̂i =
∑

i

λt
iαiv̂i,

with λi the ith eigenvalue corresponding to the eigenvector v̂i.
If we assume that λ0 is the largest eigenvector we see that in the limit t → ∞, ŵ(t) becomes

proportional to the corresponding eigenvector v̂0. This is our steady state or final distribution.

214

9.3 – Microscopic derivation of the diffusion equation

9.3.2 Continuous equations

Hitherto we have considered discretized versions of all equations. Our initial probability distribution
function was then given by

wi(0) = δi,0,

and its time-development after a given time step ∆t = ϵ is

wi(t) =
∑

j

W (j → i)wj(t = 0).

The continuous analog to wi(0) is
w(x)→ δ(x), (9.55)

where we now have generalized the one-dimensional position x to a generic-dimensional vector x. The
Kroenecker δ function is replaced by the δ distribution function δ(x) at t = 0.

The transition from a state j to a state i is now replaced by a transition to a state with position y from
a state with position x. The discrete sum of transition probabilities can then be replaced by an integral
and we obtain the new distribution at a time t + ∆t as

w(y, t + ∆t) =

∫
W (y,x,∆t)w(x, t)dx, (9.56)

and afterm time steps we have

w(y, t + m∆t) =

∫
W (y,x,m∆t)w(x, t)dx. (9.57)

When equilibrium is reached we have

w(y) =

∫
W (y,x, t)w(x)dx. (9.58)

We can solve the equation for w(y, t) by making a Fourier transform to momentum space. The PDF
w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =

∫ ∞

−∞
dk exp (ikx)w̃(k, t), (9.59)

and using the definition of the δ-function

δ(x) =
1

2π

∫ ∞

−∞
dk exp (ikx), (9.60)

we see that
w̃(k, 0) = 1/2π. (9.61)

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)

∂t
= −Dk2w̃(k, t), (9.62)

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
=

1

2π
exp

[
−(Dk2t)

]
. (9.63)

215

Random walks and the Metropolis algorithm

Using Eq. (9.59) we obtain

w(x, t) =

∫ ∞

−∞
dk exp [ikx]

1

2π
exp

[
−(Dk2t)

]
=

1√
4πDt

exp
[
−(x2/4Dt)

]
, (9.64)

with the normalization condition ∫ ∞

−∞
w(x, t)dx = 1. (9.65)

It is rather easy to verify by insertion that Eq. (9.64) is a solution of the diffusion equation. The solution
represents the probability of finding our random walker at position x at time t if the initial distribution
was placed at x = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition probability W itself is
given by a binomial distribution, see Eq. (9.47). The results from the central limit theorem, see Sect. 8.2.2,
state that transition probability in the limit n→∞ converges to the normal distribution. It is then possible
to show that

W (il − jl, nϵ)→W (y,x,∆t) =
1√

4πD∆t
exp

[
−((y − x)2/4D∆t)

]
, (9.66)

and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

9.3.3 Numerical simulation

In the two previous subsections we have given evidence that a Markov process actually yields in the
limit of infinitely many steps the diffusion equation. It links therefore in a physical intuitive way the
fundamental process of diffusion with random walks. It could therefore be of interest to visualize this
connection through a numerical experiment. We saw in the previous subsection that one possible solution
to the diffusion equation is given by a normal distribution. In addition, the transition rate for a given
number of steps develops from a binomial distribution into a normal distribution in the limit of infinitely
many steps. To achieve this we construct in addition a histogram which contains the number of times the
walker was in a particular position x. This is given by the variable probability , which is normalized in
the output function. We have omitted the initialization function, since this identical to program1.cpp or
program2.cpp of this chapter. The array probability extends from −number_walks to +number_walks

/∗
1−dim random walk program .
A wa lker makes s e v e r a l t r i a l s s t e p s w i t h
a g i v e n number o f wa lk s per t r i a l

∗ /
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;

/ / Func t i o n t o read i n da ta from screen , no t e c a l l by r e f e r e n c e
void i n i t i a l i s e (i n t&, i n t&, double&) ;
/ / The Mc samp l ing f o r random walks
void mc_sampling (i n t , i n t , double , i n t ∗ , i n t ∗ , i n t ∗) ;
/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s

216

9.3 – Microscopic derivation of the diffusion equation

void ou t p u t (i n t , i n t , i n t ∗ , i n t ∗ , i n t ∗) ;

i n t main ()
{
i n t max_ t r i a l s , number_walks ;
double move_p r o b a b i l i t y ;
/ / Read i n da ta
i n i t i a l i s e (max_ t r i a l s , number_walks , mov e_ p r o b a b i l i t y) ;
i n t ∗wa lk_cumu l a t i v e = new i n t [number_walks +1] ;
i n t ∗wa lk2_cumu l a t i v e = new i n t [number_walks +1] ;
i n t ∗ p r o b a b i l i t y = new i n t [2∗ (number_walks +1)] ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {
wa lk_cumu l a t i v e [walks] = wa lk2_cumu l a t i v e [walks] = 0 ;

}
f o r (i n t walks = 0 ; walks <= 2∗number_walks ; walks ++) {
p r o b a b i l i t y [walks] = 0 ;

} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t h e mc samp l ing
mc_sampling (max_ t r i a l s , number_walks , move_p robab i l i t y ,

wa lk_cumula t ive , wa lk2_cumula t ive , p r o b a b i l i t y) ;
/ / P r i n t ou t r e s u l t s
ou t p u t (max_ t r i a l s , number_walks , wa lk_cumula t ive ,

wa lk2_cumula t ive , p r o b a b i l i t y) ;
d e l e t e [] wa lk_ cumu l a t i v e ; / / f r e e memory
d e l e t e [] wa lk2_cumu l a t i v e ; d e l e t e [] p r o b a b i l i t y ;
re turn 0 ;

} / / end main f u n c t i o n

The output function contains now the normalization of the probability as well and writes this to its own
file.

void ou t p u t (i n t max_ t r i a l s , i n t number_walks ,
i n t ∗walk_cumula t ive , i n t ∗walk2_cumula t ive , i n t ∗ p r o b a b i l i t y)

{
o f s t r e am o f i l e () ;
o f s t r e am p r o b f i l e () ;
f o r (i n t i = 1 ; i <= number_walks ; i ++) {
double xave r ag e = wa lk_cumu l a t i v e [i] / ((double) m a x _ t r i a l s) ;
double x2ave r ag e = wa lk2_cumu l a t i v e [i] / ((double) m a x _ t r i a l s) ;
double v a r i a n c e = x2ave r ag e − xave r ag e∗ xave r ag e ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (6) << i ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << xave r ag e ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << v a r i a n c e << end l ;

}
o f i l e . c l o s e () ;
/ / f i n d norm o f p r o b a b i l i t y
double norm = 0 . ;
f o r (i n t i = −number_walks ; i <= number_walks ; i ++) {
norm += (double) p r o b a b i l i t y [i +number_walks] ;

}
/ / w r i t e p r o b a b i l i t y
f o r (i n t i = −number_walks ; i <= number_walks ; i ++) {

217

Random walks and the Metropolis algorithm

double h i s t o g r am = p r o b a b i l i t y [i +number_walks] / norm ;
p r o b f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
p r o b f i l e << se tw (6) << i ;
p r o b f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << h i s t o g r am << end l ;

}
p r o b f i l e . c l o s e () ;

} / / end o f f u n c t i o n o u t p u t

The sampling part is still done in the same function, but contains now the setup of a histogram containing
the number of times the walker visited a given position x.

void mc_sampling (i n t max_ t r i a l s , i n t number_walks ,
double move_p robab i l i t y , i n t ∗walk_cumula t ive ,
i n t ∗walk2_cumula t ive , i n t ∗ p r o b a b i l i t y)

{
long idum ;
idum=−1; / / i n i t i a l i s e random number g e n e r a t o r
f o r (i n t t r i a l =1 ; t r i a l <= ma x _ t r i a l s ; t r i a l ++) {
i n t p o s i t i o n = 0 ;
f o r (i n t walks = 1 ; walks <= number_walks ; walks ++) {
i f (r an0 (&idum) <= mov e_ p r o b a b i l i t y) {
p o s i t i o n += 1 ;

}
e l s e {
p o s i t i o n −= 1 ;

}
wa lk_cumu l a t i v e [walks] += p o s i t i o n ;
wa lk2_cumu l a t i ve [walks] += p o s i t i o n ∗ p o s i t i o n ;
p r o b a b i l i t y [p o s i t i o n +number_walks] += 1 ;

} / / end o f loop over wa lks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 9.5 shows the resulting probability distribution after n steps In Fig. 9.5 we have plotted the probabil-
ity distribution function after a given number of time steps. Do you recognize the shape of the probabiliy
distributions?

Exercise 9.2
Use the above program and try to fit the computed probability distribution with a normal
distribution using your calculated values of σ2 and ⟨x⟩.

9.4 Entropy and Equilibrium Features

We use this section to motivate, in a physically intuitive way, the importance of the ergodic hypothesis via
a discussion of how aMarkovian process reaches an equilibrium situation after a given number of random
walks. It serves then the scope of bridging the gap between a Markovian process and our discussion of
the Metropolis algorithm in the next section.

To achieve this, we will use the program from the previous section, see programs/chapter9/program3.cpp

218

9.4 – Entropy and Equilibrium Features

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-20 -15 -10 -5 0 5 10 15 20

w(x, t)

steps x

10 steps

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

w(x, t)

steps x

100 steps

0

0.005

0.01

0.015

0.02

0.025

-40 -20 0 20 40

w(x, t)

steps x

1000 steps

Figure 9.5: Probability distribution for one walker after 10, 100 and 1000 steps.
219

Random walks and the Metropolis algorithm

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

S

Time steps in units of 10i

Figure 9.6: Entropy Sj as function of number of time steps j for a random walk in one dimension. Here
we have used 100 walkers on a lattice of length from L = −50 to L = 50 employing periodic boundary
conditions meaning that if a walker reaches the point x = L it is shifted to x = −L and if x = −L it is
shifted to x = L.

and introduce the concept of entropy S. We discuss the thermodynamical meaning of the entropy and
its link with the second law of thermodynamics in the next chapter. Here it will suffice to state that the
entropy is a measure of the disorder of the system, thus a system which is fully ordered and stays in its
fundamental state (ground state) has zero entropy, while a disordered system has a large and nonzero
entropy.

The definition of the entropy S (as a dimensionless quantity here) is

S = −
∑

i

wiln(wi), (9.67)

where wi is the probability of finding our system in a state i. For our one-dimensional random walk case
discussed in the previous sections it represents the probability for being at position i = i∆x after a given
number of time steps. In order to test this, we start with the previous program but assume now that we
haveN random walkers at i = 0 and t = 0 and let these random walkers diffuse as function of time. This
means simply an additional loop. We compute then, as in the previous program example, the probability
distribution forN walkers after a given number of steps i along x and time steps j. We can then compute
an entropy Sj for a given number of time steps by summing over all probabilities i. We show this in
Fig. 9.6. The code used to compute these results is in programs/chapter9/program4.cpp. Here we have
used 100 walkers on a lattice of length from L = −50 to L = 50 employing periodic boundary conditions
meaning that if a walker reaches the point x = L it is shifted to x = −L and if x = −L it is shifted to
x = L. We see from Fig. 9.6 that for small time steps, where all particles N are in the same position or
close to the initial position, the entropy is very small, reflecting the fact that we have an ordered state. As
time elapses, the random walkers spread out in space (here in one dimension) and the entropy increases
as there are more states, that is positions accesible to the system. We say that the system shows an
increased degree of disorder. After several time steps, we see that the entropy reaches a constant value, a

220

9.5 – The Metropolis algorithm and detailed balance

situation called a steady state. This signals that the system has reached its equilibrium situation and that
the random walkers spread out to occupy all possible available states. At equilibrium it means thus that
all states are equally probable and this is not baked into any dynamical equations such as Newton’s law
of motion. It occurs because the system is allowed to explore all possibilities. An important hypothesis,
which has never been proven rigorously but for certain systems, is the ergodic hypothesis which states
that in equilibrium all available states of a closed system have equal probability. This hypothesis states
also that if we are able to simulate long enough, then one should be able to trace through all possible
paths in the space of available states to reach the equilibrium situation. Our Markov process should be
able to reach any state of the system from any other state if we run for long enough. Markov processes
fullfil the requirement of ergodicity since all new steps are independent of the previous ones and the
random walkers can thus explore with equal probability all possible positions. In general however, we
know that physical processes are not independent of each other. The relation between ergodicity and
physical systems is an unsettled topic.

The Metropolis algorithm which we discuss in the next section is based on a Markovian process and
fullfils the requirement of ergodicity. In addition, in the next section we impose the criterion of detailed
balance.

9.5 The Metropolis algorithm and detailed balance

Let us recapitulate some of our results about Markov chains and random walks.

– The time development of our PDF w(t), after one time-step from t = 0 is given by

wi(t = ϵ) = W (j → i)wj(t = 0).

This equation represents the discretized time-development of an original PDF. We can rewrite this
as a

wi(t = ϵ) = Wijwj(t = 0).

with the transition matrixW for a random walk given by

Wij(ϵ) = W (il − jl, ϵ) =

{ 1
2 |i− j| = 1
0 else

We callWij for the transition probability and we represent it as a matrix.

– Both W and w represent probabilities and they have to be normalized, meaning that that at each
time step we have ∑

i

wi(t) = 1,

and ∑

j

W (j → i) = 1.

The further constraints are 0 ≤Wij ≤ 1 and 0 ≤ wj ≤ 1.

– We can thus write the action ofW as

wi(t + 1) =
∑

j

Wijwj(t), (9.68)

221

Random walks and the Metropolis algorithm

or as vector-matrix relation
ŵ(t + 1) = Ŵŵ(t), (9.69)

and if we have that ||ŵ(t + 1)− ŵ(t)||→ 0, we say that we have reached the most likely state of
the system, the so-called steady state or equilibrium state. Another way of phrasing this is

w(t =∞) = Ww(t =∞). (9.70)

An important condition we require that our Markov chain should satisfy is that of detailed balance. In
statistical physics this condition ensures that it is e.g., the Boltzmann distribution which is generated
when equilibrium is reached. The definition for being in equilibrium is that the rates at which a system
makes a transition to or from a given state i have to be equal, that is

∑

i

W (j → i)wj =
∑

i

W (i→ j)wi. (9.71)

However, the condition that the rates should equal each other is in general not sufficient to guarantee
that we, after many simulations, generate the correct distribution. We therefore introduce an additional
condition, namely that of detailed balance

W (j → i)wj = W (i→ j)wi. (9.72)

At equilibrium detailed balance gives thus

W (j → i)

W (i→ j)
=

wi

wj
. (9.73)

We introduce the Boltzmann distribution

wi =
exp (−β(Ei))

Z
, (9.74)

which states that probability of finding the system in a state i with energy Ei at an inverse temperature
β = 1/kBT is wi ∝ exp (−β(Ei)). The denominator Z is a normalization constant which ensures
that the sum of all probabilities is normalized to one. It is defined as the sum of probabilities over all
microstates j of the system

Z =
∑

j

exp (−β(Ei)). (9.75)

From the partition function we can in principle generate all interesting quantities for a given system in
equilibrium with its surroundings at a temperature T . This is demonstrated in the next chapter.

With the probability distribution given by the Boltzmann distribution we are now in the position
where we can generate expectation values for a given variable A through the definition

⟨A⟩ =
∑

j

Ajwj =

∑
j Aj exp (−β(Ej)

Z
. (9.76)

In general, most systems have an infinity of microstates making thereby the computation of Z practi-
cally impossible and a brute force Monte Carlo calculation over a given number of randomly selected
microstates may therefore not yield those microstates which are important at equilibrium. To select the
most important contributions we need to use the condition for detailed balance. Since this is just given

222

9.5 – The Metropolis algorithm and detailed balance

by the ratios of probabilities, we never need to evaluate the partition function Z. For the Boltzmann
distribution, detailed balance results in

wi

wj
= exp (−β(Ei − Ej)). (9.77)

Let us now specialize to a system whose energy is defined by the orientation of single spins. Consider
the state i, with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We are interested in the transition with one single spinflip to a new state j with energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate j is the configuration
space analogue to a random walk on a lattice. Instead of jumping from one place to another in space, we
’jump’ from one microstate to another.

However, the selection of states has to generate a final distribution which is the Boltzmann distribu-
tion. This is again the same we saw for a random walker, for the discrete case we had always a binomial
distribution, whereas for the continuous case we had a normal distribution. The way we sample con-
figurations should result in, when equilibrium is established, in the Boltzmann distribution. Else, our
algorithm for selecting microstates has to be wrong.

Since we do not know the analytic form of the transition rate, we are free to model it as

W (i→ j) = g(i→ j)A(i→ j), (9.78)

where g is a selection probability while A is the probability for accepting a move. It is also called the
acceptance ratio. The selection probability should be same for all possible spin orientations, namely

g(i→ j) =
1

N
. (9.79)

With detailed balance this gives

g(j → i)A(j → i)

g(i→ j)A(i→ j)
= exp (−β(Ei − Ej)), (9.80)

but since the selection ratio is the same for both transitions, we have

A(j → i)

A(i→ j)
= exp (−β(Ei − Ej)) (9.81)

In general, we are looking for those spin orientations which correspond to the average energy at equilib-
rium.

We are in this case interested in a new state Ej whose energy is lower than Ei, viz.,∆E = Ej−Ei ≤
0. A simple test would then be to accept only those microstates which lower the energy. Suppose we have
ten microstates with energy E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy is E0. At a given
temperature T we start our simulation by randomly choosing state E9. Flipping spins we may then find
a path from E9 → E8 → E7 · · · → E1 → E0. This would however lead to biased statistical averages

223

Random walks and the Metropolis algorithm

since it would violate the ergodic hypothesis discussed in the previous section. This principle states that
it should be possible for any Markov process to reach every possible state of the system from any starting
point if the simulations is carried out for a long enough time.

Any state in a Boltzmann distribution has a probability different from zero and if such a state cannot
be reached from a given starting point, then the system is not ergodic. This means that another possible
path to E0 could be E9 → E7 → E8 · · ·→ E9 → E5 → E0 and so forth. Even though such a path could
have a negligible probability it is still a possibility, and if we simulate long enough it should be included
in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and be ergodic.
One possible way is the Metropolis algorithm, which reads

A(j → i) =

{
exp (−β(Ei −Ej)) Ei − Ej > 0

1 else
(9.82)

This algorithm satisfies the condition for detailed balance and ergodicity. It is implemented as follows:

– Establish an initial energy Eb

– Do a random change of this initial state by e.g., flipping an individual spin. This new state has
energy Et. Compute then ∆E = Et − Eb

– If ∆E ≤ 0 accept the new configuration.

– If ∆E > 0, compute w = e−(β∆E).

– Compare w with a random number r. If r ≤ w accept, else keep the old configuration.

– Compute the terms in the sums
∑

Asws.

– Repeat the above steps in order to have a large enough number of microstates

– For a given number of MC cycles, compute then expectation values.

The application of this algorithm will be discussed in detail in the next two chapters.

9.6 Physics project: simulation of the Boltzmann distribution

In this project the aim is to show that the Metropolis algorithm generates the Boltzmann distribution

P (β) =
e−βE

Z
, (9.83)

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is the partition
function. The only functions you will need are those to generate random numbers.

We are going to study one single particle in equilibrium with its surroundings, the latter modeled via
a large heat bath with temperature T .

The model used to describe this particle is that of an ideal gas in one dimension and with velocity −v
or v. We are interested in finding P (v)dv, which expresses the probability for finding the system with a
given velocity v ∈ [v, v + dv]. The energy for this one-dimensional system is

E =
1

2
kT =

1

2
v2, (9.84)

224

9.6 – Physics project: simulation of the Boltzmann distribution

with mass m = 1. In order to simulate the Boltzmann distribution, your program should contain the
following ingredients:

– Reads in the temperature T , the number of Monte Carlo cycles, and the initial velocity. You should
also read in the change in velocity δv used in every Monte Carlo step. Let the temperature have
dimension energy.

– Thereafter you choose a maximum velocity given by e.g., vmax ∼ 10
√

T . Then you construct
a velocity interval defined by vmax and divided it in small intervals through vmax/N , with N ∼
100 − 1000. For each of these intervals your task is to find out how many times a given velocity
during the Monte Carlo sampling appears in each specific interval.

– The number of times a given velocity appears in a specific interval is used to construct a histogram
representing P (v)dv. To achieve this you should construct a vector P [N] which contains the
number of times a given velocity appears in the subinterval v, v + dv.

In order to find the number of velocities appearing in each interval we will employ the Metropolis
algorithm. A pseudocode for this is

f o r (mon t e c a r l o _ c y c l e s =1 ; Max_cycles ; mon t e c a r l o _ c y c l e s ++) {
. . .
/ / change speed as f u n c t i o n o f d e l t a v
v_change = (2∗ r an1 (&idum) −1) ∗ d e l t a _ v ;
v_new = v_o ld+v_change ;
/ / energy change
d e l t a _E = 0 . 5 ∗ (v_new∗v_new − v_o ld ∗ v_o ld) ;
.
/ / Me t r o p o l i s a l g o r i t hm b eg i n s here
i f (r an1 (&idum) <= exp(− b e t a ∗ d e l t a _E)) {

a c c e p t _ s t e p = a c c e p t _ s t e p + 1 ;
v_o ld = v_new ;
.

}
/ / t h e r e a f t e r we must f i l l i n P[N] as a f u n c t i o n o f
/ / t h e new speed
P [?] = . . .

/ / upgrade mean v e l o c i t y , energy and v a r i a n c e
. . .

}

a) Make your own algorithm which sets up the histogram P (v)dv, find the mean velocity, the energy,
the energy variance and the number of accepted steps for a given temperature. Study the change
of the number of accepted moves as a function of δv. Compare the final energy with the analytic
result E = kT/2 for one dimension. Use T = 4 and set the intial velocity to zero, i.e., v0 = 0.
Try different values of δv. A possible start value is δv = 4. Check the final result for the energy as
a function of the number of Monte Carlo cycles.
It can be useful to check your results against the analytic solutions. These can be obtained by
computing the partition function of the system of interest. In our case it is given by

Z =

∫ +∞

−∞
e−βv2/2dv =

√
2πβ−1/2

225

Random walks and the Metropolis algorithm

From the partition function we can in turn compute the expectation value of the mean velocity and
the variance. The mean velocity is given by

⟨v⟩ =

∫ +∞

−∞
ve−βv2/2dv = 0

The above expression holds as the integrand is an odd function of v. The mean energy and energy
variance can be easily calculated. The expressions for ⟨E⟩ and σE assume the following form:

⟨E⟩ =

∫ +∞

−∞

v2

2
e−βv2/2dv = −

1

Z

∂Z

∂β
=

1

2
β−1 =

1

2
T

⟨E2⟩ =

∫ +∞

−∞

v4

4
e−βv2/2dv =

1

Z

∂2Z

∂β2
=

3

4
β−2 =

3

4
T 2

and
σE = ⟨E2⟩ − ⟨E⟩2 =

1

2
T 2

an expected results. It is useful to compare these results with those from your program.

b) Make thereafter a plot of ln(P (v)) as function of E and see if you get a straight line. Comment
the result.

9.7 Physics project: Random Walk in two dimensions

For this project you can build upon program programs/chapter9/program2.cpp (or the f90 version). You
will need to compute the expectation values ⟨x(N)⟩, ⟨y(N)⟩ and

⟨∆R2(N)⟩ = ⟨x2(N)⟩ + ⟨y2(N)⟩ − ⟨x(N)⟩2 − ⟨y(N)⟩2

where N is the number of time steps.

a) Enumerate all random walks on a square lattice for N = 2 and obtain exact results for ⟨x(N)⟩,
⟨y(N)⟩ and ⟨∆R2(N)⟩. Verify your results by comparing your Monte Carlo simulations with the
exact results. Assume that all four directions are equally probable.

b) Do aMonte Carlo simulation to estimate ⟨∆R2(N)⟩ forN = 10, 40, 60 and 100 using a reasonable
number of trials for each N . Assume that we have the asymptotic behavior

⟨∆R2(N)⟩ ∼ N2ν ,

and estimate the exponent ν from a log-log plot of ⟨∆R2(N)⟩ versus N . If ν ≈ 1/2, estimate the
magnutide of the self-diffusion coefficient D given by

⟨∆R2(N)⟩ ∼ 2dDN,

with d the dimension of the system.

226

9.7 – Physics project: Random Walk in two dimensions

c) Compute now the quantities ⟨x(N)⟩, ⟨y(N)⟩, ⟨∆R2(N)⟩ and

⟨R2(N)⟩ = ⟨x2(N)⟩ + ⟨y2(N)⟩,

for the same values of N as in the previous case but now with the step probabilities 2/3, 1/6,
1/6 and 1/6 corresponding to right, left, up and down, respectively. This choice corresponds to
a biased random walk with a drift to the right. What is the interpretation of ⟨x(N)⟩ in this case?
What is the dependence of ⟨∆R2(N)⟩ on N and does ⟨R2(N)⟩ depend simply on N?

d) Consider now a random walk that starts at a site that is a distance y = h above a horisontal line
(ground). If the probability of a step down towards the ground is bigger than the probability of a
step up, we expect that the walker will eventually reach a horisontal line. This walk is a simple
model of the fall of a rain drop in the presence of a random breeze. Assume that the probabilities are
0.1, 0.6, 0, 15 and 0.15 corresponding to up, down, right and left, respectively. Do a Monte Carlo
simulation to determine the mean time τ for the walker to reach any site on the line at x = 0. Find
the functional dependence of τ on h. Can you define a velocity in the vertical direction? Since the
walker does not always move vertically, it suffers a net displacement∆x in the horizontal direction.
Compute ⟨∆x2⟩ and find its dependence on h and τ .

227

Chapter 10

Monte Carlo methods in statistical physics

When you are solving a problem, don’t worry. Now, after you have solved the problem,
then that’s the time to worry. Richard Feynman

10.1 Introduction and motivation

The aim of this chapter is to present examples from the physical sciences where Monte Carlo meth-
ods are widely applied. Here we focus on examples from statistical physics. and discuss one of the
most studied systems, the Ising model for the interaction among classical spins. This model exhibits
both first and second order phase transitions and is perhaps one of the most studied system in sta-
tistical physics with respect to simulations of phase transitions. The Norwegian-born chemist Lars
Onsager ,
1903-1976, developed in 1944 an ingenious mathematical description of the Ising model meant to simu-
late a two-dimensional model of a magnet composed of many small atomic magnets. This work proved
later useful in analyzing other complex systems, such as gases sticking to solid surfaces, and hemoglobin
molecules that absorb oxygen. He got the Nobel prize in chemistry in 1968 for his studies of non-
equilibrium thermodynamics. Many people argue he should have received the Nobel prize in physics as
well for his work on the Ising model. Another model we discuss at the end of this chapter is the so-called
class of Potts models, which exhibits both first and second order type of phase transitions. Both the
Ising model and the Potts model have been used to model phase transitions in solid state physics, with a
particular emphasis on ferromagnetism and antiferromagnetism.

Metals like iron, nickel, cobalt and some of the rare earths (gadolinium, dysprosium) exhibit a unique
magnetic behavior which is called ferromagnetism because iron (ferrum in Latin) is the most common
and most dramatic example. Ferromagnetic materials exhibit a long-range ordering phenomenon at the
atomic level which causes the unpaired electron spins to line up parallel with each other in a region called
a domain. The long range order which creates magnetic domains in ferromagnetic materials arises from
a quantum mechanical interaction at the atomic level. This interaction is remarkable in that it locks the
magnetic moments of neighboring atoms into a rigid parallel order over a large number of atoms in spite
of the thermal agitation which tends to randomize any atomic-level order. Sizes of domains range from
a 0.1 mm to a few mm. When an external magnetic field is applied, the domains already aligned in the
direction of this grow at the expense of their neighbors. For a given ferromagnetic material the long
range order abruptly disappears at a certain temperature which is called the Curie temperature for the
material. The Curie temperature of iron is about 1043 K while metals like cobalt and nickel have a Curie

229

Monte Carlo methods in statistical physics

■

■

■

■

■

■

■

■

Figure 10.1: Example of a cubic lattice with atoms at each corner. Each atom has a finite magnetic
moment which points in a particular direction.
.

temperature of 1388 K and 627 K, respectively, and some of the rare earth metals like gadolinium and
dysprosium have 293 K and 85 k. We could think of an actual metal as composed of for example a cubic
lattice with atoms at each corner with a resulting magnetic moment pointing in a particular direction, as
portrayed in Fig. 10.1. In many respects, these atomic magnets are like ordinary magnets and can be
thought of in terms of little magnet vectors pointing from south to north poles. The Ising model provides
a simple way of describing how a magnetic material responds to thermal energy and an external magnetic
field. In this model, each domain has a corresponding spin of north or south. The spins can be thought
of as the poles of a bar magnet. The model assigns a value of +1 or -1 to the spins north and south
respectively. The direction of the spins influences the total potential energy of the system.

Another physical case where the application of the Ising model enjoys considerable success is the
description of antiferromagnetism. This is a type of magnetism where adjacent ions spontaneously align
themselves at relatively low temperatures into opposite, or antiparallel, arrangements throughout the
material so that it exhibits almost no gross external magnetism. In antiferromagnetic materials, which
include certain metals and alloys in addition to some ionic solids, the magnetism from magnetic atoms
or ions oriented in one direction is canceled out by the set of magnetic atoms or ions that are aligned in
the reverse direction.

This spontaneous antiparallel coupling of atomic magnets is disrupted by heating and disappears
entirely above a certain temperature, called the Néel temperature, characteristic of each antiferromagnetic
material. (The Néel temperature is named for Louis Néel, French physicist, who in 1936 gave one of the
first explanations of antiferromagnetism.) Some antiferromagnetic materials have Néel temperatures at,
or even several hundred degrees above, room temperature, but usually these temperatures are lower. The

230

10.2 – Review of Statistical Physics

Figure 10.2: The open (white) circles at each lattice point can represent a vacant site, while the black
circles can represent the absorption of an atom on a metal surface.
.

Néel temperature for manganese oxide, for example, is 122 K.
Antiferromagnetic solids exhibit special behaviour in an applied magnetic field depending upon the

temperature. At very low temperatures, the solid exhibits no response to the external field, because
the antiparallel ordering of atomic magnets is rigidly maintained. At higher temperatures, some atoms
break free of the orderly arrangement and align with the external field. This alignment and the weak
magnetism it produces in the solid reach their peak at the Néel temperature. Above this temperature,
thermal agitation progressively prevents alignment of the atoms with the magnetic field, so that the weak
magnetism produced in the solid by the alignment of its atoms continuously decreases as temperature is
increased. For further discussion of magnetic properties and solid state physics, see for example the text
of Ashcroft and Mermin [48].

As mentioned above, spin models like the Ising and Potts models can be used to model other systems
as well, such as gases sticking to solid surfaces, and hemoglobin molecules that absorb oxygen. We
sketch such an application in Fig. 10.2.

However, before we present the Ising model, we feel it is appropriate to refresh some important quan-
tities in statistical physics, such as various definitions of statistical ensembles, their partition functions
and relevant variables.

10.2 Review of Statistical Physics

In statistical physics the concept of an ensemble is one of the cornerstones in the definition of ther-
modynamical quantities. An ensemble is a collection of microphysics systems from which we derive
expectations values and thermodynamical properties related to experiment. As an example, the specific
heat (which is a measurable quantity in the laboratory) of a system of infinitely many particles, can be
derived from the basic interactions between the microscopic constituents. The latter can span from elec-
trons to atoms and molecules or a system of classical spins. All these microscopic constituents interact
via a well-defined interaction. We say therefore that statistical physics bridges the gap between the mi-
croscopic world and the macroscopic world. Thermodynamical quantities such as the specific heat or net
magnetization of a system can all be derived from a microscopic theory.

There are several types of ensembles, with their pertinent expectaction values and potentials. Table
10.1 lists the most used ensembles in statistical physics together with frequently arising extensive (depend
on the size of the systems such as the number of particles) and intensive variables (apply to all components
of a system), in addition to associated potentials.

231

Monte Carlo methods in statistical physics

Table 10.1: Overview of the most common ensembles and their variables. Here we have defineM - to
be the magnetization, D - the electric dipole moment, H - the magnetic field and E - to be the electric
field. The last two replace the pressure as an intensive variable, while the magnetisation and the dipole
moment play the same role as volume, viz they are extensive variables. The invers temperatur β regulates
the mean energy while the chemical potential µ regulates the mean number of particles.

Microcanonical Canonical Grand canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V,M,D V,M,D V,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy

10.2.1 Microcanonical Ensemble

The microcanonical ensemble represents an hypothetically isolated system such as a nucleus which does
not exchange energy or particles via the environment. The thermodynamical quantity of interest is the
entropy S which is related to the logarithm of the number of possible microscopic states Ω(E) at a given
energy E that the system can access. The relation is

S = kBlnΩ. (10.1)

When the system is in its ground state the entropy is zero since there is only one possible ground state.
For excited states, we can have a higher degeneracy than one and thus an entropy which is larger than
zero. We may therefore loosely state that the entropy measures the degree of order in a system. At
low energies, we expect that we have only few states which are accessible and that the system prefers
a specific ordering. At higher energies, more states become accessible and the entropy increases. The
entropy can be used to compute observables such as the temperature

1

kBT
=

(
∂lnΩ

∂E

)

N,V

, (10.2)

232

10.2 – Review of Statistical Physics

the pressure
p

kBT
=

(
∂lnΩ

∂V

)

N,E

, (10.3)

or the chemical potential.
µ

kBT
= −

(
∂lnΩ

∂N

)

V,E

. (10.4)

It is very difficult to compute the density of states Ω(E) and thereby the partition function in the micro-
canonical ensemble at a given energy E, since this requires the knowledge of all possible microstates
at a given energy. This means that calculations are seldomly done in the microcanonical ensemble. In
addition, since the microcanonical ensemble is an isolated system, it is hard to give a physical meaning
to a quantity like the microcanonical temperature.

10.2.2 Canonical Ensemble

One of the most used ensembles is the canonical one, which is related to the microcanonical ensemble via
a Legendre transformation. The temperature is an intensive variable in this ensemble whereas the energy
follows as an expectation value. In order to calculate expectation values such as the mean energy ⟨E⟩ at
a given temperature, we need a probability distribution. It is given by the Boltzmann distribution

Pi(β) =
e−βEi

Z
(10.5)

with β = 1/kBT being the inverse temperature, kB is the Boltzmann constant, Ei is the energy of a
microstate i while Z is the partition function for the canonical ensemble defined as

Z =
M∑

i=1

e−βEi , (10.6)

where the sum extends over all microstates M . The potential of interest in this case is Helmholtz’ free
energy. It relates the expectation value of the energy at a given temperatur T to the entropy at the same
temperature via

F = −kBT lnZ = ⟨E⟩ − TS. (10.7)

Helmholtz’ free energy expresses the struggle between two important principles in physics, namely the
strive towards an energy minimum and the drive towards higher entropy as the temperature increases. A
higher entropy may be interpreted as a larger degree of disorder. When equilibrium is reached at a given
temperature, we have a balance between these two principles. The numerical expression is Helmholtz’
free energy. The creation of a macroscopic magnetic field from a bunch of atom-sized mini-magnets, as
shown in Fig. 10.1 results from a careful balance between these two somewhat opposing principles in
physics, order vs. disorder.

In the canonical ensemble the entropy is given by

S = kBlnZ + kBT

(
∂lnZ

∂T

)

N,V

, (10.8)

and the pressure by

p = kBT

(
∂lnZ

∂V

)

N,T

. (10.9)

233

Monte Carlo methods in statistical physics

Similarly we can compute the chemical potential as

µ = −kBT

(
∂lnZ

∂N

)

V,T

. (10.10)

For a system described by the canonical ensemble, the energy is an expectation value since we allow
energy to be exchanged with the surroundings (a heat bath with temperature T).

This expectation value, the mean energy, can be calculated using

⟨E⟩ = kBT 2

(
∂lnZ

∂T

)

V,N

(10.11)

or using the probability distribution Pi as

⟨E⟩ =
M∑

i=1

EiPi(β) =
1

Z

M∑

i=1

Eie
−βEi . (10.12)

The energy is proportional to the first derivative of the potential, Helmholtz’ free energy. The correspond-
ing variance is defined as

σ2
E = ⟨E2⟩ − ⟨E⟩2 =

1

Z

M∑

i=1

E2
i e−βEi −

(
1

Z

M∑

i=1

Eie
−βEi

)2

. (10.13)

If we divide the latter quantity with kT 2 we obtain the specific heat at constant volume

CV =
1

kBT 2

(
⟨E2⟩ − ⟨E⟩2

)
, (10.14)

which again can be related to the second derivative of Helmholtz’ free energy. Using the same prescrip-
tion, we can also evaluate the mean magnetization through

⟨M⟩ =
M∑

i

MiPi(β) =
1

Z

M∑

i

Mie
−βEi , (10.15)

and the corresponding variance

σ2
M = ⟨M2⟩ − ⟨M⟩2 =

1

Z

M∑

i=1

M2
i e

−βEi −

(
1

Z

M∑

i=1

Mie
−βEi

)2

. (10.16)

This quantity defines also the susceptibility χ

χ =
1

kBT

(
⟨M2⟩ − ⟨M⟩2

)
. (10.17)

10.2.3 Grand Canonical and Pressure Canonical

Two other ensembles which are much used in statistical physics and thermodynamics are the grand canon-
ical and pressure canonical ensembles. In the first we allow the system (in contact with a large heat bath)
to exchange both heat and particles with the environment. The potential is, with a partition function
Ξ(V, T, µ) with variables V, T and µ,

pV = kBT lnΞ, (10.18)

234

10.3 – Ising model and phase transitions in magnetic systems

and the entropy is given by

S = kBlnΞ + kBT

(
∂lnΞ

∂T

)

V,µ

, (10.19)

while the mean number of particles is

⟨N⟩ = kBT

(
∂lnΞ

∂µ

)

V,T

. (10.20)

The pressure is determined as

p = kBT

(
∂lnΞ

∂V

)

µ,T

. (10.21)

In the pressure canonical ensemble we employ with Gibbs’ free energy as the potential. It is related
to Helmholtz’ free energy via G = F + pV . The partition function is ∆(N, p, T), with temperature,
pressure and the number of particles as variables. The pressure and volume term can be replaced by other
external potentials, such as an external magnetic field (or a gravitational field) which performs work on
the system. Gibbs’ free energy reads

G = −kBT ln∆, (10.22)

and the entropy is given by

S = kBln∆ + kBT

(
∂ln∆

∂T

)

p,N

. (10.23)

We can compute the volume as

V = −kBT

(
∂ln∆

∂p

)

N,T

, (10.24)

and finally the chemical potential

µ = −kBT

(
∂ln∆

∂N

)

p,T

. (10.25)

In this chapter we work with the canonical ensemble only.

10.3 Ising model and phase transitions in magnetic systems

10.3.1 Theoretical background

The model we will employ in our studies of phase transitions at finite temperature for magnetic systems
is the so-called Ising model. In its simplest form the energy is expressed as

E = −J
N∑

<kl>

sksl − B
N∑

k

sk, (10.26)

with sk = ±1, N is the total number of spins, J is a coupling constant expressing the strength of the
interaction between neighboring spins and B is an external magnetic field interacting with the magnetic
moment set up by the spins. The symbol < kl > indicates that we sum over nearest neighbors only.
Notice that for J > 0 it is energetically favorable for neighboring spins to be aligned. This feature leads
to, at low enough temperatures, a cooperative phenomenon called spontaneous magnetization. That is,
through interactions between nearest neighbors, a given magnetic moment can influence the alignment

235

Monte Carlo methods in statistical physics

of spins that are separated from the given spin by a macroscopic distance. These long range correlations
between spins are associated with a long-range order in which the lattice has a net magnetization in the
absence of a magnetic field. In our further studies of the Ising model, we will mostly limit the attention
to cases with B = 0 only.

In order to calculate expectation values such as the mean energy ⟨E⟩ or magnetization ⟨M⟩ in statis-
tical physics at a given temperature, we need a probability distribution

Pi(β) =
e−βEi

Z
(10.27)

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the energy of a state i
while Z is the partition function for the canonical ensemble defined as

Z =
M∑

i=1

e−βEi , (10.28)

where the sum extends over all microstates M . Pi expresses the probability of finding the system in a
given configuration i.

The energy for a specific configuration i is given by

Ei = −J
N∑

<kl>

sksl. (10.29)

To better understand what is meant with a configuration, consider first the case of the one-dimensional
Ising model with B = 0. In general, a given configuration of N spins in one dimension may look like

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . i− 1 i i + 1 . . . N − 1 N

In order to illustrate these features let us further specialize to just two spins.
With two spins, since each spin takes two values only, it means that in total we have 22 = 4 possible

arrangements of the two spins. These four possibilities are

1 =↑↑ 2 =↑↓ 3 =↓↑ 4 =↓↓

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. Two cases are often used.

1. In the first case we employ what is called free ends. For the one-dimensional case, the energy is
then written as a sum over a single index

Ei = −J
N−1∑

j=1

sjsj+1, (10.30)

If we label the first spin as s1 and the second as s2 we obtain the following expression for the
energy

E = −Js1s2. (10.31)

The calculation of the energy for the one-dimensional lattice with free ends for one specific spin-
configuration can easily be implemented in the following lines

236

10.3 – Ising model and phase transitions in magnetic systems

f o r (j =1 ; j < N; j ++) {
ene rgy += sp i n [j]∗ s p i n [j + 1] ;

}

where the vector spin[] contains the spin value sk = ±1. For the specific state E1, we have chosen
all spins up. The energy of this configuration becomes then

E1 = E↑↑ = −J.

The other configurations give
E2 = E↑↓ = +J,

E3 = E↓↑ = +J,

and
E4 = E↓↓ = −J.

2. We can also choose so-called periodic boundary conditions. This means that if i = N , we set the
spin number to i = 1. In this case the energy for the one-dimensional lattice reads

Ei = −J
N∑

j=1

sjsj+1, (10.32)

and we obtain the following expression for the two-spin case

E = −J(s1s2 + s2s1). (10.33)

In this case the energy for E1 is different, we obtain namely

E1 = E↑↑ = −2J.

The other cases do also differ and we have

E2 = E↑↓ = +2J,

E3 = E↓↑ = +2J,

and
E4 = E↓↓ = −2J.

If we choose to use periodic boundary conditions we can code the above expression as

jm=N;
f o r (j =1 ; j <=N ; j ++) {

ene rgy += sp i n [j]∗ s p i n [jm] ;
jm = j ;

}

237

Monte Carlo methods in statistical physics

Table 10.2: Energy and magnetization for the one-dimensional Ising model with N = 2 spins with free
ends (FE) and periodic boundary conditions (PBC).

State Energy (FE) Energy (PBC) Magnetization
1 =↑↑ −J −2J 2
2 =↑↓ J 2J 0
3 =↓↑ J 2J 0
4 =↓↓ −J −2J -2

Table 10.3: Degeneracy, energy and magnetization for the one-dimensional Ising model with N = 2
spins with free ends (FE) and periodic boundary conditions (PBC).

Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 −J −2J 2
1 2 J 2J 0
0 1 −J −2J -2

The magnetization is however the same, defined as

Mi =
N∑

j=1

sj, (10.34)

where we sum over all spins for a given configuration i.
Table 10.2 lists the energy and magnetization for both free ends and periodic boundary conditions.
We can reorganize Table 10.2 according to the number of spins pointing up, as shown in Table 10.3.

It is worth noting that for small dimensions of the lattice, the energy differs depending on whether we use
periodic boundary conditions or free ends. This means also that the partition functions will be different,
as discussed below. In the thermodynamic limit however, N →∞, the final results do not depend on the
kind of boundary conditions we choose.

For a one-dimensional lattice with periodic boundary conditions, each spin sees two neighbors. For
a two-dimensional lattice each spin sees four neighboring spins. How many neighbors does a spin see in
three dimensions?

In a similar way, we could enumerate the number of states for a two-dimensional system consisting
of two spins, i.e., a 2× 2 Ising model on a square lattice with periodic boundary conditions. In this case
we have a total of 24 = 16 states. Some examples of configurations with their respective energies are
listed here

E = −8J
↑ ↑
↑ ↑ E = 0

↑ ↑
↑ ↓ E = 0

↓ ↓
↑ ↓ E = −8J

↓ ↓
↓ ↓

In the Table 10.4 we group these configurations according to their total energy and magnetization.

Exercise 10.1
Convince yourself that the values listed in Table 10.4 are correct.

238

10.3 – Ising model and phase transitions in magnetic systems

Table 10.4: Energy and magnetization for the two-dimensional Ising model with N = 2 × 2 spins with
periodic boundary conditions.

Number spins up Degeneracy Energy Magnetization
4 1 −8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 −8J -4

For the one-dimensional Ising model we can compute rather easily the exact partition function for a
system of N spins. Let us consider first the case with free ends. The energy reads

E = −J
N−1∑

j=1

sjsj+1.

The partition function for N spins is given by

ZN =
∑

s1=±1

· · ·
∑

sN=±1

exp (βJ
N−1∑

j=1

sjsj+1), (10.35)

and since the last spin occurs only once in the last sum in the exponential, we can single out the last spin
as follows ∑

sN=±1

exp (βJsN−1sN) = 2cosh(βJ). (10.36)

The partition function consists then of a part from the last spin and one from the remaining spins resulting
in

ZN = ZN−12cosh(βJ). (10.37)

We can repeat this process and obtain

ZN = (2cosh(βJ))N−2Z2, (10.38)

with Z2 given by
Z2 =

∑

s1=±1

∑

s2=±1

exp (βJs1s2) = 4cosh(βJ), (10.39)

resulting in
ZN = 2(2cosh(βJ))N−1 . (10.40)

In the thermodynamical limit where we letN →∞, the way we treat the ends does not matter. However,
since our computations will always be carried out with a limited value of N , we need to consider other
boundary conditions as well. Here we limit the attention to periodic boundary conditions.

239

Monte Carlo methods in statistical physics

If we use periodic boundary conditions, the partition function is given by

ZN =
∑

s1=±1

· · ·
∑

sN=±1

exp (βJ
N∑

j=1

sjsj+1), (10.41)

where the sum in the exponential runs from 1 to N since the energy is defined as

E = −J
N∑

j=1

sjsj+1.

We can then rewrite the partition function as

ZN =
∑

{si=±1}

N∏

i=1

exp (βJsisi+1), (10.42)

where the first sum is meant to represent all lattice sites. Introducing the matrix T̂ (the so-called transfer
matrix)

T̂ =

(
eβJ e−βJ

e−βJ eβJ

)
, (10.43)

with matrix elements t11 = eβJ , t1−1 = e−βJ , t−11 = eβJ and t−1−1 = eβJ we can rewrite the partition
function as

ZN =
∑

{si=±1}

T̂s1s2T̂s2s3 . . . T̂sNs1 = TrT̂N . (10.44)

The 2 × 2 matrix T̂ is easily diagonalized with eigenvalues λ1 = 2cosh(βJ) and λ2 = 2sinh(βJ).
Similarly, the matrix T̂N has eigenvalues λN

1 and λN
2 and the trace of T̂N is just the sum over eigenvalues

resulting in a partition function

ZN = λN
1 + λN

2 = 2N
(
[cosh(βJ)]N + [sinh(βJ)]N

)
. (10.45)

In the limit N → ∞ the two partition functions with free ends and periodic boundary conditions agree,
see below for a demonstration.

In the development phase of an algorithm and its pertinent code it is always useful to test the numerics
against analytic results. It is therefore instructive to compute properties like the internal energy and the
specific heat for these two cases and test the results against those produced by our code. We can then
calculate the mean energy with free ends from the above formula for the partition function using

⟨E⟩ = −
∂lnZ

∂β
= −(N − 1)Jtanh(βJ). (10.46)

Helmholtz’s free energy is given by

F = −kBT lnZN = −NkBT ln (2cosh(βJ)) . (10.47)

If we take our simple system with just two spins in one-dimension, we see immediately that the above
expression for the partition function is correct. Using the definition of the partition function we have

Z2 =
2∑

i=1

e−βEi = 2e−βJ + 2eβJ = 4cosh(βJ) (10.48)

240

10.3 – Ising model and phase transitions in magnetic systems

If we take the limit T → 0 (β →∞) and set N = 2, we obtain

lim
β→∞

⟨E⟩ = −J
eJβ − e−Jβ

eJβ + e−Jβ
= −J, (10.49)

which is the energy where all spins point in the same direction. At low T , the system tends towards a
state with the highest possible degree of order.

The specific heat in one-dimension with free ends is

CV =
1

kT 2

∂2

∂β2
lnZN = (N − 1)k

(
βJ

cosh(βJ)

)2

. (10.50)

Note well that this expression for the specific heat from the one-dimensional Ising model does not diverge
or exhibits discontinuities, as can be seen from Fig. 10.3.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7

CV

Inverse Temperature βJ

Figure 10.3: Heat capacity per spin (CV /(N − 1)kB as function of inverse temperature β for the one-
dimensional Ising model.

In one dimension we do not have a second order phase transition, although this is predicted by mean field
models [49].

We can repeat this exercise for the case with periodic boundary conditions as well. Helmholtz’s free
energy is in this case

F = −kBT ln(λN
1 + λN

2) = −kBT

{
Nln(λ1) + ln

(
1 + (

λ2

λ1
)N
)}

, (10.51)

which in the limit N → ∞ results in F = −kBTNln(λ1) as in the case with free ends. Since other
thermodynamical quantities are related to derivatives of the free energy, all observables become identical
in the thermodynamic limit.

241

Monte Carlo methods in statistical physics

Exercise 10.2
Calculate the internal energy and heat capacity of the one-dimensional Ising model using
periodic boundary conditions and compare the results with those for free ends in the limit
N →∞.

Hitherto we have limited ourselves to studies of systems with zero external magnetic field, viz B = 0.
We will mostly study systems which exhibit a spontaneous magnitization. It is however instructive to
extend the one-dimensional Ising model to B ≠ ′, yielding a partition function (with periodic boundary
conditions)

ZN =
∑

s1=±1

· · ·
∑

sN=±1

exp (β
N∑

j=1

(Jsjsj+1 +
B
2

(sj + sj+1)), (10.52)

which yields a new transfer matrix with matrix elements t11 = eβ(J+B), t1−1 = e−βJ , t−11 = eβJ and
t−1−1 = eβ(J−B) with eigenvalues

λ1 = eβJcosh(βJ) + (e2βJsinh2(βB) + e−2βJ)1/2, (10.53)

and
λ1 = eβJcosh(βJ) − (e2βJsinh2(βB) + e−2βJ)1/2. (10.54)

The partition function is given byZN = λN
1 +λN

2 and in the thermodynamic limit we obtain the following
free energy

F = −NkBT ln
(
eβJcosh(βJ) + (e2βJsinh2(βB) + e−2βJ)1/2

)
. (10.55)

It is now useful to compute the expectation value of the magnetisation per spin

⟨M/N⟩ =
1

NZ

M∑

i

Mie
−βEi = −

1

N

∂F

∂B
, (10.56)

resulting in

⟨M/N⟩ =
sinh(βB)(

sinh2(βB) + e−2βJ)1/2
) . (10.57)

We see that for B = 0 the magnetisation is zero. This means that for a one-dimensional Ising model we
cannot have a spontaneous magnetization. For the two-dimensional model however, see the discussion
below, the Ising model exhibits both a spontaneous magnetisation and a specific heat and susceptibility
which are discontinuous or even diverge. However, except for the simplest case such as 2 × 2 lattice of
spins, with the following partition function

Z = 2e−8Jβ + 2e8Jβ + 12, (10.58)

and resulting mean energy

⟨E⟩ = −
1

Z

(
16e8Jβ − 16e−8Jβ

)
, (10.59)

it is a highly non-trivial task to find the analytic expression for ZN in the thermodynamic limit. The
analytic expression for the Ising model in two dimensions was obtained in 1944 by the Norwegian chemist

242

10.3 – Ising model and phase transitions in magnetic systems

Lars Onsager [50]. The exact partition function for N spins in two dimensions and with zero magnetic
field B is given by

ZN =
[
2cosh(βJ)eI

]N
, (10.60)

with
I =

1

2π

∫ π

0
dφln

[
1

2

(
1 + (1− κ2sin2φ)1/2

)]
, (10.61)

and
κ = 2sinh(2βJ)/cosh2(2βJ). (10.62)

The resulting energy is given by

⟨E⟩ = −Jcoth(2βJ)

[
1 +

2

π
(2tanh2(2βJ) − 1)K1(q)

]
, (10.63)

with q = 2sinh(2βJ)/cosh2(2βJ) and the complete elliptic integral of the first kind

K1(q) =

∫ π/2

0

dφ√
1− q2sin2φ

. (10.64)

Differentiating once more with respect to temperature we obtain the specific heat given by

CV =
4kB

π
(βJcoth(2βJ))2

{
K1(q)−K2(q)− (1− tanh2(2βJ))

[π
2

+ (2tanh2(2βJ)− 1)K1(q)
]}

,

(10.65)
with

K2(q) =

∫ π/2

0
dφ
√

1− q2sin2φ. (10.66)

is the complete elliptic integral of the second kind. Near the critical temperature TC the specific heat
behaves as

CV ≈ −
2

π

(
2J

kBTC

)2

ln

∣∣∣∣1−
T

TC

∣∣∣∣+ const. (10.67)

In theories of critical phenomena one has that

CV ∼
∣∣∣∣1−

T

TC

∣∣∣∣
−α

, (10.68)

and Onsager’s result is a special case of this power law behavior. The limiting form of the function

limα→0
1

α
(Y −α − 1) = −lnY, (10.69)

meaning that the analytic result is a special case of the power law singularity with α = 0. To compute
the spontaneous magnetisation per spin is also highly non-trivial. Here we list the result

⟨M(T)/N⟩ =

[
1−

(1− tanh2(βJ))4

16tanh4(βJ)

]1/8

, (10.70)

for T < TC and 0 for T > TC . The behavior is thus as T → TC from below

⟨M(T)/N⟩ ∼ (TC − T)1/8. (10.71)

The susceptibility behaves as
χ(T) ∼ |TC − T |−7/4. (10.72)

243

Monte Carlo methods in statistical physics

10.3.2 Phase Transitions

The Ising model in two dimensions and with B = 0 undergoes a phase transition of second order. What
it actually means is that below a given critical temperature TC , the Ising model exhibits a spontaneous
magnetization with ⟨M⟩ ≠ 0. Above TC the average magnetization is zero. The one-dimensional Ising
model does not predict any spontaneous magnetization at any finite temperature. The physical reason
for this can be understood from the following simple consideration. Assume that the ground state for an
N -spin system in one dimension is characterized by the following configuration

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↑
1 2 3 . . . i− 1 i i + 1 . . . N − 1 N

which has a total energy −NJ and magnetization N , where we used periodic boundary conditions. If
we flip half of the spins we arrive and special to a configuration where the first half of the spins point
upwards and last haf points downwards we arrive at the configuration

↑ ↑ ↑ . . . ↑ ↑ ↓ . . . ↓ ↓
1 2 3 . . . N/2− 1 N/2 N/2 + 1 . . . N − 1 N

with energy (−N + 4)J and net magnetization zero. This state is an example of a possible disordered
state with net magnetization zero. The change in energy is however too small to stabilize the disordered
state. There are many other such states with net magnetization zero with energies slightly larger than the
above case. But it serves to demonstrate our point, we can namely build states at low energies compared
with the ordered state with net magnetization zero. And the energy difference between the ground state is
too small to stabilize the system. In two dimensions however the excitation energy to a disordered state is
much higher, and this difference can be sufficient to stabilize the system. In fact, the Ising model exhibits
a phase transition to a disordered phase both in two and three dimensions.

For the two-dimensional case, we move from a phase with finite magnetization ⟨M⟩ ≠ 0 to a para-
magnetic phase with ⟨M⟩ = 0 at a critical temperature TC . At the critical temperature, quantities like
the heat capacity CV and the susceptibility χ are discontinuous or diverge at the critical point in the
thermodynamic limit, i.e., with an infinitely large lattice. This means that the variance in energy and
magnetization are discontinuous or diverge. For a finite lattice however, the variance will always scale
as ∼ 1/

√
M , M being e.g., the number of configurations which in our case is proportional with L, the

number of spins in a the x and y directions. The total number of spins is N = L× L resulting in a total
of M = 2N microstates. Since our lattices will always be of a finite dimensions, the calculated CV or
χ will not exhibit a diverging behavior. We will however notice a broad maximum in e.g., CV near TC .
This maximum, as discussed below, becomes sharper and sharper as L is increased.

Near TC we can characterize the behavior of many physical quantities by a power law behavior. As
an example, we demonstrated in the previous section that the mean magnetization is given by

⟨M(T)⟩ ∼ (T − TC)β , (10.73)

where β = 1/8 is a so-called critical exponent. A similar relation applies to the heat capacity

CV (T) ∼ |TC − T |−γ , (10.74)

and the susceptibility
χ(T) ∼ |TC − T |−α , (10.75)

with α = 0 and γ = −7/4. Another important quantity is the correlation length, which is expected to
be of the order of the lattice spacing for T >> TC . Because the spins become more and more correlated

244

10.4 – The Metropolis algorithm and the two-dimensional Ising Model

as T approaches TC , the correlation length increases as we get closer to the critical temperature. The
discontinuous behavior of ξ near TC is

ξ(T) ∼ |TC − T |−ν . (10.76)

A second-order phase transition is characterized by a correlation length which spans the whole system.
Since we are always limited to a finite lattice, ξ will be proportional with the size of the lattice.

Through finite size scaling relations [51, 52, 53] it is possible to relate the behavior at finite lattices
with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)− TC(L =∞) ∼ aL−1/ν , (10.77)

with a a constant and ν defined in Eq. (10.76). The correlation length is given by

ξ(T) ∼ L ∼ |TC − T |−ν . (10.78)

and if we set T = TC one obtains

⟨M(T)⟩ ∼ (T − TC)β → L−β/ν , (10.79)

CV (T) ∼ |TC − T |−γ → Lα/ν , (10.80)

and
χ(T) ∼ |TC − T |−α → Lγ/ν . (10.81)

10.4 The Metropolis algorithm and the two-dimensional Ising Model

The algorithm of choice for solving the Ising model is the approach proposed by Metropolis et al. [54] in
1953. As discussed in chapter 9, new configurations are generated from a previous one using a transition
probability which depends on the energy difference between the initial and final states.

In our case we have as the Monte Carlo sampling function the probability for finding the system in a
state s given by

Ps =
e−(βEs)

Z
,

with energy Es, β = 1/kT and Z is a normalization constant which defines the partition function in the
canonical ensemble. As discussed above

Z(β) =
∑

s

e−(βEs)

is difficult to compute since we need all states. In a calculation of the Ising model in two dimensions, the
number of configurations is given by 2N with N = L× L the number of spins for a lattice of length L.
Fortunately, the Metropolis algorithm considers only ratios between probabilities and we do not need to
compute the partition function at all. The algorithm goes as follows

1. Establish an initial state with energy Eb by positioning yourself at a random position in the lattice

2. Change the initial configuration by flipping e.g., one spin only. Compute the energy of this trial
state Et.

245

Monte Carlo methods in statistical physics

3. Calculate ∆E = Et − Eb. The number of values ∆E is limited to five for the Ising model in two
dimensions, see the discussion below.

4. If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered and we are
hopefully moving towards the energy minimum at a given temperature. Go to step 7.

5. If ∆E > 0, calculate w = e−(β∆E).

6. Compare w with a random number r. If
r ≤ w,

then accept the new configuration, else we keep the old configuration.

7. The next step is to update various expectations values.

8. The steps (2)-(7) are then repeated in order to obtain a sufficently good representation of states.

9. Each time you sweep through the lattice, i.e., when you have summed over all spins, constitutes
what is called a Monte Carlo cycle. You could think of one such cycle as a measurement. At the
end, you should divide the various expectation values with the total number of cycles. You can
choose whether you wish to divide by the number of spins or not. If you divide with the number of
spins as well, your result for e.g., the energy is now the energy per spin.

The crucial step is the calculation of the energy difference and the change in magnetization. This
part needs to be coded in an as efficient as possible way since the change in energy is computed many
times. In the calculation of the energy difference from one spin configuration to the other, we will limit
the change to the flipping of one spin only. For the Ising model in two dimensions it means that there will
only be a limited set of values for ∆E. Actually, there are only five possible values. To see this, select
first a random spin position x, y and assume that this spin and its nearest neighbors are all pointing up.
The energy for this configuration is E = −4J . Now we flip this spin as shown below. The energy of the
new configuration is E = 4J , yielding ∆E = 8J .

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with∆E = 4J ,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with∆E = 0,

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

246

10.4 – The Metropolis algorithm and the two-dimensional Ising Model

with∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with∆E = −8J . This means in turn that we could construct an array which contains all values of eβ∆E

before doing the Metropolis sampling. Else, we would have to evaluate the exponential at each Monte
Carlo sampling. For the two-dimensional Ising model there are only five possible values. It is rather easy
to convice oneself that for the one-dimensional Ising model we have only three possible values. The main
part of the Ising model program is shown here (there is also a corresponding Fortran 90/95 program).

/∗
Program t o s o l v e t h e two−d imen s i o n a l I s i n g model
The c o u p l i n g c o n s t a n t J = 1
Bol tzmann ’ s c o n s t a n t = 1 , t emp e ra t u r e has t h u s d imen s i on energy
Me t r o p o l i s samp l ing i s used . P e r i o d i c boundary c o n d i t i o n s .

∗ /
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;
o f s t r e am o f i l e ;
/ / i n l i n e f u n c t i o n f o r p e r i o d i c boundary c o n d i t i o n s
i n l i n e i n t p e r i o d i c (i n t i , i n t l im i t , i n t add) {
re turn (i + l i m i t +add) % (l i m i t) ;

}
/ / Func t i o n t o read i n da ta from s c r e e n
void r e a d _ i n p u t (i n t&, i n t&, double&, double&, double&) ;
/ / Func t i o n t o i n i t i a l i s e energy and ma g n e t i z a t i o n
void i n i t i a l i z e (i n t , double , i n t ∗∗ , double&, double&) ;
/ / The m e t r o p o l i s a l g o r i t hm
void Me t r o p o l i s (i n t , long&, i n t ∗∗ , double&, double&, double ∗) ;
/ / p r i n t s t o f i l e t h e r e s u l t s o f t h e c a l c u l a t i o n s
void ou t p u t (i n t , i n t , double , double ∗) ;

/ / main program
i n t main (i n t argc , char∗ a rgv [])
{
char ∗ o u t f i l e n am e ;
long idum ;
i n t ∗∗ s p i n _ma t r i x , n _ sp i n s , mcs ;
double w[1 7] , a v e r ag e [5] , i n i t i a l _ t em p , f i n a l _ t emp , E , M, t emp_ s t ep ;

/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command−l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}

247

Monte Carlo methods in statistical physics

e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / Read i n i n i t i a l v a l u e s such as s i z e o f l a t t i c e , temp and c y c l e s
r e a d _ i n p u t (n_ sp i n s , mcs , i n i t i a l _ t emp , f i n a l _ t emp , t emp_ s t ep) ;
s p i n _m a t r i x = (i n t ∗∗) ma t r i x (n_ sp i n s , n _ sp i n s , s i z e o f (i n t)) ;
idum = −1; / / random s t a r t i n g p o i n t
f o r (double temp = i n i t i a l _ t e m p ; temp <= f i n a l _ t emp ; temp+= t emp_ s t ep) {

/ / i n i t i a l i s e energy and ma g n e t i z a t i o n
E = M = 0 . ;
/ / s e t u p a r ra y f o r p o s s i b l e energy changes
f o r (i n t de =−8; de <= 8 ; de ++) w[de +8] = 0 ;
f o r (i n t de =−8; de <= 8 ; de +=4) w[de +8] = exp(−de / temp) ;
/ / i n i t i a l i s e a r ra y f o r e x p e c t a t i o n v a l u e s
f o r (i n t i = 0 ; i < 5 ; i ++) av e r ag e [i] = 0 . ;
i n i t i a l i z e (n_ sp i n s , double temp , s p i n _ma t r i x , E , M) ;
/ / s t a r t Monte Carlo compu ta t i o n
f o r (i n t c y c l e s = 1 ; c y c l e s <= mcs ; c y c l e s ++) {
Me t r o p o l i s (n_ sp i n s , idum , s p i n _ma t r i x , E , M, w) ;
/ / upda te e x p e c t a t i o n v a l u e s
av e r ag e [0] += E ; av e r ag e [1] += E∗E ;
av e r ag e [2] += M; ave r ag e [3] += M∗M; ave r ag e [4] += f a b s (M) ;

}
/ / p r i n t r e s u l t s
ou t p u t (n_ sp i n s , mcs , temp , av e r ag e) ;

}
f r e e _m a t r i x ((void ∗∗) s p i n _m a t r i x) ; / / f r e e memory
o f i l e . c l o s e () ; / / c l o s e o u t p u t f i l e
re turn 0 ;

}

The array w[17] contains values of ∆E spanning from −8J to 8J and it is precalculated in the main
part for every new temperature. The program takes as input the initial temperature, final temperature, a
temperature step, the number of spins in one direction (we force the lattice to be a square lattice, meaning
that we have the same number of spins in the x and the y directions) and the number of Monte Carlo
cycles. For every Monte Carlo cycle we run through all spins in the lattice in the function metropolis and
flip one spin at the time and perform the Metropolis test. However, every time we flip a spin we need to
compute the actual energy difference ∆E in order to access the right element of the array which stores
eβ∆E . This is easily done in the Ising model since we can exploit the fact that only one spin is flipped,
meaning in turn that all the remaining spins keep their values fixed. The energy difference between a
state E1 and a state E2 with zero magnetic field is

∆E = E2 − E1 = J
N∑

<kl>

s1
ks

1
l − J

N∑

<kl>

s2
ks

2
l , (10.82)

which we can rewrite as

∆E = −J
N∑

<kl>

s2
k(s

2
l − s1

l), (10.83)

where the sum now runs only over the nearest neighbors k of the spin Since the spin to be flipped takes
only two values, s1

l = ±1 and s2
l = ±1, it means that if s1

l = 1, then s2
l = −1 and if s1

l = −1, then

248

10.4 – The Metropolis algorithm and the two-dimensional Ising Model

s2
l = 1. The other spins keep their values, meaning that s1

k = s2
k. If s1

l = 1 we must have s1
l − s2

l = 2,
and if s1

l = −1 we must have s1
l − s2

l = −2. From these results we see that the energy difference can be
coded efficiently as

∆E = 2Js1
l

N∑

<k>

sk, (10.84)

where the sum runs only over the nearest neighbors k of spin l. We can compute the change in magnetisa-
tion by flipping one spin as well. Since only spin l is flipped, all the surrounding spins remain unchanged.
The difference in magnetisation is therefore only given by the difference s1

l − s2
l = ±2, or in a more

compact way as
M2 = M1 + 2s2

l , (10.85)

where M1 and M2 are the magnetizations before and after the spin flip, respectively. Eqs. (10.84) and
(10.85) are implemented in the function metropolis shown here

void Me t r o p o l i s (i n t n_ sp i n s , long& idum , i n t ∗∗ s p i n _ma t r i x , double& E ,
double&M, double ∗w)

{
/ / l oop over a l l s p i n s
f o r (i n t y =0 ; y < n_ sp i n s ; y++) {
f o r (i n t x= 0 ; x < n_ sp i n s ; x++){

/ / Find random p o s i t i o n
i n t i x = (i n t) (r an1 (&idum) ∗ (double) n _ s p i n s) ;
i n t i y = (i n t) (r an1 (&idum) ∗ (double) n _ s p i n s) ;
i n t d e l t aE = 2∗ s p i n _m a t r i x [i y] [i x]∗
(s p i n _m a t r i x [i y] [p e r i o d i c (ix , n _ sp i n s ,−1)]+
s p i n _m a t r i x [p e r i o d i c (iy , n _ sp i n s ,−1)] [i x] +
s p i n _m a t r i x [i y] [p e r i o d i c (ix , n _ sp i n s , 1)] +
s p i n _m a t r i x [p e r i o d i c (iy , n _ sp i n s , 1)] [i x]) ;

/ / Here we per fo rm t h e Me t r o p o l i s t e s t
i f (r an1 (&idum) <= w[d e l t aE +8]) {
s p i n _m a t r i x [i y] [i x] ∗= −1; / / f l i p one s p i n and a c c e p t new sp i n

c o n f i g
/ / upda te energy and ma g n e t i z a t i o n
M += (double) 2∗ s p i n _m a t r i x [i y] [i x] ;
E += (double) d e l t aE ;

}
}

}
} / / end o f Me t r o p o l i s samp l ing over s p i n s

Note that we loop over all spins but that we choose the lattice positions x and y randomly. If the move
is accepted after performing the Metropolis test, we update the energy and the magnetisation. The new
values are used to update the averages computed in the main function.

When setting up the values of the spins it can be useful to have a visualization of the lattice, as shown
for the 7× 7 lattice of Fig. 10.4.

Another important function is the function initialize . This function sets up the initial energy, mag-
netisation and spin values for the different lattice positions. The latter sets all spins equal one if the
temperature is low, which for the two-dimensional Ising model means temperatures T < 1.5. Else, it
keeps the value from the preceeding temperature. We have built up a code where we run over a larger
temperature span, typically with values T ∈ [1.0, 3.0].

249

Monte Carlo methods in statistical physics

✒

✒

✒

✒

✒

✒

✒

✒

✒

✠

✒

✒

✒

✠

✒

✠

✒

✠

✒

✒

✠

✒

✒

✒

✠

✒

✒

✒

✒

✠

✒

✠

✒

✒

✠

✒

✠

✒

✒

✠

✒

✠ ✠

✠

✠

✠

✒

✠

✠

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 10.4: Example of a two-dimensional 7 × 7 lattice with spins pointing either up or down. The
variable spin_matrix [0][1] takes the value +1 while spin_matrix [6][0] is −1.

250

10.4 – The Metropolis algorithm and the two-dimensional Ising Model

/ / f u n c t i o n t o i n i t i a l i s e energy , s p i n ma t r i x and ma g n e t i z a t i o n
void i n i t i a l i z e (i n t n_ sp i n s , double temp , i n t ∗∗ s p i n _ma t r i x ,

double& E , double& M)
{

/ / s e t u p s p i n ma t r i x and i n t i a l m a g n e t i z a t i o n
f o r (i n t y =0 ; y < n_ sp i n s ; y++) {
f o r (i n t x= 0 ; x < n_ sp i n s ; x++){
i f (temp < 1 . 5) s p i n _m a t r i x [y] [x] = 1 ; / / s p i n o r i e n t a t i o n f o r t h e

ground s t a t e
M += (double) s p i n _m a t r i x [y] [x] ;

}
}
/ / s e t u p i n i t i a l energy
f o r (i n t y =0 ; y < n_ sp i n s ; y++) {
f o r (i n t x= 0 ; x < n_ sp i n s ; x++){
E −= (double) s p i n _m a t r i x [y] [x]∗
(s p i n _m a t r i x [p e r i o d i c (y , n_ sp i n s ,−1)] [x] +
s p i n _m a t r i x [y] [p e r i o d i c (x , n_ sp i n s ,−1)]) ;

}
}

} / / end f u n c t i o n i n i t i a l i s e

In the function output we print the final results, spanning from the mean energy to the susceptibility. Note
that we divide by all spins. All the thermodynamical variables we compute are so-called extensive ones
meaning that they depend linearly on the number of spins. Since our results will depend on the size of the
lattice, we need to divide by the total number of spins in order to see whether quantities like the energy
or the heat capacity stabilise or not as functions of increasing lattice size.

void ou t p u t (i n t n_ sp i n s , i n t mcs , double temp , double ∗ av e r ag e)
{
double t o t a l _ s p i n s = 1 / (n _ s p i n s ∗ n_ sp i n s) ; / / d i v i d e d by t o t a l number o f

s p i n s
double norm = 1 / ((double) (mcs)) ; / / d i v i d e d by t o t a l number o f c y c l e s
double Eaverage = ave r ag e [0]∗ norm ;
double E2ave rage = ave r ag e [1]∗ norm ;
double Maverage = ave r ag e [2]∗ norm ;
double M2average = ave r ag e [3]∗ norm ;
double Mabsaverage = ave r ag e [4]∗ norm ;
/ / a l l e x p e c t a t i o n v a l u e s are per sp in , d i v i d e by 1 / n _ s p i n s / n _ s p i n s
double Eva r i a n c e = (E2average− Eaverage∗Eaverage) / t o t a l _ s p i n s ;
double Mvar iance = (M2average − Mabsaverage∗Mabsaverage) / t o t a l _ s p i n s ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << temp ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << Eave rage / t o t a l _ s p i n s ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << Ev a r i a n c e / temp / temp ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << Maverage / t o t a l _ s p i n s ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << Mvar iance / temp ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << Mabsaverage / t o t a l _ s p i n s << end l ;

} / / end o u t p u t f u n c t i o n

251

Monte Carlo methods in statistical physics

10.5 Selected results for the Ising model

In Figs. 10.5-10.8 we display selected results from the program discussed in the previous section. The
results have all been obtained with one million Monte Carlo cycles and the Metropolis algorithm for
different two-dimensional lattices. A temperature step of ∆T = 0.1 was used for all lattices except
the 100 × 100 results. For the latter we single out a smaller temperature region close to the critical
temperature and used ∆T = 0.05. Fig. 10.5 shows the energy to stabilize as function of lattice size. We
note that the numerics indicates a smooth and continuous curve for the energy, although there is a larger
increase close to the critical temperature TC ≈ 2.269.

"100× 100"
"80× 80"
"40× 40"
"10× 10"

kBT

E
/J

2.62.42.221.81.6

0

-0.5

-1

-1.5

-2

-2.5

Figure 10.5: Average energy per spin as function of the lattice size for the two-dimensional Ising model.

We mentioned previously that the two-dimensional Ising model with zero external magnetic field exhibits
a second-order phase transition and a spontaneous magnetization below TC . Fig. 10.6 shows the absolute
value of the magnetisation as function of the number of spins. We note that with increasing lattice size
we approach a steeper line and the transition from a smaller magnetisation to a larger one becomes
sharper. This is a possible sign of a phase transition, where we move from a state where all spins (or
most of them) align in a specific direction (high degree of order) to a phase where both spin directions are
equally probable (high degree of disorder) and result in zero net magnetisation. The ordered phase at low
temperatures is called for a ferromagnetic phase while the disordered phase is called the paramagnetic
phase, with zero net magnetisation. Since we are plotting the absolute value, our net magnetisation will
always be above zero since we are taking the average of a number which is never negative.

The reason we choose to plot the average absolute value instead of the net magnetisation is that slightly
below TC , the net magnetisation may oscillate between negative and positive values since the system, as
function of the number of Monte Carlo cycles is likely to have its spins pointing up or down. This means
that after a given number of cycles, the net spin may be slightly positive but could then occasionaly jump

252

10.5 – Selected results for the Ising model

"100× 100"
"80× 80"
"40× 40"
"10× 10"

kBT

|⟨M
⟩∥

32.82.62.42.221.81.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 10.6: Absolute value of the average magnetization per spin as function of the lattice size for the
two-dimensional Ising model.

to a negative value and stay there for a given number of Monte Carlo cycles. Above the phase transition
the net magnetisation is always zero.

The fact that the system exhibits a spontaneous magnetization (no external field applied) below TC

leads to the definition of the magnetisation as an order parameter. The order parameter is a quantity which
is zero on one side of a critical temperature and non-zero on the other side. Since the magnetisation is a
continuous quantity at TC , with the analytic results

[
1−

(1 − tanh2(βJ))4

16tanh4(βJ)

]1/8

,

for T < TC and 0 for T > TC , our transition is defined as a continuous one or as a second order phase
transition. From Ehrenftest’s definition of a phase transition we have that a second order or continu-
ous phase transition exhibits second derivatives of Helmholtz’ free energy (the potential in this case)
with respect to e.g., temperature that are discontinuous or diverge at TC . The specific heat for the two-
dimensional Ising model exhibits a power-law behavior around TC with a logarithmic divergence. In
Fig. 10.7 we show the corresponding specific heat.

We see from this figure that as the size of the lattice is increased, the specific heat develops a sharper and
shaper peak centered around the critical temperature. A similar case happens for the susceptibility, with
an even sharper peak, as can be seen from Fig. 10.8.

The Metropolis algorithm is not very efficient close to the critical temperature. Other algorihms such
as the heat bath algorithm, the Wolff algorithm and other clustering algorithms, the Swendsen-Wang
algorithm, or the multi-histogram method [55, 56] are much more efficient in simulating properties near

253

Monte Carlo methods in statistical physics

"100× 100"
"80× 80"
"40× 40"
"10× 10"

kBT

C
V

/J
k B

2.62.42.221.81.6

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 10.7: Heat capacity per spin as function of the lattice size for the two-dimensional Ising model.

"100× 100"
"80× 80"
"40× 40"
"10× 10"

kBT

χ

2.62.52.42.32.22.12

250

200

150

100

50

0

Figure 10.8: Susceptibility per spin as function of the lattice size for the two-dimensional Ising model.

254

10.6 – Correlation functions and further analysis of the Ising model

the critical temperature. For spin models like the class of higher-order Potts models discussed in section
10.8, the efficiency of the Metropolis algorithm is simply inadequate. These topics are discussed in depth
in the textbooks of Newman and Barkema [53] and Landau and Binder [57] and in chapter 17.

10.6 Correlation functions and further analysis of the Ising model

10.6.1 Thermalization

In the code discussed above we have assumed that one performs a calculation starting with low tempera-
tures, typically well below TC . For the Ising model this means to start with an ordered configuration. The
final set of configurations that define the established equilibrium at a given T , will then be dominated by
those configurations where most spins are aligned in one specific direction. For a calculation starting at
low T , it makes sense to start with an initial configuration where all spins have the same value, whereas
if we were to perform a calculation at high T , for example well above TC , it would most likely be more
meaningful to have a randomly assigned value for the spins. In our code example we use the final spin
configuration from a lower temperature to define the initial spin configuration for the next temperature.

In many other cases we may have a limited knowledge on the suitable initial configurations at a given
T . This means in turn that if we guess wrongly, we may need a certain number of Monte Carlo cycles
before we reach the most likely equilibrium configurations. When equilibrium is established, various
observable such as the mean energy and magnetization oscillate around their mean values. A parallel is
the particle in the box example discussed in chapter 8. There we considered a box divided into two equal
halves separated by a wall. At the beginning, time t = 0, there are N particles on the left side. A small
hole in the wall is then opened and one particle can pass through the hole per unit time. After some time
the system reaches its equilibrium state with equally many particles in both halves, N/2. Thereafter, the
mean number of particles oscillates around N/2.

The number of Monte Carlo cycles needed to reach this equilibrium position is referred to as the
thermalization time, or equilibration time teq. We should then discard the contributions to various expec-
tation values till we have reached equilibrium. How to determine the thermalization time can be done
in a brute force way, as demonstrated in Figs. 10.9 and 10.10. In Fig. 10.9 the calculations have been
performed with a 40 × 40 lattice for a temperature kBT/J = 2.4, which corresponds to a case close
to a disordered system. We compute the absolute value of the magnetization after each sweep over the
lattice. Two starting configurations were used, one with a random orientation of the spins and one with an
ordered orientation, the latter corresponding to the ground state of the system. As expected, a disordered
configuration as start configuration brings us closer to the average value at the given temperature, while
more cycles are needed to reach the steady state with an ordered configuration. Guided by the eye, we
could obviously make such plots and discard a given number of samples. However, such a rough guide
hides several interesting features. Before we switch to a more detailed analysis, let us also study a case
where we start with the ’correct’ configuration for the relevant temperature.

Fig. 10.10 displays the absolute value of the mean magnetisation as function of time t for a 100 × 100
lattice for temperatures kBT/J = 1.5 and kBT/J = 2.4. For the lowest temperature, an ordered
start configuration was chosen, while for the temperature close to the critical temperature, a disordered
configuration was used. We notice that for the low temperature case the system reaches rather quickly
the expected value, while for

255

Monte Carlo methods in statistical physics

Random start configuration
Ground state as start

t

|M
|

500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 10.9: Absolute value of the mean magnetisation as function of time t. Time is represented by
the number of Monte Carlo cycles. The calculations have been performed with a 40 × 40 lattice for a
temperature kBT/J = 2.4. Two start configurations were used, one with a random orientation of the
spins and one with an ordered orientation, which corresponds to the ground state of the system.

kBT/J = 2.4
kBT/J = 1.5

t

|M
|

8007006005004003002001000

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Figure 10.10: Absolute value of the mean magnetisation as function of time t. Time is represented by the
number of Monte Carlo cycles. The calculations were performed with a 100×100 lattice for temperatures
kBT/J = 1.5 and kBT/J = 2.4. For the lowest temperature, an ordered start configuration was chosen,
while for the temperature close to TC , a disordered configuration was used.

256

10.6 – Correlation functions and further analysis of the Ising model

the temperature close to kBTC/J ≈ 2.269 it takes more time to reach the actual steady state.

It seems thus that the time needed to reach a steady state is longer for temperatures close to the
critical temperature than for temperatures away. In the next subsection we will define more rigorously
the equilibration time teq in terms of the so-called correlation time τ . The correlation time represents
the typical time by which the correlation function discussed in the next subsection falls off. There are a
number of ways to estimate the correlation time τ . One that is often used is to set it equal the equilibration
time τ = teq. The correlation time is a measure of how long it takes the system to get from one state to
another one that is significantly different from the first. Normally the equilibration time is longer than the
correlation time, mainly because two states close to the steady state are more similar in structure than a
state far from the steady state.

Here we mention also that one can show, using scaling relations [53], that at the critical temperature
the correlation time τ relates to the lattice size L as

τ ∼ Ld+z,

with d the dimensionality of the system. For the Metropolis algorithm based on a single spin-flip process,
Nightingale and Blöte obtained z = 2.1665 ± 0.0012 [58]. This is a rather high value, meaning that our
algorithm is not the best choice when studying properties of the Ising model near TC .

We can understand this behavior by studying the development of the two-dimensional Ising model as
function of temperature. The first figure to the left shows the start of a simulation of a 40× 40 lattice at a
high temperature. Black dots stand for spin down or −1 while white dots represent spin up (+1). As the
system cools down, we see in the picture to the right that it starts developing domains with several spins
pointing in one particular direction.

Cooling the system further we observe clusters pervading larger areas of the lattice, as seen in the
next two pictures. The rightmost picture is the one with T close to the critical temperature. The reason
for the large correlation time (and the parameter z) for the single-spin flip Metropolis algorithm is the
development of these large domains or clusters with all spins pointing in one direction. It is quite difficult
for the algorithm to flip over one of these large domains because it has to do it spin by spin, with each
move having a high probability of being rejected due to the ferromagnetic interaction between spins.

257

Monte Carlo methods in statistical physics

Since all spins point in the same direction, the chance of performing the flip

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

leads to an energy difference of ∆E = 8J . Using the exact critical temperature kBTC/J ≈ 2.2.69,
we obtain a probability exp−(8/2.269) = 0.029429 which is rather small. The increase in large cor-
relation times due to increasing lattices can be diminished by using so-called cluster algorithms, such
as that introduced by Ulli Wolff in 1989 [59] and the Swendsen-Wang [60] algorithm from 1987. The
two-dimensional Ising model with the Wolff or Swendsen-Wang algorithms exhibits a much smaller cor-
relation time, with the variable z = 0.25± 001. Here, instead of flipping a single spin, one flips an entire
cluster of spins pointing in the same direction. We defer the discussion of these methods to chapter 17.

10.6.2 Time-correlation functions

The so-called time-displacement autocorrelation φ(t) for the magnetization is given by1

φ(t) =

∫
dt′
[
M(t′)− ⟨M⟩

] [
M(t′ + t)− ⟨M⟩

]
, (10.86)

which can be rewritten as

φ(t) =

∫
dt′
[
M(t′)M(t′ + t)− ⟨M⟩2

]
, (10.87)

where ⟨M⟩ is the average value of the magnetization andM(t) its instantaneous value. We can discretize
this function as follows, where we used our set of computed values M(t) for a set of discretized times
(our Monte Carlo cycles corresponding to a sweep over the lattice)

φ(t) =
1

tmax − t

tmax−t∑

t′=0

M(t′)M(t′ + t)−
1

tmax − t

tmax−t∑

t′=0

M(t′)×
1

tmax − t

tmax−t∑

t′=0

M(t′ + t). (10.88)

One should be careful with times close to tmax, the upper limit of the sums becomes small and we end up
integrating over a rather small time interval. This means that the statistical error in φ(t) due to the random

1We follow closely chapter 3 of Ref. [53].

258

10.6 – Correlation functions and further analysis of the Ising model

nature of the fluctuations inM(t) can become large. Note also that we could replace the magnetization
with the mean energy, or any other expectation values of interest.

The time-correlation function for the magnetization gives a measure of the correlation between the
magnetization at a time t′ and a time t′+ t. If we multiply the magnetizations at these two different times,
we will get a positive contribution if the magnetizations are fluctuating in the same direction, or a negative
value if they fluctuate in the opposite direction. If we then integrate over time, or use the discretized
version of Eq. (10.88), the time correlation function φ(t) should take a non-zero value if the fluctuations
are correlated, else it should gradually go to zero. For times a long way apart the magnetizations are
most likely uncorrelated and φ(t) should be zero. Fig. 10.11 exhibits the time-correlation function for
the magnetization for the same lattice and temperatures discussed in Fig. 10.10.

kBT/J = 2.4
kBT/J = 1.5

t

φ
(t

)

8007006005004003002001000

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Figure 10.11: Time-autocorrelation function with time t as number of Monte Carlo cycles. It has been
normalized with φ(0). The calculations have been performed for a 100 × 100 lattice at kBT/J = 2.4
with a disordered state as starting point and at kBT/J = 1.5 with an ordered state as starting point.

We notice that the time needed before φ(t) reaches zero is t ∼ 300 for a temperature kBT/J = 2.4.
This time is close to the result we found in Fig. 10.10. Similarly, for kBT/J = 1.5 the correlation
function reaches zero quickly, in good agreement again with the results of Fig. 10.10. The time-scale, if
we can define one, for which the correlation function falls off should in principle give us a measure of
the correlation time τ of the simulation.

We can derive the correlation time by observing that our Metropolis algorithm is based on a random
walk in the space of all possible spin configurations. We recall from chapter 9 that our probability
distribution function ŵ(t) after a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix. We can always
expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
∑

i

αiv̂i, (10.89)

259

Monte Carlo methods in statistical physics

resulting in
ŵ(t) = Ŵtŵ(0) = Ŵt

∑

i

αiv̂i =
∑

i

λt
iαiv̂i, (10.90)

with λi the ith eigenvalue corresponding to the eigenvector v̂i. If we assume that λ0 is the largest
eigenvector we see that in the limit t→∞, ŵ(t) becomes proportional to the corresponding eigenvector
v̂0. This is our steady state or final distribution.

We can relate this property to an observable like the mean magnetization. With the probabilty ŵ(t)
(which in our case is the Boltzmann distribution) we can write the mean magnetization as

⟨M(t)⟩ =
∑

µ

ŵ(t)µMµ, (10.91)

or as the scalar of a vector product
⟨M(t)⟩ = ŵ(t)m, (10.92)

with m being the vector whose elements are the values ofMµ in its various microstates µ. We rewrite
this relation as

⟨M(t)⟩ = ŵ(t)m =
∑

i

λt
iαiv̂imi. (10.93)

If we define mi = v̂imi as the expectation value of M in the ith eigenstate we can rewrite the last
equation as

⟨M(t)⟩ =
∑

i

λt
iαimi. (10.94)

Since we have that in the limit t→∞ the mean magnetization is dominated by the the largest eigenvalue
λ0, we can rewrite the last equation as

⟨M(t)⟩ = ⟨M(∞)⟩ +
∑

i≠0

λt
iαimi. (10.95)

We define the quantity
τi = −

1

logλi
, (10.96)

and rewrite the last expectation value as

⟨M(t)⟩ = ⟨M(∞)⟩+
∑

i≠0

αimie
−t/τi . (10.97)

The quantities τi are the correlation times for the system. They control also the auto-correlation function
discussed above. The longest correlation time is obviously given by the second largest eigenvalue τ1,
which normally defines the correlation time discussed above. For large times, this is the only correlation
time that survives. If higher eigenvalues of the transition matrix are well separated from λ1 and we
simulate long enough, τ1 may well define the correlation time. In other cases we may not be able to
extract a reliable result for τ1. Coming back to the time correlation function φ(t) we can present a more
general definition in terms of the mean magnetizations ⟨M(t)⟩. Recalling that the mean value is equal to
⟨M(∞)⟩ we arrive at the expectation values

φ(t) = ⟨M(0) −M(∞)⟩⟨M(t) −M(∞)⟩, (10.98)

and using Eq. (10.97) we arrive at

φ(t) =
∑

i,j≠0

miαimjαje
−t/τi , (10.99)

which is appropriate for all times.

260

10.7 – Physics Project: Thermalization and the One-Dimensional Ising Model

10.7 Physics Project: Thermalization and the One-Dimensional Ising Model

In this project we will use the Metropolis algorithm to generate states according to the Boltzmann distri-
bution. Each new configuration is given by the change of only one spin at the time, that is sk → −sk.
Use periodic boundary conditions and set the magnetic field B = 0.

a) Write a program which simulates the one-dimensional Ising model. Choose J > 0, the number
of spins N = 20, temperature T = 3 and the number of Monte Carlo samples mcs = 100. Let
the initial configuration consist of all spins pointing up, i.e., sk = 1. Compute the mean energy
and magnetization for each cycle and find the number of cycles needed where the fluctuation of
these variables is negligible. What kind of criterium would you use in order to determine when the
fluctuations are negligible?
Change thereafter the initial condition by letting the spins take random values, either −1 or 1.
Compute again the mean energy and magnetization for each cycle and find the number of cycles
needed where the fluctuation of these variables is negligible.
Explain your results.

b) Let mcs ≥ 1000 and compute ⟨E⟩, ⟨E2⟩ and CV as functions of T for 0.1 ≤ T ≤ 5. Plot the
results and compare with the exact ones for periodic boundary conditions.

c) Using the Metropolis sampling method you should now find the number of accepted configurations
as function of the total number of Monte Carlo samplings. How does the number of accepted
configurations behave as function of temperature T ? Explain the results.

d) Compute thereafter the probability P (E) for a system withN = 50 at T = 1. Choosemcs ≥ 1000
and plot P (E) as function of E. Count the number of times a specific energy appears and build
thereafter up a histogram. What does the histogram mean?

10.8 Physics project: simulation of the two-dimensional Ising model

a) Assume that the number of spins in the x and y directions are two, viz L = 2. Find the analytic
expression for the partition function and the corresponding mean values for E, M, the capacity
CV and the suceptibility χ as function of T using periodic boundary conditions.

b) Write your own code for the two-dimensional Ising model with periodic boundary conditions and
zero external field B. Set L = 2 and compare your numerical results with the analytic ones from
the previous exercise. using T = 0.5 and T = 2.5. How many Monte Carlo cycles do you need
before you reach the exact values with an unceertainty less than 1%? What are most likely starting
configurations for the spins. Try both an ordered arrangement of the spins and a randomly assigned
orientations for both temperature. Analyse the mean energy and magnetisation as functions of the
number of Monte Carlo cycles and estimate how many thermalization cycles are needed.

c) We will now study the behavior of the Ising model in two dimensions close to the critical temper-
ature as a function of the lattice size L × L, with L the number of spins in the x and y directions.
Calculate the expectation values for ⟨E⟩ and ⟨M⟩, the specific heat CV and the susceptibility χ
as functions of T for L = 10, L = 20, L = 40 and L = 80 for T ∈ [2.0, 2.4] with a step in
temperature ∆T = 0.05. Plot ⟨E⟩, ⟨M⟩, CV and χ as functions of T . Can you see an indication
of a phase transition?

261

Monte Carlo methods in statistical physics

d) Use Eq. (10.77) and the exact result ν = 1 in order to estimate TC in the thermodynamic limit
L→∞ using your simulations with L = 10, L = 20, L = 40 and L = 80.

e) In the remaining part we will use the exact result kTC/J = 2/ln(1 +
√

2) ≈ 2.269 and ν = 1.
Determine the numerical values of CV , χ andM at the exact value T = TC for L = 10, L = 20,
L = 40 and L = 80. Plot log10 M and χ som funksjon av log10 L and use the scaling relations of
Eqs. (10.79) and (10.81) in order to determine the constants β and γ. Are your log-log plots close
to straight lines? The exact values are β = 1/8 and γ = 7/4.

f) Make a log-log plot using the results for CV as function of L for your computations at the ex-
act critical temperature. The specific heat exhibits a logarithmic divergence with α = 0, see
Eqs. (10.65) and (10.67). Do your results agree with this behavior? Make also a plot of the specific
heat computed at the critical temperature for the given lattice.
The exact specific heats behaves as

CV ≈ −
2

π

(
2J

kBTC

)2

ln

∣∣∣∣1−
T

TC

∣∣∣∣+ const.

Comment your results.

10.9 Physics project: Potts Model

The Potts model has been, in addition to the Ising model, widely used in studies of phase transitions in
statistical physics. The so-called two-dimensional q-state Potts model has an energy given by

E = −J
N∑

<kl>

δsl,sk ,

where the spin sk at lattice position k can take the values 1, 2, . . . , q. The Kroneckr delta function δsl,sk

equals unity if the spins are equal and is zero otherwise. N is the total number of spins. For q = 2 the
Potts model corresponds to the Ising model. To see that we can rewrite the last equation as

E = −
J

2

N∑

<kl>

2(δsl,sk −
1

2
)−

N∑

<kl>

J

2
.

Now, 2(δsl,sk −
1
2) is +1 when sl = sk and −1 when they are different. This model is thus equivalent to

the Ising model except a trivial difference in the energy minimum given by a an additional constant and
a factor J → J/2. One of the many applications of the Potts model is to helium absorbed on the surface
of graphite.

The Potts model exhibits a second order phase transition for low values of q and a first order tran-
sition for larger values of q. Using Eherenfest’s definition of a phase transition, a second order phase
transition has second derivatives of the free energy that are discontinuous or diverge (the heat capacity
and susceptibility in our case) while a first order transition has first derivatives like the mean energy that
are discontinuous or diverge. Since the calculations are done with a finite lattice it is always difficult
to find the order of the phase transitions. In this project we will limit ourselves to find the temperature
region where a phase transition occurs and see if the numerics allows us to extract enough information
about the order of the transition.

262

10.9 – Physics project: Potts Model

a) Write a program which simulates the q = 2 Potts model for two-dimensional lattices with 10× 10,
40 × 40 and 80 × 80 spins and compute the average energy and specific heat. Establish an appro-
priate temperature range for where you see a sudden change in the heat capacity and susceptibility.
Make the analysis first for few Monte Carlo cycles and smaller lattices in order to narrow down
the region of interest. To get appropriate statistics afterwards you should allow for at least 105

Monte Carlo cycles. In setting up this code you need to find an efficient way to simulate the energy
differences between different microstates. In doing this you need also to find all possible values of
∆E.

b) Compare these results with those obtained with the two-dimensional Ising model. The exact critical
temperature for the Ising model is TC = 2.269. Here you can eventually use the abovementioned
program from the lectures or write your own code for the Ising model. Tip when comparing results
with the Ising model: remove the constant term. The first step is thus to check that your algorithm
for the Potts model gives the same results as the ising model. Note that critical temperature for the
q = 2 Potts model is half of that for the Ising model.

c) Extend the calculations to the Potts model with q = 3, 6 and q = 10. Make a table of the possible
values of ∆E for each value of q. Establish first the location of the peak in the specific heat
and study the behavior of the mean energy and magnetization as functions of q. Do you see a
noteworthy change in behavior from the q = 2 case? For larger q values you may need lattices of
at least 50× 50 in size.
For q = 3 and higher you can then proceed as follows:

– Do a calculation with a small lattice first over a large temperature region. Use typical tem-
perature steps of 0.1.

– Establish a small region where you see the heat capacity and the susceptibility start to in-
crease.

– Decrease the temperature step in this region and perform calculations for larger lattices as
well.

For q = 6 and q = 10 we have a first order phase transition, the energy shows a discontinuity at
the critical temperature.

To compute the magnetisation in this case can lead to some preliminary conceptual problems. For
the q = 2 case we can always assign the values of −1 and +1 to the spins. We would then get the same
magnetisation as we had with the two-dimensional Ising model. However, we could also assign the value
of 0 and 1 to the spins. A simulation could then start with all spins equal 0 at low temperatures. This
is then the ordered state. Increasing the temperature and crossing the region where we have the phase
transition, both spins value should be equally possible. This means half of the spins take the value 0 and
the other half take the value 1, yielding a final magnetisation per spin of 1/2. The important point is
that we see the change in magnetisation when we cross the critical temperature. For higher q values, for
example q = 3 we could choose something similar to the Ising model. The spins could take the values
−1, 0, 1. We would again start with an ordered state and let temperature increase. Above TC all values
are equally possible resulting again in a magnetisation equal zero. For the values 0, 1, 2 the situation
would be different. Above TC , one third has value 0, another third takes the value 1 and the last third is
2, resulting in a net magnetisation per spin equal 0× 1/3 + 1× 1/3 + 2× 1/3 = 1.

263

Chapter 11

Quantum Monte Carlo methods

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sen-
tence passed on to the next generation of creatures, what statement would contain the most
information in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or
whatever you wish to call it) that all things are made of atoms, little particles that move
around in perpetual motion, attracting each other when they are a little distance apart, but re-
pelling upon being squeezed into one another. In that one sentence you will see an enormous
amount of information about the world, if just a little imagination and thinking are applied.
Richard Feynman, The Laws of Thermodynamics.

11.1 Introduction

The aim of this chapter is to present examples of applications of Monte Carlo methods in studies of simple
quantum mechanical systems. We study systems such as the harmonic oscillator, the hydrogen atom,
the hydrogen molecule, the helium atom and more complicated atoms. Systems with man interacting
fermions and bosons such as liquid 4He and Bose Einstein condensation of atoms ae discussed in chapter
18. Most quantum mechanical problems of interest in for example atomic, molecular, nuclear and solid
state physics consist of a large number of interacting electrons and ions or nucleons. The total number
of particles N is usually sufficiently large that an exact solution cannot be found. In quantum mechanics
we can express the expectation value for a given Ô operator for a system of N particles as

⟨Ô⟩ =
∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)ô(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)

, (11.1)

where Ψ(R1,R2, . . . ,RN) is the wave function describing a many-body system. Although we have
omitted the time dependence in this equation, it is an in general intractable problem. As an example from
the nuclear many-body problem, we can write Schrödinger’s equation as a differential equation with the
energy operator Ĥ (the so-called energy Hamiltonian) acting on the wave function as

ĤΨ(r1, .., rA,α1, ..,αA) = EΨ(r1, .., rA,α1, ..,αA)

where
r1, .., rA,

are the coordinates and
α1, ..,αA,

265

Quantum Monte Carlo methods

are sets of relevant quantum numbers such as spin and isospin for a system of A nucleons (A = N + Z,
N being the number of neutrons and Z the number of protons). There are

2A ×
(

A
Z

)

coupled second-order differential equations in 3A dimensions. For a nucleus like 10Be this number is
215040. This is a truely challenging many-body problem.

Eq. (11.1) is a multidimensional integral. As such, Monte Carlo methods are ideal for obtaining
expectation values of quantum mechanical operators. Our problem is that we do not know the exact
wavefunction Ψ(r1, .., rA,α1, ..,αN). We can circumvent this problem by introducing a function which
depends on selected variational parameters. This function should capture essential features of the sys-
tem under consideration. With such a trial wave function we can then attempt to perform a variational
calculation of various observables, using Monte Carlo methods for solving Eq. (11.1).

The present chapter aims therefore at giving you an overview of the variational Monte Carlo approach
to quantum mechanics. We limit the attention to the simple Metropolis algorithm, without the inclusion of
importance sampling. Importance sampling and diffusion Monte Carlo methods are discussed in chapters
18 and 19.

However, before we proceed we need to recapitulate some of the postulates of quantum mechanics.
This is done in the next section. The remaining sections deal with mathematical and computational
aspects of the variational Monte Carlo methods, with applications from atomic and molecular physis.

11.2 Postulates of Quantum Mechanics

11.2.1 Mathematical Properties of the Wave Functions

Schrödinger’s equation for a one-dimensional onebody problem reads

−
!2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = ı!

∂Ψ(x, t)

∂t
, (11.2)

where V (x, t) is a potential acting on the particle. The first term is the kinetic energy. The solution to this
partial differential equation is the wave function Ψ(x, t). The wave function itself is not an observable
(or physical quantity) but it serves to define the quantum mechanical probability, which in turn can be
used to compute expectation values of selected operators, such as the kinetic energy or the total energy
itself. The quantum mechanical probability P (x, t)dx is defined as1

P (x, t)dx = Ψ(x, t)∗Ψ(x, t)dx, (11.3)

representing the probability of finding the system in a region between x and x + dx. It is, as opposed
to the wave function, always real, which can be seen from the following definition of the wave function,
which has real and imaginary parts,

Ψ(x, t) = R(x, t) + ıI(x, t), (11.4)

yielding
Ψ(x, t)∗Ψ(x, t) = (R− ıI)(R + ıI) = R2 + I2. (11.5)

1This is Max Born’s postulate on how to interpret the wave function resulting from the solution of Schrödinger’s equation.
It is also the commonly accepted and operational interpretation.

266

11.2 – Postulates of Quantum Mechanics

The variational Monte Carlo approach uses actually this definition of the probability, allowing us thereby
to deal with real quantities only. As a small digression, if we perform a rotation of time into the complex
plane, using τ = it/!, the time-dependent Schrödinger equation becomes

∂Ψ(x, τ)

∂τ
=

!2

2m

∂2Ψ(x, τ)

∂x2
− V (x, τ)Ψ(x, τ). (11.6)

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
!2

2m
.

This is the starting point for the Diffusion Monte Carlo method discussed in chapter 18. In that case
it is the wave function itself, given by the distribution of random walkers, that defines the probability.
The latter leads to conceptual problems when we have anti-symmetric wave functions, as is the case for
particles with the spin being a multiplum of 1/2. Examples of such particles are various leptons such as
electrons, muons and various neutrinos, baryons like protons and neutrons and quarks such as the up and
down quarks.

The Born interpretation constrains the wave function to belong to the class of functions in L2. Some
of the selected conditions which Ψ has to satisfy are

1. Normalization ∫ ∞

−∞
P (x, t)dx =

∫ ∞

−∞
Ψ(x, t)∗Ψ(x, t)dx = 1 (11.7)

meaning that ∫ ∞

−∞
Ψ(x, t)∗Ψ(x, t)dx <∞ (11.8)

2. Ψ(x, t) and ∂Ψ(x, t)/∂x must be finite

3. Ψ(x, t) and ∂Ψ(x, t)/∂x must be continuous.

4. Ψ(x, t) and ∂Ψ(x, t)/∂x must be single valued

11.2.2 Important Postulates

We list here some of the postulates that we will use in our discussion.

Postulate I

Any physical quantity A(r⃗, p⃗) which depends on position r⃗ and momentum p⃗ has a corresponding quan-
tum mechanical operator by replacing p⃗ −i!▽⃗, yielding the quantum mechanical operator

Â = A(r⃗,−i!▽⃗).

Quantity Classical definition QM operator
Position r⃗ ̂̃r = r⃗

Momentum p⃗ ̂̃p = −i!▽⃗
Orbital momentum L⃗ = r⃗ × p⃗ ̂̃

L = r⃗ × (−i!▽⃗)

Kinetic energy T = (p⃗)2/2m T̂ = −(!2/2m)(▽⃗)2

Total energy H = (p2/2m) + V (r⃗) Ĥ = −(!2/2m)(▽⃗)2 + V (r⃗)

267

Quantum Monte Carlo methods

Postulate II

The only possible outcome of an ideal measurement of the physical quantity A are the eigenvalues of the
corresponding quantum mechanical operator Â.

Âψν = aνψν ,

resulting in the eigenvalues a1, a2, a3, · · · as the only outcomes of a measurement. The corresponding
eigenstates ψ1,ψ2,ψ3 · · · contain all relevant information about the system.

Postulate III

Assume Φ is a linear combination of the eigenfunctions ψν for Â,

Φ = c1ψ1 + c2ψ2 + · · · =
∑

ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

∫
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome of a mea-
surement of the physical quantity A is given by |cν |2 and ψν is an eigenfunction of Â with eigenvalue
aν .

As a consequence one can show that:
when a quantal system is in the state Φ, the mean value or expectation value of a physical quantity A(r⃗, p⃗)
is given by

⟨A⟩ =

∫
(Φ)∗Â(r⃗,−i!▽⃗)Φdτ.

We have assumed that Φ has been normalized, viz.,
∫

(Φ)∗Φdτ = 1. Else

⟨A⟩ =

∫
(Φ)∗ÂΦdτ∫
(Φ)∗Φdτ

.

Postulate IV

The time development of a quantal system is given by

i!
∂Ψ

∂t
= ĤΨ,

with Ĥ the quantal Hamiltonian operator for the system.

268

11.3 – First Encounter with the Variational Monte Carlo Method

11.3 First Encounter with the Variational Monte Carlo Method

The required Monte Carlo techniques for variational Monte Carlo are conceptually simple, but the prac-
tical application may turn out to be rather tedious and complex, relying on a good starting point for the
variational wave functions. These wave functions should include as much as possible of the inherent
physics to the problem, since they form the starting point for a variational calculation of the expecta-
tion value of the hamiltonian H . Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of ⟨H⟩, defined through Postulate III

⟨H⟩ =

∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
, (11.9)

is an upper bound to the ground state energy E0 of the hamiltonian H , that is

E0 ≤ ⟨H⟩. (11.10)

To show this, we note first that the trial wave function can be expanded in the eigenstates of the
hamiltonian since they form a complete set, see again Postulate III,

ΨT (R) =
∑

i

aiΨi(R), (11.11)

and assuming the set of eigenfunctions to be normalized, insertion of the latter equation in Eq. (11.9)
results in

⟨H⟩ =

∑
mn a∗man

∫
dRΨ∗

m(R)H(R)Ψn(R)∑
mn a∗man

∫
dRΨ∗

m(R)Ψn(R)
=

∑
mn a∗man

∫
dRΨ∗

m(R)En(R)Ψn(R)∑
n a2

n
, (11.12)

which can be rewritten as ∑
n a2

nEn∑
n a2

n
≥ E0. (11.13)

In general, the integrals involved in the calculation of various expectation values are multi-dimensional
ones. Traditional integration methods such as the Gauss-Legendre will not be adequate for say the com-
putation of the energy of a many-body system. The fact that we need to sample over a multi-dimensional
density and that the probability density is to be normalized by the division of the norm of the wave
function, suggests that e.g., the Metropolis algorithm may be appropriate.

We could briefly summarize the above variational procedure in the following three steps.

1. Construct first a trial wave function ψT (R;α), for say a many-body system consisting of N par-
ticles located at positions R = (R1, . . . ,RN). The trial wave function depends on α variational
parameters α = (α1, . . . ,αN).

2. Then we evaluate the expectation value of the hamiltonian H

⟨H⟩ =
∫

dRΨ∗
T (R;α)H(R)ΨT (R;α)∫

dRΨ∗
T (R;α)ΨT (R;α)

.

3. Thereafter we vary α according to some minimization algorithm and return to the first step.

269

Quantum Monte Carlo methods

The above loop stops when we reach the minimum of the energy according to some specified criterion.
In most cases, a wave function has only small values in large parts of configuration space, and a straight-
forward procedure which uses homogenously distributed random points in configuration space will most
likely lead to poor results. This may suggest that some kind of importance sampling combined with e.g.,
the Metropolis algorithm may be a more efficient way of obtaining the ground state energy. The hope is
then that those regions of configurations space where the wave function assumes appreciable values are
sampled more efficiently.

The tedious part in a variational Monte Carlo calculation is the search for the variational minimum.
A good knowledge of the system is required in order to carry out reasonable variational Monte Carlo
calculations. This is not always the case, and often variational Monte Carlo calculations serve rather as
the starting point for so-called diffusion Monte Carlo calculations. Diffusion Monte Carlo is a way of
solving exactly the many-body Schrödinger equation by means of a stochastic procedure. A good guess
on the binding energy and its wave function is however necessary. A carefully performed variational
Monte Carlo calculation can aid in this context. Diffusion Monte Carlo is discussed in depth in chapter
18.

11.4 Variational Monte Carlo for quantum mechanical systems

The variational quantum Monte Carlo has been widely applied to studies of quantal systems. Here we
expose its philosophy and present applications and critical discussions.

The recipe, as discussed in chapter 8 as well, consists in choosing a trial wave function ψT (R) which
we assume to be as realistic as possible. The variable R stands for the spatial coordinates, in total 3N
if we have N particles present. The trial wave function serves then, following closely the discussion on
importance sampling in section 8.4, as a mean to define the quantal probability distribution

P (R;α) =
|ψT (R;α)|2

∫
|ψT (R;α)|2 dR;α

. (11.14)

This is our new probability distribution function (PDF).
The expectation value of the energy Hamiltonian is given by

⟨Ĥ⟩ =

∫
dRΨ∗(R)H(R)Ψ(R)∫

dRΨ∗(R)Ψ(R)
, (11.15)

where Ψ is the exact eigenfunction. Using our trial wave function we define a new operator, the so-called
local energy,

ÊL(R;α) =
1

ψT (R;α)
ĤψT (R;α), (11.16)

which, together with our trial PDF allows us to compute the expectation value of the local energy

⟨EL(α)⟩ =

∫
P (R;α)ÊL(R;α)dR. (11.17)

This equation expresses the variational Monte Carlo approach. We compute this integral for a set of
values of α and possible trial wave functions and search for the minimum of the function EL(α). If the
trial wave function is close to the exact wave function, then ⟨EL(α)⟩ should approach ⟨Ĥ⟩. Eq. (11.17) is
solved using techniques from Monte Carlo integration, see the discussion below. For most hamiltonians,

270

11.4 – Variational Monte Carlo for quantum mechanical systems

H is a sum of kinetic energy, involving a second derivative, and a momentum independent and spatial
dependent potential. The contribution from the potential term is hence just the numerical value of the
potential. A typical Hamiltonian reads thus

Ĥ = −
!2

2m

N∑

i=1

∇2
i +

N∑

i=1

Vonebody(ri) +
N∑

i<j

Vint(| ri − rj |). (11.18)

where the sum runs over all particles N . We have included both a onebody potential Vonebody(ri) which
acts on one particle at the time and a twobody interaction Vint(| ri − rj |) which acts between two
particles at the time. We can obviously extend this to more complicated three-body and/or many-body
forces as well. The main contributions to the energy of physical systems is largely dominated by one-
and two-body forces. We will therefore limit our attention to such interactions only.

Our local energy operator becomes then

ÊL(R;α) =
1

ψT (R;α)

⎛

⎝−
!2

2m

N∑

i=1

∇2
i +

N∑

i=1

Vonebody(ri) +
N∑

i<j

Vint(| ri − rj |)

⎞

⎠ψT (R;α),

(11.19)
resulting in

ÊL(R;α) =
1

ψT (R;α)

(

−
!2

2m

N∑

i=1

∇2
i

)

ψT (R;α)+
N∑

i=1

Vonebody(ri)+
N∑

i<j

Vint(| ri− rj |), (11.20)

The numerically time-consuming part in the variational Monte Carlo calculation is the evaluation of the
kinetic energy term. The potential energy, as long as it has a simple r-dependence adds only a simple
term to the local energy operator.

In our discussion below, we base our numerical Monte Carlo solution on the Metropolis algorithm.
The implementation is rather similar to the one discussed in connection with the Ising model, the main
difference residing in the form of the PDF. The main test to be performed is a ratio of probabilities.
Suppose we are attempting to move from position R toR′. Then we perform the following two tests.

1. If
P (R′;α)

P (R;α)
> 1,

where R′ is the new position, the new step is accepted, or

2.
r ≤

P (R′;α)

P (R;α)
,

where r is random number generated with uniform PDF such that r ∈ [0, 1], the step is also
accepted.

In the Ising model we were flipping one spin at the time. Here we change the position of say a given
particle to a trial position R′, and then evaluate the ratio between two probabilities. We note again that
we do not need to evaluate the norm2

∫
|ψT (R;α)|2 dR (an in general impossible task), since we are

only computing ratios.
2This corresponds to the partition function Z in statistical physics.

271

Quantum Monte Carlo methods

When writing a variational Monte Carlo program, one should always prepare in advance the required
formulae for the local energy EL in Eq. (11.17) and the wave function needed in order to compute the
ratios of probabilities in the Metropolis algorithm. These two functions are almost called as often as a
random number generator, and care should therefore be exercised in order to prepare an efficient code.

If we now focus on the Metropolis algorithm and the Monte Carlo evaluation of Eq. (11.17), a more
detailed algorithm is as follows

– Initialisation: Fix the number of Monte Carlo steps and thermalization steps. Choose an initial R
and variational parameters α and calculate |ψT (R;α)|2. Define also the value of the stepsize to be
used when moving from one value of R to a new one.

– Initialise the energy and the variance.

– Start the Monte Carlo calculation with a loop over a given number of Monte Carlo cycles

1. Calculate a trial position Rp = R + r ∗ step where r is a random variable r ∈ [0, 1].
2. Use then the Metropolis algorithm to accept or reject this move by calculating the ratio

w = P (Rp)/P (R).

If w ≥ s, where s is a random number s ∈ [0, 1], the new position is accepted, else we stay
at the same place.

3. If the step is accepted, then we set R = Rp.
4. Update the local energy and the variance.

– When the Monte Carlo sampling is finished, we calculate the mean energy and the standard devia-
tion. Finally, we may print our results to a specified file.

Note well that the way we choose the next step Rp = R + r ∗ step is not determined by the wave
function. The wave function enters only the determination of the ratio of probabilities, similar to the way
we simulated systems in statistical physics. This means in turn that our sampling of points may not be
very efficient. We will return to an efficient sampling of integration points in our discussion of diffusion
Monte Carlo in chapter 18. This leads to the concept of importance sampling. As such, we limit ourselves
in this chapter to the simplest possible form of the Metropolis algorithm, and relegate both importance
sampling and advanced optimization techniques to chapter 18.

The best way however to understand the above algorithm and a specific method is to study selected
examples.

11.4.1 First illustration of variational Monte Carlo methods, the one-dimensional harmonic
oscillator

The harmonic oscillator in one dimension lends itself nicely for illustrative purposes. The hamiltonian is

H = −
!2

2m

d2

dx2
+

1

2
kx2, (11.21)

where m is the mass of the particle and k is the force constant, e.g., the spring tension for a classical
oscillator. In this example we will make life simple and choose m = ! = k = 1. We can rewrite the
above equation as

H = −
d2

dx2
+ x2, (11.22)

272

11.4 – Variational Monte Carlo for quantum mechanical systems

The energy of the ground state is then E0 = 1. The exact wave function for the ground state is

Ψ0(x) =
1

π1/4
e−x2/2, (11.23)

but since we wish to illustrate the use of Monte Carlo methods, we choose the trial function

ΨT (x) =

√
α

π1/4
e−x2α2/2. (11.24)

Inserting this function in the expression for the local energy in Eq. (11.16), we obtain the following
expression for the local energy

EL(x) = α2 + x2(1− α4), (11.25)

with the expectation value for the hamiltonian of Eq. (11.17) given by

⟨EL⟩ =
∫ ∞

−∞
|ψT (x)|2 EL(x)dx, (11.26)

which reads with the above trial wave function

⟨EL⟩ =
∫∞
−∞ dxe−x2α2

α2 + x2(1− α4)
∫∞
−∞ dxe−x2α2 . (11.27)

Using the fact that ∫ ∞

−∞
dxe−x2α2

=

√
π

α2
,

we obtain
⟨EL⟩ =

α2

2
+

1

2α2
. (11.28)

and the variance

σ2 =
(α4 − 1)2

2α4
. (11.29)

In solving this problem we can choose whether we wish to use the Metropolis algorithm and sample
over relevant configurations, or just use random numbers generated from a normal distribution, since
the harmonic oscillator wave functions follow closely such a distribution. The latter approach is easily
implemented in few lines, namely

. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s o f v a r i a b l e s

. . . mcs = number o f Monte Ca r l o s amp l i ng s
/ / l oop over Monte Carlo samp les

f o r (i =0 ; i < mcs ; i ++) {
/ / g e n e r a t e random v a r i a b l e s from gau s s i an d i s t r i b u t i o n

x = normal_random(&idum) / s q r t 2 / a l p h a ;
l o c a l _ e n e r g y = a l p h a ∗ a l p h a + x∗x∗(1−pow(a lpha , 4)) ;
ene rgy += l o c a l _ e n e r g y ;
ene rgy2 += l o c a l _ e n e r g y ∗ l o c a l _ e n e r g y ;

/ / end o f samp l ing
}

/ / w r i t e ou t t h e mean energy and t h e s t anda rd d e v i a t i o n
cou t << ene rgy / mcs << s q r t ((ene rgy2 / mcs−(ene rgy / mcs) ∗∗2) / mcs)) ;

273

Quantum Monte Carlo methods

This variational Monte Carlo calculation is rather simple, we just generate a large number N of random
numbers corresponding to the gaussian PDF∼ |ΨT |2 and for each random number we compute the local
energy according to the approximation

⟨ÊL⟩ =

∫
P (R)ÊL(R)dR ≈

1

N

N∑

i=1

EL(xi), (11.30)

and the energy squared through

⟨Ê2
L⟩ =

∫
P (R)Ê2

L(R)dR ≈
1

N

N∑

i=1

E2
L(xi). (11.31)

In a certain sense, this is nothing but the importance Monte Carlo sampling discussed in chapter 8 Before
we proceed however, there is an important aside which is worth keeping in mind when computing the
local energy. We could think of splitting the computation of the expectation value of the local energy into
a kinetic energy part and a potential energy part. If we are dealing with a three-dimensional system, the
expectation value of the kinetic energy is

−
∫

dRΨ∗
T (R)∇2ΨT (R)∫

dRΨ∗
T (R)ΨT (R)

, (11.32)

and we could be tempted to compute, if the wave function obeys spherical symmetry, just the second
derivative with respect to one coordinate axis and then multiply by three. This will most likely increase
the variance, and should be avoided, even if the final expectation values are similar. Recall that one of
the subgoals of a Monte Carlo computation is to decrease the variance.

Another shortcut we could think of is to transform the numerator in the latter equation to
∫

dRΨ∗
T (R)∇2ΨT (R) = −

∫
dR(∇Ψ∗

T (R))(∇ΨT (R)), (11.33)

using integration by parts and the relation
∫

dR∇(Ψ∗
T (R)∇ΨT (R)) = 0, (11.34)

where we have used the fact that the wave function is zero at R = ±∞. This relation can in turn be
rewritten through integration by parts to

∫
dR(∇Ψ∗

T (R))(∇ΨT (R)) +

∫
dRΨ∗

T (R)∇2ΨT (R)) = 0. (11.35)

The rhs of Eq. (11.33) is easier and quicker to compute. However, in case the wave function is the
exact one, or rather close to the exact one, the lhs yields just a constant times the wave function squared,
implying zero variance. The rhs does not and may therefore increase the variance.

If we use integration by part for the harmonic oscillator case, the new local energy is

EL(x) = x2(1 + α4), (11.36)

and the variance
σ2 =

(α4 + 1)2

2α4
, (11.37)

which is larger than the variance of Eq. (11.29).

274

11.5 – Variational Monte Carlo for atoms

11.5 Variational Monte Carlo for atoms

The Hamiltonian for an N -electron atomic system consists of two terms

Ĥ(x) = T̂ (x) + V̂ (x); (11.38)

the kinetic and the potential energy operator. Here x = {x1,x2, . . . xN} is the spatial and spin degrees
of freedom associated with the different particles. The classical kinetic energy

T =
P2

2m
+

N∑

j=1

p2
j

2m

is transformed to the quantum mechanical kinetic energy operator by operator substitution of the momen-
tum (pk → −i!∂/∂xk)

T̂ (x) = −
!2

2M
∇2

0 −
N∑

i=1

!2

2m
∇2

i . (11.39)

Here the first term is the kinetic energy operator of the nucleus, the second term is the kinetic energy
operator of the electrons, M is the mass of the nucleus and m is the electron mass. The potential energy
operator is given by

V̂ (x) = −
N∑

i=1

Ze2

(4πϵ0)ri
+

N∑

i=1,i<j

e2

(4πϵ0)rij
, (11.40)

where the ri’s are the electron-nucleus distances and the rij’s are the inter-electronic distances.
We seek to find controlled and well understood approximations in order to reduce the complexity

of the above equations. The Born-Oppenheimer approximation is a commonly used approximation, in
which the motion of the nucleus is disregarded.

11.5.1 The Born-Oppenheimer Approximation

In a system of interacting electrons and a nucleus there will usually be little momentum transfer between
the two types of particles due to their differing masses. The forces between the particles are of similar
magnitude due to their similar charge. If one assumes that the momenta of the particles are also similar,
the nucleus must have a much smaller velocity than the electrons due to its far greater mass. On the
time-scale of nuclear motion, one can therefore consider the electrons to relax to a ground-state given by
the Hamiltonian of Eqs. (11.38), (11.39) and (11.40) with the nucleus at a fixed location. This separation
of the electronic and nuclear degrees of freedom is known as the Born-Oppenheimer approximation.

In the center of mass system the kinetic energy operator reads

T̂ (x) = −
!2

2(M + Nm)
∇2

CM −
!2

2µ

N∑

i=1

∇2
i −

!2

M

N∑

i>j

∇i ·∇j, (11.41)

while the potential energy operator remains unchanged. Note that the Laplace operators ∇2
i now are in

the center of mass reference system.
The first term of Eq. (11.41) represents the kinetic energy operator of the center of mass. The second

term represents the sum of the kinetic energy operators of the N electrons, each of them having their

275

Quantum Monte Carlo methods

mass m replaced by the reduced mass µ = mM/(m + M) because of the motion of the nucleus. The
nuclear motion is also responsible for the third term, or the mass polarization term.

The nucleus consists of protons and neutrons. The proton-electron mass ratio is about 1/1836 and
the neutron-electron mass ratio is about 1/1839, so regarding the nucleus as stationary is a natural ap-
proximation. Taking the limitM →∞ in Eq. (11.41), the kinetic energy operator reduces to

T̂ = −
N∑

i=1

!2

2m
∇2

i (11.42)

The Born-Oppenheimer approximation thus disregards both the kinetic energy of the center of mass
as well as the mass polarization term. The effects of the Born-Oppenheimer approximation are quite
small and they are also well accounted for. However, this simplified electronic Hamiltonian remains very
difficult to solve, and analytical solutions do not exist for general systems with more than one electron.
We use the Born-Oppenheimer approximation in our discussion of atomic and molecular systems.

The first term of Eq. (11.40) is the nucleus-electron potential and the second term is the electron-
electron potential. The inter-electronic potentials are the main problem in atomic physics. Because of
these terms, the Hamiltonian cannot be separated into one-particle parts, and the problem must be solved
as a whole. A common approximation is to regard the effects of the electron-electron interactions either
as averaged over the domain or by means of introducing a density functional, such as by Hartree-Fock
(HF) or Density Functional Theory (DFT). These approaches are actually very efficient, and about 99%
or more of the electronic energies are obtained for most HF calculations. Other observables are usually
obtained to an accuracy of about 90− 95% (ref. [61]).

11.5.2 The hydrogen Atom

The spatial Schrödinger equation for the three-dimensional hydrogen atom can be solved analytically,
see for example Ref. [62] for details. To achieve this, we rewrite the equation in terms of spherical
coordinates using

x = rsinθcosφ, (11.43)

y = rsinθsinφ, (11.44)

and
z = rcosθ. (11.45)

The reason we introduce spherical coordinates is the spherical symmetry of the Coulomb potential

e2

4πϵ0r
=

e2

4πϵ0
√

x2 + y2 + z2
, (11.46)

where we have used r =
√

x2 + y2 + z2. It is not possible to find a separable solution of the type

ψ(x, y, z) = ψ(x)ψ(y)ψ(z). (11.47)

as we can with the harmonic oscillator in three dimensions. However, with spherical coordinates we can
find a solution of the form

ψ(r, θ,φ) = R(r)P (θ)F (φ) = RPF. (11.48)

276

11.5 – Variational Monte Carlo for atoms

These three coordinates yield in turn three quantum numbers which determine the enegy of the systems.
We obtain three sets of ordinary second-order differential equations which can be solved analytically,
resulting in

1

F

∂2F

∂φ2
= −C2

φ, (11.49)

Crsin
2(θ)P + sin(θ)

∂

∂θ
(sin(θ)

∂P

∂θ
) = C2

φP, (11.50)

and
1

R

∂

∂r
(r2∂R

∂r
) +

2mrke2

!2
+

2mr2

!2
E = Cr, (11.51)

where Cr and Cφ are constants. The angle-dependent differential equations result in the spherical har-
monic functions as solutions, with quantum numbers l andml. These functions are given by

Ylml
(θ,φ) = P (θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l + ml)!
Pml

l (cos(θ)) exp (imlφ), (11.52)

with Pml
l being the associated Legendre polynomials They can be rewritten as

Ylml
(θ,φ) = sin|ml|(θ)× (polynom(cosθ)) exp (imlφ), (11.53)

with the following selected examples

Y00 =

√
1

4π
, (11.54)

for l = ml = 0,

Y10 =

√
3

4π
cos(θ), (11.55)

for l = 1 ogml = 0,

Y1±1 =

√
3

8π
sin(θ)exp(±iφ), (11.56)

for l = 1 ogml = ±1, and

Y20 =

√
5

16π
(3cos2(θ)− 1) (11.57)

for l = 2 ogml = 0. The quantum numbers l and ml represent the orbital momentum and projection of
the orbital momentum, respectively and take the values

1.
l ≥ 0

2.
l = 0, 1, 2, . . .

3.
ml = −l,−l + 1, . . . , l − 1, l

277

Quantum Monte Carlo methods

Spherical Harmonics

ml\l 0 1 2 3

+3 −1
8(35

π)1/2sin3θe+3iφ

+2 1
4(15

2π)1/2sin2θe+2iφ 1
4(105

2π)1/2cosθsin2θe+2iφ

+1 −1
2(3

2π)1/2sinθe+iφ −1
2(15

2π)1/2cosθsinθe+iφ −1
8(21

2π)1/2(5cos2θ − 1)sinθe+iφ

0 1
2π1/2

1
2(3

π)1/2cosθ 1
4(5

π)1/2(3cos2θ − 1) 1
4(7

π)1/2(2− 5sin2θ)cosθ

-1 +1
2(3

2π)1/2sinθe−iφ +1
2(15

2π)1/2cosθsinθe−iφ +1
8(21

2π)1/2(5cos2θ − 1)sinθe−iφ

-2 1
4(15

2π)1/2sin2θe−2iφ 1
4(105

2π)1/2cosθsin2θe−2iφ

-3 +1
8(35

π)1/2sin3θe−3iφ

Table 11.1: Spherical harmonics Ylml
for the lowest l andml values.

The spherical harmonics for l ≤ 3 are listed in Table 11.1.
We concentrate on the radial equation, which can be rewritten as

−
!2r2

2m

(
∂

∂r
(r2∂R(r)

∂r
)

)
−

ke2

r
R(r) +

!2l(l + 1)

2mr2
R(r) = ER(r). (11.58)

Introducing the function u(r) = rR(r), we can rewrite the last equation as
The radial Schrödinger equation for the hydrogen atom can be written as

−
!2

2m

∂2u(r)

∂r2
−
(

ke2

r
−

!2l(l + 1)

2mr2

)
u(r) = Eu(r), (11.59)

where m is the mass of the electron, l its orbital momentum taking values l = 0, 1, 2, . . . , and the term
ke2/r is the Coulomb potential. The first terms is the kinetic energy. The full wave function will also
depend on the other variables θ and φ as well. The energy, with no external magnetic field is however
determined by the above equation . We can then think of the radial Schrödinger equation to be equivalent
to a one-dimensional movement conditioned by an effective potential

Veff(r) = −
ke2

r
+

!2l(l + 1)

2mr2
. (11.60)

The radial equation can also be solved analytically resulting in the quantum numbers n in addition to
lml. The solution Rnl to the radial equation is given by the Laguerre polynomials. The analytic solutions
are given by

ψnlml
(r, θ,φ) = ψnlml

= Rnl(r)Ylml
(θ,φ) = RnlYlml

(11.61)

The ground state is defined by n = 1 og l = ml = 0 and reads

ψ100 =
1

a3/2
0

√
π

e−r/a0 , (11.62)

278

11.5 – Variational Monte Carlo for atoms

where we have defined the Bohr radius a0 = 0.05 nm

a0 =
!2

mke2
. (11.63)

The first excited state with l = 0 is

ψ200 =
1

4a3/2
0

√
2π

(
2−

r

a0

)
e−r/2a0 . (11.64)

For states with with l = 1 and n = 2, we can have the following combinations withml = 0

ψ210 =
1

4a3/2
0

√
2π

(
r

a0

)
e−r/2a0cos(θ), (11.65)

andml = ±1

ψ21±1 =
1

8a3/2
0

√
π

(
r

a0

)
e−r/2a0sin(θ)e±iφ. (11.66)

The exact energy is independent of l andml, since the potential is spherically symmetric.
The first few non-normalized radial solutions of equation are listed in Table 11.2. A problem with the

Hydrogen-Like Atomic Radial Functions

l\n 1 2 3

0 e−Zr (2− r)e−Zr/2 (27 − 18r + 2r2)e−Zr/3

1 re−Zr/2 r(6− r)e−Zr/3

2 r2e−Zr/3

Table 11.2: The first few radial functions of the hydrogen-like atoms.

spherical harmonics of table 11.1 is that they are complex. The introduction of solid harmonics allows
the use of real orbital wave-functions for a wide range of applications. The complex solid harmonics
Ylml

(r) are related to the spherical harmonics YlmL(r) through

Ylml
(r) = rlYlml

(r).

By factoring out the leading r-dependency of the radial-function

Rnl(r) = r−lRnl(r),

we obtain
Ψnlml

(r, θ,φ) = Rnl(r) · Ylml
(r).

For the theoretical development of the real solid harmonics see Ref. [63]. Here Helgaker et al first
express the complex solid harmonics, Clml

, by (complex) Cartesian coordinates, and arrive at the real
solid harmonics, Slml

, through the unitary transformation
(

Slml

Sl,−ml

)

=
1√
2

(
(−1)m

l 1

−(−1)m
l i i

)(
Clml

Cl,−ml

)

.

279

Quantum Monte Carlo methods

This transformation will not alter any physical quantities that are degenerate in the subspace consisting of
opposite magnetic quantum numbers (the angular momentum l is equal for both these cases). This means
for example that the above transformation does not alter the energies, unless an external magnetic field is
applied to the system. Henceforth, we will use the solid harmonics, and note that changing the spherical
potential beyond the Coulomb potential will not alter the solid harmonics. The lowest-order real solid
harmonics are listed in table 11.3.

Real Solid Harmonics

ml\l 0 1 2 3

+3 1
2

√
5
2(x2 − 3y2)x

+2 1
2

√
3(x2 − y2) 1

2

√
15(x2 − y2)z

+1 x
√

3xz 1
2

√
3
2(5z2 − r2)x

0 1 y 1
2(3z2 − r2) 1

2(5z2 − 3r2)x

-1 z
√

3yz 1
2

√
3
2(5z2 − r2)y

-2
√

3xy
√

15xyz

-3 1
2

√
5
2(3x2 − y2)y

Table 11.3: The first-order real solid harmonics Ylml
.

When solving equations numerically, it is often convenient to rewrite the equation in terms of dimen-
sionless variables. One reason is the fact that several of the constants may differ largely in value, and
hence result in potential losses of numerical precision. The other main reason for doing this is that the
equation in dimensionless form is easier to code, sparing one for eventual typographic errors. In order
to do so, we introduce first the dimensionless variable ρ = r/β, where β is a constant we can choose.
Schrödinger’s equation is then rewritten as

−
1

2

∂2u(ρ)

∂ρ2
−

mke2β

!2ρ
u(ρ) +

l(l + 1)

2ρ2
u(ρ) =

mβ2

!2
Eu(ρ). (11.67)

We can determine β by simply requiring3

mke2β

!2
= 1 (11.68)

With this choice, the constant β becomes the famous Bohr radius a0 = 0.05 nm a0 = β = !2/mke2.
As a petit digression, we list here the standard units used in atomic physics and molecular physics

calculations. It is common to scale atomic units by setting m = e = ! = 4πϵ0 = 1, see table 11.4.
We introduce thereafter the variable λ

λ =
mβ2

!2
E, (11.69)

3Remember that we are free to choose β.

280

11.5 – Variational Monte Carlo for atoms

Atomic Units

Quantity SI Atomic unit
Electron mass,m 9.109 · 10−31 kg 1
Charge, e 1.602 · 10−19 C 1
Planck’s reduced constant, ! 1.055 · 10−34 Js 1
Permittivity, 4πϵ0 1.113 · 10−10 C2 J−1 m−1 1
Energy, e2

4πϵ0a0
27.211 eV 1

Length, a0 = 4πϵ0!2

me2 0.529 · 10−10 m 1

Table 11.4: Scaling from SI to atomic units

and inserting β and the exact energy E = E0/n2, with E0 = 13.6 eV, we have that

λ = −
1

2n2
, (11.70)

n being the principal quantum number. The equation we are then going to solve numerically is now

−
1

2

∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0, (11.71)

with the hamiltonian

H = −
1

2

∂2

∂ρ2
−

1

ρ
+

l(l + 1)

2ρ2
. (11.72)

The ground state of the hydrogen atom has the energy λ = −1/2, or E = −13.6 eV. The exact wave
function obtained from Eq. (11.71) is

u(ρ) = ρe−ρ, (11.73)

which yields the energy λ = −1/2. Sticking to our variational philosophy, we could now introduce a
variational parameter α resulting in a trial wave function

uα
T (ρ) = αρe−αρ. (11.74)

Inserting this wave function into the expression for the local energy EL of Eq. (11.16) yields (check
it!)

EL(ρ) = −
1

ρ
−
α

2

(
α−

2

ρ

)
. (11.75)

For the hydrogen atom, we could perform the variational calculation along the same lines as we did
for the harmonic oscillator. The only difference is that Eq. (11.17) now reads

⟨H⟩ =

∫
P (R)EL(R)dR =

∫ ∞

0
α2ρ2e−2αρEL(ρ)ρ2dρ, (11.76)

since ρ ∈ [0,∞]. In this case we would use the exponential distribution instead of the normal distrubu-
tion, and our code would contain the following elements

281

Quantum Monte Carlo methods

. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s o f v a r i a b l e s

. . . mcs = number o f Monte Ca r l o s amp l i ng s

/ / l oop over Monte Carlo samp les
f o r (i =0 ; i < mcs ; i ++) {

/ / g e n e r a t e random v a r i a b l e s from t h e e x p o n e n t i a l
/ / d i s t r i b u t i o n u s i n g ran1 and t r a n s f o rm i n g t o
/ / t o an e x p o n e n t i a l mapping y = − l n (1−x)

x= ran1 (&idum) ;
y=− l o g (1.−x) ;

/ / i n our case y = rho∗ a lpha ∗2
rho = y / a l p h a / 2 ;
l o c a l _ e n e r g y = −1/ rho −0.5∗ a l p h a ∗ (a lpha −2/ rho) ;
ene rgy += (l o c a l _ e n e r g y) ;
ene rgy2 += l o c a l _ e n e r g y ∗ l o c a l _ e n e r g y ;

/ / end o f samp l ing
}

/ / w r i t e ou t t h e mean energy and t h e s t anda rd d e v i a t i o n
cou t << ene rgy / mcs << s q r t ((ene rgy2 / mcs−(ene rgy / mcs) ∗∗2) / mcs)) ;

As for the harmonic oscillator case we just need to generate a large number N of random numbers
corresponding to the exponential PDF α2ρ2e−2αρ and for each random number we compute the local
energy and variance.

11.5.3 Metropolis sampling for the hydrogen atom and the harmonic oscillator

We present in this subsection results for the ground states of the hydrogen atom and harmonic oscillator
using a variational Monte Carlo procedure. For the hydrogen atom, the trial wave function

uα
T (ρ) = αρe−αρ,

depends only on the dimensionless radius ρ. It is the solution of a one-dimensional differential equation,
as is the case for the harmonic oscillator as well. The latter has the trial wave function

ΨT (x) =

√
α

π1/4
e−x2α2/2.

However, for the hydrogen atom we have ρ ∈ [0,∞], while for the harmonic oscillator we have x ∈
[−∞,∞].

This has important consequences for the way we generate random positions. For the hydrogen atom
we have a random position given by e.g.,

which ensures that ρ ≥ 0, while for the harmonic oscillator we have

in order to have x ∈ [−∞,∞]. This is however not implemented in the program below. There, impor-
tance sampling is not included. We simulate points in the x, y and z directions using random numbers
generated by the uniform distribution and multiplied by the step length. Note that we have to define a

282

11.5 – Variational Monte Carlo for atoms

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4

E0

α

MC simulation with N=100000
Exact result

Figure 11.1: Result for ground state energy of the harmonic oscillator as function of the variational
parameter α. The exact result is for α = 1 with an energy E = 1. See text for further details

step length in our calculations. Here one has to play around with different values for the step and as a
rule of thumb (one of the golden Monte Carlo rules), the step length should be chosen so that roughly
50% of all new moves are accepted. In the program at the end of this section we have also scaled the
random position with the variational parameter α. The reason for this particular choice is that we have
an external loop over the variational parameter. Different variational parameters will obviously yield dif-
ferent acceptance rates if we use the same step length. An alternative to the code below is to perform the
Monte Carlo sampling with just one variational parameter, and play around with different step lengths
in order to achieve a reasonable acceptance ratio. Another possibility is to include a more advanced test
which restarts the Monte Carlo sampling with a new step length if the specific variational parameter and
chosen step length lead to a too low acceptance ratio.

In Figs. 11.1 and 11.2 we plot the ground state energies for the one-dimensional harmonic oscillator
and the hydrogen atom, respectively, as functions of the variational parameter α. These results are also
displayed in Tables 11.5 and 11.6. In these tables we list the variance and the standard deviation as well.
We note that at α we obtain the exact result, and the variance is zero, as it should. The reason is that we
then have the exact wave function, and the action of the hamiltionan on the wave function

Hψ = constant × ψ,

yields just a constant. The integral which defines various expectation values involving moments of the
hamiltonian becomes then

⟨Hn⟩ =
∫

dRΨ∗
T (R)Hn(R)ΨT (R)∫

dRΨ∗
T (R)ΨT (R)

= constant×
∫

dRΨ∗
T (R)ΨT (R)∫

dRΨ∗
T (R)ΨT (R)

= constant. (11.77)

This explains why the variance is zero for α = 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a trial wave function proportional to the exact one.
These two systems are also some of the few examples of cases where we can find an exact solution to

283

Quantum Monte Carlo methods

Table 11.5: Result for ground state energy of the harmonic oscillator as function of the variational pa-
rameter α. The exact result is for α = 1 with an energy E = 1. The energy variance σ2 and the standard
deviation σ/

√
N are also listed. The variable N is the number of Monte Carlo samples. In this calcu-

lation we set N = 100000 and a step length of 2 was used in order to obtain an acceptance of ≈ 50%.

α ⟨H⟩ σ2 σ/
√

N
5.00000E-01 2.06479E+00 5.78739E+00 7.60749E-03
6.00000E-01 1.50495E+00 2.32782E+00 4.82475E-03
7.00000E-01 1.23264E+00 9.82479E-01 3.13445E-03
8.00000E-01 1.08007E+00 3.44857E-01 1.85703E-03
9.00000E-01 1.01111E+00 7.24827E-02 8.51368E-04
1.00000E-00 1.00000E+00 0.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02 7.71826E-04
1.20000E+00 1.08667E+00 2.23389E-01 1.49462E-03
1.30000E+00 1.17168E+00 4.78446E-01 2.18734E-03
1.40000E+00 1.26374E+00 8.55524E-01 2.92493E-03
1.50000E+00 1.38897E+00 1.30720E+00 3.61553E-03

-1

-0.8

-0.6

-0.4

-0.2

0

0.2 0.4 0.6 0.8 1 1.2 1.4

E0

α

MC simulation with N=100000
Exact result

Figure 11.2: Result for ground state energy of the hydrogen atom as function of the variational parameter
α. The exact result is for α = 1 with an energy E = −1/2. See text for further details

284

11.5 – Variational Monte Carlo for atoms

Table 11.6: Result for ground state energy of the hydrogen atom as function of the variational parameter
α. The exact result is for α = 1 with an energy E = −1/2. The energy variance σ2 and the standard
deviation σ/

√
N are also listed. The variableN is the number of Monte Carlo samples. In this calculation

we fixed N = 100000 and a step length of 4 Bohr radii was used in order to obtain an acceptance of
≈ 50%.

α ⟨H⟩ σ2 σ/
√

N
5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03

the problem. In most cases of interest, we do not know a priori the exact wave function, or how to make
a good trial wave function. In essentially all real problems a large amount of CPU time and numerical
experimenting is needed in order to ascertain the validity of a Monte Carlo estimate. The next examples
deal with such problems.

11.5.4 The helium atom

Most physical problems of interest in atomic, molecular and solid state physics consist of a number of
interacting electrons and ions. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a system of N
particles is

⟨H⟩ =

∫
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
, (11.78)

an in general intractable problem. Controlled and well understood approximations are sought to reduce
the complexity to a tractable level. Once the equations are solved, a large number of properties may be
calculated from the wave function. Errors or approximations made in obtaining the wave function will be
manifest in any property derived from the wave function. Where high accuracy is required, considerable
attention must be paid to the derivation of the wave function and any approximations made.

The helium atom consists of two electrons and a nucleus with charge Z = 2. In setting up the
hamiltonian of this system, we need to account for the repulsion between the two electrons as well.

A common and very reasonable approximation used in the solution of equation of the Schrödinger
equation for systems of interacting electrons and ions is the Born-Oppenheimer approximation discussed
above. In a system of interacting electrons and nuclei there will usually be little momentum transfer
between the two types of particles due to their greatly differing masses. The forces between the particles
are of similar magnitude due to their similar charge. If one then assumes that the momenta of the particles
are also similar, then the nuclei must have much smaller velocities than the electrons due to their far

285

Quantum Monte Carlo methods

greater mass. On the time-scale of nuclear motion, one can therefore consider the electrons to relax to
a ground-state with the nuclei at fixed locations. This separation of the electronic and nuclear degrees
of freedom is the the Born-Oppenheimer approximation we discussed previously in this chapter. But
even this simplified electronic Hamiltonian remains very difficult to solve. No analytic solutions exist for
general systems with more than one electron.

If we label the distance between electron 1 and the nucleus as r1. Similarly we have r2 for electron
2. The contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
, (11.79)

and if we add the repulsion arising from the two interacting electrons, we obtain the potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
, (11.80)

with the electrons separated at a distance r12 = |r1 − r2|. The hamiltonian becomes then

Ĥ = −
!2∇2

1

2m
−

!2∇2
2

2m
−

2ke2

r1
−

2ke2

r2
+

ke2

r12
, (11.81)

and Schrödingers equation reads
Ĥψ = Eψ. (11.82)

Note that this equation has been written in atomic units a.u. which are more convenient for quantum
mechanical problems. This means that the final energy has to be multiplied by a 2×E0, where E0 = 13.6
eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit the repulsion between the two electrons.
The potential energy becomes then

V (r1, r2) ≈ −
Zke2

r1
−

Zke2

r2
. (11.83)

The advantage of this approximation is that each electron can be treated as being independent of each
other, implying that each electron sees just a centrally symmetric potential, or central field.

To see whether this gives a meaningful result, we set Z = 2 and neglect totally the repulsion between
the two electrons. Electron 1 has the following hamiltonian

ĥ1 = −
!2∇2

1

2m
−

2ke2

r1
, (11.84)

with pertinent wave function and eigenvalue

ĥ1ψa = Eaψa, (11.85)

where a = {nalamla}, are its quantum numbers. The energy Ea is

Ea = −
Z2E0

n2
a

, (11.86)

med E0 = 13.6 eV, being the ground state energy of the hydrogen atom. In a similar way, we obatin for
electron 2

ĥ2 = −
!2∇2

2

2m
−

2ke2

r2
, (11.87)

286

11.5 – Variational Monte Carlo for atoms

with wave function
ĥ2ψb = Ebψb, (11.88)

and b = {nblbmlb}, and energy

Eb =
Z2E0

n2
b

. (11.89)

Since the electrons do not interact, we can assume that the ground state wave function of the helium atom
is given by

ψ = ψaψb, (11.90)

resulting in the following approximation to Schrödinger’s equation
(
ĥ1 + ĥ2

)
ψ =

(
ĥ1 + ĥ2

)
ψa(r1)ψb(r2) = Eabψa(r1)ψb(r2). (11.91)

The energy becomes then
(
ĥ1ψa(r1)

)
ψb(r2) +

(
ĥ2ψb(r2)

)
ψa(r1) = (Ea + Eb)ψa(r1)ψb(r2), (11.92)

yielding

Eab = Z2E0

(
1

n2
a

+
1

n2
b

)
. (11.93)

If we insert Z = 2 and assume that the ground state is determined by two electrons in the lowest-lying
hydrogen orbit with na = nb = 1, the energy becomes

Eab = 8E0 = −108.8 eV, (11.94)

while the experimental value is −78.8 eV. Clearly, this discrepancy is essentially due to our omission of
the repulsion arising from the interaction of two electrons.

Choice of trial wave function

The choice of trial wave function is critical in variational Monte Carlo calculations. How to choose
it is however a highly non-trivial task. All observables are evaluated with respect to the probability
distribution

P (R) =
|ψT (R)|2

∫
|ψT (R)|2 dR

. (11.95)

generated by the trial wave function. The trial wave function must approximate an exact eigenstate in
order that accurate results are to be obtained. Improved trial wave functions also improve the importance
sampling, reducing the cost of obtaining a certain statistical accuracy.

Quantum Monte Carlo methods are able to exploit trial wave functions of arbitrary forms. Any wave
function that is physical and for which the value, gradient and laplacian of the wave function may be
efficiently computed can be used. The power of Quantum Monte Carlo methods lies in the flexibility of
the form of the trial wave function.

It is important that the trial wave function satisfies as many known properties of the exact wave
function as possible. A good trial wave function should exhibit much of the same features as does the
exact wave function. Especially, it should be well-defined at the origin, that is Ψ(|R| = 0) ≠ 0, and its
derivative at the origin should also be well-defined . One possible guideline in choosing the trial wave
function is the use of constraints about the behavior of the wave function when the distance between

287

Quantum Monte Carlo methods

one electron and the nucleus or two electrons approaches zero. These constraints are the so-called “cusp
conditions” and are related to the derivatives of the wave function.

To see this, let us single out one of the electrons in the helium atom and assume that this electron is
close to the nucleus, i.e., r1 → 0. We assume also that the two electrons are far from each other and that
r2 ≠ 0. The local energy can then be written as

EL(R) =
1

ψT (R)
HψT (R) =

1

ψT (R)

(
−

1

2
∇2

1 −
Z

r1

)
ψT (R) + finite terms. (11.96)

Writing out the kinetic energy term in the spherical coordinates of electron 1, we arrive at the following
expression for the local energy

EL(R) =
1

RT (r1)

(
−

1

2

d2

dr2
1

−
1

r1

d

dr1
−

Z

r1

)
RT (r1) + finite terms, (11.97)

where RT (r1) is the radial part of the wave function for electron 1. We have also used that the orbital
momentum of electron 1 is l = 0. For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

(
−

1

r1

d

dr1
−

Z

r1

)
RT (r1), (11.98)

since the second derivative does not diverge due to the finiteness of Ψ at the origin. The latter implies
that in order for the kinetic energy term to balance the divergence in the potential term, we must have

1

RT (r1)

dRT (r1)

dr1
= −Z, (11.99)

implying that
RT (r1) ∝ e−Zr1. (11.100)

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have (show this!)

1

RT (r)

dRT (r)

dr
= −

Z

l + 1
. (11.101)

Another constraint on the wave function is found for two electrons approaching each other. In this
case it is the dependence on the separation r12 between the two electrons which has to reflect the correct
behavior in the limit r12 → 0. The resulting radial equation for the r12 dependence is the same for the
electron-nucleus case, except that the attractive Coulomb interaction between the nucleus and the electron
is replaced by a repulsive interaction and the kinetic energy term is twice as large. We obtain then

lim
r12→0

EL(R) =
1

RT (r12)

(
−

4

r12

d

dr12
+

2

r12

)
RT (r12), (11.102)

with still l = 0. This yields the so-called ’cusp’-condition

1

RT (r12)

dRT (r12)

dr12
=

1

2
, (11.103)

while for l > 0 we have
1

RT (r12)

dRT (r12)

dr12
=

1

2(l + 1)
. (11.104)

288

11.5 – Variational Monte Carlo for atoms

For general systems containing more than two electrons, we have this condition for each electron pair ij.
Based on these consideration, a possible trial wave function which ignores the ’cusp’-condition be-

tween the two electrons is
ψT (R) = e−α(r1+r2), (11.105)

where r1,2 are dimensionless radii and α is a variational parameter which is to be interpreted as an
effective charge.

A possible trial wave function which also reflects the ’cusp’-condition between the two electrons is

ψT (R) = e−α(r1+r2)er12/2. (11.106)

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
∏

i<j

f(rij), (11.107)

for a system with N electrons or particles. The wave function φ(ri) is the single-particle wave function
for particle i, while f(rij) account for more complicated two-body correlations. For the helium atom,
we placed both electrons in the hydrogenic orbit 1s. We know that the ground state for the helium atom
has a symmetric spatial part, while the spin wave function is anti-symmetric in order to obey the Pauli
principle. In the present case we need not to deal with spin degrees of freedom, since we are mainly trying
to reproduce the ground state of the system. However, adopting such a single-particle representation for
the individual electrons means that for atoms beyond helium, we cannot continue to place electrons in the
lowest hydrogenic orbit. This is a consenquence of the Pauli principle, which states that the total wave
function for a system of identical particles such as fermions, has to be anti-symmetric. The program
we include below can use either Eq. (11.105) or Eq. (11.106) for the trial wave function. One or two
electrons can be placed in the lowest hydrogen orbit, implying that the program can only be used for
studies of the ground state of hydrogen or helium.

11.5.5 Program example for atomic systems

The variational Monte Carlo algorithm consists of two distinct phases. In the first a walker, a single
electron in our case, consisting of an initially random set of electron positions is propagated according
to the Metropolis algorithm, in order to equilibrate it and begin sampling . In the second phase, the
walker continues to be moved, but energies and other observables are also accumulated for later averaging
and statistical analysis. In the program below, the electrons are moved individually and not as a whole
configuration. This improves the efficiency of the algorithm in larger systems, where configuration moves
require increasingly small steps to maintain the acceptance ratio.

The main part of the code contains calls to various functions, setup and declarations of arrays etc.
The corresponding Fortran 90/95 program is program1.f90. Note that we have defined a fixed step length
h for the numerical computation of the second derivative of the kinetic energy. Furthermore, we perform
the Metropolis test when we have moved all electrons. This should be compared to the case where we
move one electron at the time and perform the Metropolis test. The latter is similar to the algorithm
for the Ising model discussed in the previous chapter. A more detailed discussion and better statistical
treatments and analyses are discussed in chapters 18 and 19.

/ / V a r i a t i o n a l Monte Carlo f o r atoms wi t h up t o two e l e c t r o n s
inc lude < io s t r e am >

289

Quantum Monte Carlo methods

inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e am o f i l e ;
/ / t h e s t e p l e n g t h and i t s squared i n v e r s e f o r t h e second d e r i v a t i v e
de f i n e h 0 .001
de f i n e h2 1000000

/ / d e c l a r a t o n o f f u n c t i o n s

/ / Func t i o n t o read i n da ta from screen , no t e c a l l by r e f e r e n c e
void i n i t i a l i s e (i n t&, i n t&, i n t&, i n t&, i n t&, i n t&, double&) ;

/ / The Mc samp l ing f o r t h e v a r i a t i o n a l Monte Carlo
void mc_sampling (i n t , i n t , i n t , i n t , i n t , i n t , double , double ∗ , double ∗) ;

/ / The v a r i a t i o n a l wave f u n c t i o n
double wave_ func t i o n (double ∗∗ , double , i n t , i n t) ;

/ / The l o c a l energy
double l o c a l _ e n e r g y (double ∗∗ , double , double , i n t , i n t , i n t) ;

/ / p r i n t s t o s c r e e n t h e r e s u l t s o f t h e c a l c u l a t i o n s
void ou t p u t (i n t , i n t , i n t , double ∗ , double ∗) ;

/ / Beg in o f main program

/ / i n t main ()
i n t main (i n t argc , char∗ a rgv [])
{
char ∗ o u t f i l e n am e ;
i n t number_cyc le s , max_v a r i a t i o n s , t h e rm a l i z a t i o n , ch a r g e ;
i n t dimension , n umb e r _ p a r t i c l e s ;
double s t e p _ l e n g t h ;
double ∗ cumu l a t i v e_ e , ∗ cumu l a t i v e_ e2 ;

/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command− l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / Read i n da ta
i n i t i a l i s e (d imension , n umbe r _ p a r t i c l e s , cha rge ,

max_v a r i a t i o n s , number_cycle s ,
t h e rm a l i z a t i o n , s t e p _ l e n g t h) ;

290

11.5 – Variational Monte Carlo for atoms

c umu l a t i v e _ e = new double [max_v a r i a t i o n s +1] ;
cumu l a t i v e_ e2 = new double [max_v a r i a t i o n s +1] ;

/ / Do t h e mc samp l ing
mc_sampling (d imension , n umbe r _ p a r t i c l e s , cha rge ,

max_v a r i a t i o n s , t h e rm a l i z a t i o n ,
number_cyc les , s t e p _ l e n g t h , cumu l a t i v e_ e , cumu l a t i v e_ e2) ;

/ / P r i n t ou t r e s u l t s
ou t p u t (max_v a r i a t i o n s , number_cyc les , cha rge , cumu l a t i v e_ e , cumu l a t i v e_ e2)

;
d e l e t e [] c umu l a t i v e _ e ; d e l e t e [] c umu l a t i v e_ e ;
o f i l e . c l o s e () ; / / c l o s e o u t p u t f i l e
re turn 0 ;

}

The implementation of the brute force Metropolis algorithm is shown in the next function. Here we
have a loop over the variational variables α. It calls two functions, one to compute the wave function and
one to update the local energy.

/ / Monte Carlo samp l ing w i t h t h e Me t r o p o l i s a l g o r i t hm

void mc_sampling (i n t dimension , i n t numbe r _ p a r t i c l e s , i n t cha rge ,
i n t max_v a r i a t i o n s ,
i n t t h e rm a l i z a t i o n , i n t number_cyc les , double s t e p _ l e n g t h ,
double ∗ cumu l a t i v e_ e , double ∗ cumu l a t i v e_ e2)

{
i n t cy c l e s , v a r i a t e , a c c ep t , dim , i , j ;
long idum ;
double wfnew , wfold , a lpha , energy , energy2 , d e l t a _ e ;
double ∗∗ r _ o l d , ∗∗ r_new ;
a l p h a = 0 . 5∗ ch a r g e ;
idum=−1;
/ / a l l o c a t e ma t r i c e s which c o n t a i n t h e p o s i t i o n o f t h e p a r t i c l e s
r _ o l d = (double ∗∗) ma t r i x (n umbe r _ p a r t i c l e s , d imension , s i z e o f (double)) ;
r_new = (double ∗∗) ma t r i x (n umbe r _ p a r t i c l e s , d imension , s i z e o f (double)) ;
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j =0 ; j < d imens ion ; j ++) {
r _ o l d [i] [j] = r_new [i] [j] = 0 ;

}
}
/ / l oop over v a r i a t i o n a l pa rame t e r s
f o r (v a r i a t e =1 ; v a r i a t e <= max_v a r i a t i o n s ; v a r i a t e ++) {

/ / i n i t i a l i s a t i o n s o f v a r i a t i o n a l pa rame t e r s and e n e r g i e s
a l p h a += 0 . 1 ;
ene rgy = ene rgy2 = 0 ; a c c e p t =0 ; d e l t a _ e =0 ;
/ / i n i t i a l t r i a l p o s i t i o n , no t e c a l l i n g w i t h a lpha
/ / and i n t h r e e d imen s i on s
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j =0 ; j < d imens ion ; j ++) {
r _ o l d [i] [j] = s t e p _ l e n g t h ∗ (r an1 (&idum) −0.5) ;

}
}
wfold = wave_ func t i o n (r _o l d , a lpha , d imension , n umb e r _ p a r t i c l e s) ;

291

Quantum Monte Carlo methods

/ / l oop over monte c a r l o c y c l e s
f o r (c y c l e s = 1 ; c y c l e s <= number_cyc le s+ t h e rm a l i z a t i o n ; c y c l e s ++) {

/ / new p o s i t i o n
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j =0 ; j < d imens ion ; j ++) {
r_new [i] [j] = r _ o l d [i] [j]+ s t e p _ l e n g t h ∗ (r an1 (&idum) −0.5) ;

}
}
wfnew = wave_ func t i o n (r_new , a lpha , d imension , n umb e r _ p a r t i c l e s) ;
/ / Me t r o p o l i s t e s t
i f (r an1 (&idum) <= wfnew∗wfnew / wfold / wfo ld) {
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j =0 ; j < d imens ion ; j ++) {
r _ o l d [i] [j]= r_new [i] [j] ;

}
}
wfo ld = wfnew ;
a c c e p t = a c c e p t +1 ;

}
/ / compute l o c a l energy
i f (c y c l e s > t h e rm a l i z a t i o n) {
d e l t a _ e = l o c a l _ e n e r g y (r _o l d , a lpha , wfold , d imension ,

n umbe r _ p a r t i c l e s , c h a r g e) ;
/ / upda te e n e r g i e s
ene rgy += d e l t a _ e ;
ene rgy2 += d e l t a _ e ∗ d e l t a _ e ;

}
} / / end o f loop over MC t r i a l s
cou t << << a l p h a

<< << a c c e p t << end l ;
/ / upda te t h e energy average and i t s squared
c umu l a t i v e _ e [v a r i a t e] = ene rgy / number_cyc le s ;
cumu l a t i v e_ e2 [v a r i a t e] = ene rgy2 / number_cyc le s ;

} / / end o f loop over v a r i a t i o n a l s t e p s
f r e e _m a t r i x ((void ∗∗) r _ o l d) ; / / f r e e memory
f r e e _m a t r i x ((void ∗∗) r_new) ; / / f r e e memory

} / / end mc_sampl ing f u n c t i o n

The wave function is in turn defined in the next function. Here we limit ourselves to a function which
consists only of the product of single-particle wave functions.

/ / Func t i o n t o compute t h e squared wave f u n c t i o n , s i m p l e s t form

double wave_ func t i o n (double ∗∗ r , double a lpha , i n t dimension , i n t
n umb e r _ p a r t i c l e s)

{
i n t i , j , k ;
double wf , argument , r _ s i n g l e _ p a r t i c l e , r_12 ;

argument = wf = 0 ;
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
r _ s i n g l e _ p a r t i c l e = 0 ;

292

11.5 – Variational Monte Carlo for atoms

f o r (j = 0 ; j < d imens ion ; j ++) {
r _ s i n g l e _ p a r t i c l e += r [i] [j]∗ r [i] [j] ;

}
argument += s q r t (r _ s i n g l e _ p a r t i c l e) ;

}
wf = exp(−argument ∗ a l p h a) ;
re turn wf ;

}

Finally, the local energy is computed using a numerical derivation for the kinetic energy. We use the
familiar expression derived in Eq. (3.2), that is

f ′′
0 =

fh − 2f0 + f−h

h2
,

in order to compute
−

1

2ψT (R)
∇2ψT (R). (11.108)

The variable h is a chosen step length. For helium, since it is rather easy to evaluate the local energy,
the above is an unnecessary complication. However, for many-electron or other many-particle systems,
the derivation of an analytic expression for the kinetic energy can be quite involved, and the numerical
evaluation of the kinetic energy using Eq. (3.2) may result in a simpler code and/or even a faster one.

/ / Func t i o n t o c a l c u l a t e t h e l o c a l energy w i t h num d e r i v a t i v e

double l o c a l _ e n e r g y (double ∗∗ r , double a lpha , double wfold , i n t dimension ,
i n t numbe r _ p a r t i c l e s , i n t ch a r g e)

{
i n t i , j , k ;
double e _ l o c a l , wfminus , wfp lus , e _ k i n e t i c , e _ p o t e n t i a l , r_12 ,
r _ s i n g l e _ p a r t i c l e ;

double ∗∗ r _ p l u s , ∗∗ r_minus ;

/ / a l l o c a t e ma t r i c e s which c o n t a i n t h e p o s i t i o n o f t h e p a r t i c l e s
/ / t h e f u n c t i o n ma t r i x i s d e f i n e d i n t h e progam l i b r a r y
r _ p l u s = (double ∗∗) ma t r i x (n umbe r _ p a r t i c l e s , d imension , s i z e o f (double)) ;
r _minus = (double ∗∗) ma t r i x (n umbe r _ p a r t i c l e s , d imension , s i z e o f (double))

;
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j =0 ; j < d imens ion ; j ++) {
r _ p l u s [i] [j] = r_minus [i] [j] = r [i] [j] ;

}
}
/ / compute t h e k i n e t i c energy
e _ k i n e t i c = 0 ;
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
f o r (j = 0 ; j < d imens ion ; j ++) {
r _ p l u s [i] [j] = r [i] [j]+ h ;
r_minus [i] [j] = r [i] [j]−h ;
wfminus = wave_ func t i o n (r_minus , a lpha , d imension , n umb e r _ p a r t i c l e s) ;
wfp lu s = wave_ func t i o n (r _p l u s , a lpha , d imension , n umb e r _ p a r t i c l e s) ;
e _ k i n e t i c −= (wfminus+wfplus−2∗wfold) ;
r _ p l u s [i] [j] = r [i] [j] ;

293

Quantum Monte Carlo methods

r_minus [i] [j] = r [i] [j] ;
}

}
/ / i n c l u d e e l e c t r o n mass and hbar squared and d i v i d e by wave f u n c t i o n
e _ k i n e t i c = 0 . 5∗ h2∗ e _ k i n e t i c / wfo ld ;
/ / compute t h e p o t e n t i a l energy
e _ p o t e n t i a l = 0 ;
/ / c o n t r i b u t i o n from e l e c t r o n−p ro t on p o t e n t i a l
f o r (i = 0 ; i < n umb e r _ p a r t i c l e s ; i ++) {
r _ s i n g l e _ p a r t i c l e = 0 ;
f o r (j = 0 ; j < d imens ion ; j ++) {
r _ s i n g l e _ p a r t i c l e += r [i] [j]∗ r [i] [j] ;

}
e _ p o t e n t i a l −= cha r g e / s q r t (r _ s i n g l e _ p a r t i c l e) ;

}
/ / c o n t r i b u t i o n from e l e c t r o n−e l e c t r o n p o t e n t i a l
f o r (i = 0 ; i < n umbe r _ p a r t i c l e s −1; i ++) {
f o r (j = i +1 ; j < n umb e r _ p a r t i c l e s ; j ++) {
r_12 = 0 ;
f o r (k = 0 ; k < d imens ion ; k++) {
r_12 += (r [i] [k]− r [j] [k]) ∗ (r [i] [k]− r [j] [k]) ;

}
e _ p o t e n t i a l += 1 / s q r t (r_12) ;

}
}
f r e e _m a t r i x ((void ∗∗) r _ p l u s) ; / / f r e e memory
f r e e _m a t r i x ((void ∗∗) r_minus) ;
e _ l o c a l = e _ p o t e n t i a l + e _ k i n e t i c ;
re turn e _ l o c a l ;

}

The remaining part of the program consists of the output and initialize functions and is not listed here.
The way we have rewritten Schrödinger’s equation results in energies given in atomic units. If we

wish to convert these energies into more familiar units like electronvolt (eV), we have to multiply our
reults with 2E0 where E0 = 13.6 eV, the binding energy of the hydrogen atom. Using Eq. (11.105) for
the trial wave function, we obtain an energy minimum at α ≈ 1.75. The ground state is E = −2.85
in atomic units or E = −77.5 eV. The experimental value is −78.8 eV. Obviously, improvements to
the wave function such as including the ’cusp’-condition for the two electrons as well, see Eq. (11.106),
could improve our agreement with experiment. Such an implementation is the topic for the next project.

We note that the effective charge is less than the charge of the nucleus. We can interpret this reduction
as an effective way of incorporating the repulsive electron-electron interaction. Finally, since we do not
have the exact wave function, we see from Fig. 11.3 that the variance is not zero at the energy mini-
mum. Techniques such as importance sampling, to be contrasted to the brute force Metropolis sampling
used here, and various optimization techniques of the variance and the energy, will be discussed under
advanced topics, see chapter 18.

11.5.6 Physics Projects: Studies of light Atoms

The aim of this project is to test the variational Monte Carlo apppled to light atoms. We will test different
trial wave function ΨT . The systems we study are atoms consisting of two electrons only, such as the
helium atom, LiII and BeIII . The atom LiII has two electrons and Z = 3 while BeIII has Z = 4 but

294

11.5 – Variational Monte Carlo for atoms

Energy
Variance

α
2.221.81.61.41.210.80.6

3

2

1

0

-1

-2

-3

Figure 11.3: Result for ground state energy of the helium atom using Eq. (11.105) for the trial wave
function. The variance is also plotted. A total of 100000 Monte Carlo moves were used with a step
length of 2 Bohr radii.

still two electrons only. A general ansatz for the trial wave function is

ψT (R) = φ(r1)φ(r2)f(r12). (11.109)

For all systems we assume that the one-electron wave functions φ(ri) are described by the an elecron in
the lowest hydrogen orbital 1s.

The specific trial functions we study are

ψT1(r1, r2, r12) = exp (−α(r1 + r2)), (11.110)

where α is the variational parameter,

ψT2(r1, r2, r12) = exp (−α(r1 + r2))(1 + βr12), (11.111)

with β as a new variational parameter and

ψT3(r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
. (11.112)

a) Find the analytic expressions for the local energy for the above trial wave function for the helium
atom. Study the behavior of the local energy with these functions in the limits r1 → 0, r2 → 0 and
r12 → 0.

b) Compute

⟨Ĥ⟩ =
∫

dRΨ∗
T (R)Ĥ(R)ΨT (R)∫

dRΨ∗
T (R)ΨT (R)

, (11.113)

295

Quantum Monte Carlo methods

for the helium atom using the variational Monte Carlo method employing the Metropolis algorithm
to sample the different states using the trial wave function ψT1(r1, r2, r12). Compare your results
with the analytic expression

⟨Ĥ⟩ =
!2

me
α2 −

27

32

e2

πϵ0
α. (11.114)

c) Use the optimal value of α from the previous point to compute the ground state of the helium atom
using the other two trial wave functions ψT2(r1, r2, r12) and ψT3(r1, r2, r12). In this case you
have to vary both α and β. Explain briefly which function ψT1(r1, r2, r12), ψT2(r1, r2, r12) and
ψT3(r1, r2, r12) is the best.

d) Use the optimal value for all parameters and all wave functions to compute the expectation value
of the mean distance ⟨r12⟩ between the two electrons. Comment your results.

e) We will now repeat point 1c), but we replace the helium atomwith the ions LiII and BeIII . Perform
first a variational calculation using the first ansatz for the trial wave function ψT1(r1, r2, r12) in
order to find an optimal value for α. Use then this value to start the variational calculation of the
energy for the wave functions ψT2(r1, r2, r12) and ψT3(r1, r2, r12). Comment your results.

11.5.7 Helium and beyond

We need to establish some rules regarding the construction of physically reliable wave-functions for
systems with more than one electron. The Pauli principle was recognized by Wolfgang Pauli The Pauli
Principle The total wave function must be antisymmetric under the interchange of any pair of identical
fermions and symmetric under the interchange of any pair of identical bosons.

A result of the Pauli principle is the so-called Pauli exclusion principle: The Pauli Exclusion
Principle No two electrons can occupy the same state.

Overall wave functions that satisfy the Pauli principle are often written as Slater Determinants.

The Slater Determinant

We turn again our attention to the helium atom. It was assumed that the two electrons were both in
the 1s state. This fulfills the Pauli exclusion principle as the two electrons in the ground state have
different intrinsic spin. However, the wave-functions we used above were not antisymmetric with respect
to interchange of the different electrons. This is not totally true as we only included the spatial part of
the wave function. For the helium ground state the spatial part of the wave function is symmetric and
the spin part is antisymmetric. The product is therefore antisymmetric as well. The Slater-determinant
consists of single-particle spin-orbitals; joint spin-space states of the electrons

Ψ↑
1s(1) = Ψ1s(1) ↑ (1),

and similarly
Ψ↓

1s(2) = Ψ1s(2) ↓ (2).

Here the two spin functions are given by

↑ (I) =

{
1 ifms(I) = 1

2

0 ifms(I) = − 1
2

,

296

11.5 – Variational Monte Carlo for atoms

and

↓ (I) =

{
0 ifms(I) = 1

2

1 ,ifms(I) = − 1
2

, (11.115)

with I = 1, 2. The ground state can then be expressed by the following determinant

Ψ(1, 2) =
1√
(2)

∣∣∣∣∣
Ψ1s(1) ↑ (1) Ψ1s(2) ↑ (2)

Ψ1s(1) ↓ (1) Ψ1s(2) ↓ (2)

∣∣∣∣∣ .

This is an example of a Slater determinant. This determinant is antisymmetric since particle interchange
is identical to an interchange of the two columns. For the ground state the spatial wave-function is
symmetric. Therefore we simply get

Ψ(1, 2) = Ψ1s(1)Ψ1s(2) [↑ (1) ↓ (2)− ↑ (2) ↓ (1)] .

The spin part of the wave-function is here anti-symmetric. This has no effect when calculating physical
observables because the sign of the wave-function is squared in all expectation values.

The general form of a Slater determinant composed of n orthonormal orbitals {φi} is

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) . . . φ1(N)

φ2(1) φ2(2) . . . φ2(N)

...
...

φN (1) φN (2) . . . φN (N)

∣∣∣∣∣∣∣∣∣∣∣

. (11.116)

The introduction of the Slater determinant is very important for treatment of many-body systems, and
is the principal building block for various variational wave functions. As long as we express the wave-
function in terms of either one Slater determinant or a linear combination of several Slater determinants,
the Pauli principle is satisfied. When constructing many-electron wave functions this picture provides
an easy way to include many of the physical features. One problem with the Slater matrix is that it
is computationally demanding. Limiting the number of calculations will be one of the most important
issues concerning the implementation of the Slater determinant. This will be discussed in detail in chapter
18. Chapters 18 and 20 are dedicated to the discussion of advanced many-body methods for solving
Schrödinger’s equation.

11.5.8 Physics Projects: Ground state of He, Be and Ne

The task here is to perform a variational Monte Carlo calculation of the ground state energy of the atoms
He, Be and Ne.

a) Here we limit the attention to He and employ the following trial wave function

ψT (r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
, (11.117)

with α and β as variational parameters. The interaction is

V (r1, r2) = −
2

r1
−

2

r2
+

1

r12
, (11.118)

297

Quantum Monte Carlo methods

yielding the following hamiltonian for the helium atom

Ĥ = −
∇2

1

2
−
∇2

2

2
−

2

r1
−

2

r2
+

1

r12
. (11.119)

Your task is to perform a Variational Monte Carlo calculation using the Metropolis algorithm to
compute the integral

⟨H⟩ =

∫
dRψ∗

T (R)H(R)ψT (R)∫
dRψ∗

T (R)ψT (R)
. (11.120)

b) We turn the attention to the ground state energy for the Be atom. In this case the trial wave function
is given by

ψT (r1, r2, r3, r4) = Det (φ1(r1),φ2(r2),φ3(r3),φ4(r4))
4∏

i<j

exp

(
rij

2(1 + βrij)

)
, (11.121)

where theDet is a Slater determinant and the single-particle wave functions are the hydrogen wave
functions for the 1s and 2s orbitals. Their form within the variational ansatz is given by

φ1s(ri) = e−αri , (11.122)

and
φ2s(ri) = (2− αri) e−αri/2. (11.123)

Set up the expression for the Slater determinant and perform a variational calculation with α and β
as variational parameters.

c) Now we compute the ground state energy for the Neon atom following the same steps as in a) and
b) but with the trial wave function

ψT (r1, r2, . . . , r10) = Det (φ1(r1),φ2(r2), . . . ,φ10(r10))
10∏

i<j

exp

(
rij

2(1 + βrij)

)
, (11.124)

Set up the expression for the Slater determinant and repeat steps a) and b) including the Slater
determinant. The variational parameters are still α and β only. In this case you need to include the
2p wave function as well. It is given as

φ2p(ri) = αrie
−αri/2. (11.125)

Observe that ri =
√

r2
ix + r2

iy + r2
iz .

11.6 Simulation of molecular systems

11.6.1 The H+
2 molecule

The H+
2 molecule consists of two protons and one electron, with binding energy EB = −2.8 eV and an

equilibrium position r0 = 0.106 nm between the two protons.
We define our system through the following variables. The electron is at a distance r from a chosen

origo, one of the protons is at the distance −R/2 while the other one is placed at R/2 from origo,
resulting in a distance to the electron of r−R/2 and r + R/2, respectively.

298

11.6 – Simulation of molecular systems

In our solution of Schrödinger’s equation for this system we are going to neglect the kinetic energies
of the protons, since they are 2000 times heavier than the electron. We assume thus that their velocities
are negligible compared to the velocity of the electron. In addition we omit contributions from nuclear
forces, since they act at distances of several orders of magnitude smaller than the equilibrium position.

We can then write Schrödinger’s equation as follows
{
−

!2∇2
r

2me
−

ke2

|r−R/2|
−

ke2

|r + R/2|
+

ke2

R

}
ψ(r,R) = Eψ(r,R), (11.126)

where the first term is the kinetic energy of the electron, the second term is the potential energy the
electron feels from the proton at −R/2 while the third term arises from the potential energy contribution
from the proton at R/2. The last term arises due to the repulsion between the two protons. In Fig. 11.4
we show a plot of the potential energy

V (r,R) = −
ke2

|r−R/2|
−

ke2

|r + R/2|
+

ke2

R
. (11.127)

Here we have fixed |R| = 2a0 og |R| = 8a0, being 2 and 8 Bohr radii, respectively. Note that in the
region between |r| = −|R|/2 (units are r/a0 in this figure, with a0 = 0.0529) and |r| = |R|/2 the
electron can tunnel through the potential barrier. Recall that −R/2 og R/2 correspond to the positions
of the two protons. We note also that if R is increased, the potential becomes less attractive. This has
consequences for the binding energy of the molecule. The binding energy decreases as the distance R

increases. Since the potential is symmetric with respect to the interchange of R → −R and r → −r it

R = 0.4 nm
ε = −13.6 eV

R = 0.1 nm

r/a0

V
(r

,R
)
[e
V
]

86420-2-4-6-8

0

-10

-20

-30

-40

-50

-60

Figure 11.4: Plot of V (r,R) for |R|=0.1 and 0.4 nm. Units along the x-axis are r/a0 . The straight line
is the binding energy of the hydrogen atom, ε = −13.6 eV.

means that the probability for the electron to move from one proton to the other must be equal in both
directions. We can say that the electron shares it’s time between both protons.

With this caveat, we can now construct a model for simulating this molecule. Since we have only one
elctron, we could assume that in the limit R → ∞, i.e., when the distance between the two protons is

299

Quantum Monte Carlo methods

large, the electron is essentially bound to only one of the protons. This should correspond to a hydrogen
atom. As a trial wave function, we could therefore use the electronic wave function for the ground state
of hydrogen, namely

ψ100(r) =

(
1

πa3
0

)1/2

e−r/a0 . (11.128)

Since we do not know exactly where the electron is, we have to allow for the possibility that the electron
can be coupled to one of the two protons. This form includes the ’cusp’-condition discussed in the
previous section. We define thence two hydrogen wave functions

ψ1(r,R) =

(
1

πa3
0

)1/2

e−|r−R/2|/a0 , (11.129)

and

ψ2(r,R) =

(
1

πa3
0

)1/2

e−|r+R/2|/a0 . (11.130)

Based on these two wave functions, which represent where the electron can be, we attempt at the follow-
ing linear combination

ψ±(r,R) = C± (ψ1(r,R) ± ψ2(r,R)) , (11.131)

with C± a constant. Based on this discussion, we add a second electron in order to simulate the H2

molecule. That is the topic for the next project.

11.6.2 Physics Project: the H2 molecule

The H2 molecule consists of two protons and two electrons with a ground state energy E = −1.17460
a.u. and equilibrium distance between the two hydrogen atoms of r0 = 1.40 Bohr radii. We define our
systems using the following variables. Origo is chosen to be halfway between the two protons. The
distance from proton 1 is defined as −R/2 whereas proton 2 has a distance R/2. Calculations are
performed for fixed distances R between the two protons.

Electron 1 has a distance r1 from the chose origo, while electron 2 has a distance r2. The kinetic
energy operator becomes then

−
∇2

1

2
−
∇2

2

2
. (11.132)

The distance between the two electrons is r12 = |r1 − r2|. The repulsion between the two electrons
results in a potential energy term given by

+
1

r12
. (11.133)

In a similar way we obtain a repulsive contribution from the interaction between the two protons given
by

+
1

|R|
, (11.134)

whereR is the distance between the two protons. To obtain the final potential energy we need to include
the attraction the electrons feel from the protons. To model this, we need to define the distance between
the electrons and the two protons. If we model this along a chosen z-akse with electron 1 placed at a
distance r1 from a chose origo, one proton at −R/2 and the other at R/2, the distance from proton 1 to
electron 1 becomes

r1p1 = r1 + R/2, (11.135)

300

11.6 – Simulation of molecular systems

and
r1p2 = r1 −R/2, (11.136)

from proton 2. Similarly, for electron 2 we obtain

r2p1 = r2 + R/2, (11.137)

and
r2p2 = r2 −R/2. (11.138)

These four distances define the attractive contributions to the potential energy

−
1

r1p1
−

1

r1p2
−

1

r2p1
−

1

r2p2
. (11.139)

We can then write the total Hamiltonian as

Ĥ = −
∇2

1

2
−
∇2

2

2
−

1

r1p1
−

1

r1p2
−

1

r2p1
−

1

r2p2
+

1

r12
+

1

|R|
, (11.140)

and if we choose R = 0 we obtain the helium atom.
In this project we will use a trial wave function of the form

ψT (r1, r2,R) = ψ(r1,R)ψ(r2,R) exp

(
r12

2(1 + βr12)

)
, (11.141)

with the following trial wave function

ψ(r1,R) = (exp (−αr1p1) + exp (−αr1p2)) , (11.142)

for electron 1 and
ψ(r2,R) = (exp (−αr2p1) + exp (−αr2p2)) . (11.143)

The variational parameters are α and β.
One can show that in the limit where all distances approach zero that

α = 1 + exp (−R/α), (11.144)

resulting in β kas the only variational parameter. The last equation is a non-linear equation which we can
solve with for example Newton’s method discussed in chapter 5.

a) Find the local energy as function of R.

b) Set up and algorithm and write a program which computes the expectation value of ⟨Ĥ⟩ using the
variational Monte Carlo method with a brute force Metropolis sampling. For each inter-proton
distance R you must find the parameter β which minimizes the energy. Plot the corresponding
energy as function of the distance R between the protons.

c) Use thereafter the optimal parameter sets to compute the average distance ⟨r12⟩ between the elec-
trons where the energy as function of R exhibits its minimum. Comment your results.

301

Quantum Monte Carlo methods

d) We modify now the approximation for the wave functions of electrons 1 and 2 by subtracting the
two terms instead of adding up, viz

ψ(r1,R) = (exp (−αr1p1)− exp (−αr1p2)) , (11.145)

for electron 1
ψ(r2,R) = (exp (−αr2p1)− exp (−αr2p2)) , (11.146)

for electron 2. Mathematically, this approach is equally viable as the previous one. Repeat your
calculations from point b) and see if you can obtain an energy minimum as function ofR. Comment
your results.

302

Chapter 12

Eigensystems

12.1 Introduction

Together with linear equations and least squares, the third major problem in matrix computations deals
with the algebraic eigenvalue problem. Here we limit our attention to the symmetric case. We focus in
particular on two similarity transformations, the Jacobi method, the famous QR algoritm with House-
holder’s method for obtaining a triangular matrix and Francis’ algorithm for the final eigenvalues. Our
presentation follows closely that of Golub and Van Loan, see Ref. [25].

12.2 Eigenvalue problems

Let us consider the matrix A of dimension n. The eigenvalues of A is defined through the matrix equation

Ax(ν) = λ(ν)x(ν), (12.1)

where λ(ν) are the eigenvalues and x(ν) the corresponding eigenvectors. Unless otherwise stated, when
we use the wording eigenvector we mean the right eigenvector. The left eigenvector is defined as

x(ν)
LA = λ(ν)x(ν)

L

The above right eigenvector problem is equivalent to a set of n equations with n unknowns xi

a11x1 + a12x2 + · · · + a1nxn = λx1

a21x1 + a22x2 + · · · + a2nxn = λx2

.

an1x1 + an2x2 + · · · + annxn = λxn.

We can rewrite Eq. (12.1) as
(
A− λ(ν)I

)
x(ν) = 0,

with I being the unity matrix. This equation provides a solution to the problem if and only if the deter-
minant is zero, namely ∣∣∣A− λ(ν)I

∣∣∣ = 0,

303

Eigensystems

which in turn means that the determinant is a polynomial of degree n in λ and in general we will have n
distinct zeros. The eigenvalues of a matrixA ∈ Cn×n are thus the n roots of its characteristic polynomial

P (λ) = det(λI −A), (12.2)

or

P (λ) =
n∏

i=1

(λi − λ) . (12.3)

The set of these roots is called the spectrum and is denoted as λ(A). If λ(A) = {λ1,λ2, . . . ,λn} then
we have

det(A) = λ1λ2 . . .λn,

and if we define the trace ofA as

Tr(A) =
n∑

i=1

aii

then Tr(A) = λ1 + λ2 + · · · + λn.
Procedures based on these ideas can be used if only a small fraction of all eigenvalues and eigenvec-

tors are required or if the matrix is on a tridiagonal form, but the standard approach to solve Eq. (12.1)
is to perform a given number of similarity transformations so as to render the original matrixA in either
a diagonal form or as a tridiagonal matrix which then can be be diagonalized by computational very
effective procedures.

The first method leads us to Jacobi’s method whereas the second one is given by Householder’s
algorithm for tridiagonal transformations. We will discuss both methods below.

12.3 Similarity transformations

In the present discussion we assume that our matrix is real and symmetric, that isA ∈ Rn×n. The matrix
A has n eigenvalues λ1 . . . λn (distinct or not). LetD be the diagonal matrix with the eigenvalues on the
diagonal

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0

. .
0 λn−1

0 0 λn

⎞

⎟⎟⎟⎟⎟⎟⎠
.

IfA is real and symmetric then there exists a real orthogonal matrix S such that

STAS = diag(λ1,λ2, . . . ,λn),

and for j = 1 : n we haveAS(:, j) = λjS(:, j). See chapter 8 of Ref. [25] for proof.
To obtain the eigenvalues of A ∈ Rn×n, the strategy is to perform a series of similarity transfor-

mations on the original matrix A, in order to reduce it either into a diagonal form as above or into a
tridiagonal form.

We say that a matrix B is a similarity transform ofA if

B = STAS, where ST S = S−1S = I.

304

12.4 – Jacobi’s method

The importance of a similarity transformation lies in the fact that the resulting matrix has the same
eigenvalues, but the eigenvectors are in general different. To prove this we start with the eigenvalue
problem and a similarity transformed matrix B.

Ax = λx and B = STAS.

We multiply the first equation on the left by ST and insert STS = I betweenA and x. Then we get

(STAS)(STx) = λSTx, (12.4)

which is the same as
B
(
STx

)
= λ

(
STx

)
.

The variable λ is an eigenvalue of B as well, but with eigenvector STx.
The basic philosophy is to

– either apply subsequent similarity transformations so that

ST
N . . .ST

1 AS1 . . . SN = D, (12.5)

– or apply subsequent similarity transformations so that A becomes tridiagonal. Thereafter, tech-
niques for obtaining eigenvalues from tridiagonal matrices can be used.

Let us look at the first method, better known as Jacobi’s method or Given’s rotations.

12.4 Jacobi’s method

Consider an (n× n) orthogonal transformation matrix

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0

. 0 . . .
0 0 . . . cosθ 0 . . . 0 sinθ
0 0 . . . 0 1 . . . 0 0

. 0 . . .
0 0 . . . 0 0 . . . 1 0
0 0 . . . −sinθ 0 cosθ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with property ST = S−1. It performs a plane rotation around an angle θ in the Euclidean n−dimensional
space. It means that its matrix elements that differ from zero are given by

skk = sll = cosθ, skl = −slk = −sinθ, sii = −sii = 1 i ≠ k i ≠ l,

A similarity transformation
B = ST AS,

results in

bik = aikcosθ − ailsinθ, i ≠ k, i ≠ l

bil = ailcosθ + aiksinθ, i ≠ k, i ≠ l

bkk = akkcos
2θ − 2aklcosθsinθ + allsin

2θ

bll = allcos
2θ + 2aklcosθsinθ + akksin

2θ

bkl = (akk − all)cosθsinθ + akl(cos
2θ − sin2θ)

305

Eigensystems

The angle θ is arbitrary. The recipe is to choose θ so that all non-diagonal matrix elements bkl become
zero.

The algorithm is then quite simple. We perform a number of iterations untill the sum over the squared
non-diagonal matrix elements are less than a prefixed test (ideally equal zero). The algorithm is more or
less foolproof for all real symmetric matrices, but becomes much slower than methods based on tridiag-
onalization for large matrices.

The main idea is thus to reduce systematically the norm of the off-diagonal matrix elements of a
matrixA

off(A) =

√√√√
n∑

i=1

n∑

j=1,j≠i

a2
ij .

To demonstrate the algorithm, we consider the simple 2 × 2 similarity transformation of the full matrix.
The matrix is symmetric, we single out 1 ≤ k < l ≤ n and use the abbreviations c = cos θ and s = sin θ
to obtain

(
bkk 0
0 bll

)
=

(
c −s
s c

)(
akk akl

alk all

)(
c s
−s c

)
.

We require that the non-diagonal matrix elements bkl = blk = 0, implying that

akl(c
2 − s2) + (akk − all)cs = bkl = 0.

If akl = 0 one sees immediately that cos θ = 1 and sin θ = 0.
The Frobenius norm of an orthogonal transformation is always preserved. The Frobenius norm is

defined as

||A||F =

√√√√
n∑

i=1

n∑

j=1

|aij |2.

This means that for our 2× 2 case we have

2a2
kl + a2

kk + a2
ll = b2

kk + b2
ll,

which leads to

off(B)2 = ||B||2F −
n∑

i=1

b2
ii = off(A)2 − 2a2

kl,

since

||B||2F −
n∑

i=1

b2
ii = ||A||2F −

n∑

i=1

a2
ii + (a2

kk + a2
ll − b2

kk − b2
ll).

This results means that the matrixA moves closer to diagonal form for each transformation.
Defining the quantities tan θ = t = s/c and

τ =
akk − all

2akl
,

we obtain the quadratic equation
t2 + 2τ t− 1 = 0,

resulting in
t = −τ ±

√
1 + τ2,

306

12.5 – Diagonalization through the Householder’s method for tridiagonalization

and c and s are easily obtained via
c =

1√
1 + t2

,

and s = tc. Choosing t to be the smaller of the roots ensures that |θ| ≤ π/4 and has the effect of
minimizing the difference between the matrices B andA since

||B−A||2F = 4(1 − c)
n∑

i=1,i≠k,l

(a2
ik + a2

il) +
2a2

kk

c2
.

To implement the Jacobi algorithm we can proceed as follows

– Choose a tolerance ϵ, making it a small number, typically 10−8 or smaller.

– Setup a while-test where one compares the norm of the newly computed off-diagonal
matrix elements

off(A) =

√√√√
n∑

i=1

n∑

j=1,j≠i

a2
ij > ϵ.

– Now choose the matrix elements akl so that we have those with largest value, that is
|akl| = maxi≠j|aij |.

– Compute thereafter τ = (all − akk)/2akl, tan θ, cos θ and sin θ.

– Compute thereafter the similarity transformation for this set of values (k, l), obtaining
the new matrix B = S(k, l, θ)T AS(k, l, θ).

– Compute the new norm of the off-diagonal matrix elements and continue till you have
satisfied off(B) ≤ ϵ

The convergence rate of the Jacobi method is however poor, one needs typically 3n2 − 5n2 rotations
and each rotation requires 4n operations, resulting in a total of 12n3−20n3 operations in order to zero out
non-diagonal matrix elements. Although the classical Jacobi algorithm performs badly compared with
methods based on tridiagonalization, it is easy to parallelize. We discuss how to parallelize this method
in the next subsection.

12.4.1 Parallel Jacobi algorithm

In preparation for Fall 2008.

12.5 Diagonalization through the Householder’s method for tridiagonalization

In this case the diagonalization is performed in two steps: First, the matrix is transformed into tridiagonal
form by the Householder similarity transformation. Secondly, the tridiagonal matrix is then diagonalized.
The reason for this two-step process is that diagonalising a tridiagonal matrix is computational much

307

Eigensystems

faster then the corresponding diagonalization of a general symmetric matrix. Let us discuss the two steps
in more detail.

12.5.1 The Householder’s method for tridiagonalization

The first step consists in finding an orthogonal matrix S which is the product of (n − 2) orthogonal
matrices

S = S1S2 . . . Sn−2,

each of which successively transforms one row and one column of A into the required tridiagonal form.
Only n − 2 transformations are required, since the last two elements are already in tridiagonal form. In
order to determine each Si let us see what happens after the first multiplication, namely,

ST
1 AS1 =

⎛

⎜⎜⎜⎜⎝

a11 e1 0 0 . . . 0 0
e1 a′22 a′23 a′2n
0 a′32 a′33 a′3n
0
0 a′n2 a′n3 a′nn

⎞

⎟⎟⎟⎟⎠

where the primed quantities represent a matrix A′ of dimension n − 1 which will subsequentely be
transformed by S2. The factor e1 is a possibly non-vanishing element. The next transformation produced
by S2 has the same effect as S1 but now on the submatirx A

′ only

(S1S2)
T AS1S2 =

⎛

⎜⎜⎜⎜⎝

a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 0
0 e2 a′′33 a′′3n
0
0 0 a′′n3 a′′nn

⎞

⎟⎟⎟⎟⎠

Note that the effective size of the matrix on which we apply the transformation reduces for every new
step. In the previous Jacobi method each similarity transformation is in principle performed on the full
size of the original matrix.

After a series of such transformations, we end with a set of diagonal matrix elements

a11, a
′
22, a

′′
33 . . . an−1

nn ,

and off-diagonal matrix elements
e1, e2, e3, . . . , en−1.

The resulting matrix reads

STAS =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 . . . 0 0
0 e2 a′′33 e3 0 . . . 0

. .

0 a(n−1)
n−2 en−1

0 en−1 a(n−1)
n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

It remains to find a recipe for determining the transformation Sn. We illustrate the method for S1

which we assume takes the form
S1 =

(
1 0T

0 P

)
,

308

12.5 – Diagonalization through the Householder’s method for tridiagonalization

with 0T being a zero row vector, 0T = {0, 0, · · · } of dimension (n − 1). The matrix P is symmetric
with dimension ((n− 1)× (n− 1)) satisfying P2 = I and PT = P. A possible choice which fullfils the
latter two requirements is

P = I− 2uuT ,

where I is the (n− 1) unity matrix and u is an n− 1 column vector with norm uTu(inner product. Note
that uuT is an outer product giving a dimension ((n − 1) × (n − 1)). Each matrix element of P then
reads

Pij = δij − 2uiuj ,

where i and j range from 1 to n− 1. Applying the transformation S1 results in

ST
1 AS1 =

(
a11 (Pv)T

Pv A′

)
,

where vT = {a21, a31, · · · , an1} and P must satisfy (Pv)T = {k, 0, 0, · · · }. Then

Pv = v − 2u(uT v) = ke, (12.6)

with eT = {1, 0, 0, . . . 0}. Solving the latter equation gives us u and thus the needed transformation P.
We do first however need to compute the scalar k by taking the scalar product of the last equation with
its transpose and using the fact that P2 = I. We get then

(Pv)T Pv = k2 = vTv = |v|2 =
n∑

i=2

a2
i1,

which determines the constant k = ±v. Now we can rewrite Eq. (12.6) as

v − ke = 2u(uT v),

and taking the scalar product of this equation with itself and obtain

2(uT v)2 = (v2 ± a21v), (12.7)

which finally determines

u =
v− ke

2(uTv)
.

In solving Eq. (12.7) great care has to be exercised so as to choose those values which make the right-
hand largest in order to avoid loss of numerical precision. The above steps are then repeated for every
transformations till we have a tridiagonal matrix suitable for obtaining the eigenvalues.

12.5.2 Diagonalization of a tridiagonal matrix

The matrix is now transformed into tridiagonal form and the last step is to transform it into a diagonal
matrix giving the eigenvalues on the diagonal.

Before we discuss the algorithms, we note that the eigenvalues of a tridiagonal matrix can be obtained
using the characteristic polynomial

P (λ) = det(λI −A) =
n∏

i=1

(λi − λ) ,

309

Eigensystems

which rewritten in matrix form reads

P (λ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

d1 − λ e1 0 0 . . . 0 0
e1 d2 − λ e2 0 . . . 0 0
0 e2 d3 − λ e3 0 . . . 0

. .
0 dNstep−2 − λ eNstep−1

0 eNstep−1 dNstep−1 − λ

⎞

⎟⎟⎟⎟⎟⎟⎠

We can solve this equation in a recursive manner. We let Pk(λ) be the value of k subdeterminant of the
above matrix of dimension n × n. The polynomial Pk(λ) is clearly a polynomial of degree k. Starting
with P1(λ) we have P1(λ) = d1 − λ. The next polynomial reads P2(λ) = (d2 − λ)P1(λ) − e2

1. By
expanding the determinant for Pk(λ) in terms of the minors of the nth column we arrive at the recursion
relation

Pk(λ) = (dk − λ)Pk−1(λ)− e2
k−1Pk−2(λ).

Together with the starting values P1(λ) and P2(λ) and good root searching methods we arrive at an
efficient computational scheme for finding the roots of Pn(λ). However, for large matrices this algorithm
is rather inefficient and time-consuming.

The programs which performs these transformations are matrix A −→ tridiagonal matrix −→
diagonal matrix

C: void trd2(double ∗∗a, int n, double d[], double e[])
void tqli(double d[], double[], int n, double ∗∗z)

Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, z)

The last step through the function tqli() involves several technical details. Let us describe the basic idea
in terms of a four-dimensional example. For more details, see Ref. [25], in particular chapters seven and
eight.

The current tridiagonal matrix takes the form

A =

⎛

⎜⎜⎝

d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3

0 0 e3 d4

⎞

⎟⎟⎠ .

As a first observation, if any of the elements ei are zero the matrix can be separated into smaller pieces
before diagonalization. Specifically, if e1 = 0 then d1 is an eigenvalue. Thus, let us introduce a transfor-
mation S1

S1 =

⎛

⎜⎜⎝

cos θ 0 0 sin θ
0 0 0 0
0 0 0 0

− sin θ 0 0 cos θ

⎞

⎟⎟⎠

Then the similarity transformation

ST
1 AS1 = A′ =

⎛

⎜⎜⎝

d′1 e′1 0 0
e′1 d2 e2 0
0 e2 d3 e′3
0 0 e′3 d′4

⎞

⎟⎟⎠

310

12.6 – Schrödinger’s equation through diagonalization

produces a matrix where the primed elements in A′ have been changed by the transformation whereas
the unprimed elements are unchanged. If we now choose θ to give the element a

′

21 = e
′

= 0 then we
have the first eigenvalue = a

′

11 = d
′

1.
This procedure can be continued on the remaining three-dimensional submatrix for the next eigen-

value. Thus after four transformations we have the wanted diagonal form.

12.6 Schrödinger’s equation through diagonalization

Instead of solving the Schrödinger equation as a differential equation, we will solve it through diago-
nalization of a large matrix. However, in both cases we need to deal with a problem with boundary
conditions, viz., the wave function goes to zero at the endpoints.

To solve the Schrödinger equation as a matrix diagonalization problem, let us study the radial part of
the Schrödinger equation. The radial part of the wave function, R(r), is a solution to

−
!2

2m

(
1

r2

d

dr
r2 d

dr
−

l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r).

Then we substitute R(r) = (1/r)u(r) and obtain

−
!2

2m

d2

dr2
u(r) +

(
V (r) +

l(l + 1)

r2

!2

2m

)
u(r) = Eu(r).

We introduce a dimensionless variable ρ = (1/α)r where α is a constant with dimension length and get

−
!2

2mα2

d2

dρ2
u(r) +

(
V (ρ) +

l(l + 1)

ρ2

!2

2mα2

)
u(ρ) = Eu(ρ).

In the example below, we will replace the latter equation with that for the one-dimensional harmonic
oscillator. Note however that the procedure which we give below applies equally well to the case of e.g.,
the hydrogen atom. We replace ρwith x, take away the centrifugal barrier term and set the potential equal
to

V (x) =
1

2
kx2,

with k being a constant. In our solution we will use units so that k = ! = m = α = 1 and the
Schrödinger equation for the one-dimensional harmonic oscillator becomes

−
d2

dx2
u(x) + x2u(x) = 2Eu(x).

Let us now see howwe can rewrite this equation as a matrix eigenvalue problem. First we need to compute
the second derivative. We use here the following expression for the second derivative of a function f

f ′′ =
f(x + h)− 2f(x) + f(x− h)

h2
+ O(h2), (12.8)

where h is our step. Next we define minimum and maximum values for the variable x, Rmin and Rmax,
respectively. With a given number of steps, Nstep, we then define the step h as

h =
Rmax −Rmin

Nstep
.

311

Eigensystems

If we now define an arbitrary value of x as

xi = Rmin + ih i = 1, 2, . . . ,Nstep − 1

we can rewrite the Schrödinger equation for xi as

−
u(xk + h)− 2u(xk) + u(xk − h)

h2
+ x2

ku(xk) = 2Eu(xk),

or in a more compact way

−
uk+1 − 2uk + uk−1

h2
+ x2

kuk = −
uk+1 − 2uk + uk−1

h2
+ Vkuk = 2Euk,

where uk = u(xk), uk±1 = u(xk ± h) and Vk = x2
k, the given potential. Let us see how this recipe may

lead to a matrix reformulation of the Schrödinger equation. Define first the diagonal matrix element

dk =
2

h2
+ Vk,

and the non-diagonal matrix element
ek = −

1

h2
.

In this case the non-diagonal matrix elements are given by a mere constant. All non-diagonal matrix
elements are equal. With these definitions the Schrödinger equation takes the following form

dkuk + ek−1uk−1 + ek+1uk+1 = 2Euk,

where uk is unknown. Since we have Nstep − 1 values of k we can write the latter equation as a matrix
eigenvalue problem
⎛

⎜⎜⎜⎜⎜⎜⎝

d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0

. .
0 dNstep−2 eNstep−1

0 eNstep−1 dNstep−1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

u1

u2

. . .

. . .

. . .
uNstep−1

⎞

⎟⎟⎟⎟⎟⎟⎠
= 2E

⎛

⎜⎜⎜⎜⎜⎜⎝

u1

u2

. . .

. . .

. . .
uNstep−1

⎞

⎟⎟⎟⎟⎟⎟⎠
(12.9)

or if we wish to be more detailed, we can write the tridiagonal matrix as
⎛

⎜⎜⎜⎜⎜⎜⎝

2
h2 + V1 − 1

h2 0 0 . . . 0 0
− 1

h2
2
h2 + V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 + V3 − 1

h2 0 . . . 0
. .
0 2

h2 + VNstep−2 − 1
h2

0 − 1
h2

2
h2 + VNstep−1

⎞

⎟⎟⎟⎟⎟⎟⎠
(12.10)

This is a matrix problem with a tridiagonal matrix of dimension Nstep − 1 × Nstep − 1 and will
thus yield Nstep − 1 eigenvalues. It is important to notice that we do not set up a matrix of dimension
Nstep×Nstep since we can fix the value of the wave function at k = Nstep. Similarly, we know the wave
function at the other end point, that is for x0.

312

12.6 – Schrödinger’s equation through diagonalization

The above equation represents an alternative to the numerical solution of the differential equation for
the Schrödinger equation discussed in chapter 14.

The eigenvalues of the harmonic oscillator in one dimension are well known. In our case, with all
constants set equal to 1, we have

En = n +
1

2
,

with the ground state being E0 = 1/2. Note however that we have rewritten the Schrödinger equation so
that a constant 2 stands in front of the energy. Our program will then yield twice the value, that is we will
obtain the eigenvalues 1, 3, 5, 7..

In the next subsection we will try to delineate how to solve the above equation. A program listing is
also included.

12.6.1 Numerical solution of the Schrödinger equation by diagonalization

The algorithm for solving Eq. (12.9) may take the following form

– Define values forNstep,Rmin andRmax. These values define in turn the step size h. Typical values
for Rmax and Rmin could be 10 and −10 respectively for the lowest-lying states. The number of
mesh points Nstep could be in the range 100 to some thousands. You can check the stability of the
results as functions of Nstep − 1 and Rmax and Rmin against the exact solutions.

– Construct then two one-dimensional arrays which contain all values of xk and the potential Vk.
For the latter it can be convenient to write a small function which sets up the potential as function
of xk. For the three-dimensional case you may also need to include the centrifugal potential. The
dimension of these two arrays should go from 0 up to Nstep.

– Construct thereafter the one-dimensional vectors d and e, where d stands for the diagonal matrix
elements and e the non-diagonal ones. Note that the dimension of these two arrays runs from 1 up
to Nstep − 1, since we know the wave function u at both ends of the chosen grid.

– We are now ready to obtain the eigenvalues by calling the function tqli which can be found on the
web page of the course. Calling tqli, you have to transfer the matrices d and e, their dimension
n = Nstep−1 and a matrix z of dimension Nstep−1×Nstep−1which returns the eigenfunctions.
On return, the array d contains the eigenvalues. If z is given as the unity matrix on input, it returns
the eigenvectors. For a given eigenvalue k, the eigenvector is given by the column k in z, that is
z[][k] in C, or z(:,k) in Fortran 90.

– TQLI does however not return an ordered sequence of eigenvalues. You may then need to sort
them as e.g., an ascending series of numbers. The program we provide includes a sorting function
as well.

– Finally, you may perhaps need to plot the eigenfunctions as well, or calculate some other expec-
tation values. Or, you would like to compare the eigenfunctions with the analytical answers for
the harmonic oscillator or the hydrogen atom. We provide a function plot which has as input one
eigenvalue chosen from the output of tqli. This function gives you a normalized wave function u
where the norm is calculated as

∫ Rmax

Rmin

|u(x)|2 dx→ h

Nstep∑

i=0

u2
i = 1,

and we have used the trapezoidal rule for integration discussed in chapter 7.

313

Eigensystems

12.6.2 Program example and results for the one-dimensional harmonic oscillator

We present here a program example which encodes the above algorithm. The corresponding Fortran
90/95 program is at programs/chapter12/program1.f90.

/∗
So l v e s t h e one−p a r t i c l e S ch rod ing e r e q u a t i o n
f o r a p o t e n t i a l s p e c i f i e d i n f u n c t i o n
p o t e n t i a l () . Th i s example i s f o r t h e harmonic o s c i l l a t o r

∗ /
inc lude <cmath>
inc lude < io s t r e am >
inc lude < f s t r e am >
inc lude <iomanip >
inc lude
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e am o f i l e ;

/ / f u n c t i o n d e c l a r a t i o n s

void i n i t i a l i s e (double&, double&, i n t&, i n t&) ;
double p o t e n t i a l (double) ;
i n t comp (cons t double ∗ , cons t double ∗) ;
void ou t p u t (double , double , i n t , double ∗) ;

i n t main (i n t argc , char∗ a rgv [])
{
i n t i , j , max_step , o r b _ l ;
double r_min , r_max , s t e p , cons t_1 , cons t_2 , o r b _ f a c t o r ,

∗e , ∗d , ∗w, ∗ r , ∗∗ z ;
char ∗ o u t f i l e n am e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are t oo few command− l i n e argumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n am e) ;
/ / Read i n da ta
i n i t i a l i s e (r_min , r_max , o r b_ l , max_step) ;
/ / i n i t i a l i s e c o n s t a n t s
s t e p = (r_max − r_min) / max_step ;
con s t _2 = −1.0 / (s t e p ∗ s t e p) ;
c on s t _1 = − 2 . 0 ∗ con s t _2 ;
o r b _ f a c t o r = o r b _ l ∗ (o r b _ l + 1) ;

/ / l o c a l memory f o r r and t h e p o t e n t i a l w[r]
r = new double [max_step + 1] ;

314

12.6 – Schrödinger’s equation through diagonalization

w = new double [max_step + 1] ;
f o r (i = 0 ; i <= max_step ; i ++) {
r [i] = r_min + i ∗ s t e p ;
w[i] = p o t e n t i a l (r [i]) + o r b _ f a c t o r / (r [i] ∗ r [i]) ;

}
/ / l o c a l memory f o r t h e d i a g o n a l i z a t i o n p r o c e s s
d = new double [max_step] ; / / d i agona l e l emen t s
e = new double [max_step] ; / / t r i d i a g o n a l o f f−d iagona l e l emen t s
z = (double ∗∗) ma t r i x (max_step , max_step , s i z e o f (double)) ;
f o r (i = 0 ; i < max_step ; i ++) {
d [i] = con s t _1 + w[i + 1] ;
e [i] = con s t _2 ;
z [i] [i] = 1 . 0 ;
f o r (j = i + 1 ; j < max_step ; j ++) {
z [i] [j] = 0 . 0 ;

}
}
/ / d i a g o n a l i z e and o b t a i n e i g e n v a l u e s
t q l i (d , e , max_step − 1 , z) ;
/ / S o r t e i g e n v a l u e s as an a sc end ing s e r i e s
q s o r t (d , (UL) max_step − 1 , s i z e o f (double) ,

(i n t (∗) (cons t vo id ∗ , cons t vo id ∗)) comp) ;
/ / send r e s u l t s t o oupu t f i l e
ou t p u t (r_min , r_max , max_step , d) ;
d e l e t e [] r ; d e l e t e [] w; d e l e t e [] e ; d e l e t e [] d ;
f r e e _m a t r i x ((void ∗∗) z) ; / / f r e e memory
o f i l e . c l o s e () ; / / c l o s e o u t p u t f i l e
re turn 0 ;

} / / End : f u n c t i o n main ()

/∗
The f u n c t i o n p o t e n t i a l ()
c a l c u l a t e s and r e t u r n t h e v a l u e o f t h e
p o t e n t i a l f o r a g i v e n argument x .
The p o t e n t i a l here i s f o r t h e 1−dim harmonic o s c i l l a t o r

∗ /

double p o t e n t i a l (double x)
{

re turn x∗x ;

} / / End : f u n c t i o n p o t e n t i a l ()

/∗
The f u n c t i o n i n t comp ()
i s a u t i l i t y f u n c t i o n f o r t h e l i b r a r y f u n c t i o n q s o r t ()
t o s o r t doub le numbers a f t e r i n c r e a s i n g v a l u e s .

∗ /

i n t comp (cons t double ∗ val_1 , cons t double ∗ va l _2)
{
i f ((∗ va l _1) <= (∗ va l _2)) re turn −1;
e l s e i f ((∗ va l _1) > (∗ va l _2)) re turn +1 ;

315

Eigensystems

e l s e re turn 0 ;
} / / End : f u n c t i o n comp ()

/ / read i n min and max rad iu s , number o f mesh p o i n t s and l
void i n i t i a l i s e (double& r_min , double& r_max , i n t& orb_ l , i n t& max_step)
{
cou t << ;
c i n >> r_min ;
cou t << ;
c i n >> r_max ;
cou t << ;
c i n >> o r b _ l ;
c ou t << ;
c i n >> max_step ;

} / / end o f f u n c t i o n i n i t i a l i s e
/ / o u t p u t o f r e s u l t s
void ou t p u t (double r_min , double r_max , i n t max_step , double ∗d)
{
i n t i ;
o f i l e << << end l ;
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << << setw (1 5) << s e t p r e c i s i o n (8) << r_min << end l ;
o f i l e << << setw (1 5) << s e t p r e c i s i o n (8) << r_max << end l ;
o f i l e << << setw (1 5) << max_step << end l ;
o f i l e << << end l ;
f o r (i = 0 ; i < 5 ; i ++) {
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << d [i] << end l ;

}
} / / end o f f u n c t i o n o u t p u t

There are several features to be noted in this program.
The main program calls the function initialise, which reads in the minimum and maximum values of

r, the number of steps and the orbital angular momentum l. Thereafter we allocate place for the vectors
containing r and the potential, given by the variables r[i] and w[i], respectively. We also set up the
vectors d[i] and e[i] containing the diagonal and non-diagonal matrix elements. Calling the function tqli
we obtain in turn the unsorted eigenvalues. The latter are sorted by the intrinsic C-function qsort.

The calculaton of the wave function for the lowest eigenvalue is done in the function plot, while all
output of the calculations is directed to the fuction output.

The included table exhibits the precision achieved as function of the number of mesh points N . The
exact values are 1, 3, 5, 7, 9.

Table 12.1: Five lowest eigenvalues as functions of the number of mesh points N with rmin = −10 and
rmax = 10.

N E0 E1 E2 E3 E4

50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+00 8.568442E+00
100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E+00 8.896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E+00 8.974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E+00 8.993599E+00
1000 1.000053E+00 2.999917E+00 4.999723E+00 6.999353E+00 8.999016E+00

316

12.6 – Schrödinger’s equation through diagonalization

The agreement with the exact solution improves with increasing numbers of mesh points. However,
the agreement for the excited states is by no means impressive. Moreover, as the dimensionality in-
creases, the time consumption increases dramatically. Matrix diagonalization scales typically as ≈ N 3.
In addition, there is a maximum size of a matrix which can be stored in RAM.

The obvious question which then arises is whether this scheme is nothing but a mere example of
matrix diagonalization, with few practical applications of interest. In chapter 6, where we deal with
interpolation and extrapolation, we discussed also a called Richardson’s deferred extrapolation scheme.
Applied to this particualr case, the philosophy of this scheme would be to diagonalize the above matrix
for a set of values of N and thereby the step length h. Thereafter, an extrapolation is made to h → 0.
The obtained eigenvalues agree then with a remarkable precision with the exact solution. The algorithm
is then as follows

– Perform a series of diagonalizations of the matrix in Eq. (12.10) for different
values of the step size h. We obtain then a series of eigenvalues E(h/2k) with
k = 0, 1, 2, That will give us an array of ’x-values’ h, h/2, h/4, . . . and an
array of ’y-values’ E(h), E(h/2), E(h/4), Note that you will have such a set
for each eigenvalue.

– Use these values to perform an extrapolation calling e.g., the function POLINT with
the point where we wish to extrapolate to given by h = 0.

– End the iteration over k when the error returned by POLINT is smaller than a fixed
test.

The results for the 10 lowest-lying eigenstates for the one-dimensional harmonic oscillator are listed
below after just 3 iterations, i.e., the step size has been reduced to h/8 only. The exact results are
1, 3, 5, . . . , 19 and we see that the agreement is just excellent for the extrapolated results. The results
after diagonalization differ already at the fourth-fifth digit.

Parts of a Fortran90 program which includes Richardson’s extrapolation scheme is included here. It
performs five diagonalizations and establishes results for various step lengths and interpolates using the
function POLINT.

! s t a r t loop over i n t e r p o l a t i o n s , here we s e t max i n t e r p o l a t i o n s t o 5
DO i n t e r p o l =1 , 5

IF (i n t e r p o l == 1) THEN
max_step= s t a r t _ s t e p

ELSE
max_step =(i n t e r p o l −1)∗2∗ s t a r t _ s t e p

ENDIF
n=max_step−1
ALLOCATE (e (n) , d (n))
ALLOCATE (w(0 : max_step) , r (0 : max_step))
d =0 . ; e =0 .

! d e f i n e t h e s t e p s i z e
s t e p =(rmax−rmin) /FLOAT(max_step)
hh (i n t e r p o l) = s t e p ∗ s t e p

! d e f i n e c o n s t a n t s f o r t h e ma t r i x t o be d i a g o n a l i z e d
c o n s t 1 = 2 . / (s t e p ∗ s t e p)

317

Eigensystems

Table 12.2: Result for numerically calculated eigenvalues of the one-dimensional harmonic oscillator
after three iterations starting with a matrix of size 100 × 100 and ending with a matrix of dimension
800× 800. These four values are then used to extrapolate the 10 lowest-lying eigenvalues to h = 0.. The
values of x span from −10 to 10, that means that the starting step was h = 20/100 = 0.2. We list here
only the results after three iterations. The error test was set equal 10−6.

Extrapolation Diagonalization Error
0.100000D+01 0.999931D+00 0.206825D-10
0.300000D+01 0.299965D+01 0.312617D-09
0.500000D+01 0.499910D+01 0.174602D-08
0.700000D+01 0.699826D+01 0.605671D-08
0.900000D+01 0.899715D+01 0.159170D-07
0.110000D+02 0.109958D+02 0.349902D-07
0.130000D+02 0.129941D+02 0.679884D-07
0.150000D+02 0.149921D+02 0.120735D-06
0.170000D+02 0.169899D+02 0.200229D-06
0.190000D+02 0.189874D+02 0.314718D-06

c o n s t 2 =−1 . / (s t e p ∗ s t e p)
! s e t up r , t h e d i s t a n c e from t h e n u c l e u s and t h e f u n c t i o n w f o r energy

=0
! w co r re spond s t h en t o t h e p o t e n t i a l
! v a l u e s a t

DO i =0 , max_step
r (i) = rmin+ i ∗ s t e p
w(i) = p o t e n t i a l (r (i))

ENDDO
! s e t u p t h e d i agona l d and t h e non−d iagona l p a r t e o f
! t h e t r i d i a g o n a l ma t r i x ma t r i x t o be d i a g o n a l i z e d

d (1 : n) = c o n s t 1+w(1 : n) ; e (1 : n) = c o n s t 2
! a l l o c a t e space f o r e i g e n v e c t o r i n f o

ALLOCATE (z (n , n))
! o b t a i n t h e e i g e n v a l u e s

CALL t q l i (d , e , n , z)
! s o r t e i g e n v a l u e s as an a sc end ing s e r i e s

CALL e i g e n v a l u e _ s o r t (d , n)
DEALLOCATE (z)
e r r 1 =0 .

! t h e i n t e r p o l a t i o n p a r t s t a r t s here
DO l =1 ,20

e r r 2 =0 .
v a l u e (i n t e r p o l , l) =d (l)
i n p=d (l)
IF (i n t e r p o l > 1) THEN

CALL p o l i n t (hh , v a l u e (: , l) , i n t e r p o l , 0 . d0 , inp , e r r 2)
e r r 1 =MAX(e r r 1 , e r r 2)
WRITE(6 , ’ (D12 . 6 , 2X, D12 . 6 , 2X, D12 . 6) ’) inp , d (l) , e r r 1

ELSE

318

12.7 – Discussion of BLAS and LAPACK functionalities

WRITE(6 , ’ (D12 . 6 , 2X, D12 . 6 , 2X, D12 . 6) ’) d (l) , d (l) , e r r 1
ENDIF

ENDDO
DEALLOCATE (w, r , d , e)

ENDDO

12.7 Discussion of BLAS and LAPACK functionalities

In preparation for fall 2008.

12.8 Physics projects: Bound states in momentum space

In this problem we will solve the Schrödinger equation in momentum space for the deuteron. The
deuteron has only one bound state at an energy of−2.223MeV. The ground state is given by the quantum
numbers l = 0, S = 1 and J = 1, with l, S, and J the relative orbital momentum, the total spin and
the total angular momentum, respectively. These quantum numbers are the sum of the single-particle
quantum numbers. The deuteron consists of a proton and neutron, with mass (average) of 938MeV. The
electron is not included in the solution of the Schrödinger equation since its mass is much smaller than
those of the proton and the neutron. We can neglect it here. This means that e.g., the total spin S is the
sum of the spin of the neutron and the proton. The above three quantum numbers can be summarized
in the spectroscopic notation 2S+1lJ =3 S1, where S represents l = 0 here. It is a spin triplet state.
The spin wave function is thus symmetric. This also applies to the spatial part, since l = 0. To obtain
a totally anti-symmetric wave function we need to introduce another quantum number, namely isospin.
The deuteron has isospin T = 0, which gives a final wave function which is anti-symmetric.

We are going to use a simplified model for the interaction between the neutron and the proton. We
will assume that it goes like

V (r) = V0
exp (−µr)

r
, (12.11)

where µ has units m−1 and serves to screen the potential for large values of r. The variable r is the
distance between the proton and the neutron. It is the relative coordinate, the centre of mass is not needed
in this problem. The nucleon-nucleon interaction has a finite and small range, typically of some few fm1.
We will in this exercise set µ = 0.7 fm−1. It is then proportional to the mass of the pion. The pion is the
lightest meson, and sets therefore the range of the nucleon-nucleon interaction. For low-energy problems
we can describe the nucleon-nucleon interaction through meson-exchange models, and the pion is the
lightest known meson, with mass of approximately 138 MeV.

Since we are going to solve the Schrödinger equation in momentum, we need the Fourier transform
of V (r). In a partial wave basis for l = 0 it becomes

V (k′, k) =
V0

4k′k
ln

(
(k′ + k)2 + µ2

(k′ − k)2 + µ2

)
, (12.12)

where k′ and k are the relative momenta for the proton and neutron system.

11 fm = 10−15 m.

319

Eigensystems

For relative coordinates, the Schrödinger equation in momentum space becomes

k2

m
ψ(k) +

2

π

∫ ∞

0
dpp2V (k, p)ψ(p) = Eψ(k). (12.13)

Here we have used units ! = c = 1. This means that k has dimension energy. This is the equation we
are going to solve, with eigenvalue E and eigenfunction ψ(k). The approach to solve this equations goes
then as follows.

First we need to evaluate the integral over p using e.g., gaussian quadrature. This means that we
rewrite an integral like

∫ b

a
f(x)dx ≈

N∑

i=1

ωif(xi),

where we have fixed N lattice points through the corresponding weights ωi and points xi. The integral
in Eq. (12.13) is rewritten as

2

π

∫ ∞

0
dpp2V (k, p)ψ(p) ≈

2

π

N∑

i=1

ωip
2
i V (k, pi)ψ(pi). (12.14)

We can then rewrite the Schrödinger equation as

k2

m
ψ(k) +

2

π

N∑

j=1

ωjp
2
jV (k, pj)ψ(pj) = Eψ(k). (12.15)

Using the same mesh points for k as we did for p in the integral evaluation, we get

p2
i

m
ψ(pi) +

2

π

N∑

j=1

ωjp
2
jV (pi, pj)ψ(pj) = Eψ(pi), (12.16)

with i, j = 1, 2, . . . ,N . This is a matrix eigenvalue equation and if we define an N ×N matrixH to be

Hij =
p2

i

m
δij +

2

π
ωjp

2
jV (pi, pj), (12.17)

where δij is the Kronecker delta, and an N × 1 vector

Ψ =

⎛

⎜⎜⎜⎜⎝

ψ(p1)
ψ(p2)
. . .
. . .

ψ(pN)

⎞

⎟⎟⎟⎟⎠
, (12.18)

we have the eigenvalue problem
HΨ = EΨ. (12.19)

The algorithm for solving the last equation may take the following form

– Fix the number of mesh points N .

320

12.8 – Physics projects: Bound states in momentum space

– Use the function gauleg in the program library to set up the weights ωi and the points pi. Before
you go on you need to recall that gauleg uses the Legendre polynomials to fix the mesh points
and weights. This means that the integral is for the interval [-1,1]. Your integral is for the interval
[0,∞]. You will need to map the weights from gauleg to your interval. To do this, call first gauleg,
with a = −1, b = 1. It returns the mesh points and weights. You then map these points over to the
limits in your integral. You can then use the following mapping

pi = const× tan
{π

4
(1 + xi)

}
,

and
ωi = const

π

4

wi

cos2
(

π
4 (1 + xi)

) .

const is a constant which we discuss below.

– Construct thereafter the matrixH with

V (pi, pj) =
V0

4pipj
ln

(
(pj + pi)2 + µ2

(pj − pi)2 + µ2

)
.

– We are now ready to obtain the eigenvalues. We need first to rewrite the matrix H in tridiagonal
form. Do this by calling the library function tred2. This function returns the vector d with the
diagonal matrix elements of the tridiagonal matrix while e are the non-diagonal ones. To obtain the
eigenvalues we call the function tqli. On return, the array d contains the eigenvalues. If z is given
as the unity matrix on input, it returns the eigenvectors. For a given eigenvalue k, the eigenvector
is given by the column k in z, that is z[][k] in C, or z(:,k) in Fortran 90.

The problem to solve

1. Before you write the main program for the above algorithm make a dimensional analysis of Eq.
(12.13)! You can choose units so that pi and ωi are in fm−1. This is the standard unit for the
wave vector. Recall then to insert !c in the appropriate places. For this case you can set the
value of const = 1. You could also choose units so that the units of pi and ωi are in MeV. (we have
previously used so-called natural units ! = c = 1). You will then need to multiply µwith !c = 197
MeVfm to obtain the same units in the expression for the potential. Why? Show that V (pi, pj)
must have units MeV−2. What is the unit of V0? If you choose these units you should also multiply
the mesh points and the weights with !c = 197. That means, set the constant const = 197.

2. Write your own program so that you can solve the Schrödinger equation in momentum space.

3. Adjust the value of V0 so that you get close to the experimental value of the binding energy of the
deuteron, −2.223MeV. Which sign should V0 have?

4. Try increasing the number of mesh points in steps of 8, for example 16, 24, etc and see how the
energy changes. Your program returns equally many eigenvalues as mesh points N . Only the true
ground state will be at negative energy.

321

Chapter 13

Differential equations

If God has made the world a perfect mechanism, he has at least conceded so much to our
imperfect intellect that in order to predict little parts of it, we need not solve innumerable
differential equations, but can use dice with fair success. Max Born, quoted in H. R. Pagels,
The Cosmic Code [64]

13.1 Introduction

We may trace the origin of differential equations back to Newton in 16871 and his treatise on the gravita-
tional force and what is known to us as Newton’s second law in dynamics.

Needless to say, differential equations pervade the sciences and are to us the tools by which we
attempt to express in a concise mathematical language the laws of motion of nature. We uncover these
laws via the dialectics between theories, simulations and experiments, and we use them on a daily basis
which spans from applications in engineering or financial engineering to basic research in for example
biology, chemistry, mechanics, physics, ecological models or medicine.

We have already met the differential equation for radioactive decay in nuclear physics. Other famous
differential equations are Newton’s law of cooling in thermodynamics. the wave equation, Maxwell’s
equations in electromagnetism, the heat equation in thermodynamic, Laplace’s equation and Poisson’s
equation, Einstein’s field equation in general relativity, Schrödinger equation in quantum mechanics,
the Navier-Stokes equations in fluid dynamics, the Lotka-Volterra equation in population dynamics, the
Cauchy-Riemann equations in complex analysis and the Black-Scholes equation in finance, just to men-
tion a few. An excellent text on differential equations and computations is the text of Eriksson, Estep,
Hansbo and Johnson [65].

There are five main types of differential equations,

– ordinary differential equations (ODEs), discussed in this chapter for initial value problems only.
They contain functions of one independent variable, and derivatives in that variable. The next
chapter deals with ODEs and boundary value problems.

– Partial differential equations with functions of multiple independent variables and their partial
derivatives, covered in chapter 15.

1Newton had most of the relations for his laws ready 22 years earlier, when according to legend he was contemplating falling
apples. However, it took more than two decades before he published his theories, chiefly because he was lacking an essential
mathematical tool, differential calculus.

323

Differential equations

– So-called delay differential equations that involve functions of one dependent variable, derivatives
in that variable, and depend on previous states of the dependent variables.

– Stochastic differential equations (SDEs) are differential equations in which one or more of the
terms is a stochastic process, thus resulting in a solution which is itself a stochastic process.

– Finally we have so-called differential algebraic equations (DAEs). These are differential equation
comprising differential and algebraic terms, given in implicit form.

In this chapter we restrict the attention to ordinary differential equations. We focus on initial value
problems and present some of the more commonly used methods for solving such problems numerically.
The physical systems which are discussed range from the classical pendulum with non-linear terms to
the physics of a neutron star or a white dwarf.

13.2 Ordinary differential equations

In this section we will mainly deal with ordinary differential equations and numerical methods suitable
for dealing with them. However, before we proceed, a brief remainder on differential equations may be
appropriate.

– The order of the ODE refers to the order of the derivative on the left-hand side in the equation

dy

dt
= f(t, y). (13.1)

This equation is of first order and f is an arbitrary function. A second-order equation goes typically
like

d2y

dt2
= f(t,

dy

dt
, y). (13.2)

A well-known second-order equation is Newton’s second law

m
d2x

dt2
= −kx, (13.3)

where k is the force constant. ODE depend only on one variable, whereas

– partial differential equations like the time-dependent Schrödinger equation

i!
∂ψ(x, t)

∂t
=

!2

2m

(
∂2ψ(r, t)

∂x2
+
∂2ψ(r, t)

∂y2
+
∂2ψ(r, t)

∂z2

)
+ V (x)ψ(x, t), (13.4)

may depend on several variables. In certain cases, like the above equation, the wave function can be
factorized in functions of the separate variables, so that the Schrödinger equation can be rewritten
in terms of sets of ordinary differential equations.

– We distinguish also between linear and non-linear differential equation where e.g.,

dy

dt
= g3(t)y(t), (13.5)

is an example of a linear equation, while

dy

dt
= g3(t)y(t)− g(t)y2(t), (13.6)

324

13.3 – Finite difference methods

is a non-linear ODE. Another concept which dictates the numerical method chosen for solving an
ODE, is that of initial and boundary conditions. To give an example, in our study of neutron stars
below, we will need to solve two coupled first-order differential equations, one for the total mass
m and one for the pressure P as functions of ρ

dm

dr
= 4πr2ρ(r)/c2,

and
dP

dr
= −

Gm(r)

r2
ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are dictated by the mass being zero at the
center of the star, i.e., when r = 0, yieldingm(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at the point where we have P = 0 in the solution
of the integral equations, we have the total radius R of the star and the total massm(r = R). These
two conditions dictate the solution of the equations. Since the differential equations are solved by
stepping the radius from r = 0 to r = R, so-called one-step methods (see the next section) or
Runge-Kutta methods may yield stable solutions.

In the solution of the Schrödinger equation for a particle in a potential, we may need to apply
boundary conditions as well, such as demanding continuity of the wave function and its derivative.

– In many cases it is possible to rewrite a second-order differential equation in terms of two first-
order differential equations. Consider again the case of Newton’s second law in Eq. (13.3). If we
define the position x(t) = y(1)(t) and the velocity v(t) = y(2)(t) as its derivative

dy(1)(t)

dt
=

dx(t)

dt
= y(2)(t), (13.7)

we can rewrite Newton’s second law as two coupled first-order differential equations

m
dy(2)(t)

dt
= −kx(t) = −ky(1)(t), (13.8)

and
dy(1)(t)

dt
= y(2)(t). (13.9)

13.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather simple. Suppose
we have an initial value for the function y(t) given by

y0 = y(t = t0). (13.10)

We are interested in solving a differential equation in a region in space [a,b]. We define a step h by
splitting the interval in N sub intervals, so that we have

h =
b− a

N
. (13.11)

325

Differential equations

With this step and the derivative of y we can construct the next value of the function y at

y1 = y(t1 = t0 + h), (13.12)

and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on fixed-step methods only. Let us try to generalize
the above procedure by writing the step yi+1 in terms of the previous step yi

yi+1 = y(t = ti + h) = y(ti) + h∆(ti, yi(ti)) + O(hp+1), (13.13)

where O(hp+1) represents the truncation error. To determine ∆, we Taylor expand our function y

yi+1 = y(t = ti + h) = y(ti) + h(y′(ti) + · · · + y(p)(ti)
hp−1

p!
) + O(hp+1), (13.14)

where we will associate the derivatives in the parenthesis with

∆(ti, yi(ti)) = (y′(ti) + · · · + y(p)(ti)
hp−1

p!
). (13.15)

We define
y′(ti) = f(ti, yi) (13.16)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti) + hf(ti, yi) + O(h2), (13.17)

which when complemented with ti+1 = ti + h forms the algorithm for the well-known Euler method.
Note that at every step we make an approximation error of the order of O(h2), however the total error is
the sum over all steps N = (b − a)/h, yielding thus a global error which goes like NO(h2) ≈ O(h).
To make Euler’s method more precise we can obviously decrease h (increase N). However, if we are
computing the derivative f numerically by e.g., the two-steps formula

f ′
2c(x) =

f(x + h)− f(x)

h
+ O(h),

we can enter into roundoff error problems when we subtract two almost equal numbers f(x+h)−f(x) ≈
0. Euler’s method is not recommended for precision calculation, although it is handy to use in order to
get a first view on how a solution may look like. As an example, consider Newton’s equation rewritten
in Eqs. (13.8) and (13.9). We define y0 = y(1)(t = 0) an v0 = y(2)(t = 0). The first steps in Newton’s
equations are then

y(1)
1 = y0 + hv0 + O(h2) (13.18)

and
y(2)
1 = v0 − hy0k/m + O(h2). (13.19)

The Euler method is asymmetric in time, since it uses information about the derivative at the beginning
of the time interval. This means that we evaluate the position at y (1)

1 using the velocity at y(2)
0 = v0. A

simple variation is to determine y(1)
n+1 using the velocity at y

(2)
n+1, that is (in a slightly more generalized

form)
y(1)

n+1 = y(1)
n + hy(2)

n+1 + O(h2) (13.20)

326

13.3 – Finite difference methods

and
y(2)

n+1 = y(2)
n + han + O(h2). (13.21)

The acceleration an is a function of an(y(1)
n , y(2)

n , t) and needs to be evaluated as well. This is the Euler-
Cromer method.

Let us then include the second derivative in our Taylor expansion. We have then

∆(ti, yi(ti)) = f(ti) +
h

2

df(ti, yi)

dt
+ O(h3). (13.22)

The second derivative can be rewritten as

y′′ = f ′ =
df

dt
=
∂f

∂t
+
∂f

∂y

∂y

∂t
=
∂f

∂t
+
∂f

∂y
f (13.23)

and we can rewrite Eq. (13.14) as

yi+1 = y(t = ti + h) = y(ti) + hf(ti) +
h2

2

(
∂f

∂t
+
∂f

∂y
f

)
+ O(h3), (13.24)

which has a local approximation error O(h3) and a global error O(h2). These approximations can be
generalized by using the derivative f to arbitrary order so that we have

yi+1 = y(t = ti + h) = y(ti) + h(f(ti, yi) + . . . f (p−1)(ti, yi)
hp−1

p!
) + O(hp+1). (13.25)

These methods, based on higher-order derivatives, are in general not used in numerical computation,
since they rely on evaluating derivatives several times. Unless one has analytical expressions for these,
the risk of roundoff errors is large.

13.3.1 Improvements to Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addition the need
for computing a second derivative, is the so-called midpoint method. We have then

y(1)
n+1 = y(1)

n +
h

2

(
y(2)

n+1 + y(2)
n

)
+ O(h2) (13.26)

and
y(2)

n+1 = y(2)
n + han + O(h2), (13.27)

yielding

y(1)
n+1 = y(1)

n + hy(2)
n +

h2

2
an + O(h3) (13.28)

implying that the local truncation error in the position is now O(h3), whereas Euler’s or Euler-Cromer’s
methods have a local error of O(h2). Thus, the midpoint method yields a global error with second-order
accuracy for the position and first-order accuracy for the velocity. However, although these methods yield
exact results for constant accelerations, the error increases in general with each time step.

One method that avoids this is the so-called half-step method. Here we define

y(2)
n+1/2 = y(2)

n−1/2 + han + O(h2), (13.29)

327

Differential equations

and
y(1)

n+1 = y(1)
n + hy(2)

n+1/2 + O(h2). (13.30)

Note that this method needs the calculation of y(2)
1/2. This is done using e.g., Euler’s method

y(2)
1/2 = y(2)

0 +
h

2
a0 + O(h2). (13.31)

As this method is numerically stable, it is often used instead of Euler’s method. Another method which
one may encounter is the Euler-Richardson method with

y(2)
n+1 = y(2)

n + han+1/2 + O(h2), (13.32)

and
y(1)

n+1 = y(1)
n + hy(2)

n+1/2 + O(h2). (13.33)

13.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy

dt
= f(t, y),

which solved with Euler’s algorithm results in the following algorithm

yi+1 ≈ y(ti) + hf(ti, yi)

with ti+1 = ti + h. This means geometrically that we compute the slope at yi and use it to predict yi+1

at a later time ti+1. We introduce k1 = f(ti, yi) and rewrite our prediction for yi+1 as

yi+1 ≈ y(ti) + hk1.

We can then use the prediction yi+1 to compute a new slope at ti+1 by defining k2 = f(ti+1, yi+1). We
define the new value of yi+1 by taking the average of the two slopes, resulting in

yi+1 ≈ y(ti) +
h

2
(k1 + k2).

The algorithm is very simple,namely

1. Compute the slope at ti, that is define the quantity k1 = f(ti, yi).

2. Make a predicition for the solution by computing yi+1 ≈ y(ti) + hk1 by Euler’s method.

3. Use the predicition yi+1 to compute a new slope at ti+1 defining the quantity k2 = f(ti+1, yi+1).

4. Correct the value of yi+1 by taking the average of the two slopes yielding yi+1 ≈ y(ti)+
h
2 (k1+k2).

It can be shown [29] that this procedure results in a mathematical truncation which goes like O(h2),
to be contrasted with Euler’s method which runs as O(h). One additional function evaluation yields a
better error estimate.

328

13.4 – More on finite difference methods, Runge-Kutta methods

This simple algorithm conveys the philosophy of a large class of methods called predictor-corrector
methods, see chapter 15 of Ref. [22] for additional algorithms. A simple extension is obviously to use
Simpson’s method to approximate the integral

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt,

when we solve the differential equation by successive integrations. The next section deals with a partic-
ular class of efficient methods for solving ordinary differential equations, namely various Runge-Kutta
methods.

13.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general better algo-
rithms for solutions of an ODE. The basic philosophy is that it provides an intermediate step in the
computation of yi+1.

To see this, consider first the following definitions

dy

dt
= f(t, y), (13.34)

and
y(t) =

∫
f(t, y)dt, (13.35)

and

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt. (13.36)

To demonstrate the philosophy behind RK methods, let us consider the second-order RK method, RK2.
The first approximation consists in Taylor expanding f(t, y) around the center of the integration interval
ti to ti+1, i.e., at ti + h/2, h being the step. Using the midpoint formula for an integral, defining
y(ti + h/2) = yi+1/2 and ti + h/2 = ti+1/2, we obtain

∫ ti+1

ti

f(t, y)dt ≈ hf(ti+1/2, yi+1/2) + O(h3). (13.37)

This means in turn that we have

yi+1 = yi + hf(ti+1/2, yi+1/2) + O(h3). (13.38)

However, we do not know the value of yi+1/2. Here comes thus the next approximation, namely, we use
Euler’s method to approximate yi+1/2. We have then

y(i+1/2) = yi +
h

2

dy

dt
= y(ti) +

h

2
f(ti, yi). (13.39)

This means that we can define the following algorithm for the second-order Runge-Kutta method, RK2.

k1 = hf(ti, yi), (13.40)

329

Differential equations

k2 = hf(ti+1/2, yi + k1/2), (13.41)

with the final value
yi+i ≈ yi + k2 + O(h3). (13.42)

The difference between the previous one-step methods is that we now need an intermediate step in
our evaluation, namely ti + h/2 = t(i+1/2) where we evaluate the derivative f . This involves more
operations, but the gain is a better stability in the solution. The fourth-order Runge-Kutta, RK4, which
we will employ in the solution of various differential equations below, is easily derived. The steps are as
follows. We start again with the equation

yi+1 = yi +

∫ ti+1

ti

f(t, y)dt,

but instead of approximating the integral with the midpoint rule, we use now Simpsons’ rule at t i + h/2,
h being the step. Using Simpson’s formula for an integral, defining y(ti +h/2) = yi+1/2 and ti +h/2 =
ti+1/2, we obtain

∫ ti+1

ti

f(t, y)dt ≈
h

6

[
f(ti, yi) + 4f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
+ O(h5). (13.43)

This means in turn that we have

yi+1 = yi +
h

6

[
f(ti, yi) + 4f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
+ O(h5). (13.44)

However, we do not know the values of yi+1/2 and yi+1. The fourth-order Runge-Kutta method splits the
midpoint evaluations in two steps, that is we have

yi+1 ≈ yi +
h

6

[
f(ti, yi) + 2f(ti+1/2, yi+1/2) + 2f(ti+1/2, yi+1/2) + f(ti+1, yi+1)

]
,

since we want to approximate the slope at yi+1/2 in two steps. The first two function evaluations are as
for the second order Runge-Kutta method. The algorithm is as follows

1. We compute first
k1 = hf(ti, yi), (13.45)

which is nothing but the slope at ti.If we stop here we have Euler’s method.

2. Then we compute the slope at the midpoint using Euler’s method to predict yi+1/2, as in the second-
order Runge-Kutta method. This leads to the computation of

k2 = hf(ti + h/2, yi + k1/2). (13.46)

3. The improved slope at the midpoint is used to further improve the slope of yi+1/2 by computing

k3 = hf(ti + h/2, yi + k2/2). (13.47)

4. With the latter slope we can in turn predict the value of yi+1 via the computation of

k4 = hf(ti + h, yi + k3). (13.48)

330

13.5 – Adaptive Runge-Kutta and multistep methods

5. The final algorithm becomes then

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) . (13.49)

Thus, the algorithm consists in first calculating k1 with ti, y1 and f as inputs. Thereafter, we increase
the step size by h/2 and calculate k2, then k3 and finally k4. With this caveat, we can then obtain the
new value for the variable y. It results in four function evaluations, but the accuracy is increased by
two orders compared with the second-order Runge-Kutta method. The fourth order Runge-Kutta method
has a global truncation error which goes like O(h4). Fig. 13.1 gives a geometrical interpretation of the
fourth-order Runge-Kutta method.

✲

y

t

✻

ti

yi and k1

yi+1 and k4

yi+1/2 and k2

yi+1/2 and k3

ti + h/2 ti + h

Figure 13.1: Geometrical interpretation of the fourth-order Runge-Kutta method. The derivative is
evaluated at four points, once at the intial point, twice at the trial midpoint and once at the trial end-
point. These four derivatives constitute one Runge-Kutta step resulting in the final value for y i+1 =
yi + 1/6(k1 + 2k2 + 2k3 + k4).

13.5 Adaptive Runge-Kutta and multistep methods

In preparation.

331

Differential equations

x

k
m v

Figure 13.2: Block tied to a wall with a spring tension acting on it.

13.6 Physics examples

13.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding on a
horizontal frictionless surface. The block is tied to a wall with a spring, portrayed in e.g., Fig. 13.2. If
the spring is not compressed or stretched too far, the force on the block at a given position x is

F = −kx. (13.50)

The negative sign means that the force acts to restore the object to an equilibrium position. Newton’s
equation of motion for this idealized system is then

m
d2x

dt2
= −kx, (13.51)

or we could rephrase it as
d2x

dt2
= −

k

m
x = −ω2

0x, (13.52)

with the angular frequency ω2
0 = k/m.

The above differential equation has the advantage that it can be solved analytically with solutions on
the form

x(t) = Acos(ω0t + ν),

where A is the amplitude and ν the phase constant. This provides in turn an important test for the
numerical solution and the development of a program for more complicated cases which cannot be solved
analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential equation as
two coupled first-order differential equations. With the position x(t) and the velocity v(t) = dx/dt we
can reformulate Newton’s equation in the following way

dx(t)

dt
= v(t), (13.53)

332

13.6 – Physics examples

and
dv(t)

dt
= −ω2

0x(t). (13.54)

We are now going to solve these equations using the Runge-Kutta method to fourth order discussed
previously. Before proceeding however, it is important to note that in addition to the exact solution, we
have at least two further tests which can be used to check our solution.

Since functions like cos are periodic with a period 2π, then the solution x(t) has also to be periodic.
This means that

x(t + T) = x(t), (13.55)

with T the period defined as
T =

2π

ω0
=

2π√
k/m

. (13.56)

Observe that T depends only on k/m and not on the amplitude of the solution or the constant ν.
In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s, (13.57)

meaning that block is at rest at t = 0 but with a potential energy

E0 =
1

2
kx(t = 0)2 =

1

2
k. (13.58)

The total energy at any time t has however to be conserved, meaning that our solution has to fulfil the
condition

E0 =
1

2
kx(t)2 +

1

2
mv(t)2. (13.59)

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choice v(t = 0) = 0 and some fixed
value for the position. Since we are going to test our results against the periodicity requirement, it
is convenient to set the final time equal tf = 2π, where we choose k/m = 1. The initial time is
set equal to ti = 0. You could alternatively read in the ratio k/m.

2. Choose the method you wish to employ in solving the problem. In the enclosed program we have
chosen the fourth-order Runge-Kutta method. Subdivide the time interval [ti, tf] into a grid with
step size

h =
tf − ti

N
,

where N is the number of mesh points.

3. Calculate now the total energy given by

E0 =
1

2
kx(t = 0)2 =

1

2
k.

and use this when checking the numerically calculated energy from the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtain xi+1 and vi+1 starting from the previous values xi and
vi..

333

Differential equations

5. When we have computed x(v)i+1 we upgrade ti+1 = ti + h.

6. This iterative process continues till we reach the maximum time tf = 2π.

7. The results are checked against the exact solution. Furthermore, one has to check the stability of
the numerical solution against the chosen number of mesh points N .

Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here, with a corresponding Fortran
90/95 code at programs/chapter13/program1.f90

/∗ Th is program s o l v e s Newton ’ s e q u a t i o n f o r a block
s l i d i n g on a h o r i z o n t a l f r i c t i o n l e s s s u r f a c e . The block
i s t i e d to a wa l l wi th a sp r i ng , and Newton ’ s e q u a t i o n
t a k e s t h e form

m d^2x / d t ^2 =−kx
wi th k t h e s p r i n g t e n s i o n and m t h e mass o f t h e block .
The a n g u l a r f r e q u e n c y i s omega^2 = k /m and we s e t i t e q u a l
1 in t h i s example program .

Newton ’ s e q u a t i o n i s r e w r i t t e n as two coup l ed d i f f e r e n t i a l
e q u a t i o n s , one f o r t h e po s i t i o n x and one f o r t h e v e l o c i t y v

dx / d t = v and
dv / d t = −x when we s e t k /m=1

We use t h e r e f o r e a two−d imen s i o n a l a r r a y to r e p r e s e n t x and v
as f u n c t i o n s o f t
y [0] == x
y [1] == v
dy [0] / d t = v
dy [1] / d t = −x

The d e r i v a t i v e s a r e c a l c u l a t e d by t h e u s e r d e f i n e d f unc t i on
d e r i v a t i v e s .

The u s e r has to s p e c i f y t h e i n i t i a l v e l o c i t y (u s u a l l y v_0 =0)
t h e number o f s t e p s and t h e i n i t i a l po s i t i o n . In t h e programme
below we f i x t h e t ime i n t e r v a l [a , b] to [0 , 2∗ p i] .

∗ /
i n c lude <cmath>
i n c lude < io s t r e am >
i n c lude < f s t r e am >
i n c lude <iomanip >
i n c lude
u s i n g namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e am o f i l e ;
/ / f unc t i on d e c l a r a t i o n s
vo id d e r i v a t i v e s (double , double ∗ , double ∗) ;
vo id i n i t i a l i s e (double&, double&, i n t &) ;

334

13.6 – Physics examples

vo id o u t p u t (double , double ∗ , double) ;
vo id r u n g e _ k u t t a _ 4 (double ∗ , double ∗ , i n t , double , double ,

double ∗ , vo id (∗) (double , double ∗ , double ∗)) ;

i n t main (i n t a rgc , ch a r ∗ a rgv [])
{
/ / d e c l a r a t i o n s o f v a r i a b l e s
double ∗y , ∗dydt , ∗yout , t , h , tmax , E0 ;
double i n i t i a l _ x , i n i t i a l _ v ;
i n t i , number_o f_s t eps , n ;
ch a r ∗ o u t f i l e n am e ;
/ / Read in ou t p u t f i l e , a b o r t i f t h e r e a r e t oo few command− l i n e

a rgumen t s
i f (a r g c <= 1) {
cou t << << argv [0] <<

<< end l ;
e x i t (1) ;

}
e l s e {
o u t f i l e n am e=argv [1] ;

}
o f i l e . open (o u t f i l e n ame) ;
/ / t h i s i s t h e number o f d i f f e r e n t i a l e q u a t i o n s
n = 2 ;
/ / a l l o c a t e sp a c e in memory f o r t h e a r r a y s c o n t a i n i n g t h e d e r i v a t i v e s
dyd t = new double [n] ;
y = new double [n] ;
you t = new double [n] ;
/ / read in t h e i n i t i a l po s i t i o n , v e l o c i t y and number o f s t e p s
i n i t i a l i s e (i n i t i a l _ x , i n i t i a l _ v , numbe r_o f _ s t ep s) ;
/ / s e t t i n g i n i t i a l v a l u e s , s t e p s i z e and max t ime tmax
h = 4 .∗ acos (−1 .) / ((double) n umbe r_o f _ s t ep s) ; / / t h e s t e p s i z e
tmax = h∗ numbe r_o f _ s t ep s ; / / t h e f i n a l t ime
y [0] = i n i t i a l _ x ; / / i n i t i a l po s i t i o n
y [1] = i n i t i a l _ v ; / / i n i t i a l v e l o c i t y
t = 0 . ; / / i n i t i a l t ime
E0 = 0 . 5∗y [0]∗ y [0] +0 . 5∗ y [1]∗ y [1] ; / / t h e i n i t i a l t o t a l ene rgy
/ / now we s t a r t s o l v i n g t h e d i f f e r e n t i a l e q u a t i o n s u s i n g t h e RK4 method
whi le (t <= tmax) {
d e r i v a t i v e s (t , y , dyd t) ; / / i n i t i a l d e r i v a t i v e s
r u n g e _ k u t t a _ 4 (y , dydt , n , t , h , you t , d e r i v a t i v e s) ;
f o r (i = 0 ; i < n ; i ++) {
y [i] = you t [i] ;

}
t += h ;
o u t p u t (t , y , E0) ; / / wr i t e to f i l e

}
d e l e t e [] y ; d e l e t e [] dyd t ; d e l e t e [] you t ;
o f i l e . c l o s e () ; / / c l o s e ou t p u t f i l e
re turn 0 ;

} / / End o f main f unc t i on

/ / Read in f rom sc r e e n t h e number o f s t e p s ,

335

Differential equations

/ / i n i t i a l po s i t i o n and i n i t i a l speed
vo id i n i t i a l i s e (double& i n i t i a l _ x , double& i n i t i a l _ v , i n t&

numbe r_o f _ s t ep s)
{
cou t << ;
c i n >> i n i t i a l _ x ;
cou t << ;
c i n >> i n i t i a l _ v ;
cou t << ;
c i n >> numbe r_o f _ s t ep s ;
} / / end o f f unc t i on i n i t i a l i s e

/ / t h i s f unc t i on s e t s up t h e d e r i v a t i v e s f o r t h i s s p e c i a l case
vo id d e r i v a t i v e s (double t , double ∗y , double ∗ dyd t)
{
dyd t [0]= y [1] ; / / d e r i v a t i v e o f x
dyd t [1]=−y [0] ; / / d e r i v a t i v e o f v

} / / end o f f unc t i on d e r i v a t i v e s

/ / f unc t i on to wr i t e out t h e f i n a l r e s u l t s
vo id o u t p u t (double t , double ∗y , double E0)
{
o f i l e << s e t i o s f l a g s (i o s : : showpo in t | i o s : : u p p e r c a s e) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << t ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << y [0] ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << y [1] ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << cos (t) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) <<
0 . 5∗ y [0]∗ y [0] +0 . 5∗ y [1]∗ y [1]−E0 << end l ;

} / / end o f f unc t i on ou t p u t

/∗ Th is f unc t i on upg r ad e s a f unc t i on y (i n p u t a s a po in t e r)
and r e t u r n s t h e r e s u l t yout , a l s o as a po in t e r . Note t h a t
t h e s e v a r i a b l e s a r e d e c l a r e d as a r r a y s . I t a l s o r e c e i v e s as
i n p u t t h e s t a r t i n g v a l u e f o r t h e d e r i v a t i v e s in t h e po in t e r
dydx . I t r e c e i v e s a l s o t h e v a r i a b l e n which r e p r e s e n t s t h e
number o f d i f f e r e n t i a l e q u a t i o n s , t h e s t e p s i z e h and
t h e i n i t i a l v a l u e o f x . I t r e c e i v e s a l s o t h e name o f t h e
f unc t i on ∗ d e r i v s where t h e g i v en d e r i v a t i v e i s computed

∗ /
vo id r u n g e _ k u t t a _ 4 (double ∗y , double ∗dydx , i n t n , double x , double h ,

double ∗yout , vo id (∗ d e r i v s) (double , double ∗ , double
∗))

{
i n t i ;
double xh , hh , h6 ;
double ∗dym , ∗dyt , ∗ y t ;
/ / a l l o c a t e sp a c e f o r l o c a l v e c t o r s
dym = new double [n] ;
d y t = new double [n] ;
y t = new double [n] ;
hh = h ∗ 0 . 5 ;
h6 = h / 6 . ;

336

13.6 – Physics examples

xh = x+hh ;
f o r (i = 0 ; i < n ; i ++) {
y t [i] = y [i]+ hh∗dydx [i] ;

}
(∗ d e r i v s) (xh , y t , d y t) ; / / c ompu t a t i o n o f k2 , eq . 3 . 60
f o r (i = 0 ; i < n ; i ++) {
y t [i] = y [i]+ hh∗ dy t [i] ;

}
(∗ d e r i v s) (xh , y t , dym) ; / / c ompu t a t i o n o f k3 , eq . 3 . 61
f o r (i =0 ; i < n ; i ++) {
y t [i] = y [i]+ h∗dym[i] ;
dym[i] += dy t [i] ;

}
(∗ d e r i v s) (x+h , y t , d y t) ; / / c ompu t a t i o n o f k4 , eq . 3 . 62
/ / now we upgrade y in t h e a r r a y you t
f o r (i = 0 ; i < n ; i ++) {
you t [i] = y [i]+ h6 ∗ (dydx [i]+ dy t [i] +2 . 0∗dym[i]) ;

}
d e l e t e [] dym ;
d e l e t e [] dy t ;
d e l e t e [] y t ;

} / / end o f f unc t i on Runge−k u t t a 4

In Fig. 13.3 we exhibit the development of the difference between the calculated energy and the exact
energy at t = 0 after two periods and with N = 1000 and N = 10000 mesh points. This figure
demonstrates clearly the need of developing tests for checking the algorithm used. We see that even for
N = 1000 there is an increasing difference between the computed energy and the exact energy after only
two periods.

13.6.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call such a
motion for damped and the system is said to be dissipative rather than conservative. Considering again
the simple block sliding on a plane, we could try to implement such a dissipative behavior through a drag
force which is proportional to the first derivative of x, i.e., the velocity. We can then expand Eq. (13.52)
to

d2x

dt2
= −ω2

0x− ν
dx

dt
, (13.60)

where ν is the damping coefficient, being a measure of the magnitude of the drag term.
We could however counteract the dissipative mechanism by applying e.g., a periodic external force

F (t) = Bcos(ωt), (13.61)

and we rewrite Eq. (13.60) as
d2x

dt2
= −ω2

0x− ν
dx

dt
+ F (t). (13.62)

Although we have specialized to a block sliding on a surface, the above equations are rather general
for quite many physical systems.

If we replace x by the chargeQ, ν with the resistanceR, the velocity with the current I , the inductance
L with the mass m, the spring constant with the inverse capacitance C and the force F with the voltage

337

Differential equations

-3e-11

-2.5e-11

-2e-11

-1.5e-11

-1e-11

-5e-12

0

0 2 4 6 8 10 12 14

∆E(t)

T

N = 1000

-3e-15

-2.5e-15

-2e-15

-1.5e-15

-1e-15

-5e-16

0

5e-16

0 2 4 6 8 10 12 14

∆E(t)

T

N = 10000

Figure 13.3: Plot of ∆E(t) = E0 − Ecomputed for N = 1000 and N = 10000 time steps up to two
periods. The initial position x0 = 1 m and initial velocity v0 = 0 m/s. The mass and spring tension are
set to k = m = 1.

338

13.6 – Physics examples

V

L

C

R

Figure 13.4: Simple RLC circuit with a voltage source V .

drop V , we rewrite Eq. (13.62) as

L
d2Q

dt2
+

Q

C
+ R

dQ

dt
= V (t). (13.63)

The circuit is shown in Fig. 13.4.
How did we get there? We have defined an electric circuit which consists of a resistance R with

voltage drop IR, a capacitor with voltage drop Q/C and an inductor L with voltage drop LdI/dt. The
circuit is powered by an alternating voltage source and using Kirchhoff’s law, which is a consequence of
energy conservation, we have

V (t) = IR + LdI/dt + Q/C, (13.64)

and using

I =
dQ

dt
, (13.65)

we arrive at Eq. (13.63).
This section was meant to give you a feeling of the wide range of applicability of the methods we have

discussed. However, before leaving this topic entirely, we’ll dwelve into the problems of the pendulum,
from almost harmonic oscillations to chaotic motion!

13.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massm at the end of a rigid rod of length l attached to say a fixed frictionless
pivot which allows the pendulum to move freely under gravity in the vertical plane as illustrated in
Fig. 13.5.

The angular equation of motion of the pendulum is again given by Newton’s equation, but now as a
nonlinear differential equation

ml
d2θ

dt2
+ mgsin(θ) = 0, (13.66)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (13.67)

and
a = l

d2θ

dt2
. (13.68)

339

Differential equations

mg

mass m

length l

pivot

θ

Figure 13.5: A simple pendulum.

For small angles, we can use the approximation

sin(θ) ≈ θ.

and rewrite the above differential equation as

d2θ

dt2
= −

g

l
θ, (13.69)

which is exactly of the same form as Eq. (13.52). We can thus check our solutions for small values of θ
against an analytical solution. The period is now

T =
2π√
l/g

. (13.70)

We do however expect that the motion will gradually come to an end due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = 0, (13.71)

where ν is now a positive constant parameterizing the viscosity of the medium in question. In order
to maintain the motion against viscosity, it is necessary to add some external driving force. We choose
here, in analogy with the discussion about the electric circuit, a periodic driving force. The last equation
becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = Acos(ωt), (13.72)

withA and ω two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.

340

13.6 – Physics examples

If we now define the natural frequency

ω0 =
√

g/l, (13.73)

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t, (13.74)

with the dimensionless driving frequency
ω̂ =

ω

ω0
, (13.75)

and introducing the quantity Q, called the quality factor,

Q =
mg

ω0ν
, (13.76)

and the dimensionless amplitude

Â =
A

mg
(13.77)

we can rewrite Eq. (13.72) as

d2θ

dt̂2
+

1

Q

dθ

dt̂
+ sin(θ) = Âcos(ω̂t̂). (13.78)

This equation can in turn be recast in terms of two coupled first-order differential equations as follows

dθ

dt̂
= v̂, (13.79)

and
dv̂

dt̂
= −

v̂

Q
− sin(θ) + Âcos(ω̂t̂). (13.80)

These are the equations to be solved. The factor Q represents the number of oscillations of the
undriven system that must occur before its energy is significantly reduced due to the viscous drag. The
amplitude Â is measured in units of the maximum possible gravitational torque while ω̂ is the angular
frequency of the external torque measured in units of the pendulum’s natural frequency.

13.6.4 Spinning magnet

Another simple example is that of e.g., a compass needle that is free to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. The equation is then

d2θ

dt2
= −

µ

I
B0cos(ωt)sin(θ), (13.81)

where θ is the angle of the needle with respect to a fixed axis along the field, µ is the magnetic moment
of the needle, I its moment of inertia and B0 and ω the amplitude and angular frequency of the magnetic
field respectively.

341

Differential equations

13.7 Physics Project: the pendulum

13.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through numerical efforts,
it is always useful to check our numerical code against analytic solutions. For small angles θ, we have
sinθ ≈ θ and our equations become

dθ

dt̂
= v̂, (13.82)

and
dv̂

dt̂
= −

v̂

Q
− θ + Âcos(ω̂t̂). (13.83)

These equations are linear in the angle θ and are similar to those of the sliding block or the RLC circuit.
With given initial conditions v̂0 and θ0 they can be solved analytically to yield

θ(t) =
[
θ0 − Â(1−ω̂2)

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ) (13.84)

+
[
v̂0 + θ0

2Q −
Â(1−3ω̂2)/2Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ) +
Â(1−ω̂2)cos(ω̂τ)+ ω̂

Q sin(ω̂τ)

(1−ω̂2)2+ω̂2/Q2 ,

and

v̂(t) =
[
v̂0 − Âω̂2/Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ) (13.85)

−
[
θ0 + v̂0

2Q −
Â[(1−ω̂2)−ω̂2/Q2]
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ) +
ω̂Â[−(1−ω̂2)sin(ω̂τ)+ ω̂

Q cos(ω̂τ)]

(1−ω̂2)2+ω̂2/Q2 ,

with Q > 1/2. The first two terms depend on the initial conditions and decay exponentially in time. If
we wait long enough for these terms to vanish, the solutions become independent of the initial conditions
and the motion of the pendulum settles down to the following simple orbit in phase space

θ(t) =
Â(1− ω̂2)cos(ω̂τ) + ω̂

Qsin(ω̂τ)

(1− ω̂2)2 + ω̂2/Q2
, (13.86)

and

v̂(t) =
ω̂Â[−(1− ω̂2)sin(ω̂τ) + ω̂

Qcos(ω̂τ)]

(1− ω̂2)2 + ω̂2/Q2
, (13.87)

tracing the closed phase-space curve
(
θ

Ã

)2

+

(
v̂

ω̂Ã

)2

= 1 (13.88)

with

Ã =
Â√

(1− ω̂2)2 + ω̂2/Q2
. (13.89)

This curve forms an ellipse whose principal axes are θ and v̂. This curve is closed, as we will see from
the examples below, implying that the motion is periodic in time, the solution repeats itself exactly after
each period T = 2π/ω̂. Before we discuss results for various frequencies, quality factors and amplitudes,
it is instructive to compare different numerical methods. In Fig. 13.6 we show the angle θ as function
of time τ for the case with Q = 2, ω̂ = 2/3 and Â = 0.5. The length is set equal to 1 m and mass of

342

13.7 – Physics Project: the pendulum

the pendulum is set equal to 1 kg. The inital velocity is v̂0 = 0 and θ0 = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), Euler-Richardson’s method in
Eqs. (13.32)-(13.33) and finally the fourth-order Runge-Kutta scheme RK4. We note that after few time
steps, we obtain the classical harmonic motion. We would have obtained a similar picture if we were
to switch off the external force, Â = 0 and set the frictional damping to zero, i.e., Q = 0. Then, the
qualitative picture is that of an idealized harmonic oscillation without damping. However, we see that
Euler’s method performs poorly and after a few steps its algorithmic simplicity leads to results which
deviate considerably from the other methods. In the discussion hereafter we will thus limit ourselves to

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30 35

θ

t/2π

RK4
Euler

Halfstep
Euler-Richardson

Figure 13.6: Plot of θ as function of time τ with Q = 2, ω̂ = 2/3 and Â = 0.5. The mass and length
of the pendulum are set equal to 1. The initial velocity is v̂0 = 0 and θ0 = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), the half-step method, Euler-
Richardson’s method in Eqs. (13.32)-(13.33) and finally the fourth-order Runge-Kutta scheme RK4. Only
N = 100 integration points have been used for a time interval t ∈ [0, 10π].

present results obtained with the fourth-order Runge-Kutta method.
The corresponding phase space plot is shown in Fig. 13.7, for the same parameters as in Fig. 13.6. We

observe here that the plot moves towards an ellipse with periodic motion. This stable phase-space curve is
called a periodic attractor. It is called attractor because, irrespective of the initial conditions, the trajectory
in phase-space tends asymptotically to such a curve in the limit τ → ∞. It is called periodic, since it
exhibits periodic motion in time, as seen from Fig. 13.6. In addition, we should note that this periodic
motion shows what we call resonant behavior since the the driving frequency of the force approaches the
natural frequency of oscillation of the pendulum. This is essentially due to the fact that we are studying
a linear system, yielding the well-known periodic motion. The non-linear system exhibits a much richer
set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation we change the initial conditions to say
θ0 = 0.3 but keep the other parameters equal to the previous case. The curve for θ is shown in Fig. 13.8.
The corresponding phase-space curve is shown in Fig. 13.9. This curve demonstrates that with the above
given sets of parameters, after a certain number of periods, the phase-space curve stabilizes to the same

343

Differential equations

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

v̂

θ

Figure 13.7: Phase-space curve of a linear damped pendulum with Q = 2, ω̂ = 2/3 and Â = 0.5. The
inital velocity is v̂0 = 0 and θ0 = 0.01.

-1

-0.5

0

0.5

1

0 10 20 30 40 50

θ

t̂

Figure 13.8: Plot of θ as function of time τ with Q = 2, ω̂ = 2/3 and Â = 0.5. The mass of the
pendulum is set equal to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

344

13.7 – Physics Project: the pendulum

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

v̂

θ

Figure 13.9: Phase-space curve with Q = 2, ω̂ = 2/3 and Â = 0.5. The mass of the pendulum is set
equal to 1 kg and its length l = 1 m.. The inital velocity is v̂0 = 0 and θ0 = 0.3.

curve as in the previous case, irrespective of initial conditions. However, it takes more time for the
pendulum to establish a periodic motion and when a stable orbit in phase-space is reached the pendulum
moves in accordance with the driving frequency of the force. The qualitative picture is much the same as
previously. The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude to Â = 1.35 we see in Fig. 13.10 that θ as function
of time exhibits a rather different behavior from Fig. 13.8, even though the initial conditions and all other
parameters except Â are the same. The phase-space curve is shown in Fig. 13.11.

We will explore these topics in more detail in Section 13.10 where we extend our discussion to the
phenomena of period doubling and its link to chaotic motion.

13.7.2 The pendulum code

The program used to obtain the results discussed above is presented here. The enclosed code solves the
pendulum equations for any angle θ with an external force Acos(ωt). It employes several methods for
solving the two coupled differential equations, from Euler’s method to adaptive size methods coupled
with fourth-order Runge-Kutta. It is straightforward to apply this program to other systems which exhibit
harmonic oscillations or change the functional form of the external force.

We have also introduced the class concept, where we define various methods for solving ordinary
and coupled first order differential equations via the . class pendulum. This methods access variables
which belong only to this particular class via the private declaration. As such, the methods we list here
can easily be reused by other types of ordinary differential equations. In the code below, we list only the
fourth order Runge Kutta method, which was used to generate the above figures. For the full code see
programs/chapter13/program2.cpp.

i n c lude < s t d i o . h>

345

Differential equations

-4

-3

-2

-1

0

1

2

3

4

0 20 40 60 80 100

θ

t̂

Figure 13.10: Plot of θ as function of time τ with Q = 2, ω̂ = 2/3 and Â = 1.35. The mass of the
pendulum is set equal to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3. Every time
θ passes the value ±π we reset its value to swing between θ ∈ [−π, pi]. This gives the vertical jumps in
amplitude.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-20 -15 -10 -5 0 5

v̂

θ

Figure 13.11: Phase-space curve after 10 periods with Q = 2, ω̂ = 2/3 and Â = 1.35. The mass of the
pendulum is set equal to 1 kg and its length l = 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

346

13.7 – Physics Project: the pendulum

i n c lude < i o s t r e am . h>
i n c lude <math . h>
i n c lude < f s t r e am . h>
/∗
D i f f e r e n t methods f o r s o l v i n g ODEs a r e p r e s e n t e d
We a r e s o l v i n g t h e f o l l ow i n g e q a t i o n :

m∗ l ∗ (p h i) ’ ’ + v i s c o s i t y ∗ (p h i) ’ + m∗g∗ s i n (ph i) = A∗ cos (omega∗ t)

I f you want to s o l v e s i m i l a r e q u a t i o n s wi th o t h e r v a l u e s you have to
r e w r i t e t h e methods ’ d e r i v a t i v e s ’ and ’ i n i t i a l i s e ’ and change t h e

v a r i a b l e s in t h e pr i v a t e
p a r t o f t h e c l a s s Pendulum

At f i r s t we r ew r i t e t h e e q u a t i o n u s i n g t h e f o l l ow i n g d e f i n i t i o n s :

omega_0 = s q r t (g∗ l)
t _ r o o f = omega_0∗ t
omega_roof = omega / omega_0
Q = (m∗g) / (omega_0∗ r e i b)
A_roof = A / (m∗g)

and we g e t a d im e n s i o n l e s s e q u a t i o n

(ph i) ’ ’ + 1 /Q∗ (p h i) ’ + s i n (ph i) = A_roof ∗ cos (omega_roof∗ t _ r o o f)

Th i s e q u a t i o n can be w r i t t e n as two e q u a t i o n s o f f i r s t o r d e r :

(p h i) ’ = v
(v) ’ = −v /Q − s i n (ph i) +A_roof ∗ cos (omega_roof∗ t _ r o o f)

A l l n ume r i c a l methods a r e a p p l i e d to t h e l a s t two e q u a t i o n s .
The a l g o r i t hm s a r e t a k e n from t h e book

∗ /

c l a s s pendelum
{
pr i v a t e :
double Q, A_roof , omega_0 , omega_roof , g ; / /
double y [2] ; / / f o r t h e i n i t i a l −v a l u e s o f ph i and v
i n t n ; / / how many s t e p s
double d e l t a _ t , d e l t a _ t _ r o o f ;

/ / D e f i n i t i o n o f methods to s o l v e ODEs
pub l i c :
vo id d e r i v a t i v e s (double , double ∗ , double ∗) ;
vo id i n i t i a l i s e () ;
vo id e u l e r () ;
vo id e u l e r _ c r ome r () ;
vo id m idpo in t () ;
vo id e u l e r _ r i c h a r d s o n () ;
vo id h a l f _ s t e p () ;
vo id rk2 () ; / / runge−ku t t a−second−o r d e r

347

Differential equations

vo id r k 4 _ s t e p (double , double ∗ , double ∗ , double) ; / / we need i t in
func t i on rk4 () and a sc ()

vo id rk4 () ; / / runge−ku t t a−f o u r t h−o r d e r
vo id a sc () ; / / runge−ku t t a−f o u r t h−o r d e r wi th a d a p t i v e s t e p s i z e c o n t r o l

} ;

/ / Th i s f unc t i on d e f i n e s t h e p a r t i c u l a r coup l ed f i r s t o r d e r ODEs
vo id pendelum : : d e r i v a t i v e s (double t , double ∗ in , double ∗ out)
{ /∗ Here we a r e c a l c u l a t i n g t h e d e r i v a t i v e s a t (d im e n s i o n l e s s) t ime t

’ in ’ a r e t h e v a l u e s o f ph i and v , which a r e used f o r t h e c a l c u l a t i o n
The r e s u l t s a r e g i v en to ’ out ’ ∗ /

out [0]= in [1] ; / / out [0] = (ph i) ’ = v
i f (Q)
out [1]=− in [1] / ((double)Q)−s i n (in [0]) +A_roof ∗ cos (omega_roof∗ t) ; / / out

[1] = (ph i) ’ ’
e l s e
out [1]=− s i n (in [0]) +A_roof∗ cos (omega_roof∗ t) ; / / out [1] = (ph i) ’ ’

}
/ / Here we d e f i n e a l l i n p u t p a r ame t e r s .
vo id pendelum : : i n i t i a l i s e ()
{
double m, l , omega ,A, v i s c o s i t y , ph i_0 , v_0 , t _ end ;
cou t << ;
cout <<

;
cout << ;
cout << ;
cout << ;
c in >>m;
cout << ;
c in >> l ;
cou t << ;
c in >>omega ;
cout << ;
c in >>A;
cout << ;
c in >> v i s c o s i t y ;
cou t << ;
c in >>y [0] ;
cou t << ;
c in >>y [1] ;
cou t << ;
c in >>n ;
cout << ;
c in >> t_ end ;
t _ end ∗= acos (−1 .) ;
g =9 . 8 1 ;
/ / We need t h e f o l l ow i n g v a l u e s :
omega_0= s q r t (g / ((double) l)) ; / / omega o f t h e pendulum
i f (v i s c o s i t y) Q= m∗g / ((double) omega_0∗ v i s c o s i t y) ;
e l s e Q=0; / / c a l c u l a t i n g Q
A_roof=A / ((double)m∗g) ;

348

13.7 – Physics Project: the pendulum

omega_roof=omega / ((double) omega_0) ;
d e l t a _ t _ r o o f =omega_0∗ t _ end / ((double) n) ; / / d e l t a _ t w i t h o u t dimension
d e l t a _ t = t _ end / ((double) n) ;

}
/ / f o u r t h o r d e r Run
vo id pendelum : : r k 4 _ s t e p (double t , double ∗yin , double ∗yout , double d e l t a _ t)
{
/∗
The f unc t i on c a l c u l a t e s one s t e p o f f o u r t h−o rd e r−runge−ku t t a−method
We w i l l need i t f o r t h e normal f o u r t h−o rd e r−Runge−Kutta−method and
f o r RK−method wi th a d a p t i v e s t e p s i z e c o n t r o l

The f unc t i on c a l c u l a t e s t h e v a l u e o f y (t + d e l t a _ t) u s i n g f o u r t h−
o rd e r−RK−method

I n p u t : t ime t and t h e s t e p s i z e d e l t a _ t , y i n (v a l u e s o f ph i and v a t
t ime t)

Ou tpu t : you t (v a l u e s o f ph i and v a t t ime t + d e l t a _ t)

∗ /
double k1 [2] , k2 [2] , k3 [2] , k4 [2] , y_k [2] ;
/ / C a l c u l a t i o n o f k1
d e r i v a t i v e s (t , y in , you t) ;
k1 [1]= you t [1]∗ d e l t a _ t ;
k1 [0]= you t [0]∗ d e l t a _ t ;
y_k [0]= y in [0]+ k1 [0] ∗ 0 . 5 ;
y_k [1]= y in [1]+ k1 [1] ∗ 0 . 5 ;
/∗ Ca l c u l a t i o n o f k2 ∗ /
d e r i v a t i v e s (t + d e l t a _ t ∗0 . 5 , y_k , you t) ;
k2 [1]= you t [1]∗ d e l t a _ t ;
k2 [0]= you t [0]∗ d e l t a _ t ;
y_k [0]= y in [0]+ k2 [0] ∗ 0 . 5 ;
y_k [1]= y in [1]+ k2 [1] ∗ 0 . 5 ;
/∗ Ca l c u l a t i o n o f k3 ∗ /
d e r i v a t i v e s (t + d e l t a _ t ∗0 . 5 , y_k , you t) ;
k3 [1]= you t [1]∗ d e l t a _ t ;
k3 [0]= you t [0]∗ d e l t a _ t ;
y_k [0]= y in [0]+ k3 [0] ;
y_k [1]= y in [1]+ k3 [1] ;
/∗ Ca l c u l a t i o n o f k4 ∗ /
d e r i v a t i v e s (t + d e l t a _ t , y_k , you t) ;
k4 [1]= you t [1]∗ d e l t a _ t ;
k4 [0]= you t [0]∗ d e l t a _ t ;
/∗ Ca l c u l a t i o n o f new v a l u e s o f ph i and v ∗ /
you t [0]= y in [0] + 1 . 0 / 6 . 0 ∗ (k1 [0]+2∗ k2 [0]+2∗ k3 [0]+ k4 [0]) ;
you t [1]= y in [1] + 1 . 0 / 6 . 0 ∗ (k1 [1]+2∗ k2 [1]+2∗ k3 [1]+ k4 [1]) ;

}

vo id pendelum : : rk4 ()
{
/∗We a r e u s i n g t h e f o u r t h−o rd e r−Runge−Kutta−a l g o r i t hm
We have to c a l c u l a t e t h e p a r ame t e r s k1 , k2 , k3 , k4 f o r v and phi ,
so we use to a r r a y s k1 [2] and k2 [2] f o r t h i s
k1 [0] , k2 [0] a r e t h e p a r ame t e r s f o r ph i ,

349

Differential equations

k1 [1] , k2 [1] a r e t h e p a r ame t e r s f o r v
∗ /

i n t i ;
double t _ h ;
double you t [2] , y_h [2] ; / / k1 [2] , k2 [2] , k3 [2] , k4 [2] , y_k [2] ;

t _ h =0 ;
y_h [0]= y [0] ; / / p h i
y_h [1]= y [1] ; / / v
o f s t r e am f o u t () ;
f o u t . s e t f (i o s : : s c i e n t i f i c) ;
f o u t . p r e c i s i o n (2 0) ;
f o r (i =1 ; i <=n ; i ++) {
r k 4 _ s t e p (t_h , y_h , yout , d e l t a _ t _ r o o f) ;
f o u t << i ∗ d e l t a _ t << <<you t [0] < < <<you t [1] < < ;
t _h+= d e l t a _ t _ r o o f ;
y_h [0]= you t [0] ;
y_h [1]= you t [1] ;

}
f o u t . c l o s e ;

}

i n t main ()
{
pendelum t e s t c a s e ;
t e s t c a s e . i n i t i a l i s e () ;
t e s t c a s e . rk4 () ;
re turn 0 ;

} / / end o f main f unc t i on

13.8 Physics Project: studies of neutron stars

In the pendulum example we rewrote the equations as two differential equations in terms of so-called
dimensionless variables. One should always do that. There are at least two good reasons for doing this.

– By rewriting the equations as dimensionless ones, the program will most likely be easier to read,
with hopefully a better possibility of spotting eventual errors. In addtion, the various constants
which are pulled out of the equations in the process of rendering the equations dimensionless, are
reintroduced at the end of the calculation. If one of these constants is not correctly defined, it is
easier to spot an eventual error.

– In many physics applications, variables which enter a differential equation, may differ by orders of
magnitude. If we were to insist on not using dimensionless quantities, such differences can cause
serious problems with respect to loss of numerical precision.

An example which demonstrates these features is the set of equations for gravitational equilibrium
of a neutron star. We will not solve these equations numerically here, rather, we will limit ourselves to
merely rewriting these equations in a dimensionless form.

350

13.8 – Physics Project: studies of neutron stars

13.8.1 The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompted Landau to predict the existence of neutron
stars. The birth of such stars in supernovae explosions was suggested by Baade and Zwicky 1934. First
theoretical neutron star calculations were performed by Tolman, Oppenheimer and Volkoff in 1939 and
Wheeler around 1960. Bell and Hewish were the first to discover a neutron star in 1967 as a radio pulsar.
The discovery of the rapidly rotating Crab pulsar (rapidly rotating neutron star) in the remnant of the
Crab supernova observed by the chinese in 1054 A.D. confirmed the link to supernovae. Radio pulsars
are rapidly rotating with periods in the range 0.033 s ≤ P ≤ 4.0 s. They are believed to be powered by
rotational energy loss and are rapidly spinning down with period derivatives of order Ṗ ∼ 10−12−10−16.
Their high magnetic field B leads to dipole magnetic braking radiation proportional to the magnetic field
squared. One estimates magnetic fields of the order of B ∼ 1011 − 1013 G. The total number of pulsars
discovered so far has just exceeded 1000 before the turn of the millenium and the number is increasing
rapidly.

The physics of compact objects like neutron stars offers an intriguing interplay between nuclear pro-
cesses and astrophysical observables, see Refs. [66, 67, 68] for further information and references on
the physics of neutron stars. Neutron stars exhibit conditions far from those encountered on earth; typ-
ically, expected densities ρ of a neutron star interior are of the order of 103 or more times the density
ρd ≈ 4 · 1011 g/cm3 at ’neutron drip’, the density at which nuclei begin to dissolve and merge together.
Thus, the determination of an equation of state (EoS) for dense matter is essential to calculations of neu-
tron star properties. The EoS determines properties such as the mass range, the mass-radius relationship,
the crust thickness and the cooling rate. The same EoS is also crucial in calculating the energy released
in a supernova explosion.

Clearly, the relevant degrees of freedom will not be the same in the crust region of a neutron star,
where the density is much smaller than the saturation density of nuclear matter, and in the center of the
star, where density is so high that models based solely on interacting nucleons are questionable. Neutron
star models including various so-called realistic equations of state result in the following general picture
of the interior of a neutron star. The surface region, with typical densities ρ < 106 g/cm3, is a region in
which temperatures and magnetic fields may affect the equation of state. The outer crust for 106 g/cm3

< ρ < 4 · 1011g/cm3 is a solid region where a Coulomb lattice of heavy nuclei coexist in β-equilibrium
with a relativistic degenerate electron gas. The inner crust for 4 · 1011 g/cm3 < ρ < 2 · 1014g/cm3

consists of a lattice of neutron-rich nuclei together with a superfluid neutron gas and an electron gas. The
neutron liquid for 2 · 1014 g/cm3 < ρ < ·1015g/cm3 contains mainly superfluid neutrons with a smaller
concentration of superconducting protons and normal electrons. At higher densities, typically 2−3 times
nuclear matter saturation density, interesting phase transitions from a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, one may have a mixed phase of quark and
nuclear matter, kaon or pion condensates, hyperonic matter, strong magnetic fields in young stars etc.

13.8.2 Equilibrium equations

If the star is in thermal equilibrium, the gravitational force on every element of volume will be balanced
by a force due to the spacial variation of the pressure P . The pressure is defined by the equation of state
(EoS), recall e.g., the ideal gas P = NkBT . The gravitational force which acts on an element of volume
at a distance r is given by

FGrav = −
Gm

r2
ρ/c2, (13.90)

351

Differential equations

where G is the gravitational constant, ρ(r) is the mass density and m(r) is the total mass inside a radius
r. The latter is given by

m(r) =
4π

c2

∫ r

0
ρ(r′)r′2dr′ (13.91)

which gives rise to a differential equation for mass and density

dm

dr
= 4πr2ρ(r)/c2. (13.92)

When the star is in equilibrium we have

dP

dr
= −

Gm(r)

r2
ρ(r)/c2. (13.93)

The last equations give us two coupled first-order differential equations which determine the structure
of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zero at the center of the star, i.e., when r = 0,
we have m(r = 0) = 0. The other condition is that the pressure vanishes at the surface of the star. This
means that at the point where we have P = 0 in the solution of the differential equations, we get the total
radius R of the star and the total mass m(r = R). The mass-energy density when r = 0 is called the
central density ρs. Since both the final mass M and total radius R will depend on ρs, a variation of this
quantity will allow us to study stars with different masses and radii.

13.8.3 Dimensionless equations

When we now attempt the numerical solution, we need however to rescale the equations so that we deal
with dimensionless quantities only. To understand why, consider the value of the gravitational constant
G and the possible final massm(r = R) = MR. The latter is normally of the order of some solar masses
M⊙, with M⊙ = 1.989 × 1030 Kg. If we wish to translate the latter into units of MeV/c2, we will have
thatMR ∼ 1060 MeV/c2. The gravitational constant is in units of G = 6.67× 10−45× !c (MeV/c2)−2.
It is then easy to see that including the relevant values for these quantities in our equations will most
likely yield large numerical roundoff errors when we add a huge number dP

dr to a smaller number P in
order to obtain the new pressure. We list here the units of the various quantities and in case of physical
constants, also their values. A bracketed symbol like [P] stands for the unit of the quantity inside the
brackets.

Quantity Units

[P] MeVfm−3

[ρ] MeVfm−3

[n] fm−3

[m] MeVc−2

M⊙ 1.989 × 1030 Kg= 1.1157467 × 1060 MeVc−2

1 Kg = 1030/1.78266270D0 MeVc−2

[r] m
G !c6.67259 × 10−45 MeV−2c−4

!c 197.327 MeVfm

352

13.8 – Physics Project: studies of neutron stars

We introduce therefore dimensionless quantities for the radius r̂ = r/R0, mass-energy density ρ̂ =
ρ/ρs, pressure P̂ = P/ρs and mass m̂ = m/M0.

The constants M0 and R0 can be determined from the requirements that the equations for dm
dr and

dP
dr

should be dimensionless. This gives

dM0m̂

dR0r̂
= 4πR2

0r̂
2ρsρ̂, (13.94)

yielding
dm̂

dr̂
= 4πR3

0r̂
2ρsρ̂/M0. (13.95)

If these equations should be dimensionless we must demand that

4πR3
0ρs/M0 = 1. (13.96)

Correspondingly, we have for the pressure equation

dρsP̂

dR0r̂
= −GM0

m̂ρsρ̂

R2
0r̂

2
(13.97)

and since this equation should also be dimensionless, we will have

GM0/R0 = 1. (13.98)

This means that the constants R0 andM0 which will render the equations dimensionless are given by

R0 =
1√

ρsG4π
, (13.99)

and
M0 =

4πρs

(
√
ρsG4π)3

. (13.100)

However, since we would like to have the radius expressed in units of 10 km, we should multiply R0 by
10−19, since 1 fm = 10−15 m. Similarly,M0 will come in units of MeV/c2, and it is convenient therefore
to divide it by the mass of the sun and express the total mass in terms of solar masses M⊙.

The differential equations read then

dP̂

dr̂
= −

m̂ρ̂

r̂2
,

dm̂

dr̂
= r̂2ρ̂. (13.101)

In the solution of our problem, we will assume that the mass-energy density is given by a simple
parametrization from Bethe and Johnson [69]. This parametrization gives ρ as a function of the number
density n = N/V , with N the total number of baryons in a volume V . It reads

ρ(n) = 236× n2.54 + nmn, (13.102)

wheremn = 938.926MeV/c2 , the mass of the neutron (averaged). This means that since [n] =fm−3, we
have that the dimension of ρ is [ρ] =MeV/c2fm−3. Through the thermodynamic relation

P = −
∂E

∂V
, (13.103)

353

Differential equations

where E is the energy in units of MeV/c2 we have

P (n) = n
∂ρ(n)

∂n
− ρ(n) = 363.44 × n2.54. (13.104)

We see that the dimension of pressure is the same as that of the mass-energy density, i.e., [P] =MeV/c2fm−3.
Here comes an important point you should observe when solving the two coupled first-order differ-

ential equations. When you obtain the new pressure given by

Pnew =
dP

dr
+ Pold, (13.105)

this comes as a function of r. However, having obtained the new pressure, you will need to use Eq.
(13.104) in order to find the number density n. This will in turn allow you to find the new value of the
mass-energy density ρ(n) at the relevant value of r.

In solving the differential equations for neutron star equilibrium, you should proceed as follows

1. Make first a dimensional analysis in order to be sure that all equations are really dimensionless.

2. Define the constants R0 and M0 in units of 10 km and solar massM⊙. Find their values. Explain
why it is convenient to insert these constants in the final results and not at each intermediate step.

3. Set up the algorithm for solving these equations and write a main program where the various
variables are defined.

4. Write thereafter a small function which uses the expressions for pressure and mass-energy density
from Eqs. (13.104) and (13.102).

5. Write then a function which sets up the derivatives

−
m̂ρ̂

r̂2
, r̂2ρ̂. (13.106)

6. Employ now the fourth order Runge-Kutta algorithm to obtain new values for the pressure and the
mass. Play around with different values for the step size and compare the results for mass and
radius.

7. Replace the fourth order Runge-Kutta method with the simple Euler method and compare the
results.

8. Replace the non-relativistic expression for the derivative of the pressure with that from General
Relativity (GR), the so-called Tolman-Oppenheimer-Volkov equation

dP̂

dr̂
= −

(P̂ + ρ̂)(r̂3P̂ + m̂)

r̂2 − 2m̂r̂
, (13.107)

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plotting mass and radius as functions of the
central density.

354

13.9 – Physics project: studies of white dwarf stars

13.9 Physics project: studies of white dwarf stars

This project contains a long description of the physics of compact objects such as white dwarfs. It serves
as a background for understanding the final differential equations you need to solve. This project is taken
from the text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heavy nuclei such as 56Fe, with 26 protons,
30 neutrons and their respective electrons, see for example Ref. [66]. Charge equilibrium results in an
equal quantity of electrons and protons. You can read more about white dwarfs, neutron stars and black
holes at the website of the Joint Institute for Nuclear Astrophysics www.jinaweb.org or NASA’s website
www.nasa.org. These stars are the endpoints of stars with masses of the size or smaller than our sun.
They are the outcome of standard nuclear processes and end their lives as cold objects like white dwarfs
when they have used up all their nuclear fuel.

Where a star ends up at the end of its life depends on the mass, or amount of matter, it was born
with. Stars that have a lot of mass may end their lives as black holes or neutron stars. Low and medium
mass stars will become something called a white dwarf. A typical white dwarf is half as massive as the
Sun, yet only slightly bigger than the Earth. This makes white dwarfs one of the densest forms of matter,
surpassed only by neutron stars.

Medium mass stars, like our Sun, live by burning the hydrogen that dwells within their cores, turning
it into helium. This is what our Sun is doing now. The heat the Sun generates by its nuclear fusion of
hydrogen into helium creates an outward pressure. In another 5 billion years, the Sun will have used up
all the hydrogen in its core.

This situation in a star is similar to a pressure cooker. Heating something in a sealed container causes
a build up in pressure. The same thing happens in the Sun. Although the Sun may not strictly be a sealed
container, gravity causes it to act like one, pulling the star inward, while the pressure created by the hot
gas in the core pushes to get out. The balance between pressure and gravity is very delicate.

Because a white dwarf is no longer able to create internal pressure, gravity unopposedly crushes it
down until even the very electrons that make up a white dwarf’s atoms are mashed together. In normal
circumstances, identical electrons (those with the same "spin") are not allowed to occupy the same energy
level. Since there are only two ways an electron can spin, only two electrons can occupy a single energy
level. This is what’s know in physics as the Pauli Exclusion Principle. And in a normal gas, this isn’t
a problem; there aren’t enough electrons floating around to completely fill up all the energy levels. But
in a white dwarf, all of its electrons are forced close together; soon all the energy levels in its atoms
are filled up with electrons. If all the energy levels are filled, and it is impossible to put more than two
electrons in each level, then our white dwarf has become degenerate. For gravity to compress the white
dwarf anymore, it must force electrons where they cannot go. Once a star is degenerate, gravity cannot
compress it any more because quantum mechanics tells us there is no more available space to be taken
up. So our white dwarf survives, not by internal combustion, but by quantum mechanical principles that
prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth, the atmosphere of a white dwarf is very
strange. The heavier atoms in its atmosphere sink and the lighter ones remain at the surface. Some white
dwarfs have almost pure hydrogen or helium atmospheres, the lightest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thin layer, that, if were it on earth, would be lower
than the tops of our skyscrapers!

355

Differential equations

13.9.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exhibits also charge equilibrium, meaning the number
of electrons has to balance the number of protons. The gravitational pull on every element of volume is
balanced by the pressure set up by a degenerate gas of electrons at T = 0, since the temperature of
the star is well below the so-called Fermi temperature of the electrons. The electrons are assumed to
be relativistic and since the protons and neutrons have much lower kinetic energy, we assume that the
pressure which balances the gravitational force is mainly set up by the relativistic electrons. The kinetic
energy of the electrons is also much larger than the electron-electron repulsion or the attraction from the
nuclei. This means that we can treat the system as a gas of free degenerate electrons at T = 0 moving in
between a lattice of nuclei like iron. This is our ansatz. Based on this we can derive the pressure which
counterbalances the gravitational force given by (for every element of volume in a distance r from the
center of the star)

FGrav = −
Gm(r)

r2
ρ(r),

with G being the gravitational constant, ρ(r) the mass density (mass per volume) of a volume element a
distance r from the center of the star, andm(r) is the integrated mass within a radius r. The latter reads

m(r) = 4π

∫ r

0
ρ(r′)r′2dr′

which yields a differential equation between the total mass and the mass density

dm

dr
= 4πr2ρ(r).

In equilibrium, the pressure P balances the gravitational force

dP

dr
= −

Gm(r)

r2
ρ(r),

and using dP/dρ = (dρ/dr)(dP/dρ) we obtain

dρ

dr
= −

(
dP

dρ

)−1 Gm

r2
ρ.

Together with dm
dr = 4πr2ρ(r)we have now two coupled first-order ordinary differential equations which

determine the structure of the white dwarf given an equation of state P (ρ). The total radius is given by
the condition ρ(R) = 0. Similarly, the mass for r = 0 is m = 0. The density at r = 0 is given by the
central density ρc, a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density profile of the star. The radius R is determined
by the point where the density distribution is ρ = 0. The mass is then given by M = m(R). Since both
the total mass and the radius R will depend on the central density ρc, a variation of this parameter will
allow us to study stars with different masses. However, before we can proceed, we need the pressure for
a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermions at T = 0. From statistical physics we can then
obtain the particle density as

n = N/V =
1

π2

∫ kF

0
k2dk =

k3
F

3π2
,

356

13.9 – Physics project: studies of white dwarf stars

where kF is the Fermi momentum, here represented by the wave number kF . The wave number is
connected to the momentum via kF = pF /!. The energy density is given by

ε = E/V =
1

π2

∫ kF

0
k2dk

√
(!ck)2 + m2

ec
4.

This expression is of the form
∫

y2
√

y2 + a2. Performing the integration we obtain

E/V = n0mec
2x3ϵ(x),

where we have defined

ϵ(x) =
3

8x3

(
x(1 + 2x2)

√
1 + x2 − ln(x +

√
1 + x2)

)
,

with the variable x defined as
x =

!kF

mec
.

We can rewrite x in terms of the particle density as well

n = N/V =
k3

F

3π2
,

so that
!kF

mec
=

(
n!3π2

m3
ec

3

)1/3

,

where we define n0 = (mc)3e
3π2(!)3 withme the electron mass. Using the constant n0 results finally in

x =
!kF

mec
=

(
n

n0

)1/3

.

Since the mass of the protons and neutrons are larger by a factor 103 than the mass of the electrons me,
we can approximate the total mass of the star by the mass density of the nucleons (protons and neutrons).
This mass density is given by

ρ = Mpnp,

withMp being the mass of the proton and np the particle density of the nucleons. The mass of the proton
and the neutron are almost equal and we have set them equal here. The particle density np can be related
to the electron density n, which is the quantity we can calculate. The relation is simple,

np = n/Ye,

where Ye is the number of electrons per nucleon. For 56Fe we get Ye = 26
56 = 0.464, since we need to

have as many electrons as protons in order to obtain a total charge of zero. Inserting numerical values for
the electron mass we get

n0 = 5.89 × 1029cm−3.

The mass density is now
ρ = Mpn/Ye,

357

Differential equations

and with

x =

(
n

n0

)1/3

=

(
ρ

ρ0

)1/3

,

and inserting the numerical value for the proton mass we obtain

ρ0 =
Mpn0

Ye
= 9.79× 105Y −1

e g cm−3.

Using the parameter Ye we can then study stars with different compositions. The only input parameters
to your code are then ρc and Ye.

Now we want the equation for the pressure, based on the energy density. Using the thermodynamical
relation

P = −
∂E

∂V
= −

∂E

∂x

∂x

∂V
,

we can find the pressure as a function of the mass density ρ. Thereafter we can find dP
dρ , which allows us

to determine the mass and the radius of the star.
The term

∂x

∂V
,

can be found using the fact that x ∝ n1/3 ∝ V −3. This results in
∂x

∂V
= −

x

3V
.

Taking the derivative with respect to x we obtain

P =
1

3
n0mec

2x4 dϵ

dx
.

We want the derivative of P in terms of the mass density ρ. Using x =
(

ρ
ρ0

)1/3
, we obtain

dP

dρ
=

dP

dx

dx

dρ
.

With
dP

dx
=

1

3
n0me

(
dx4 dϵ

dx

dx

)

,

and
dx

dρ
=

1ρ2/3
0

3ρ0ρ2/3
=

1

3ρ0x2
,

we find
dP

dρ
= Ye

mec2

Mp
γ(x),

where we defined
γ(x) =

x2

3
√

1 + x2
.

This is the equation for the derivative of the pressure to be used to find

dρ

dr
= −

(
dP

dρ

)−1 Gm

r2
ρ.

Note that x and γ(x) are dimensionless quantities.

358

13.9 – Physics project: studies of white dwarf stars

13.9.2 Dimensionless form of the differential equations

In the numerical treatment of the two differential equations we need to rescale our equations in terms of
dimensionless quantities, since several of the involved constants are either extremely large or very small.
Furthermore, the total mass is of the order of the mass of the sun, approximately 2 × 1030kg while the
mass of the electron is 9× 10−31 kg.

We introduce therefore a dimensionless radius r = r/R0, a dimensionless density ρ = ρ/ρ0 (recall
that x3 = ρ/ρ0) and a dimensionless massm = m/M0.

We determine below the constants M0 and R0 by requiring that the equations for dm
dr and

dρ
dr have to

be dimensionless. We get then
dM0m

dR0r
= 4πR2

0r
2ρ0ρ,

resulting in
dm

dr
= 4πR3

0r
2ρ0ρ/M0.

If we want this equation to be dimensionless, we must require

4πR3
0ρ0/M0 = 1.

Correspondingly, we have
dρ0ρ

dR0r
= −

(
GM0Mp

Yemec2

)
m

γR2
0r

2ρ0ρ,

with R0

R0 =

(
Yemec2

4πρ0GMp

)1/2

= 7.72 × 108Yecm.

in order to yield a dimensionless equation. This results in

M0 = 4πR3
0ρ0 = 5.67 × 1033Y 2

e g.

The radius of the sun is R⊙ = 6.95 × 1010 cm and the mass of the sun isM⊙ = 1.99 × 1033 g.
Our final differential equations ρ andm read

dρ

dr
= −

m

γ

ρ

r2 ,
dm

dr
= r2ρ.

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a program which solves the two coupled differential
equations

dρ

dr
= −

m

γ

ρ

r2 ,

and
dm

dr
= r2ρ,

using the fourth order Runge-Kutta method by integrating outward from r = 0. Choose Ye = 1
and calculate the mass and radius of the star by varying the central density ρc ranging from 10−1

to 106. Check the stability of your solutions by varying the radial step h. Discuss your results.

359

Differential equations

b) Compute also the density profiles for the above input parameters and calculate the total kinetic
energy and rest energy of the electrons given by

U =

∫ R

0
4π

(
E

V

)
r2dr,

where we have defined
E/V = n0mec

2x3ϵ(x),

with
ϵ(x) =

3

8x3

(
x(1 + 2x2)

√
1 + x2 − ln(x +

√
1 + x2)

)
,

and the variable x defined as
x =

!kF

mec
.

Compute also the gravitational energy

W = −
∫ R

0

Gm(r)ρ(r)

r
4πr2dr.

You need to make these equations dimensionless.
Try to discuss your results and trends through simple physical reasoning.

c) Scale the mass-radius relation you found in a) to the cases corresponding to 56Fe and 12C. Three
white dwarf stars, Sirius B, 40 Eri B and Stein 2051, have masses and radii in units of solar
values determined from observations to be (1.053 ± 0.028M⊙, 0.0074 ± 0.0006R⊙), (0.48 ±
0.02M⊙, 0.0124 ± 0.0005R⊙), and (0.72 ± 0.08M⊙, 0.0115 ± 0.0012R⊙), respectively. Verify
that these values are consistent with the model you have developed. Can you say something about
the compositions of these stars?

13.10 Physics project: Period doubling and chaos

For this project you can build upon program programs/chapter13/program1.cpp (or the f90 version). The
angular equation of motion of the pendulum is given by Newton’s equation and with no external force it
reads

ml
d2θ

dt2
+ mgsin(θ) = 0, (13.108)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (13.109)

and
a = l

d2θ

dt2
. (13.110)

We do however expect that the motion will gradually come to an end due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = 0, (13.111)

360

13.10 – Physics project: Period doubling and chaos

where ν is now a positive constant parameterizing the viscosity of the medium in question. In order to
maintain the motion against viscosity, it is necessary to add some external driving force. We choose here
a periodic driving force. The last equation becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = Asin(ωt), (13.112)

withA and ω two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.

a) Rewrite Eqs. (13.111) and (13.112) as dimensionless equations.

b) Write then a code which solves Eq. (13.111) using the fourth-order Runge Kutta method. Perform
calculations for at least ten periods with N = 100, N = 1000 and N = 10000 mesh points and
values of ν = 1, ν = 5 and ν = 10. Set l = 1.0 m, g = 1 m/s2 and m = 1 kg. Choose as initial
conditions θ(0) = 0.2 (radians) and v(0) = 0 (radians/s). Make plots of θ (in radians) as function
of time and phase space plots of θ versus the velocity v. Check the stability of your results as
functions of time and number of mesh points. Which case corresponds to damped, underdamped
and overdamped oscillatory motion? Comment your results.

c) Now we switch to Eq. (13.112) for the rest of the project. Add an external driving force and set
l = g = 1, m = 1, ν = 1/2 and ω = 2/3. Choose as initial conditions θ(0) = 0.2 and v(0) = 0
and A = 0.5 and A = 1.2. Make plots of θ (in radians) as function of time for at least 300 periods
and phase space plots of θ versus the velocity v. Choose an appropriate time step. Comment and
explain the results for the different values of A.

d) Keep now the constants from the previous exercise fixed but set now A = 1.35, A = 1.44 and
A = 1.465. Plot θ (in radians) as function of time for at least 300 periods for these values of A and
comment your results.

e) We want to analyse further these results by making phase space plots of θ versus the velocity v
using only the points where we have ωt = 2nπ where n is an integer. These are normally called
the drive periods. This is an example of what is called a Poincare section and is a very useful way
to plot and analyze the behavior of a dynamical system. Comment your results.

361

Chapter 14

Two point boundary value problems

14.1 Introduction

When diffential equations are required to satisfy boundary conditions at more than one value of the
independent variable, the resulting problem is called a boundary value problem. The most common case
by far is when boundary conditions are supposed to be satisfied at two points - usually the starting and
ending values of the integration. The Schrödinger equation is an important example of such a case. Here
the eigenfunctions are typically restricted to be finite everywhere (in particular at r = 0) and for bound
states the functions must go to zero at infinity.

In the previous chapter we discussed the solution of differential equations determined by conditions
imposed at one point only, the so-called initial condition. Here wemove on to differential equations where
the solution is required to satisfy conditions at more than one point. Typically these are the endpoints
of the interval under consideration. When discussing differential equations with boundary conditions,
there are three main groups of numerical methods, shooting methods, finite difference and finite element
methods. In this chapter we focus on the so-called shooting method, whereas chapters 12 and 15 focus on
finite difference methods. Chapter 12 solves the finite difference problem as an eigenvalue problem for
a one variable differential equation while in chapter 15 we present the simplest finite difference methods
for solving partial differential equations with more than one variable. The finite element is discussed
under the advanced topic part in chapter 16, see also Ref. [70] for a computational presentation of the
finite element method.

In the discussion here we will limit ourselves to the simplest possible case, that of a linear second-
order differential equation whose solution is specified at two distinct points, for more complicated sys-
tems and equations see for example Ref. [71]. The reader should also note that the techniques discussed
in this chapter are restricted to ordinary differential equations only, while finite difference and finite el-
ement methods can also be applied to boundary value problems for partial differential equations. The
discussion in this chapter and chapter 12 serves therefore as an intermediate step and model to the chap-
ter on partial differential equations. Partial differential equations involve both boundary conditions and
differential equations with functions depending on more than one variable.

In this chapter we will discuss in particular the solution of the one-particle Schödinger equation
and apply the method to the hydrogen-atom like problems. We start however with a familiar problem
from mechanics, namely that of a tightly stretched and flexible string or rope, fixed at the endpoints.
This problem has an analytic solution which allows us to define our numerical algorithms based on the
shooting methods.

363

Two point boundary value problems

14.2 Shooting methods

In many physics applications we encounter differential equations like

d2y

dx2
+ k(x)y = F (x); a ≤ x ≤ b, (14.1)

with boundary conditions
y(a) = α, y(b) = β. (14.2)

We can interpret F (x) as an inhomogenous driving force while k(x) is a real function. If it is positive the
solutions y(x)will be oscillatory functions, and if negative they are exponentionally growing or decaying
functions.

To solve this equation we could start with for example the Runge-Kutta method or various improve-
ments to Euler’s method, as discussed in the previous chapter. Then we would need to transform this
equation to a set of coupled first equations. We could however start with the discretized version for the
second derivative. We discretise our equation and introduce a step length h = (b− a)/N , with N being
the number of equally spaced mesh points. Our discretised second derivative reads at a step xi = a + ih
with i = 0, 1, . . .

y′′i =
yi+1 + yi−1 − 2yi

h2
+ O(h2),

leading to a discretised differential equation

yi+1 + yi−1 − 2yi

h2
+ O(h2) + kiyi = Fi. (14.3)

Recall that the fourth-order Runge-Kutta method has a local error of O(h4).
Since we want to integrate our equation from x0 = a to xN = b, we rewrite it as

yi+1 ≈ −yi−1 + yi
(
2− h2ki + h2Fi

)
. (14.4)

Starting at i = 1 we have after one step

y2 ≈ −y0 + y1
(
2− h2k1 + h2F1

)
.

Irrespective of method to approximate the second derivative, this equation uncovers our first problem.
While y0 = y(a) = 0, our function value y1 is unknown, unless we have an analytic expression for y(x)
at x = 0. Knowing y1 is equivalent to knowing y′ at x = 0 since the first derivative is given by

y′i ≈
yi+1 − yi

h
. (14.5)

This means that we have y1 ≈ y0 + hy′0.

14.2.1 Improved approximation to the second derivative, Numerov’s method

Before we proceed, we mention how to improve the local truncation error from O(h2) to O(h6) without
too many additional function evaluations.

Our equation is a second order differential equation without any first order derivatives. Let us also for
the sake of simplicity assume that F (x) = 0. Numerov’s method is designed to solve such an equation
numerically, achieving a local truncation error O(h6).

364

14.2 – Shooting methods

We start with the Taylor expansion of the desired solution

y(x + h) = y(x) + hy(1)(x) +
h2

2!
y(2)(x) +

h3

3!
y(3)(x) +

h4

4!
y(4)(x) + · · · (14.6)

where y(n)(x) is a shorthand notation for the nth derivative dny/dxn. Because the corresponding Taylor
expansion of y(x − h) has odd powers of h appearing with negative signs, all odd powers cancel when
we add y(x + h) and y(x− h)

y(x + h) + y(x− h) = 2y(x) + h2y(2)(x) +
h4

12
y(4)(x) + O(h6). (14.7)

We obtain
y(2)(x) =

y(x + h) + y(x− h)− 2y(x)

h2
−

h2

12
y(4)(x) + O(h4). (14.8)

To eliminate the fourth-derivative term we apply the operator (1 + h2

12
d2

dx2) on Eq. (14.1) and obtain a
modified equation

h2y(2)(x) +
h2

12
y(4)(x) + k(x)y(x) +

h2

12

d2

dx2
(k(x)y(x)) ≈ 0. (14.9)

In this expression the y(4) terms cancel. To treat the general x dependence of k(x) we approximate the
second derivative of k(x)y(x) by

d2(k(x)y(x))

dx2
≈

(k(x + h)y(x + h) + k(x)y(x)) + (k(x− h)y(x− h) + k(x)y(x))

h2
. (14.10)

We replace then y(x+h)with the shorthand yi+1 etc and obtain a final discretised algorithm for obtaining
yi+1

y(i+1) =
2
(
1− 5

12h2k(i)y(i)

)
−
(
1 + 1

12h2ki−1yi−1
)

1 + h2

12k(i+1)

+ O(h4), (14.11)

where xi = ih, ki = k(xi = ih) and yi = y(xi = ih) etc. It is easy to add the term Fi since we need
only to take the second derivative. The final algorithm reads then

yi+1 =
2
(
1− 5

12h2kiyi
)
−
(
1 + 1

12h2ki−1yi−1
)

1 + h2

12ki+1

+
h2

12
(Fi+1 + Fi−1 − 2Fi) + O(h6). (14.12)

Starting at i = 1 results in, using the boundary condition y0 = 0,

y2 =
2
(
1− 5

12h2k1y1
)
−
(
1 + 1

12h2k0y0
)

1 + h2

12 k2

+
h2

12
(F2 + F0 − 2F1) + O(h6). (14.13)

This equation carries a local truncation error proportional to h6. This is an order better than the fourth-
order Runge-Kutta method.

But even with an improved accuracy we end up with one unknown on the right hand side, namely y1.
The value of y1 can again be determined from the derivative at y0, or by a good guess on its value. We
need therefore an additional constraint on our set of equations before we start. We could then add to the
boundary conditions

y(a) = α, y(b) = β,

the requirement y′(a) = δ, where δ could be an arbitrary constant. In quantum mechanical applications
with homogenous differential equations the normalization of the solution is normally not known. The
choice of the constant δ can therefore reflect specific symmetry requirements of the solution.

365

Two point boundary value problems

14.2.2 Wave equation with constant acceleration

We start with a well-known problem from mechanics, that of a whirling string or rope fixed at both ends.
We could think of this as an idealization of a jumping rope and ask questions about its shape as it spins.
Obviously, in deriving the equations we will make several assumptions in order to obtain an analytic
solution. However, the general differential equation it leads to, with added complications not allowing an
analytic solution, can be solved numerically. We discuss the shooting methods as one possible numerical
approach in the next section.

Our aim is to arrive at a differential equation which takes the following form

y′′ + λy = 0; y(0) = 0, y(L) = 0,

where L is the length of the string and λ a constant or function of the variable x to be defined below.
We derive an equation for y(x) using Newton’s second law F = ma acting on a piece of the string

with mass ρ∆x, where ρ is the mass density per unit length and∆x is small displacement in the interval
x, x + ∆x. The change ∆x is our step length.

We assume that the only force acting on this string element is a constant tension T acting on both
ends. The net vertical force in the positive y-direction is

F = Tsin(θ + ∆θ)− Tsin(θ) = Tsin(θi+1)− Tsin(θi).

For the angles we employ a finite difference approximation

sin(θi+1) =
yi+1 − yi

∆x
+ O(∆x2).

Using Newton’s second law F = ma, with m = ρ∆x = ρh and a constant angular velocity ω which
relates to the acceleration as a = −ω2y we arrive at

T
yi+1 + yi−1 − 2yi

∆x2
≈ −ρω2y,

and taking the limit∆x→ 0 we can rewrite the last equation as

Ty′′ + ρω2y = 0,

and defining λ = ρω2/T and imposing the condition that the ends of the string are fixed we arrive at our
final second-order differential equation with boundary conditions

y′′ + λy = 0; y(0) = 0, y(L) = 0. (14.14)

The reader should note that we have assumed a constant acceleration. Replacing the constant acceleration
with the second derivative of y as function of both position and time, we arrive at the well-known wave
equation for y(x, t) in 1 + 1 dimension, namely

∂2y

∂t2
= λ

∂2y

∂x2
.

We discuss the solution of this equation in chapter 15.
If λ > 0 this equation has a solution of the form

y(x) = Acos(αx) + Bsin(αx), (14.15)

366

14.2 – Shooting methods

and imposing the boundary conditions results in an infinite sequence of solutions of the form

yn(x) = sin(
nπx

L
), n = 1, 2, 3, . . . (14.16)

with eigenvalues

λn =
n2π2

L2
, n = 1, 2, 3, . . . (14.17)

For λ = 0 we have
y(x) = Ax + B, (14.18)

and due to the boundary conditions we have y(x) = 0, the trivial solution, which is not an eigenvalue of
the problem. The classical problem has no negative eigenvalues, viz we cannot find a solution for λ < 0.
The trivial solution means that the string remains in its equilibrium position with no deflection.

If we relate the constant angular speed ω to the eigenvalues λn we have

ωn =

√
λnT

ρ
=

nπ

L

√
T

ρ
, n = 1, 2, 3, . . . , (14.19)

resulting in a series of discretised critical speeds of angular rotation. Only at these critical speeds can the
string change from its equilibrium position.

There is one important observation to made here, since later we will discuss Schrödinger’s equation.
We observe that the eigenvalues and solutions exist only for certain discretised values λn, yn(x). This
is a consequence of the fact that we have imposed boundary conditions. Thus, the boundary conditions,
which are a consequence of the physical case we wish to explore, yield only a set of possible solutions.
In quantum physics, we would say that the eigenvalues λn are quantized, which is just another word for
discretised eigenvalues.

We have then an analytic solution

yn(x) = sin(
nπx

L
),

from
y′′ +

n2π2

L2
y = 0; y(0) = 0, y(1) = 0.

Choosing n = 4 and L = 1, we have y(x) = sin(4πx) as our solution. The derivative is obviously
4πcos(πx). We can start to integrate our equation using the exact expression for the derivative at y1.
This yields

y2 ≈ −y0 + y1
(
2− h2k1 + h

)
= 4hπcos(4πx0)

(
2− 16h2π2

)
= 4π

(
2− 16h2π2

)
.

If we split our interval x ∈ [0, 1] into 10 equally spaced points we arrive at the results displayed in Table
14.1. We note that the error at the endpoint is much larger than the chosen mathematical approximation
O(h2), resulting in an error of approximately 0.01. We would have expected a smaller error. We can
obviously get better precision by increasing the number of integration points, but it would not cure the
increasing discrepancy we see towards the endpoints. With N = 100, we have 0.829944E − 02 at
x = 1.0, while the error is ∼ 10−4 with 100 integration points.

It is also important to notice that in general we do not know the eigenvalue and the eigenfunctions,
except some of their limiting behaviors close to the boundaries. One method for searching for these
eigenvalues is to set up an iterative process. We guess a trial eigenvalue and generate a solution by

367

Two point boundary value problems

Table 14.1: Integrated and exact solution of the differential equation y ′′ + λy = 0 with boundary condi-
tions y(0) = 0 and y(1) = 0.

xi = ih sin(πxi) y(xi)
0.000000E+00 0.000000E+00 0.000000E+00
0.100000E+00 0.951057E+00 0.125664E+01
0.200000E+00 0.587785E+00 0.528872E+00
0.300000E+00 -.587785E+00 -.103405E+01
0.400000E+00 -.951056E+00 -.964068E+00
0.500000E+00 0.268472E-06 0.628314E+00
0.600000E+00 0.951057E+00 0.122850E+01
0.700000E+00 0.587785E+00 -.111283E+00
0.800000E+00 -.587786E+00 -.127534E+01
0.900000E+00 -.951056E+00 -.425460E+00
0.100000E+01 0.000000E+00 0.109628E+01

integrating the differential equation as an initial value problem, as we did above except that we have
here the exact solution. If the resulting solution does not satisfy the boundary conditions, we change the
trial eigenvalue and integrate again. We repeat this process until a trial eigenvalue satisfies the boundary
conditions to within a chosen numerical error. This approach is what constitutes the so-called shooting
method.

Upon integrating to our other boundary, x = 1 in the above example, we obtain normally a non-
vanishing value for y(1), since the trial eigenvalue is normally not the correct one. We can then readjust
the guess for the eigenvalue and integrate and repeat this process till we obtain a value for y(1) which
agrees to within the precision we have chosen. As we will show in the next section, this results in a
root-finding problem, which can be solved with for example the bisection or Newton methods discussed
in chapter 5.

The example we studied here hides however an important problem. Our two solutions are rather
similar, they are either represented by a sin(x) form or a cos(x) solution. This means that the solutions
do not differ dramatically in behavior at the boundaries. Furthermore, the wave function is zero beyond
the boundaries. For a quantum mechanical system, we would get the same solutions if a particle is trapped
in an infinitely high potential well. Then the wave function cannot exist outside the potential. However,
for a finite potential well, there is always a quantum mechanical probability that the particle can be found
outside the classical region. The classical region defines the so-called turning points, viz points from
where a classical solution cannot exist. These turning points are useful when we want to solve quantum
mechanical problems.

Let us however perform our brute force integration for another differential equation as well, namely
that of the quantum mechanical harmonic oscillator.

The situation worsens dramatically now. We have then a one-dimensional differential equation of the
type, see Eq. (11.21), (all physical costants are set equal to one, that ism = c = ! = k = 1)

−
1

2

d2y

dx2
+

1

2
x2y = ϵy; −∞ < x <∞, (14.20)

with boundary conditions y(−∞) = y(∞) = 0. For the lowest lying state, the eigenvalue is ϵ = 1/2 and

368

14.2 – Shooting methods

Table 14.2: Integrated and exact solution of the differential equation −y ′′ + x2y = 2ϵy with boundary
conditions y(−∞) = 0 and y(∞) = 0.

xi = ih exp (−x2/2) y(xi)
-.100000E+02 0.192875E-21 0.192875E-21
-.800000E+01 0.126642E-13 0.137620E-13
-.600000E+01 0.152300E-07 0.157352E-07
-.400000E+01 0.335462E-03 0.331824E-03
-.200000E+01 0.135335E+00 0.128549E+00
0.000000E-00 0.100000E+01 0.912665E+00
0.200000E+01 0.135335E+00 0.118573E+00
0.400000E+01 0.335463E-03 -.165045E-01
0.600000E+01 0.152300E-07 -.250865E+03
0.800000E+01 0.126642E-13 -.231385E+09
0.900000E+01 0.257677E-17 -.101904E+13

the eigenfunction is

y(x) =

(
1

π

)1/4

exp (−x2/2).

The reader should observe that this solution is imposed by the boundary conditions, which again follow
from the quantum mechanical properties we require for the solution. We repeat the integration exer-
cise which we did for the previous example, starting from a large negative number (x0 = −10, which
gives a value for the eigenfunction close to zero) and choose the lowest energy and its corresponding
eigenfunction. We obtain for y2

y2 ≈ −y0 + y1
(
2 + h2x2 − h2

)
,

and using the exact eigenfunction we can replace y1 with the derivative at x0. We use now N = 1000
and integrate our equation from x0 = −10 to xN = 10. The results are shown in Table 14.2 for selected
values of xi. In the beginning of our integrational interval, we obtain an integrated quantity which
resembles the analytic solution, but then our integrated solution simply explodes and diverges. What is
happening? We started with the exact solution for both the eigenvalue and the eigenfunction!

The problem is due to the fact that our differential equation has two possible solution for eigenvalues
which are very close (−1/2 and +1/2), either

y(x) ∼ exp (−x2/2),

or
y(x) ∼ exp (x2/2).

The boundary conditions, imposed by our physics requirements, rule out the last possibility. However,
our algorithm, which is nothing but an approximation to the differential equation we have chosen, picks
up democratically both solutions. Thus, although we start with the correct solution, when integrating we
pick up the undesired solution. In the next subsections we discuss how to cure this problem.

369

Two point boundary value problems

14.2.3 Schrödinger equation for spherical potentials

We discuss the numerical solution of the Schrödinger equation for the case of a particle with mass m
moving in a spherical symmetric potential.

The initial eigenvalue equation reads

Ĥψ(r⃗) = (T̂ + V̂)ψ(r⃗) = Eψ(r⃗). (14.21)

In detail this gives (
−

!2

2m
∇2 + V (r)

)
ψ(r⃗) = Eψ(r⃗). (14.22)

The eigenfunction in spherical coordinates takes the form

ψ(r⃗) = R(r)Y m
l (θ,φ), (14.23)

and the radial part R(r) is a solution to

−
!2

2m

(
1

r2

d

dr
r2 d

dr
−

l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r). (14.24)

Then we substitute R(r) = (1/r)u(r) and obtain

−
!2

2m

d2

dr2
u(r) +

(
V (r) +

l(l + 1)

r2

!2

2m

)
u(r) = Eu(r). (14.25)

We introduce a dimensionless variable ρ = (1/α)r where α is a constant with dimension length and get

−
!2

2mα2

d2

dρ2
u(r) +

(
V (ρ) +

l(l + 1)

ρ2

!2

2mα2

)
u(ρ) = Eu(ρ). (14.26)

In our case we are interested in attractive potentials

V (r) = −V0f(r), (14.27)

where V0 > 0 and analyze bound states where E < 0. The final equation can be written as

d2

dρ2
u(ρ) + k(ρ)u(ρ) = 0, (14.28)

where

k(ρ) = γ

(
f(ρ)−

1

γ

l(l + 1)

ρ2
− ϵ
)

γ =
2mα2V0

!2

ϵ =
|E|
V0

(14.29)

370

14.3 – Numerical procedure, shooting and matching

Schrödinger equation for a spherical box potential

Let us now specify the spherical symmetric potential to

f(r) =

{
1
−0

for r ≤ a
r > a

(14.30)

and choose α = a. Then

k(ρ) = γ

{
1− ϵ− 1

γ
l(l+1)

ρ2

−ϵ−− 1
γ

l(l+1)
ρ2

for r ≤ a
r > a

(14.31)

The eigenfunctions in Eq. (14.22) are subject to conditions which limit the possible solutions. Of impor-
tance for the present example is that u(r⃗) must be finite everywhere and

∫
|u(r⃗)|2dτ must be finite. The

last condition means that rR(r) −→ 0 for r −→ ∞. These conditions imply that u(r) must be finite at
r = 0 and u(r) −→ 0 for r −→∞.

Analysis of u(ρ) at ρ = 0

For small ρ Eq. (14.28) reduces to

d2

dρ2
u(ρ)−

l(l + 1)

ρ2
u(ρ) = 0, (14.32)

with solutions u(ρ) = ρl+1 or u(ρ) = ρ−l. Since the final solution must be finite everywhere we get the
condition for our numerical solution

u(ρ) = ρl+1 for small ρ (14.33)

Analysis of u(ρ) for ρ −→∞

For large ρ Eq. (14.28) reduces to

d2

dρ2
u(ρ)− γϵu(ρ) = 0 γ > 0, (14.34)

with solutions u(ρ) = exp(±γϵρ) and the condition for large ρ means that our numerical solution must
satisfy

u(ρ) = e−γϵρ for large ρ (14.35)

As for the harmonic oscillator, we have two solutions at the boundaries which are very different and
can easily lead to totally worng and even diverging solutions if we just integrate from one endpoint to the
other. In the next section we discuss how to solve such problems.

14.3 Numerical procedure, shooting and matching

The eigenvalue problem in Eq. (14.28) can be solved by the so-called shooting methods. In order to
find a bound state we start integrating, with a trial negative value for the energy, from small values of
the variable ρ, usually zero, and up to some large value of ρ. As long as the potential is significantly
different from zero the function oscillates. Outside the range of the potential the function will approach

371

Two point boundary value problems

an exponential form. If we have chosen a correct eigenvalue the function decreases exponentially as
u(ρ) = e−γϵρ. However, due to numerical inaccuracy the solution will contain small admixtures of the
undesireable exponential growing function u(ρ) = e+γϵρ. The final solution will then become unstable.
Therefore, it is better to generate two solutions, with one starting from small values of ρ and integrate
outwards to some matching point ρ = ρm. We call that function u<(ρ). The next solution u>(ρ) is then
obtained by integrating from some large value ρ where the potential is of no importance, and inwards to
the same matching point ρm. Due to the quantum mechanical requirements the logarithmic derivative at
the matching point ρm should be well defined. We obtain the following condition

d
dρu<(ρ)

u<(ρ)
=

d
dρu>(ρ)

u>(ρ)
at ρ = ρm. (14.36)

We can modify this expression by normalizing the function u<u<(ρm) = Cu>u<(ρm). Then Eq. (14.36)
becomes

d

dρ
u<(ρ) =

d

dρ
u>(ρ) at ρ = ρm (14.37)

For an arbitary value of the eigenvalue Eq. (14.36) will not be satisfied. Thus the numerical procedure
will be to iterate for different eigenvalues until Eq. (14.37) is satisfied.

We can calculate the first order derivatives by

d

dρ
u<(ρm) ≈

u<(ρm)− u<(ρm − h)

h

d

dρ
u>(ρm) ≈

u>(ρm)− u>(ρm + h)

h
(14.38)

Thus the criterium for a proper eigenfunction will be

f = u>(ρm + h)− u<(ρm − h) (14.39)

14.3.1 Algorithm for solving Schrödinger’s equation

Here we outline the solution of Schrödinger’s equation as a common differential equation but with bound-
ary conditions. The method combines shooting and matching. The shooting part involves a guess on the
exact eigenvalue. This trial value is then combined with a standard method for root searching, e.g., the
secant or bisection methods discussed in chapter 5.

The algorithm could then take the following form

– Initialise the problem by choosing minimum and maximum values for the energy, Emin and Emax,
the maximum number of iterations max_iter and the desired numerical precision.

– Search then for the roots of the function f , where the root(s) is(are) in the intervalE ∈ [Emin, Emax]
using for example the bisection method. Newton’s method, also discussed in chapter 5 requires an
analytic expression for f . A possible approach is to use the standard bisection method for localiz-
ing the eigenvalue and then use the secant method to obtain a better estimate.
The pseudocode for such an approach can be written as

do {
i ++;
e = (e_min+e_max) / 2 . ; /∗ b i s e c t i o n ∗ /
i f (f (e) ∗ f (e_max) > 0) {

372

14.3 – Numerical procedure, shooting and matching

e_max = e ; /∗ change s e a r c h i n t e r v a l ∗ /
}
e l s e {

e_min = e ;
}

} whi le ((f a b s (f (e) > c o n v e r g e n c e _ t e s t) ! ! (i <= ma x _ i t e r a t i o n s))

The use of a root-searching method forms the shooting part of the algorithm. We have however not
yet specified the matching part.

– The matching part is given by the function f(e)which receives as argument the present value of E.
This function forms the core of the method and is based on an integration of Schrödinger’s equation
from ρ = 0 and ρ =∞. If our choice of E satisfies Eq. (14.39) we have a solution. The matching
code is given below. To choose the matching point it is convenient to start integrating inwards, that
is from the large r-values. When the wave function turns, we use that point to define the matching
point. The reason for this is that we start integrating from a region which corresponds normally to
classically forbidden ones, and integrating into such regions leads normally to inaccurate solutions
and the pick up of the undesired solutions. The consequence is that the solution diverges. We can
therefore define as a matching point the classical turning point and start to integrate from large
r-values. In the absence of such a point, we can use the point where the wave function turns.

The function f(E) above receives as input a guess for the energy. In the version implemented below,
we use the standard three-point formula for the second derivative, namely

f ′′
0 ≈

fh − 2f0 + f−h

h2
.

We leave it as an exercise to the reader to implement Numerov’s algorithm.

/ /
/ / The f unc t i on
/ / f ()
/ / c a l c u l a t e s t h e wave f unc t i on a t f i x e d ene rgy e i g e n v a l u e .
/ /

vo id f (double s t e p , i n t max_step , double energy , double ∗w, double ∗wf)
{

i n t loop , loop_1 , match ;
double c o n s t s q r t _ p i = 1 .77245385091 ;
double f ac , wwf , norm ;

/ / add ing t h e ene rgy gue s s to t h e a r r a y c o n t a i n i n g t h e p o t e n t i a l
f o r (loop = 0 ; loop <= max_step ; loop ++) {

w[loop] = (w[loop] − ene rgy) ∗ s t e p ∗ s t e p + 2 ;
}

/ / i n t e g r a t i n g from l a r g e r−v a l u e s
wf [max_step] = 0 . 0 ;
wf [max_step − 1] = 0 . 5 ∗ s t e p ∗ s t e p ;

/ / s e a r c h f o r ma tch ing p o i n t
f o r (loop = max_step − 2 ; loop > 0 ; loop−−) {

wf [loop] = wf [loop + 1] ∗ w[loop + 1] − wf [loop + 2] ;
i f (wf [loop] <= wf [loop + 1]) b r e ak ;

}

373

Two point boundary value problems

match = loop + 1 ;
wwf = wf [match] ;

/ / s t a r t i n t e g r a t i n g up to match ing p o i n t from r =0
wf [0] = 0 . 0 ;
wf [1] = 0 . 5 ∗ s t e p ∗ s t e p ;
f o r (loop = 2 ; loop <= match ; loop ++) {

wf [loop] = wf [loop −1] ∗ w[loop − 1] − wf [loop − 2] ;
i f (f a b s (wf [loop]) > INFINITY) {

f o r (loop_1 = 0 ; loop_1 <= loop ; loop_1 ++) {
wf [loop_1] /= INFINITY ;

}
}

}
/ / now implement t h e t e s t o f Eq . (1 0 . 2 5)

re turn f a b s (wf [match−1]−wf [match +1]) ;
} / / End : f u n t i o n p l o t ()

14.4 Physics projects

We are going to study the solution of the Schrödinger equation (SE) for a system with a neutron and a
proton (the deuteron) for a simple box potential. This potential will later be replaced with a realistic one
fitted to experimental phase shifts.

We begin our discussion of the SE with the neutron-proton (deuteron) system with a box potential
V (r). We define the radial part of the wave function R(r) and introduce the definition u(r) = rR(R)
The radial part of the SE for two particles in their center-of-mass system and with orbital momentum
l = 0 is then

−
!2

2m

d2u(r)

dr2
+ V (r)u(r) = Eu(r), (14.40)

with
m = 2

mpmn

mp + mn
, (14.41)

where mp and mn are the masses of the proton and neutron, respectively. We use here m = 938 MeV.
Our potential is defined as

V (r) =

⎧
⎨

⎩

0 r > a
−V0 0 < r ≤ a
∞ r ≤ 0

, (14.42)

displayed in Fig 14.1.
Bound states correspond to negative energy E and scattering states are given by positive energies.

The SE takes the form (without specifying the sign of E)

d2u(r)

dr2
+

m

!2
(V0 + E) u(r) = 0 r < a, (14.43)

and
d2u(r)

dr2
+

m

!2
Eu(r) = 0 r > a. (14.44)

374

14.4 – Physics projects

✲ x
0 a

−V0

V (x)

Figure 14.1: Example of a finite box potential with value −V0 in 0 < x ≤ a, infinitely large for x ≤ 0
and zero else.

a) We are now going to search for eventual bound states, i.e., E < 0. The deuteron has only one
bound state at energy E = −2.223 MeV. Discuss the boundary conditions on the wave function
and use these to show that the solution to the SE is

u(r) = Asin(kr) r < a, (14.45)

and
u(r) = B exp (−βr) r > a, (14.46)

where A and B are constants. We have also defined

k =
√

m(V0 − |E|)/!, (14.47)

and
β =

√
m|E|/!. (14.48)

Show then, using the continuity requirement on the wave function that at r = a you obtain the
transcendental equation

kcot(ka) = −β. (14.49)

b) Insert values of V0 = 60 MeV and a = 1.45 fm (1 fm = 10−15 m) and make a plot of Eq. (14.49)
as function of energy E in order to find eventual eigenvalues. See if these values result in a bound
state for E.
When you have localized on your plot the point(s) where Eq. (14.49) is satisfied, obtain a numerical
value for E using for example Newton-Raphson’s method or similar methods, see chapter 5. To

375

Two point boundary value problems

use these functions you need to provide the function kcot(ka) + β and its derivative as function of
E.
What is smallest possible value of V0 which gives one bound state only?

c) Write a program which implements the shooting method for this potential and find the lowest
eigenvalue for the case that V0 supports only one bound state. Use the results from b) to guide
your choice of trial eigenvalues for the shooting method. Plot the wave function and discuss your
results.

d) We turn now to a fitted interaction which reproduces the low-lying phase shifts for scattering be-
tween a proton and neutron. The parametrized version of this potential fits the experimental phase-
shifts. It is given by

V (r) = Va
e−ax

x
+ Vb

e−bx

x
+ Vc

e−cx

x
(14.50)

with x = µr, µ = 0.7 fm−1 (the inverse of the pion mass), Va = −10.463 MeV and a = 1,
Vb = −1650.6 MeV and b = 4 and Vc = 6484.3 MeV and c = 7. Replace the box potential from
point c) and find the wave function and possible eigenvalues for this potential as well. Discuss your
results.

376

Chapter 15

Partial differential equations

15.1 Introduction

In the Natural Sciences we often encounter problems with many variables constrained by boundary con-
ditions and initial values. Many of these problems can be modelled as partial differential equations. One
case which arises in many situations is the so-called wave equation whose one-dimensional form reads

∂2u

∂x2
= A

∂2u

∂t2
, (15.1)

whereA is a constant. The solution u depends on both spatial and temporal variables, viz. u = u(x, t). In
two dimension we have u = u(x, y, t). We will, unless otherwise stated, simply use u in our discussion
below. Familiar situations which this equation can model are waves on a string, pressure waves, waves
on the surface of a fjord or a lake, electromagnetic waves and sound waves to mention a few. For e.g.,
electromagnetic waves we have the constant A = c2, with c the speed of light. It is rather straightforward
to extend this equation to two or three dimension. In two dimensions we have

∂2u

∂x2
+
∂2u

∂y2
= A

∂2u

∂t2
, (15.2)

In Chapter 9 we saw another case of a partial differential equation widely used in the Natural Sciences,
namely the diffusion equation whose one-dimensional version we derived from a Markovian random
walk. It reads

∂2u

∂x2
= A

∂u

∂t
, (15.3)

and A is in this case called the diffusion constant. It can be used to model a wide selection of diffusion
processes, from molecules to the diffusion of heat in a given material.

Another familiar equation from electrostatics is Laplace’s equation, which looks similar to the wave
equation in Eq. (15.1) except that we have set A = 0

∂2u

∂x2
+
∂2u

∂y2
= 0, (15.4)

or if we have a finite electric charge represented by a charge density ρ(x) we have the familiar Poisson
equation

∂2u

∂x2
+
∂2u

∂y2
= −4πρ(x). (15.5)

377

Partial differential equations

Other famous partial differential equations are the Helmholtz (or eigenvalue) equation, here special-
ized to two dimensions only

−
∂2u

∂x2
−
∂2u

∂y2
= λu, (15.6)

the linear transport equation (in 2 + 1 dimensions) familiar from Brownian motion as well

∂u

∂x
+
∂u

∂x
+
∂u

∂y
= 0, (15.7)

and Schrödinger’s equation

−
∂2u

∂x2
−
∂2u

∂y2
+ f(x, y)u = ı

∂u

∂t
.

Important systems of linear partial differential equations are the famous Maxwell equations

∂E

∂t
= curlB; −curlE = B; divE = divB = 0.

Similarly, famous systems of non-linear partial differential equations are for example Euler’s equations
for incompressible, inviscid flow

∂u

∂t
+ u∇u = −Dp; divu = 0,

with p being the pressure and

∇ =
∂

∂x
ex +

∂

∂y
ey,

in the two dimensions. The unit vectors are ex and ey . Another example is the set of Navier-Stokes
equations for incompressible, viscous flow

∂u

∂t
+ u∇u−∆u = −Dp; divu = 0.

Ref. [72] contains a long list of interesting partial differential equations.
In this chapter we focus on so-called finite difference schemes and explicit and implicit methods. The

more advanced topic of finite element methods is relegated to chapter 16, see also the texts of Langtangen
and Ramdas-Mohan [70, 73]. As in the previous chapters we will focus mainly on widely used algorithms
for solutions of partial differential equations. A text like Evans’ [72] is highly recommended if one wishes
to study the mathematical foundations for partial differential equations, in particular how to determine the
uniqueness and existence of a solution. We assume namely here that our problems are well-posed, strictly
meaning that the problem has a solution, this solution is unique and the solution depends continuously
on the data given by the problem. While Evans’ text provides a rigorous mathematical exposition, the
texts of Langtangen, Ramdas-Mohan, Winther and Tveito and Evans et al. contain a more practical
algorithmic approach see Refs. [70, 73, 74, 75].

A general partial differential equation in 2+1-dimensions (with 2 standing for the spatial coordinates
x and y and 1 for time) reads

A(x, y)
∂2u

∂x2
+ B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
= F (x, y, u,

∂u

∂x
,
∂u

∂y
), (15.8)

and if we set
B = C = 0, (15.9)

378

15.2 – Diffusion equation

we recover the 1 + 1-dimensional diffusion equation which is an example of a so-called parabolic partial
differential equation. With

B = 0, AC < 0 (15.10)

we get the 2+1-dim wave equation which is an example of a so-called elliptic PDE, where more generally
we have B2 > AC . For B2 < AC we obtain a so-called hyperbolic PDE, with the Laplace equation
in Eq. (15.4) as one of the classical examples. These equations can all be easily extended to non-linear
partial differential equations and 3 + 1 dimensional cases.

The aim of this chapter is to present some of the more familiar difference methods and their eventual
implementations.

15.2 Diffusion equation

The diffusion equation describes in typical applications the evolution in time of the density u of a quantity
like the particle density, energy density, temperature gradient, chemical concentrations etc.

The basis is the assumption that the flux density ρ obeys the Gauss-Green theorem
∫

V
divρdx =

∫

∂V
ρndS,

where n is the unit outer normal field and V is a smooth region with the space where we seek a solution.
The Gauss-Green theorem leads to

divρ = 0.

Assuming that the flux is proportional to the gradient ∇u but pointing in the opposite direction since the
flow is from regions of high concetration to lower concentrations, we obtain

ρ = −D∇u,

resulting in
div∇u = D∆u = 0,

which is Laplace’s equation, an equation whose one-dimensional version we met in chapter 4. The
constant D can be coupled with various physical constants, such as the diffusion constant or the specific
heat and thermal conductivity discussed below. We will discuss the solution of the Laplace equation later
in this chapter.

If we let u denote the concetration of a particle species, this results in Fick’s law of diffusion, see
Ref. [49]. If it denotes the temperature gradient, we have Fourier’slaw of heat conduction and if it refers
to the electrostatic potential we have Ohm’s law of electrical conduction.

Coupling the rate of change (temporal dependence) of u with the flux density we have

∂u

∂t
= −divρ,

which results in
∂u

∂t
= Ddiv∇u = D∆u,

the diffusion equation, or heat equation.

379

Partial differential equations

If we specialize to the heat equation, we assume that the diffusion of heat through some material
is proportional with the temperature gradient T (x, t) and using conservation of energy we arrive at the
diffusion equation

κ

Cρ
∇2T (x, t) =

∂T (x, t)

∂t
(15.11)

where C is the specific heat and ρ the density of the material. Here we let the density be represented by
a constant, but there is no problem introducing an explicit spatial dependence, viz.,

κ

Cρ(x, t)
∇2T (x, t) =

∂T (x, t)

∂t
. (15.12)

Setting all constants equal to the diffusion constant D, i.e.,

D =
Cρ

κ
, (15.13)

we arrive at
∇2T (x, t) = D

∂T (x, t)

∂t
. (15.14)

Specializing to the 1 + 1-dimensional case we have

∂2T (x, t)

∂x2
= D

∂T (x, t)

∂t
. (15.15)

We note that the dimension of D is time/length2. Introducing the dimensional variables αx̂ = x we get

∂2T (x, t)

α2∂x̂2
= D

∂T (x, t)

∂t
, (15.16)

and since α is just a constant we could define α2D = 1 or use the last expression to define a dimensionless
time-variable t̂. This yields a simplified diffusion equation

∂2T (x̂, t̂)

∂x̂2
=
∂T (x̂, t̂)

∂t̂
. (15.17)

It is now a partial differential equation in terms of dimensionless variables. In the discussion below, we
will however, for the sake of notational simplicity replace x̂ → x and t̂ → t. Moreover, the solution to
the 1 + 1-dimensional partial differential equation is replaced by T (x̂, t̂)→ u(x, t).

15.2.1 Explicit scheme

In one dimension we have the following equation

∇2u(x, t) =
∂u(x, t)

∂t
, (15.18)

or
uxx = ut, (15.19)

with initial conditions, i.e., the conditions at t = 0,

u(x, 0) = g(x) 0 < x < L (15.20)

380

15.2 – Diffusion equation

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = a(t) t ≥ 0, (15.21)

and
u(L, t) = b(t) t ≥ 0, (15.22)

where a(t) and b(t) are two functions which depend on time only, while g(x) depends only on the position
x. Our next step is to find a numerical algorithm for solving this equation. Here we recur to our familiar
equal-step methods discussed in Chapter 3 and introduce different step lengths for the space-variable x
and time t through the step length for x

∆x =
1

n + 1
(15.23)

and the time step length ∆t. The position after i steps and time at time-step j are now given by
{

tj = j∆t j ≥ 0
xi = i∆x 0 ≤ i ≤ n + 1

(15.24)

If we then use standard approximations for the derivatives we obtain

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
(15.25)

with a local approximation error O(∆t) and

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.26)

or
uxx ≈

u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.27)

with a local approximation errorO(∆x2). Our approximation is to higher order in coordinate space. This
can be justified since in most cases it is the spatial dependence which causes numerical problems. These
equations can be further simplified as

ut ≈
ui,j+1 − ui,j

∆t
, (15.28)

and
uxx ≈

ui+1,j − 2ui,j + ui−1,j

∆x2
. (15.29)

The one-dimensional diffusion equation can then be rewritten in its discretized version as

ui,j+1 − ui,j

∆t
=

ui+1,j − 2ui,j + ui−1,j

∆x2
. (15.30)

Defining α = ∆t/∆x2 results in the explicit scheme

ui,j+1 = αui−1,j + (1− 2α)ui,j + αui+1,j . (15.31)

Since all the discretized initial values
ui,0 = g(xi), (15.32)

381

Partial differential equations

are known, then after one time-step the only unknown quantity is ui,1 which is given by

ui,1 = αui−1,0 + (1− 2α)ui,0 + αui+1,0 = αg(xi−1) + (1− 2α)g(xi) + αg(xi+1). (15.33)

We can then obtain ui,2 using the previously calculated values ui,1 and the boundary conditions a(t) and
b(t). This algorithm results in a so-called explicit scheme, since the next functions ui,j+1 are explicitely
given by Eq. (15.31). The procedure is depicted in Fig. 15.1.

We specialize to the case a(t) = b(t) = 0 which results in u0,j = un+1,j = 0. We can then
reformulate our partial differential equation through the vector Vj at the time tj = j∆t

Vj =

⎛

⎜⎜⎝

u1,j

u2,j

. . .
un,j

⎞

⎟⎟⎠ . (15.34)

This results in a matrix-vector multiplication

Vj+1 = ÂVj (15.35)

with the matrix Â given by

Â =

⎛

⎜⎜⎝

1− 2α α 0 0 . . .
α 1− 2α α 0 . . .

.
0 . . . 0 . . . α 1− 2α

⎞

⎟⎟⎠ (15.36)

which means we can rewrite the original partial differential equation as a set of matrix-vector multiplica-
tions

Vj+1 = ÂVj = · · · = Âj+1V0, (15.37)

where V0 is the initial vector at time t = 0 defined by the initial value g(x). In the numerical implementa-
tion one should avoid to treat this problem as a matrix vector multiplication since the matrix is triangular
and at most three elements in each row are different from zero.

It is rather easy to implement this matrix-vector multiplication as seen in the following piece of code

/ / F i r s t we s e t i n i t i a l i s e t h e new and o ld v e c t o r s
/ / Here we have chosen t h e boundary c o n d i t i o n s to be ze r o .
/ / n+1 i s t h e number o f mesh p o i n t s in x

u [0] = unew [0] = u [n] = unew = 0 . 0 ;
f o r (i n t i = 1 ; i < n ; i ++) {
x = i ∗ s t e p ;
/ / i n i t i a l c o n d i t i o n
u [i] = func (x) ;
/ / i n t i t i a l i s e t h e new v e c t o r
unew [i] = 0 ;

}
/ / Time i t e r a t i o n
f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

f o r (i n t i = 1 ; i < n ; i ++) {
/ / D i s c r e t i z e d d i f f eq
unew [i] = a l p h a ∗ u [i −1] + (1 − 2∗ a l p h a) ∗ u [i] + a l p h a ∗ u [i + 1] ;

}
/ / n o t e t h a t t h e b o u n d a r i e s a r e no t changed .

382

15.2 – Diffusion equation

However, although the explicit scheme is easy to implement, it has a very weak stability condition,
given by

∆t/∆x2 ≤ 1/2. (15.38)
This means that if ∆x2 = 0.01, then ∆ = 5 × 10−5. This has obviously bad consequences if our time
interval is large. In order to derive this relation we need some results from studies of iterative schemes.
If we require that our solution approaches a definite value after a certain amount of time steps we need to
require that the so-called spectral radius ρ(Â) of our matrix Â satisfies the condition

ρ(Â) < 1, (15.39)

see for example chapter 10 of Ref. [25] or chapter 4 of [26] for proofs. The spectral radius is defined as

ρ(Â) = max
{
|λ| : det(Â− λÎ)

}
, (15.40)

which is interpreted as the smallest number such that a circle with radius centered at zero in the complex
plane contains all eigenvalues of Â. If the matrix is positive definite, the condition in Eq. (15.39) is
always satisfied.

We can obtain analytic expressions for the eigenvalues of Â. To achieve this it is convenient to rewrite
the matrix as

Â = Î − αB̂,

with

B̂ =

⎛

⎜⎜⎝

2 −1 0 0 . . .
−1 2 −1 0 . . .
.
0 . . . 0 . . . −1 2

.

⎞

⎟⎟⎠

The eigenvalues of Â are λi = 1 − αµi, with µi being the eigenvalues of B̂. To find µi we note that the
matrix elements of B̂ are

bij = 2δij − δi+1j − δi−1j ,

meaning that we have the following set of eigenequations for component i

(B̂x̂)i = µixi, (15.41)

resulting in

(B̂x̂)i =
n∑

j=1

(2δij − δi+1j − δi−1j) xj = 2xi − xi+1 − xi−1 = µixi. (15.42)

If we assume that x can be expanded in a basis of x = (sin(θ), sin(2θ), . . . , sin(nθ))with θ = lπ/n+1,
where we have the endpoints given by x0 = 0 and xn+1 = 0, we can rewrite the last equation as

2sin(iθ)− sin((i + 1)θ)− sin((i− 1)θ) = µisin(iθ),

or
2 (1− cos(θ)) sin(iθ) = µisin(iθ),

which is nothing but
2 (1− cos(θ))xi = µixi,

with eigenvalues µi = 2− 2cos(θ).
Our requirement in Eq. (15.39) results in

−1 < 1− α2 (1− cos(θ)) < 1,

which is satisfied only if α < (1− cos(θ))−1 resulting in α ≤ 1/2 or∆/∆x2 ≤ 1/2.

383

Partial differential equations

15.2.2 Implicit scheme

In deriving the equations for the explicit scheme we started with the so-called forward formula for the
first derivative, i.e., we used the discrete approximation

ut ≈
u(xi, tj + ∆t)− u(xi, tj)

∆t
. (15.43)

However, there is nothing which hinders us from using the backward formula

ut ≈
u(xi, tj)− u(xi, tj −∆t)

∆t
, (15.44)

still with a truncation error which goes like O(∆t). We could also have used a midpoint approximation
for the first derivative, resulting in

ut ≈
u(xi, tj + ∆t)− u(xi, tj −∆t)

2∆t
, (15.45)

with a truncation error O(∆t2). Here we will stick to the backward formula and come back to the latter
below. For the second derivative we use however

uxx ≈
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.46)

and define again α = ∆t/∆x2. We obtain now

ui,j−1 = −αui−1,j + (1− 2α)ui,j − αui+1,j . (15.47)

Here ui,j−1 is the only unknown quantity. Defining the matrix Â

Â =

⎛

⎜⎜⎝

1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
.

0 . . . 0 . . . −α 1 + 2α

⎞

⎟⎟⎠ , (15.48)

we can reformulate again the problem as a matrix-vector multiplication

ÂVj = Vj−1 (15.49)

meaning that we can rewrite the problem as

Vj = Â−1Vj−1 = Â−1
(
Â−1Vj−2

)
= · · · = Â−jV0. (15.50)

This is an implicit scheme since it relies on determining the vector ui,j−1 instead of ui,j+1. If α does
not depend on time t, we need to invert a matrix only once. Alternatively we can solve this system
of equations using our methods from linear algebra discussed in chapter 4. These are however very
cumbersome ways of solving since they involve ∼ O(N 3) operations for a N × N matrix. It is much
faster to solve these linear equations using methods for tridiagonal matrices, since these involve only
∼ O(N) operations. The function tridag of Ref. [22] is suitbale for these tasks.

The implicit scheme is always stable since the spectral radius satisfies ρ(Â) < 1. We could have
inferred this by noting that the matrix is positive definite, viz. all eigenvalues are larger than zero. We see
this from the fact that Â = Î +αB̂ has eigenvalues λi = 1+α(2−2cos(θ)) which satisfy λi > 1. Since
it is the inverse which stands to the right of our iterative equation, we have ρ(Â−1) < 1 and the method
is stable for all combinations of∆t and∆x. The calculational molecule for the implicit scheme is shown
in Fig. 15.2.

384

15.2 – Diffusion equation

a(t)

t

g(x)

b(t)

x

ui−1,j ui,j

ui,j+1

ui+1,j

✲

✻

Figure 15.1: Discretization of the integration area used in the solution of the 1 + 1-dimensional diffusion
equation. This discretization is often called calculational molecule.

a(t)

t

g(x)

b(t)

x

ui−1,j+1ui,j+1 ui+1,j+1

ui,j

✲

✻

Figure 15.2: Calculational molecule for the implicit scheme.

385

Partial differential equations

Program example for implicit equation

We show here parts of a simple example of how to solve the one-dimensional diffusion equation using
the implicit scheme discussed above. The program uses the function to solve linear equations with a
tridiagonal matrix discussed in chapter 4.

/ / p a r t s o f t h e f unc t i on f o r backward Eu l e r
vo id b ackwa rd_eu l e r (i n t x s t ep s , i n t t s t e p s , double d e l t a _ x , double a l p h a)
{

double ∗v , ∗ r , a , b , c ;

v = new double [x s t e p s +1] ; / / Th i s i s u
r = new double [x s t e p s +1] ; / / R igh t s i d e o f ma t r i x e q u a t i o n Av= r

/ / I n i t i a l i z e v e c t o r s
f o r (i n t i = 0 ; i < x s t e p s ; i ++) {

r [i] = v [i] = func (d e l t a _ x ∗ i) ;
}
r [x s t e p s] = v [x s t e p s] = 0 ;
/ / Ma t r ix A, only c o n s t a n t s
a = c = − a l p h a ;
b = 1 + 2∗ a l p h a ;
/ / Time i t e r a t i o n
f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

/ / h e r e we so l v e t h e t r i d i a g o n a l l i n e a r s e t o f e q u a t i o n s
t r i d a g (a , b , c , r , v , x _ s t e p s +1) ;
/ / boundary c o n d i t i o n s
v [0] = 0 ;
v [x s t e p s] = 0 ;
f o r (i n t i = 0 ; i <= x_ s t e p s ; i ++) {

r [i] = v [i] ;
}

}
. . .

}
/ / Funct ion used to s o l v e sy s t ems o f e q u a t i o n s f o r t r i d i a g o n a l m a t r i c e s
vo id t r i d a g (double a , double b , double c , double ∗ r , double ∗u , i n t n)
{

double be t , ∗gam ;
gam = new double [n] ;
b e t = b ;
/ / f o rwa rd s u b s t i t u t i o n
u [0]= r [0] / b e t ;
f o r (i n t j =1 ; j <n ; j ++) {

gam[j] = c / b e t ;
b e t = b − a∗gam[j] ;
i f (b e t == 0 . 0) { cou t << << end l ; }
u [j] = (r [j] − a∗u [j −1]) / b e t ;

}
/ / backward s u b s t i t u t i o n
f o r (i n t j =n−2; j >=0; j−−) {u [j] −= gam[j +1]∗u [j + 1] ; }
d e l e t e [] gam ;

}

386

15.2 – Diffusion equation

15.2.3 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methods in a slightly more general approach. Introduc-
ing a parameter θ (the so-called θ-rule) we can set up an equation

θ

∆x2
(ui−1,j − 2ui,j + ui+1,j) +

1− θ
∆x2

(ui+1,j−1 − 2ui,j−1 + ui−1,j−1) =
1

∆t
(ui,j − ui,j−1) ,

(15.51)
which for θ = 0 yields the forward formula for the first derivative and the explicit scheme, while θ = 1
yields the backward formula and the implicit scheme. These two schemes are called the backward and
forward Euler schemes, respectively. For θ = 1/2 we obtain a new scheme after its inventors, Crank and
Nicolson. This scheme yields a truncation in time which goes like O(∆t2) and it is stable for all possible
combinations of∆t and ∆x.

Using our previous definition of α = ∆t/∆x2 we can rewrite the latter equation as

−αui−1,j + (2 + 2α) ui,j − αui+1,j = αui−1,j−1 + (2− 2α) ui,j−1 + αui+1,j−1, (15.52)

or in matrix-vector form as (
2Î + αB̂

)
Vj =

(
2Î − αB̂

)
Vj−1, (15.53)

where the vector Vj is the same as defined in the implicit case while the matrix B̂ is

B̂ =

⎛

⎜⎜⎝

2 −1 0 0 . . .
−1 2 −1 0 . . .
.
0 . . . 0 . . . 2

⎞

⎟⎟⎠ (15.54)

We can rewrite the Crank-Nicolson scheme as follows

Vj =
(
2Î + αB̂

)−1 (
2Î − αB̂

)
Vj−1. (15.55)

We have already obtained the eigenvalues for the two matrices
(
2Î + αB̂

)
and

(
2Î − αB̂

)
. This means

that the spectral function has to satisfy

ρ(
(
2Î + αB̂

)−1 (
2Î − αB̂

)
) < 1,

meaning that ∣∣∣((2 + αµi)
−1 (2− αµi)

∣∣∣ < 1,

and since µi = 2 − 2cos(θ) we have 0 < µi < 4. A little algebra shows that the algorithm is stable for
all possible values of∆t and ∆x.

The calculational molecule for the Crank-Nicolson scheme is shown in Fig. 15.3.

Parts of code for the Crank-Nicolson scheme

We can code in an efficient way the Crank-Nicolson algortihm by first multplying the matrix

Ṽj−1 =
(
2Î − αB̂

)
Vj−1,

387

Partial differential equations

with our previous vector Vj−1 using the matrix-vector multiplication algorithm for a tridiagonal matrix,
as done in the forward-Euler scheme. Thereafter we can solve the equation

(
2Î + αB̂

)
Vj = Ṽj−1,

using our method for systems of linear equations with a tridiagonal matrix, as done for the backward
Euler scheme.

We illustrate this in the following part of our program.

vo id c r a n k _ n i c o l s o n (i n t x s t ep s , i n t t s t e p s , double d e l t a _ x , double a l p h a)
{

double ∗v , a , b , c , ∗ r ;

v = new double [x s t e p s +1] ; / / Th i s i s u
r = new double [x s t e p s +1] ; / / R igh t s i d e o f ma t r i x e q u a t i o n Av= r
. . . .
/ / s e t t i n g up t h e ma t r i x
a = c = − a l p h a ;
b = 2 + 2∗ a l p h a ;

/ / Time i t e r a t i o n
f o r (i n t t = 1 ; t <= t s t e p s ; t ++) {

/ / C a l c u l a t e r f o r use in t r i d a g , r i g h t hand s i d e o f t h e Crank
N ico l son method

f o r (i n t i = 1 ; i < x s t e p s ; i ++) {
r [i] = a l p h a∗v [i −1] + (2 − 2∗ a l p h a) ∗v [i] + a l p h a ∗v [i + 1] ;

}
r [0] = 0 ;
r [x s t e p s] = 0 ;
/ / Then s o l v e t h e t r i d i a g o n a l ma t r i x
t r i d a g (a , b , c , r , v , x s t e p s +1) ;
v [0] = 0 ;
v [x s t e p s] = 0 ;
. . . .

}

15.2.4 Numerical truncation

We start with the forward Euler scheme and Taylor expand u(x, t + ∆t), u(x + ∆x, t) and u(x−∆x, t)

u(x + ∆x, t) = u(x, t) + ∂u(x,t)
∂x ∆x + ∂2u(x,t)

2∂x2 ∆x2 + O(∆x3), (15.56)

u(x−∆x, t) = u(x, t) − ∂u(x,t)
∂x ∆x + ∂2u(x,t)

2∂x2 ∆x2 + O(∆x3),

u(x, t + ∆t) = u(x, t) + ∂u(x,t)
∂t ∆t + O(∆t2).

With these Taylor expansions the approximations for the derivatives takes the form
[

∂u(x,t)
∂t

]

approx
= ∂u(x,t)

∂t + O(∆t), (15.57)
[

∂2u(x,t)
∂x2

]

approx
= ∂2u(x,t)

∂x2 + O(∆x2).

388

15.2 – Diffusion equation

It is easy to convince oneself that the backward Euler method must have the same truncation errors as the
forward Euler scheme.

For the Crank-Nicolson scheme we also need to Taylor expand u(x+∆x, t+∆t) and u(x−∆x, t+
∆t) around t′ = t + ∆t/2.

u(x + ∆x, t + ∆t) = u(x, t′) + ∂u(x,t′)
∂x ∆x + ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 +

∂2u(x,t′)
∂x∂t

∆t
2 ∆x + O(∆t3)

u(x−∆x, t + ∆t) = u(x, t′)− ∂u(x,t′)
∂x ∆x + ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 −
∂2u(x,t′)

∂x∂t
∆t
2 ∆x + O(∆t3)

u(x + ∆x, t) = u(x, t′) + ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 −
∂2u(x,t′)

∂x∂t
∆t
2 ∆x + O(∆t3)

u(x−∆x, t) = u(x, t′)− ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂t
∆t
2 + ∂2u(x,t′)

2∂x2 ∆x2 + ∂2u(x,t′)
2∂t2

∆t2

4 +

∂2u(x,t′)
∂x∂t

∆t
2 ∆x + O(∆t3)

u(x, t + ∆t) = u(x, t′) + ∂u(x,t′)
∂t

∆t
2 + ∂2u(x,t′)

2∂t2 ∆t2 + O(∆t3)

u(x, t) = u(x, t′)− ∂u(x,t′)
∂t

∆t
2 + ∂2u(x,t′)

2∂t2 ∆t2 + O(∆t3)

We now insert these expansions in the approximations for the derivatives to find
[

∂u(x,t′)
∂t

]

approx
= ∂u(x,t′)

∂t + O(∆t2), (15.58)
[

∂2u(x,t′)
∂x2

]

approx
= ∂2u(x,t′)

∂x2 + O(∆x2).

The following table summarizes the three methods.

Scheme: Truncation Error: Stability requirements:
Crank-Nicolson O(∆x2) and O(∆t2) Stable for all ∆t and ∆x.
Backward Euler O(∆x2) and O(∆t) Stable for all ∆t and ∆x.
Forward Euler O(∆x2) aand O(∆t) ∆t ≤ 1

2∆x2

Table 15.1: Comparison of the different schemes.

15.2.5 Analytic solution for the one-dimensional diffusion equation

It cannot be repeated enough, it is always useful to find cases where one can compare the numerics and
the developed algorithms and codes with analytic solution. The above case is also particularly simple.
We have the following partial differential equation with

∇2u(x, t) =
∂u(x, t)

∂t
,

with initial conditions
u(x, 0) = g(x) 0 < x < L.

389

Partial differential equations

The boundary conditions are

u(0, t) = 0 t ≥ 0, u(L, t) = 0 t ≥ 0,

We assume that we have solutions of the form (separation of variable)

u(x, t) = F (x)G(t). (15.59)

which inserted in the partial differential equation results in

F ′′

F
=

G′

G
, (15.60)

where the derivative is with respect to x on the left hand side and with respect to t on right hand side.
This equation should hold for all x and t. We must require the rhs and lhs to be equal to a constant. We
call this constant −λ2. This gives us the two differential equations,

F ′′ + λ2F = 0; G′ = −λ2G, (15.61)

with general solutions

F (x) = A sin(λx) + B cos(λx); G(t) = Ce−λ2t. (15.62)

To satisfy the boundary conditions we require B = 0 and λ = nπ/L. One solution is therefore found to
be

u(x, t) = An sin(nπx/L)e−n2π2t/L2

. (15.63)

But there are an infinitely many possible n values (infinite number of solutions). Moreover, the diffusion
equation is linear and because of this we know that a superposition of solutions will also be a solution of
the equation. We may therefore write

u(x, t) =
∞∑

n=1

An sin(nπx/L)e−n2π2t/L2

. (15.64)

The coefficient An is in turn determined from the initial condition. We require

u(x, 0) = g(x) =
∞∑

n=1

An sin(nπx/L). (15.65)

The coefficient An is the Fourier coefficients for the function g(x). Because of this, An is given by (from
the theory on Fourier series)

An =
2

L

∫ L

0
g(x) sin(nπx/L)dx. (15.66)

Different g(x) functions will obviously result in different results for An. A good discussion on Fourier
series and their links with partial differential equations can be found in Ref. [74].

390

15.3 – Laplace’s and Poisson’s equations

15.3 Laplace’s and Poisson’s equations

Laplace’s equation reads
∇2u(x) = uxx + uyy = 0. (15.67)

with possible boundary conditions u(x, y) = g(x, y) on the border δΩ. There is no time-dependence.
We seek a solution in the region Ω and we choose a quadratic mesh with equally many steps in both
directions. We could choose the grid tobe rectangular or following polar coordinates r, θ as well. Here
we choose equal steps lengths in the x and the y directions. We set

∆x = ∆y =
L

n + 1
,

where L is the length of the sides and we have n + 1 points in both directions.
The discretized version reads

uxx ≈
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2
, (15.68)

and
uyy ≈

u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
, (15.69)

which we rewrite as
uxx ≈

ui+1,j − 2ui,j + ui−1,j

h2
, (15.70)

and
uyy ≈

ui,j+1 − 2ui,j + ui,j−1

h2
, (15.71)

which gives when inserted in Laplace’s equation

ui,j =
1

4
[ui,j+1 + ui,j−1 + ui+1,j + ui−1,j] . (15.72)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation adds only a minor
complication to the above equation since in this case we have

uxx + uyy = −ρ(x, y),

and we need only to add a discretized version of ρ(x) resulting in

ui,j =
1

4
[ui,j+1 + ui,j−1 + ui+1,j + ui−1,j] +

h2

4
ρi,j. (15.73)

The boundary condtions read
ui,0 = gi,0 0 ≤ i ≤ n + 1,

ui,L = gi,0 0 ≤ i ≤ n + 1,

u0,j = g0,j 0 ≤ j ≤ n + 1,

and
uL,j = gL,j 0 ≤ j ≤ n + 1.

The calculational molecule for the Laplace operator of Eq. (15.72) is shown in Fig. 15.4.
With n + 1 mesh points the equations for u result in a system of (n + 1)2 linear equations in the

(n + 1)2 unknown ui,j . One can show that there exist unique solutions for the Laplace and Poisson
problems, see for example Ref. [74] for proofs. However, solving these equations using for example the
LU decomposition techniques discussed in chapter 4 becomes inefficient since the matrices are sparse.
The relaxation techniques discussed below are more efficient.

391

Partial differential equations

a(t)

t

g(x)

b(t)

x

ui−1,j+1ui,j+1 ui+1,j+1

ui−1,j ui+1,jui,j

✲

✻

Figure 15.3: Calculational molecule for the Crank-Nicolson scheme.

g(x, y)

y

g(x, y)

g(x, y)

x

ui,j+1

ui−1,j ui+1,jui,j

ui,j−1

✲

✻

Figure 15.4: Five-point calculational molecule for the Laplace operator of Eq. (15.72). The border δΩ
defines the boundary condition u(x, y) = g(x, y).

392

15.3 – Laplace’s and Poisson’s equations

15.3.1 Jacobi Algorithm for solving Laplace’s equation

It is fairly straightforward to extend this equation to the three-dimensional case. Whether we solve
Eq. (15.72) or Eq. (15.73), the solution strategy remains the same. We know the values of u at i = 0 or
i = n + 1 and at j = 0 or j = n + 1 but we cannot start at one of the boundaries and work our way into
and across the system since Eq. (15.72) requires the knowledge of u at all of the neighbouring points in
order to calculate u at any given point.

The way we solve these equations is based on an iterative scheme called the Jacobi method or relax-
ation method. See for example Refs. [74, 72] for a discussion of the relaxation method and its pertinent
proofs. Its steps are rather simple. We start with an initial guess for u(0)

i,j where all values are known. To
obtain a new solution we solve Eq. (15.72) or Eq. (15.73) in order to obtain a new solution u(1)

i,j . Most
likely this solution will not be a solution to Eq. (15.72). This solution is in turn used to obtain a new and
improved u(2)

i,j . We continue this process till we obtain a result which satisfies some specific convergence
criterion. Summarized, this algorithm reads

1. Make an initial guess for ui,j at all interior points (i, j) for all i = 1 : n and j = 1 : n

2. Use Eq. (15.72) to compute um at all interior points (i, j). The indexm stands for iteration number
m.

3. Stop if prescribed convergence threshold is reached, otherwise continue on next step.

4. Update the new value of u for the given iteration

5. Go to step 2

A simple example may help in visualizing this method. We consider a condensator with parallel
plates separated at a distance L resulting in e.g., the voltage differences u(x, 0) = 100sin(2πx/L) and
u(x, 1) = −100sin(2πx/L). These are our boundary conditions and we ask what is the voltage u
between the plates? To solve this problem numerically we provide below a Fortran 90/95 program which
solves iteratively Eq. (15.72). Only the part which computes Eq. (15.72) is included here.

. . . .
! d e f i n e t h e s t e p s i z e

h = (xmax−xmin) /FLOAT(ndim+1)
l e n g t h = xmax−xmin

! a l l o c a t e space f o r t h e v e c t o r u and t h e temporary v e c t o r t o
! be upgraded i n e v e r y i t e r a t i o n

ALLOCATE (u (ndim , ndim))
ALLOCATE (u_temp (ndim , ndim))
p i = ACOS(−1 .)

! s e t up o f i n i t i a l c o n d i t i o n s a t t = 0 and boundary c o n d i t i o n s
u = 0 .
DO i =1 , ndim

x = i ∗h∗ p i / l e n g t h
u (i , 1) = func (x)
u (i , ndim) = −func (x)

ENDDO
! i t e r a t i o n a l g o r i t hm s t a r t s here

i t e r a t i o n s = 0
DO WHILE ((i t e r a t i o n s <= 20) .OR. (d i f f > 0 . 00001))

u_temp = u ; d i f f = 0 .

393

Partial differential equations

DO j = 2 , ndim − 1
DO l = 2 , ndim −1

u (j , l) = 0 . 2 5∗ (u_temp (j +1 , l) +u_temp (j −1 , l) + &
u_temp (j , l +1)+u_temp (j , l −1))

d i f f = d i f f + ABS(u_temp (i , j)−u (i , j))
ENDDO

ENDDO
i t e r a t i o n s = i t e r a t i o n s + 1
d i f f = d i f f / (ndim+1) ∗∗2

ENDDO

The important part of the algorithm is applied in the function which sets up the two-dimensional Laplace
equation. There we have a do-while statement which tests the difference between the temporary vector
and the solution ui,j . Moreover, we have fixed the number of iterations to be at most 20. This is suffi-
cient for the above problem, but for more general applications you need to test the convergence of the
algorithm.

While the Jacobi iteration scheme is very simple and parallelizable, its slow convergence rate renders
it impractical for any "real world" applications. One way to speed up the convergent rate would be to
"over predict" the new solution by linear extrapolation. This leads to the Successive Over Relaxation
scheme, see chapter 19.5 on relaxation methods for boundary value problems of Ref. [22].

15.3.2 Laplace’s equation and the parallel Jacobi algorithm

Ready fall 2008, see chapter 4 of Ref. [15].

15.3.3 Relaxation methods for boundary value problems with parallel implementation

Ready fall 2008, see chapter 19 of Ref. [22].

15.4 Wave equation in two dimensions

The 1 + 1-dimensional wave equation reads

∂2u

∂x2
=
∂2u

∂t2
, (15.74)

with u = u(x, t) and we have assumed that we operate with dimensionless variables. Possible boundary
and initial conditions with L = 1 are

⎧
⎪⎪⎨

⎪⎪⎩

uxx = utt x ∈ (0, 1), t > 0
u(x, 0) = g(x) x ∈ (0, 1)

u(0, t) = u(1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x ∈ (0, 1)

. (15.75)

We discretize again time and position,

uxx ≈
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.76)

and
utt ≈

u(x, t + ∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
, (15.77)

394

15.4 – Wave equation in two dimensions

which we rewrite as
uxx ≈

ui+1,j − 2ui,j + ui−1,j

∆x2
, (15.78)

and
utt ≈

ui,j+1 − 2ui,j + ui,j−1

∆t2
, (15.79)

resulting in

ui,j+1 = 2ui,j − ui,j−1 +
∆t2

∆x2
(ui+1,j − 2ui,j + ui−1,j) . (15.80)

If we assume that all values at times t = j and t = j − 1 are known, the only unknown variable is ui,j+1

and the last equation yields thus an explicit scheme for updating this quantity. We have thus an explicit
finite difference scheme for computing the wave function u. The only additional complication in our
case is the initial condition given by the first derivative in time, namely ∂u/∂t|t=0 = 0. The discretized
version of this first derivative is given by

ut ≈
u(xi, tj + ∆t)− u(xi, tj −∆t)

2∆t
, (15.81)

and at t = 0 it reduces to
ut ≈

ui,+1 − ui,−1

2∆t
= 0, (15.82)

implying that ui,+1 = ui,−1. If we insert this condition in Eq. (15.80) we arrive at a special formula for
the first time step

ui,1 = ui,0 +
∆t2

2∆x2
(ui+1,0 − 2ui,0 + ui−1,0) . (15.83)

We need seemingly two different equations, one for the first time step given by Eq. (15.83) and one for
all other time-steps given by Eq. (15.80). However, it suffices to use Eq. (15.80) for all times as long as
we provide u(i,−1) using

ui,−1 = ui,0 +
∆t2

2∆x2
(ui+1,0 − 2ui,0 + ui−1,0) , (15.84)

in our setup of the initial conditions.
The situation is rather similar for the 2 + 1-dimensional case, except that we now need to discretize

the spatial y-coordinate as well. Our equations will now depend on three variables whose discretized
versions are now ⎧

⎨

⎩

tl = l∆t l ≥ 0
xi = i∆x 0 ≤ i ≤ nx

yj = j∆y 0 ≤ j ≤ ny

, (15.85)

and we will let ∆x = ∆y = h and nx = ny for the sake of simplicity. The equation with initial and
boundary conditions reads now

⎧
⎪⎪⎨

⎪⎪⎩

uxx + uyy = utt x, y ∈ (0, 1), t > 0
u(x, y, 0) = g(x, y) x, y ∈ (0, 1)

u(0, 0, t) = u(1, 1, t) = 0 t > 0
∂u/∂t|t=0 = 0 x, y ∈ (0, 1)

. (15.86)

We have now the following discretized partial derivatives

uxx ≈
ul

i+1,j − 2ul
i,j + ul

i−1,j

h2
, (15.87)

395

Partial differential equations

and

uyy ≈
ul

i,j+1 − 2ul
i,j + ul

i,j−1

h2
, (15.88)

and

utt ≈
ul+1

i,j − 2ul
i,j + ul−1

i,j

∆t2
, (15.89)

which we merge into the discretized 2 + 1-dimensional wave equation as

ul+1
i,j = 2ul

i,j − ul−1
i,j +

∆t2

h2

(
ul

i+1,j − 4ul
i,j + ul

i−1,j + ul
i,j+1 + ul

i,j−1

)
, (15.90)

where again we have an explicit scheme with ul+1
i,j as the only unknown quantity. It is easy to account

for different step lengths for x and y. The partial derivative is treated in much the same way as for the
one-dimensional case, except that we now have an additional index due to the extra spatial dimension,
viz., we need to compute u−1

i,j through

u−1
i,j = u0

i,j +
∆t

2h2

(
u0

i+1,j − 4u0
i,j + u0

i−1,j + u0
i,j+1 + u0

i,j−1

)
, (15.91)

in our setup of the initial conditions.

15.4.1 Analytic solution

We develop here the analytic solution for the 2+1 dimensional wave equation with the following bound-
ary and initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

c2(uxx + uyy) = utt x, y ∈ (0, L), t > 0
u(x, y, 0) = f(x, y) x, y ∈ (0, L)

u(0, 0, t) = u(L,L, t) = 0 t > 0
∂u/∂t|t=0 = g(x, y) x, y ∈ (0, L)

.

Our first step is to make the ansatz

u(x, y, t) = F (x, y)G(t),

resulting in the equation
FGtt = c2(FxxG + FyyG),

or
Gtt

c2G
=

1

F
(Fxx + Fyy) = −ν2.

The lhs and rhs are independent of each other and we obtain two differential equations

Fxx + Fyy + Fν2 = 0,

and
Gtt + Gc2ν2 = Gtt + Gλ2 = 0,

with λ = cν. We can in turn make the following ansatz for the x and y dependent part

F (x, y) = H(x)Q(y),

396

15.5 – The Leap frog method and Schrödinger’s equation

which results in
1

H
Hxx = −

1

Q
(Qyy + Qν2) = −κ2.

Since the lhs and rhs are again independent of each other, we can separate the latter equation into two
independent equations, one for x and one for y, namely

Hxx + κ2H = 0,

and
Qyy + ρ2Q = 0,

with ρ2 = ν2 − κ2.
The second step is to solve these differential equations, which all have trigonometric functions as

solutions, viz.
H(x) = A cos(κx) + B sin(κx),

and
Q(y) = C cos(ρy) + D sin(ρy).

The boundary conditions require that F (x, y) = H(x)Q(y) are zero at the boundaries, meaning that
H(0) = H(L) = Q(0) = Q(L) = 0. This yields the solutions

Hm(x) = sin(
mπx

L
) Qn(y) = sin(

nπy

L
),

or
Fmn(x, y) = sin(

mπx

L
) sin(

nπy

L
).

With ρ2 = ν2 − κ2 and λ = cν we have an eigenspectrum λ = c
√
κ2 + ρ2 or λmn = cπ/L

√
m2 + n2.

The solution for G is
Gmn(t) = Bmn cos(λmnt) + B∗

mn sin(λmnt),

with the general solution of the form

u(x, y, t) =
∞∑

mn=1

umn(x, y, t) =
∞∑

mn=1

Fmn(x, y)Gmn(t).

The final step is to determine the coefficients Bmn and its complex conjugate B∗
mn from the Fourier

coefficients. The equations for these are determined by the initial conditions u(x, y, 0) = f(x, y) and
∂u/∂t|t=0 = g(x, y). The final expressions are

Bmn =
2

L

∫ L

0

∫ L

0
dxdyf(x, y) sin(

mπx

L
) sin(

nπy

L
),

and

B∗
mn =

2

L

∫ L

0

∫ L

0
dxdyg(x, y) sin(

mπx

L
) sin(

nπy

L
).

Inserting the particular functional forms of f(x, y) and g(x, y) one obtains the final analytic expressions.

15.5 The Leap frog method and Schrödinger’s equation

Fall 2008.

397

Partial differential equations

15.6 Physics projects, two-dimensional wave equation

Consider the two-dimensional wave equation for a vibrating membrane given by the following initial and
boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

uxx + uyy = utt x, y ∈ (0, 1), t > 0
u(x, y, 0) = sin(x)cos(y) x, y ∈ (0, 1)
u(0, 0, t) = u(1, 1, t) = 0 t > 0

∂u/∂t|t=0 = 0 x, y ∈ (0, 1)

.

a) Find the analytic solution for this equation using the technique of separation of variables.

b) Write down the algorithm for solving this equation and set up a program to solve the discretized
wave equation. Compare your results with the analytic solution. Use a quadratic grid.

c) Consider thereafter a 2 + 1 dimensional wave equation with variable velocity, given by

∂2u

∂t2
= ∇(λ(x, y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous points. The
solution u(x, y, t) could represent a model for water waves. It represents then the surface elevation
from still water. The function λ simulates the water depth using for example measurements of still
water depths in say a fjord or the north sea. The boundary conditions are then determined by the
coast lines. You can discretize

∇(λ(x, y)∇u) =
∂

∂x

(
λ(x, y)

∂u

∂x

)
+

∂

∂y

(
λ(x, y)

∂u

∂y

)
,

as follows using again a quadratic domain for x and y:

∂

∂x

(
λ(x, y)

∂u

∂x

)
≈

1

∆x

(

λi+1/2,j

[
ul

i+1,j − ul
i,j

∆x

]

− λi−1/2,j

[
ul

i,j − ul
i−1,j

∆x

])

,

and

∂

∂y

(
λ(x, y)

∂u

∂y

)
≈

1

∆y

(

λi,j+1/2

[
ul

i,j+1 − ul
i,j

∆y

]

− λi,j−1/2

[
ul

i,j − ul
i,j−1

∆y

])

.

Convince yourself that this equation has the same truncation error as the expressions used in a) and
b) and that they result in the same equations when λ is a constant.

d) Develop an algorithm for solving the new wave equation and write a program which implements
it.

15.7 Physics projects, one- and two-dimensional diffusion equations

We are looking at a one-dimensional problem

∂2u(x, t)

∂x2
=
∂u(x, t)

∂t
, t > 0, x ∈ [0, L] (15.92)

398

15.7 – Physics projects, one- and two-dimensional diffusion equations

or
uxx = ut, (15.93)

with initial conditions, i.e., the conditions at t = 0,

u(x, 0) = 0 0 < x < L (15.94)

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = 0 t > 0, (15.95)

and
u(L, t) = 1 t > 0. (15.96)

The function u(x, t) can be the temperature gradient of a the rod or represent the fluid velocity in a
direction parallel to the plates, that is normal to the x-axis. In the latter case, for small t, only the part
of the fluid close to the moving plate is set in significant motion, resulting in a thin boundary layer at
x = L. As time increases, the velocity approaches a linear variation with x. In this case, which can
be derived from the incompressible Navier-Stokes, the above equations constitute a model for studying
friction between moving surfaces separated by a thin fluid film.

In this project we want to study the numerical stability of three methods for partial differential equa-
tions (PDEs). These methods are

1. The explicit forward Euler algorithm with discretized versions of time given by a forward formula
and a centered difference in space resulting in

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
(15.97)

and
uxx ≈

u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.98)

or
uxx ≈

u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
. (15.99)

2. The implicit Backward Euler with

ut ≈
u(x, t)− u(x, t−∆t)

∆t
=

u(xi, tj)− u(xi, tj −∆t)

∆t
(15.100)

and
uxx ≈

u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
, (15.101)

or
uxx ≈

u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
, (15.102)

3. Finally we use the implicit Crank-Nicolson scheme with a time-centered scheme at (x, t + ∆t/2)

ut ≈
u(x, t + ∆t)− u(x, t)

∆t
=

u(xi, tj + ∆t)− u(xi, tj)

∆t
. (15.103)

399

Partial differential equations

The corresponding spatial second-order derivative reads

uxx ≈
1

2

(
u(xi + ∆x, tj)− 2u(xi, tj) + u(xi −∆x, tj)

∆x2
+ (15.104)

u(xi + ∆x, tj + ∆t)− 2u(xi, tj + ∆t) + u(xi −∆x, tj + ∆t)

∆x2

)
.

Note well that we are using a time-centered scheme wih t + ∆t/2 as center.

a) Write down the algorithms for these three methods and the equations you need to implement. For
the implicit schemes show that the equations lead to a tridiagonal matrix system for the new values.

b) Find the truncation errors of these three schemes and investigate their stability properties. Find
also the analytic solution to the continuous problem. A useful hint here is to solve for v(x, t) =
u(x, t)− x instead. The boundary conditions for v(x, t) are simpler, v(0, t) = v(1, t) = 0 and the
initial conditions are v(x, 0) = −x.

c) Implement the three algorithms in the same code and perform tests of the solution for these three
approaches for ∆x = 1/10, ∆x = 1/100 using ∆t as dictated by the stability limit of the ex-
plicit scheme. Study the solutions at two time points t1 and t2 where u(x, t1) is smooth but still
significantly curved and u(x, t2) is almost linear, close to the stationary state.

d) Compare the solutions at t1 and t2 with the analytic result for the continuous problem. Which of
the schemes would you classify as the best?

e) Generalize this problem to two dimensions and write down the algorithm for the forward and back-
ward Euler approaches. Write a program which solves the diffusion equation in 2 + 1 dimensions.
The program should allow for general boundary and initial conditions.

400

Part II

Advanced topics

401

Chapter 16

Finite element method

403

Finite element method

404

Chapter 17

Modelling Phase Transitions in Statistical
Physics

405

Chapter 18

Quantum Monte Carlo and Bose-Einstein
condensation

407

Chapter 19

Quantum Monte Carlo for atoms and
molecules

409

Chapter 20

Large-scale diagonalization and
Coupled-Cluster theories

411

Chapter 21

Quantum Information Theory and
Quantum Algorithms

413

Quantum Information Theory and Quantum Algorithms

414

Part III

Programs and additional notes on C++,
MPI and Fortran 90/95

415

Appendix A

Additional C++ and Fortran 90/95
programming features

In this appendix we present further features of C++, MPI and Fortran 90/95. This chapter will be up-
graded for fall 2008.

A.1 The vector class

Our next next example is very simple class to handle one-dimensional arrays. It demonstrates again many
aspects of C++ programming. However, most likely you will end up using a ready-made array class from
a library like Blitz++.

Our class vector_operations has as data a plain one-dimensional array. We define several functions
which operate on these data, from subscripting, change of the length of the array, assignment to another
vector, inner product with another vector etc etc. To be more specific, we define the following usage of
our class,that is the way the class is used in another part of the program:

– Create vectors of a specified length defining a vector as vector_operations v(n) ; Via this statement
we allocate space in memory for a vector with n elements.

– Create a vector with zero length by writing the statement vector_operations v;

– Change the dimension of a vector v to a given length n by declaring v.redim(n) ; . Note here the
way we use a function defined within a class. The function here is redim define in our class.

– Create a vector as a copy of another vector by simply writing vector_operations v(w);

– To extract the length of the vector by writing const int n = v. size () ;

– To find particular value of the vector double e = v(i) ;

– or assign a number to an entry via v(j) = e;

– We would also like to set two vectors equal to each other by simply writing w = v;

– or take the inner product of two vectors as double a = w.inner (v) ; or alternatively lstinlinea = in-
ner(w,v);

417

Additional C++ and Fortran 90/95 programming features

– To write a vector to screen could be done by writing v.print (cout) ;

This list can be made longer by adding features like vector algebra, operator overloading etc.
We present now the declaration of the class, with our comments on the various declarations.

c l a s s v e c t o r _ o p e r a t i o n s
{
pr i v a t e :
double ∗ A; / / v e c t o r e n t r i e s
i n t l e n g t h ; / / t h e l e n g t h o f t h e v e c t o r
vo id a l l o c a t e (i n t n) ; / / a l l o c a t e memory , l e n g t h =n
vo id d e a l l o c a t e () ; / / f r e e memory

pub l i c :
v e c t o r _ o p e r a t i o n s () ; / / Co n s t r u c t o r , use as

v e c t o r _ o p e r a t i o n s v ;
v e c t o r _ o p e r a t i o n s (i n t n) ; / / use as v e c t o r _ o p e r a t i o n s v (n) ;
v e c t o r _ o p e r a t i o n s (c o n s t v e c t o r _ o p e r a t i o n s& w) ; / / us a s

v e c t o r _ o p e r a t i o n s v (w) ;
~ v e c t o r _ o p e r a t i o n s () ; / / d e s t r u c t o r to c l e a n up dynamic

memory

boo l red im (i n t n) ; / / change l eng th , us as v . red im (m)
;

v e c t o r _ o p e r a t i o n s& opera tor= (c o n s t v e c t o r _ o p e r a t i o n s& w) ; / / s e t two
v e c t o r s e q u a l v = w;

double opera tor () (i n t i) c o n s t ; / / a = v (i) ;
double& opera tor () (i n t i) ; / / v (i) = a ;

vo id pr i n t (s t d : : o s t r e am& o) c o n s t ; / / v . pr i n t (c ou t) ;
double i n n e r (c o n s t v e c t o r _ o p e r a t i o n s& w) co n s t ; / / a = v . i n n e r (w) ;
i n t s i z e () c o n s t { re turn l e n g t h ; } / / n = v . s i z e () ;

} ;

The class is defined via the statement class vector_operations . We must first use the key word class ,
which in turn is followed by the user-defined variable name. The body of the class, data and functions, is
encapsulated within the parentheses ...;.

Data and specific functions can be private, which means that they cannot be accessed from outside
the class. This means also that access cannot be inherited by other functions outside the class. If we
use protected instead of private, then data and functions can be inherited outside the class. The key word
publicmeans that data and functions can be accessed from outside the class. Here we have defined several
functions which can be accessed by functions outside the class.

The first public function we encounter is a so-called constructor, which tells how we declare a variable
of type vector_operations and how this variable is initialized

v e c t o r _ o p e r a t i o n s v ; / / d e c l a r e a v e c t o r o f l e n g t h 0

/ / t h i s a c t u a l l y means c a l l i n g t h e f unc t i on

v e c t o r _ o p e r a t i o n s : : v e c t o r _ o p e r a t i o n s ()
{ A = NULL; l e n g t h = 0 ; }

The constructor is the first function that is called when an object is instantiated. The variable A is the
vector entry which defined as a private entity. Here the length is set to zero. Note also the way we

418

A.1 – The vector class

define a method within the class by writing vector_operations :: vector_operations () . The general form is
< return type> name of class :: name of method(<list of arguments>.

To give our vector v a dimensionality n we would write

v e c t o r _ o p e r a t i o n s v (n) ; / / d e c l a r e a v e c t o r o f l e n g t h n

/ / means c a l l i n g t h e f unc t i on

v e c t o r _ o p e r a t i o n s : : v e c t o r _ o p e r a t i o n s (i n t n)
{ a l l o c a t e (n) ; }

vo id v e c t o r _ o p e r a t i o n s : : a l l o c a t e (i n t n)
{
l e n g t h = n ;
A = new double [n] ; / / c r e a t e n doub l e s in memory

}

Note that we defined a Fortran-like function for allocating memory. This is one of nice features of C++
for Fortran programmers, one can always define a Fortran-like world if one wishes. Moreover,the private
function allocate operates on the private variables length and A. A vector_operations object is created
(dynamically) at run time, but must also be destroyed when it is no longer in use. The destructor specifies
how to destroy the object via the tilde symbol shown here

v e c t o r _ o p e r a t i o n s : : ~ v e c t o r _ o p e r a t i o n s ()
{
d e a l l o c a t e () ;

}

/ / f r e e dynamic memory :
vo id v e c t o r _ o p e r a t i o n s : : d e a l l o c a t e ()
{
d e l e t e [] A;

}

Again we have define a deallocation statement which mimicks the Fortran way of removing an object
from memory. The observant reader may also have discovered that we have sneaked in the word ’object’.
What do we mean by that? A clarification is needed. We will always refer a class as user defined and
declared variable which encapsulates various data (of a given type) and operations on these data. An
object on the other hand is an instance of a variable of a given type. We refer to every variable we create
and use as an object of a given type. The variable A above is an object of type int .

The function where we set two vectors to have the same length and have the same values can be
written as

/ / v and w a r e v e c t o r _ o p e r a t i o n s o b j e c t s
v = w;
/ / means c a l l i n g
v e c t o r _ o p e r a t i o n s& v e c t o r _ o p e r a t i o n s : : opera tor= (c o n s t

v e c t o r _ o p e r a t i o n s& w)
/ / f o r s e t t i n g v = w;
{
red im (w. s i z e ()) ; / / make v as long as w
i n t i ;
f o r (i = 0 ; i < l e n g t h ; i ++) { / / (C++ a r r a y s s t a r t a t 0)

419

Additional C++ and Fortran 90/95 programming features

A[i] = w.A[i] ; / / f i l l in t e h v e c t o r w
}
re turn ∗ t h i s ;

}
/ / re turn o f ∗ t h i s , i . e . a v e c t o r _ o p e r a t i o n s &, a l l ow s n e s t e d

o p e r a t i o n s
u = v = u_vec = v_vec ;

where we have used the redim function

v . red im (n) ; / / make a v e c t o r v o f l e n g t h n

boo l v e c t o r _ o p e r a t i o n s : : red im (i n t n)
{
i f (l e n g t h == n)
re turn f a l s e ; / / no need to a l l o c a t e a n y t h i n g

e l s e {
i f (A != NULL) {
/ / o b j e c t has a l r e a d y a l l o c a t e d memory
d e a l l o c a t e () ;

}
a l l o c a t e (n) ;
re turn t r u e ; / / t h e l e n g t h was changed

}
}

and the copy action is defined as

v e c t o r _ o p e r a t i o n s v (w) ; / / t a k e a copy o f w

v e c t o r _ o p e r a t i o n s : : v e c t o r _ o p e r a t i o n s (c o n s t v e c t o r _ o p e r a t i o n s& w)
{
a l l o c a t e (w. s i z e ()) ; / / o b j e c t g e t s w’ s l e n g t h
∗ t h i s = w; / / c a l l opera tor =

}

Here we have defined to be a pointer to the current (“this”) object, in other words is the
object itself.

vo id v e c t o r _ o p e r a t i o n s : : pr i n t (s t d : : o s t r e am& o) c o n s t
{
i n t i ;
f o r (i = 1 ; i <= l e n g t h ; i ++)
o << << i << << (∗ t h i s) (i) << ’ \ n ’ ;

}

double a = v . i n n e r (w) ;

double v e c t o r _ o p e r a t i o n s : : i n n e r (c o n s t v e c t o r _ o p e r a t i o n s& w) co n s t
{
i n t i ; double sum = 0 ;
f o r (i = 0 ; i < l e n g t h ; i ++)
sum += A[i]∗w.A[i] ;

/ / a l t e r n a t i v e :

420

A.1 – The vector class

/ / f o r (i = 1 ; i <= l e n g t h ; i ++) sum += (∗ t h i s) (i) ∗w(i) ;
re turn sum ;

}

/ / v e c t o r _ o p e r a t i o n s v
cou t << v ;

o s t r e am& operator << (o s t r e am& o , c o n s t v e c t o r _ o p e r a t i o n s& v)
{ v . pr i n t (o) ; re turn o ; }

/ / must re turn o s t r e am& f o r n e s t e d o u t p u t o p e r a t o r s :
c ou t << << w;

/ / t h i s i s r e a l i z e d by t h e s e c a l l s :
operator << (cout ,) ;
operator << (cout , w) ;

We can redefine the multiplication operator to mean the inner product of two vectors:

double a = v∗w; / / example on a t t r a c t i v e s y n t a x

c l a s s v e c t o r _ o p e r a t i o n s
{
. . .
/ / compute (∗ t h i s) ∗ w
double opera tor∗ (c o n s t v e c t o r _ o p e r a t i o n s& w) co n s t ;
. . .

} ;

double v e c t o r _ o p e r a t i o n s : : opera tor∗ (c o n s t v e c t o r _ o p e r a t i o n s& w) co n s t
{
re turn i n n e r (w) ;

}

/ / have some v e c t o r _ o p e r a t i o n s u , v , w; double a ;
u = v + a∗w;
/ / g l o b a l f unc t i on opera tor+
v e c t o r _ o p e r a t i o n s opera tor+ (c o n s t v e c t o r _ o p e r a t i o n s& a , c o n s t

v e c t o r _ o p e r a t i o n s& b)
{
v e c t o r _ o p e r a t i o n s tmp (a . s i z e ()) ;
f o r (i n t i =1 ; i <=a . s i z e () ; i ++)
tmp (i) = a (i) + b (i) ;

re turn tmp ;
}
/ / g l o b a l f unc t i on opera tor∗
v e c t o r _ o p e r a t i o n s opera tor∗ (c o n s t v e c t o r _ o p e r a t i o n s& a , double r)
{
v e c t o r _ o p e r a t i o n s tmp (a . s i z e ()) ;
f o r (i n t i =1 ; i <=a . s i z e () ; i ++)
tmp (i) = a (i) ∗ r ;

re turn tmp ;
}

421

Additional C++ and Fortran 90/95 programming features

/ / symmet r i c opera tor : r ∗a
v e c t o r _ o p e r a t i o n s opera tor∗ (double r , c o n s t v e c t o r _ o p e r a t i o n s& a)
{ re turn opera tor ∗ (a , r) ; }

Classes and templates in C++ Blitz++

We can again use templates to generalize our class to accept other types than just doubles. To achieve
that we use templates, which are the native C++constructs for parameterizing parts of classes, using
statements like

t emp l a t e < c l a s s T>
c l a s s v e c t o r _ o p e r a t i o n s
{
T∗ A;
i n t l e n g t h ;

pub l i c :
. . .
T& opera tor () (i n t i) { re turn A[i −1]; }
. . .

} ;

In a code which uses this class we could declare various vectors as Declarations in user code:

v e c t o r _ o p e r a t i o n s <double > a (1 0) ;
v e c t o r _ o p e r a t i o n s < i n t > i (5) ;

where the first variable is double vector with ten elements while the second is an integer vector with five
elements.

Summarizing, it is easy to use the class vector_operations and we can hide in the class many details
which are visible in C and Fortran 77 codes. However, as you may have noted it is not easy to write class
vector_operations . One ends often up with using ready-made classes in C++ libraries such as Blitz++
unless you really need to develop your own code. Furthermore, our vector class has served mainly a
pedagogical scope, since C++ has a Standard Template Library (STL) with vector types, including a
vector for doing numerics that can be declared as

s t d : : v a l a r r a y <double > x (n) ; / / v e c t o r wi th n e n t r i e s

However, there is no STL for a matrix type. We end therefore with recommending the use of ready-made
libraries like Blitz++.

A.2 Modules in Fortran 90/95

In the previous section we discussed classes and templates in C++. Classes offer several advantages, such
as

– Allows us to place classes into structures

– Pass arguments to methods

– Allocate storage for objects

422

A.2 – Modules in Fortran 90/95

– Implement associations

– Encapsulate internal details into classes

– Implement inheritance in data structures

Classes contain a new data type and the procedures that can be performed by the class. The elements
(or components) of the data type are the class data members, and the procedures are the class member
functions. In Fortran 90/95 a class is defined as a MODULE which contains an abstract data TYPE
definition. The example we elaborate on here is a Fortran 90/95 class for defining operations on single-
particle quantum numbers such as the total angular momentum, the orbital momentum, the energy, spin
etc.

We present the MODULE single_particle_orbits here and discuss several of its feature with links to
C++ programming.

! D e f i n i t i o n o f s i n g l e p a r t i c l e da ta

MODULE s i n g l e _ p a r t i c l e _ o r b i t s
TYPE , PUBLIC : : s i n g l e _ p a r t i c l e _ d e s c r i p t

INTEGER : : t o t a l _ o r b i t s
INTEGER , DIMENSION (:) , POINTER : : nn , l l , j j , s p i n
CHARACTER∗10 , DIMENSION (:) , POINTER : : o r b i t _ s t a t u s , &

mode l_ space
REAL(KIND=8) , DIMENSION (:) , POINTER : : e

END TYPE s i n g l e _ p a r t i c l e _ d e s c r i p t

TYPE (s i n g l e _ p a r t i c l e _ d e s c r i p t) , PUBLIC : : a l l _ o r b i t , &
n eu t r o n _ d a t a , p r o t o n _ d a t a

CONTAINS

! v a r i o u s member f u n c t i o n s here

SUBROUTINE a l l o c a t e _ s p _ a r r a y (t h i s _ a r r a y , n)
TYPE (s i n g l e _ p a r t i c l e _ d e s c r i p t) , INTENT (INOUT) : : t h i s _ a r r a y
INTEGER , INTENT (IN) : : n
IF (ASSOCIATED (t h i s _ a r r a y%nn)) &

DEALLOCATE (t h i s _ a r r a y%nn)
ALLOCATE(t h i s _ a r r a y%nn (n))
IF (ASSOCIATED (t h i s _ a r r a y%l l)) &

DEALLOCATE (t h i s _ a r r a y%l l)
ALLOCATE(t h i s _ a r r a y%l l (n))
IF (ASSOCIATED (t h i s _ a r r a y%j j)) &

DEALLOCATE (t h i s _ a r r a y%j j)
ALLOCATE(t h i s _ a r r a y%j j (n))
IF (ASSOCIATED (t h i s _ a r r a y%sp i n)) &

DEALLOCATE (t h i s _ a r r a y%sp i n)
ALLOCATE(t h i s _ a r r a y%sp i n (n))
IF (ASSOCIATED (t h i s _ a r r a y%e)) &

DEALLOCATE (t h i s _ a r r a y%e)
ALLOCATE(t h i s _ a r r a y%e (n))
IF (ASSOCIATED (t h i s _ a r r a y%o r b i t _ s t a t u s)) &

DEALLOCATE (t h i s _ a r r a y%o r b i t _ s t a t u s)
ALLOCATE(t h i s _ a r r a y%o r b i t _ s t a t u s (n))

423

Additional C++ and Fortran 90/95 programming features

IF (ASSOCIATED (t h i s _ a r r a y%mode l_ space)) &
DEALLOCATE (t h i s _ a r r a y%mode l_ space)
ALLOCATE(t h i s _ a r r a y%mode l_ space (n))

! b l an k a l l c h a r a c t e r s and ze ro a l l o t h e r v a l u e s
DO i = 1 , n

t h i s _ a r r a y%mode l_ space (i) = ’ ’
t h i s _ a r r a y%o r b i t _ s t a t u s (i) = ’ ’
t h i s _ a r r a y%e (i) =0 .
t h i s _ a r r a y%nn (i) =0
t h i s _ a r r a y%l l (i) =0
t h i s _ a r r a y%j j (i) =0
t h i s _ a r r a y%n s h e l l (i) =0
t h i s _ a r r a y%i t z p (i) =0

ENDDO

SUBROUTINE d e a l l o c a t e _ s p _ a r r a y (t h i s _ a r r a y)

TYPE (s i n g l e _ p a r t i c l e _ d e s c r i p t) , INTENT (INOUT) : : t h i s _ a r r a y
DEALLOCATE (t h i s _ a r r a y%nn)
DEALLOCATE (t h i s _ a r r a y%l l)
DEALLOCATE (t h i s _ a r r a y%j j)
DEALLOCATE (t h i s _ a r r a y%sp i n)
DEALLOCATE (t h i s _ a r r a y%e)
DEALLOCATE (t h i s _ a r r a y%o r b i t _ s t a t u s) ; &
DEALLOCATE (t h i s _ a r r a y%mode l_ space)

END SUBROUTINE d e a l l o c a t e _ s p _ a r r a y
!
! Read i n a l l r e l e v a n t s i n g l e−p a r t i c l e da ta
!
SUBROUTINE s i n g l e _ p a r t i c l e _ d a t a
IMPLICIT NONE
CHARACTER∗100 : : p a r t i c l e _ s p e c i e s

READ(5 , ∗) p a r t i c l e _ s p e c i e s
WRITE(6 , ∗) ’ P a r t i c l e s p e c i e s : ’
WRITE(6 , ∗) p a r t i c l e _ s p e c i e s
SELECT CASE (p a r t i c l e _ s p e c i e s)

CASE (’ e l e c t r o n ’)
CALL r e a d _ e l e c t r o n _ s p _ d a t a

CASE (’ p r o t o n&neu t r on ’)
CALL r e a d _ n u c l e a r _ s p _ d a t a

END SELECT

END SUBROUTINE s i n g l e _ p a r t i c l e _ d a t a

END MODULE s i n g l e _ p a r t i c l e _ o r b i t s

The module ends with the END MODULE single_particle_orbits statement. We have defined a public vari-
able TYPE, PUBLIC :: single_particle_descript which plays the same role as the struct type in C++. In
addition we have defined several member functions which operate on various arrays and variables.

424

A.2 – Modules in Fortran 90/95

An example of a function which uses this module is given below and the module is accessed via the
USE single_particle_orbits statement.

!
PROGRAM main
. . . .
USE s i n g l e _ p a r t i c l e _ o r b i t s
IMPLICIT NONE
INTEGER : : i

READ(5 , ∗) a l l _ o r b i t%t o t a l _ o r b i t s
IF (a l l _ o r b i t%t o t a l _ o r b i t s <= 0) THEN

WRITE(6 , ∗) ’WARNING, NO ELECTRON ORBITALS’ ; STOP
ENDIF

! S e t up a l l p o s s i b l e o r b i t i n f o rma t i o n
! A l l o c a t e space i n heap f o r a l l s i n g l e−p a r t i c l e da ta
CALL a l l o c a t e _ s p _ a r r a y (a l l _ o r b i t , a l l _ o r b i t%t o t a l _ o r b i t s)

! Read e l e c t r o n s i n g l e−p a r t i c l e da ta

DO i =1 , a l l _ o r b i t%t o t a l _ o r b i t s
READ(5 , ∗) a l l _ o r b i t%nn (i) , a l l _ o r b i t%l l , &

a l l _ o r b i t%j j (i) , a l l _ o r b i t%sp i n (i) , &
a l l _ o r b i t%o r b i t _ s t a t u s (i) , &
a l l _ o r b i t%mode l_ space (i) , a l l _ o r b i t%e (i)

ENDDO

! f u r t h e r i n s t r u c t i o n s

.

! d e a l l o c a t e a l l a r r a y s

CALL d e a l l o c a t e _ s p _ a r r a y (a l l _ o r b i t)

END PROGRAM main

Inheritance allows one to create a hierarchy of classes in which the base class contains the common
properties of the hierarchy and the derived classes can modify and specialize these properties. Specif-
ically, a derived class contains all the class member functions of the base class and can add new ones.
Further, a derived class contains all the class member functions of the base class and can modify them or
add new ones. The value in using inheritance is to avoid duplicating code when creating classes which
are similar to one another. Fortran 90/95 does not support inheritance, but several features can be faked
in Fortran 90/95! Consider the following declarations:

TYPE p r o t o n _ s p _ o r b i t
TYPE (s i n g l e _ p a r t i c l e _ o r b i t s) , PUBLIC : : &

p r o t o n _ p a r t i c l e _ d e s c r i p t
INTEGER , DIMENSION (:) , POINTER , PUBLIC : : i t z p

END TYPE p r o t o n _ s p _ o r b i t

To initialize the proton_sp_orbit TYPE, we could now define a new function

425

Additional C++ and Fortran 90/95 programming features

SUBROUTINE a l l o c a t e _ p r o t o n _ a r r a y (t h i s _ a r r a y , n)

TYPE (s i n g l e _ p a r t i c l e _ d e s c r i p t) , INTENT (INOUT) : : t h i s _ a r r a y
INTEGER , INTENT (IN) : : n
IF (ASSOCIATED (t h i s _ a r r a y%i t z p)) &

DEALLOCATE (t h i s _ a r r a y%i t z p)
CALL a l l o c a t e _ s p _ a r r a y (t h i s _ a r r a y , n)
t h i s _ a r r a y%i t z p (i) =0

END SUBROUTINE a l l o c a t e _ p r o t o n _ a r r a y

and
SUBROUTINE d e l l o c a t e _ p r o t o n _ a r r a y (t h i s _ a r r a y)

TYPE (s i n g l e _ p a r t i c l e _ d e s c r i p t) , INTENT (INOUT) : : t h i s _ a r r a y
DEALLOCATE (t h i s _ a r r a y%i t z p)
CALL d e a l l o c a t e _ s p _ a r r a y (t h i s _ a r r a y)

END SUBROUTINE d e a l l o c a t e _ p r o t o n _ a r r a y

and we could define a MODULE
MODULE p r o t o n _ c l a s s

USE s i n g l e _ p a r t i c l e _ o r b i t s
TYPE p r o t o n _ s p _ o r b i t

TYPE (s i n g l e _ p a r t i c l e _ o r b i t s) , PUBLIC : : &
p r o t o n _ p a r t i c l e _ d e s c r i p t

INTEGER , DIMENSION (:) , POINTER, PUBLIC : : i t z p
END TYPE p r o t o n _ s p _ o r b i t
INTERFACE a l l o c a t e _ p r o t o n

MODULE PROCEDURE a l l o c a t e _ p r o t o n _ a r r a y , r e a d _ p r o t o n _ a r r a y
END INTERFACE
INTERFACE d e a l l o c a t e _ p r o t o n

MODULE PROCEDURE d e a l l o c a t e _ p r o t o n _ a r r a y
END INTERFACE
.
CONTAINS
. . . .

! v a r i o u s p ro cedu re

END MODULE p r o t o n _ c l a s s

PROGRAM w i t h _ j u s t _ p r o t o n s
USE p r o t o n _ c l a s s
. . . .
TYPE (p r o t o n _ s p _ o r b i t) : : p r o t o n _ d a t a
CALL a l l o c a t e _ p r o t o n (p r o t o n _ d a t a)
. . . .
CALL d e a l l o c a t e _ p r o t o n _ a r r a y (p r t o n _ d a t a)

We have a written a new class which contains the data of the base class and all the procedures of the
base class have been extended to work with the new derived class. Interface statements have to be used
to give the procedure uniform names.

426

A.3 – Debugging of codes

We can now derive further classes for other particle types such as neutrons, hyperons etc etc.

A.3 Debugging of codes

Debugging is very useful in connection with segmentation fault. A text editor like Emacs has an in-
built debugger. In the present section we take a C++ program and analyze the code using the LINUX
debugging program GDB.

The steps are the following:

– Compile the program with debugging option on

c++ -g program_name.cpp -o program_name

– Start emacs

– Start the debugging program GDB in emacs

ESC x – gdb return – program_name

– Split the emacs window in two

CTRL x 2

– Read your source code into the second window. Then you are ready to start the debugging session.
This means that you can execute your program in steps and have full control over execution of each
individuel program statements.

– We start the program and stop at the first statement in the code.
Put your pointer in the source code window and place it at the first executable statements. Then

CTRL x – space

In the GDB window you get information about our first breakpoint

– Start the program in the GDB window

run (or r)

The program starts and stops at the first breakpoint. Now you have a large number of commands
at your disposal. You can as an example execute statement by statement using the command

– Start the program in the GDB window

next (or n)

427

Additional C++ and Fortran 90/95 programming features

– continue (or c)
continue the execution from the current statement to the next breakpoint.

– If a statement is a call to a function you have two possibilities

– Start the program in the GDB window

next (or n) or step s

which takes you into the chosen subfunction and stops at the first statement. Then you can step
through the subfunction using the command next as before till the end of the subfunction. Then
you return to the previous calling function.

After having full control over the program execution we can obtain information of what is going on
by using some of the following commands

– print variable
print *vector@10
display variable
display *varable@10

– If you want to start the program again, just type run.

– Clean up command:
delete (or d)
delete display
quit (or q)

A.4 MPI functions and examples

A.5 Special functions used in the natural sciences

428

Bibliography

[1] J. Dongarra and F. Sullivan. Computing in Science and Engineering, 2:22, 2000.

[2] B. Cipra. SIAM News, 33:1, 2000.

[3] J.M. Thijssen. Computational Physics. Springer Verlag, 1999.

[4] S.E. Koonin and D. Meredith. Computational Physics. Addison Wesley, 1990.

[5] J. Gibbs. Computational Physics. World Scientific, 1994.

[6] B. Giordano and H. Nakanishi. Computational Physics. Preston, 2005.

[7] R.H. Landau and M.J. Paez. Computational Physics. Wiley, 1997.

[8] R. Guardiola, E. Higon, and J. Ros. Metodes Numèrics per a la Física. Universitat de Valencia,
1997.

[9] E.W. Schmid, G. Spitz, and W. Lösch. Theoretische Physik mit dem Personal Computer. Springer
Verlag, 1987.

[10] H. Gould and J. Tobochnik. An Introduction to Computer Simulation Methods: Applications to
Physical Systems. Addison-Wesley, 1996.

[11] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, 1983.

[12] B.T. Smith, J.C. Adams, W.S. Brainerd, and J.L. Wagener. Fortran 95 Handbook. MIT press, 1997.

[13] M. Metcalf and J. Reid. The F90 Programming Language. Oxford University Press, 1996.

[14] A.C. Marshall. Fortran 90 Programming. University of Liverpool, 1995.

[15] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 1999.

[16] M. Snir, S. Otto, S. Huss-Ledermann, D. Walker, and J. Dongarra. MPI, the Complete Reference,
Vols I and II. The MIT Press, 1998.

[17] G. E. Karniadakis and R. M. Kirby II. Parallel scientific computing in C++ and MPI. Cambridge,
2005.

[18] Java Numerics. .

[19] B.H. Flowers. An Introduction to Numerical Methods in C++. Oxford University Press, 2000.

[20] J.J. Barton and L.R. Nackman. Scientific and Engineering C++. Addison Wesley, 1994.

429

Bibliography

[21] B. Stoustrup. The C++ Programming Language. Pearson, 1997.

[22] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C++, The
art of scientific Computing. Cambridge University Press, 1999.

[23] LAPACK – Linear Algebra PACKage. .

[24] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. ACM Trans. Math. Soft., 5:308, 1979.

[25] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins University Press, 1996.

[26] D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Gole Publishing Company, 1996.

[27] B.N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole Publishing Company, 1995.

[28] L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM Publications, 1997.

[29] R. Kress. Numerical Analysis. Springer, 1998.

[30] J.W. Demmel. Numerical Linear Algebra. SIAM Publications, 1996.

[31] T. Veldhuizen. Blitz++ User’s Guide. , 2003.

[32] K.A. Reek. Pointers on C. Addison Wesley, 1998.

[33] J.R. Berryhill. C++ Scientific Programming. Wiley-Interscience, 2001.

[34] F. Franek. Memory as a Programming Concept in C and C++. Cambridge University Press, 2004.

[35] L. H. Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 23:542, 1927.

[36] E. Fermi. Un metodo statistico per la determinazione di alcune proprietà dell’atomo. Rend. Accad.
Naz. Lincei, 6:602, 1927.

[37] Elliott H. Lieb. Thomas-fermi and related theories of atoms and molecules. Rev. Mod. Phys.,
53(4):603–641, Oct 1981.

[38] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer Verlag, 2004.

[39] P. Jackel. Monte Carlo Methods in Finance. John Wiley and Sons, LTD, 2002.

[40] J. Voit. The Statistical Mechanics of Financial Markets. Springer Verlag, 2005.

[41] J. L. McCauley. Dynamics of Markets, Econophysics and Finance. Cambridge University Press,
2004.

[42] D. Sornette. Why Stock Markets Crash. Princeton University Press, 2002.

[43] C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Verlag, 2004.

[44] J.L. Johnson. Probability and Statistics for Computer Science. Wiley-Interscience, 2003.

[45] G.S. Fishman. Monte Carlo, Concepts, Algorithms and Applications. Springer, 1996.

[46] H.A. Marzaglia and B. Zaman. Computers in Physics, 8:117, 1994.

430

Bibliography

[47] I. Karatsas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1988.

[48] N.W Ashcroft and N.D. Mermin. Solid State Physics. Holt-Saunders, 1976.

[49] M. Pliscke and B. Bergersen. Equilibrium Statistical Physics. Prentice-Hall, 1989.

[50] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys.
Rev., 65(3-4):117–149, Feb 1944.

[51] H.E. Stanley. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press,
1971.

[52] J. Cardy. Scaling and Renormalization in Statistical Physics. Cambridge University Press, 1996.

[53] M.E.J. Newman and G.T. Barkema. Monte Carlo Methods in Statistical Physics. Clarendon Press,
1999.

[54] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

[55] Alan M. Ferrenberg and Robert H. Swendsen. New monte carlo technique for studying phase
transitions. Phys. Rev. Lett., 61:2635, 1988.

[56] Alan M. Ferrenberg and Robert H. Swendsen. Optimized monte carlo data analysis. Phys. Rev.
Lett., 63:1195, 1989.

[57] D.P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge
University Press, 2000.

[58] M. P. Nightingale and H. W. J. Blöte. Dynamic exponent of the two-dimensional ising model and
monte carlo computation of the subdominant eigenvalue of the stochastic matrix. Phys. Rev. Lett.,
76(24):4548–4551, Jun 1996.

[59] Ulli Wolff. Collective monte carlo updating for spin systems. Phys. Rev. Lett., 62(4):361–364, Jan
1989.

[60] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte carlo simula-
tions. Phys. Rev. Lett., 58:86–88, 1987.

[61] B. L. Hammond, W. A. Lester, and P.J. Reynolds. Monte Carlo Methods in ab Initio Quantum
Chemistry. World Scientific, 1994.

[62] R.L. Liboff. Introductory Quantum Mechanics. Addison Wesley, 2003.

[63] T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic Structure Theory. Energy and Wave
Functions. Wiley, Chichester, 2000.

[64] H. R. Pagels. Cosmic Code: Quantum Physics as the Law of Nature. Simon and Schuster, 1982.

[65] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations. Cam-
bridge University Press, 1996.

431

Bibliography

[66] S. L. Shapiro and S. A. Teukolsky. Black holes, white dwarfs, and neutron stars: the physics of
compact objects. Wiley, 1983.

[67] H. Heiselberg and M. Hjorth-Jensen. Phases of dense matter in neutron stars. Phys. Rep., 328:237,
2000.

[68] N. K. Glendenning. Compact Stars. Springer, 2000.

[69] H.A. Bethe and M.B. Johnson. Nucl. Phys. A, 230:1, 1974.

[70] H.P. Langtangen. Computational Partial Differential Equations: Numerical Methods and Diffpack
Programming. Springer, 1999.

[71] J.M. Ortega and W.C. Poole. An Introduction to Numerical Methods for Differential Equations.
Pitman, 1981.

[72] L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society, 2002.

[73] L. Ramdas Ram-Mohan. Finite Element and Boundary Element Applications in Quantm Mechanics.
Oxford University Press, 2002.

[74] A. Tveito and R. Winther. Introduction to Partial Differential Equations. Springer, 2002.

[75] G. Evans, J. Blackledge, and P. Yardley. Numerical methods for partial differential equations.
Springer, 1999.

432

