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Chapter 2

Crystal Math

2.1 Classification of Crystalline Structures

Crystallography is the classification of spatially periodic structures according to their translational and
rotational symmetries. It is a mature field1, and the possible crystalline symmetries of two and three
dimensional structures have been exhaustively classified. We shall not endeavor to prove, e.g., that
there are precisely 230 three-dimensional space groups. Rather, our proximate goal is to economically
describe the most relevant aspects of the classification scheme, so that we may apply methods of group
theory to analyze experimentally relevant physical processes in crystals.

2.1.1 Bravais Lattices

A Bravais lattice L in d space dimensions is defined by a set of linearly independent vectors {aj} with
j ∈ {1, . . . , d}which define a unit cell. A general point R in the Bravais lattice is written as R =

∑
j njaj ,

where each nj ∈ Z. The unit cell volume is given by

Ω = ǫ
µ
1
···µ

d

a
µ
1

1 · · · a
µ
d

d , (2.1)

and is by definition positive2. The choice of the vectors {aj} is not unique, for one can always replace
ai with ai + aj for any j 6= i, and, due to the antisymmetry of the determinant, Ω is unchanged. It is
then conventional to choose the {aj} so that they have the shortest possible length, though even this
prescription is not necessarily unique. The lattice of points {R} is called the direct lattice, and the {aj}
are the elementary (or primitive) direct lattice vectors.

One can then define the elementary (primitive) reciprical lattice vectors,

bνk ≡
2π

Ω
ǫµ

1
···µ

k−1
ν µ

k+1
···µ

d
a
µ
1

1 · · · a
µ
k−1

k−1 a
µ
k+1

k+1 · · · a
µ
d

d , (2.2)

1Crystallography has enjoyed something of a resurgence in its relevance to recent theories of topological classification of
electronic band structures. The interplay between symmetry and topology leads to a new classification for materials known
as crystalline topological insulators, for example.

2One can always reorder the aj so that Ω > 0.

1
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Figure 2.1: First panel shows construction of the first Wigner-Seitz cell or first Brillouin zone for the
triangular lattice. Second, third, and fourth panels show first Brillouin zones for the simple cubic, body-
centered cubic, and face-centered cubic direct lattices, respectively, with high symmetry points identi-
fied. Image credit: Wikipedia and Setyawan and Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010.

which satisfy ai · bj = 2π δij . Indeed, we must have

d∑

µ=1

aµi b
µ
j = 2π δij ,

d∑

j=1

aµj b
ν
j = 2π δµν , (2.3)

because if the square matrices Aj,µ ≡ aµj and BT

µ,j ≡ bµj are inverses, they are each other’s right as well
as left inverse. For example, with d = 3 we have Ω = a1 · a2 × a3 and

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (2.4)

The set of vectors K =
∑d

j=1mj bj , with each mi ∈ Z , is called the reciprocal lattice, L̂. The reciprocal
lattice is therefore also a Bravais lattice, though not necessarily the same Bravais lattice as the direct lat-
tice. For example, while the reciprocal lattice of a simple cubic lattice is also simple cubic, the reciprocal
lattice of a body-centered cubic lattice is face-centered cubic. Constructing the reciprocal lattice of the
reciprocal lattice, one arrives back at the original direct lattice. The unit cell volume of the reciprocal
lattice is

Ω̂ = ǫ
µ
1
···µ

d

b
µ1

1 · · · b
µ
d

d =
(2π)d

Ω
. (2.5)

The repeating unit cells in the direct and reciprocal lattices may be written as the collection of points r

and k, respectively, where

r =
d∑

j=1

xj aj , k =
d∑

j=1

yj bj , (2.6)

where each xj, yj ∈ [0, 1]. The symmetries of the direct and reciprocal lattices are more fully elicited by
shifting each r and k point by a direct or reciprocal lattice vector so that it is as close as possible to the
origin. Equivalently, sketch all the nonzero shortest direct/reciprocal lattice vectors emanating from the
origin3, and bisect each such vector with a perpendicular plane. The collection of points lying within

3There may be more than d shortest direct/reciprocal lattice vectors. For example, the triangular lattice is two-dimensional,
but it has six nonzero shortest direct/reciprocal lattice vectors.



2.1. CLASSIFICATION OF CRYSTALLINE STRUCTURES 3

a
0

a
0

a
0

bcc fccsc

Figure 2.2: Simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices.

all the planes will form the first Wigner-Seitz cell of the direct lattice, and the first Brillouin zone of the
reciprocal lattice.

Finally, we cannot resist mentioning the beautiful and extremely important application of the Poisson
summation formula to Bravais lattice systems:

∑

K

eiK·r = Ω
∑

R

δ(r −R) ,
∑

R

eik·R = Ω̂
∑

K

δ(k −K) . (2.7)

Example: fcc and bcc lattices

The primitive direct lattice vectors for the fcc structure may be taken as

a1 =
a√
2
(0, 1, 1) , a2 =

a√
2
(1, 0, 1) , a3 =

a√
2
(1, 1, 0) . (2.8)

The unit cell volume is Ω = a1 · a2 × a3 = 2a3. Note that |aj| = a. Each FCC lattice point has

twelve nearest neighbors, located at ±a1 , ±a2 , ±a3 , ±(a1 − a2) , ±(a2 − a3) , and ±(a3 − a1) . The
corresponding primitive reciprocal lattice vectors are

b1 =
b√
3
(−1, 1, 1) , b2 =

b√
3
(1,−1, 1) , b3 =

b√
3
(1, 1,−1) , (2.9)

with b =
√
6π/a. These primitive vectors form a bcc structure, in which each site has eight nearest

neighbors, located at±b1 , ±b2 , ±b3 , and±(b1+b2+b3) . The simple, body-centered, and face-centered
cubic structures are depicted in Fig. 2.2.

Be forewarned that in some texts, distances are given in terms of the side length of the cube. In the
fcc lattice, if the cube has side length a0 , then the fcc lattice constant, i.e. the distance between nearest
neighbor sites, is a = a0/

√
2. Similarly, for the bcc case, if the cube has side length b0, the corresponding

bcc lattice constant is b =
√
3 b0/2.
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Figure 2.3: Examples of Miller planes. Image credit: Wikipedia.

In Fig. 2.1, the two rightmost panels show the first Brillouin zones corresponding to the bcc and fcc
direct lattices, respectively. It follows that the same shapes describe the first Wigner-Seitz cells for the
fcc and bcc lattices, respectively.

2.1.2 Miller indices

This eponymous notation system, first introduced by the British minerologist William H. Miller in 1839,
provides a convenient way of indexing both directions and planes of points in a Bravais lattice. Briefly,

• [hk l ] represents a direction in the direct lattice given by the vector ha1 + ka2 + la3. For negative
numbers, one writes, e.g., 2̄ instead of −2. Thus, [ 1 2̄ 0 ] is the direction parallel to a1 − 2a2. Only
integers are used, so the direction parallel to 1

4a1 +
1
2a2 − 1

3a3 is written as [ 3 6 4̄ ].

• 〈hk l 〉 denotes the set of all directions which are related to [hk l ] by a rotational symmetry.

• (hk l ) represents a set of lattice planes which lie perpendicular to the vector hb1+kb2+ lb3. Again,
only integers are used, and any negative numbers are written with bars rather than minus signs.

• {hk l } denotes all families of lattice planes related to (hk l ) by a rotational symmetry.

We can think of the Miller planes in terms of plane waves, i.e. as sets of points of constant phase φ(r) =
Khkl · r, where Khkl = hb1 + kb2 + lb3 is a reciprocal lattice vector. If we write R = ra1 + sa2 + ta3 , we
have φ(r, s, t) = 2π(hr + ks + lt) ≡ 2πN , and thus the intersection of this plane with the a1, a2, and a3

axes, which in general are not mutually orthogonal, lie at Na1/h , Na2/k, and Na3/l, respectively. In
this way, one can identify the Miller indices of any lattice plane by taking the inverses of the respective
coefficients and inverting them, then multiplying by the least common denominator if the results turn
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Figure 2.4: Left: Molecular structure of corannulene, C20H10. Center: Tenfold-symmetric diffraction
pattern from a quasicrystalline alloy of aluminum, copper, and iron. Right: A Ho-Mg-Zn icosahedral
quasicrystal forms a beautiful pentagonal dodecahedron (20 sites, 12 pentagonal faces, 30 edges, 3-
fold coordinated), a structure dual to the icosahedron (12 sites, 20 triangular faces, 30 edges, 5-fold
coordinated). Image credits: Wikipedia.

out to be fractional. From the formula exp(iK ·r) = 1, we also see that the distance between consecutive
Miller planes is 2π/|K|.

Cubic and hexagonal systems

For cubic systems, it is conventional to index the lattice planes based on the underlying simple cubic
Bravais lattice. The bcc lattice is then viewed as a simple cubic lattice with a two element basis (see §2.1.5
below), and the fcc lattice as simple cubic with a four element basis. In hexagonal systems, typically one
chooses the primary direct lattice vectors a1 and a2 to subtend an angle of 120◦, in which case b1 and b2
subtend an angle of 60◦. Then defining b0 ≡ b2 − b1, we have that b0 is rotationally equivalent to b1 and
b2. Thus, if we define i ≡ −(h+ k), then we have the following rotations:

h b1 + k b2 = R120◦
(
k b1 + i b2

)
= R240◦

(
i b1 + h b2

)

= R60◦
(̄
i b1 + h̄ b2

)
= R180◦

(
h̄ b1 + k̄ b2

)
= R300◦

(
k̄ b1 + ī b2

)
.

(2.10)

To reveal this rotational symmetry, the redundant fourth index i is used, and the Miller indices are
reported as (hk i l ). The fourth index is always along the c-axis. The virtue of this four index notation is
that it makes clear the relations between, e.g., ( 1 1 2̄ 0 ) ≡ ( 1 1 0 ) and ( 1 2̄ 1 0 ) ≡ ( 1 2̄ 0 ), and in general

(hk i l ) → ( ī h̄ k̄ l )→ ( k i h l ) → ( h̄ k̄ ī l ) → ( i h k l ) → ( k̄ ī h̄ l ) → (hk i l ) (2.11)

gives the full sixfold cycle.

2.1.3 Crystallographic restriction theorem

Consider a Bravais lattice and select one point as the origin. Now consider a general rotation R ∈ SO(3)
and ask how the primary direct lattice vectors transform. If the Bravais lattice is symmetric under the
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operation R, then each aj must transform into another Bravais lattice vector, i.e.

Rµν a
ν
i = Kij a

µ
j , (2.12)

where Kij is a matrix composed of integers. Now multiply both sides of the above equation by bρi and
sum on the index i. From Eqn. 2.3, we have aνi b

ρ
i = 2πδνρ , hence 2πRµρ = Kij a

µ
j b

ρ
i . Now take the trace

over the indices µ and ρ, again invoking Eqn. 2.3, to get Tr R = Tr K . Now the trace of any matrix is
invariant under similarity transformation, and in d = 3 dimensions, and if R = R(ξ, n̂) we can always
rotate n̂ so that it lies along ẑ, in which case

S R(ξ, n̂)S−1 =



cos ξ − sin ξ 0
sin ξ cos ξ 0
0 0 1


 , (2.13)

in which case Tr R = 2cos ξ + 1. In d = 2 we have Tr R = 2cos ξ for proper rotations. Thus, Tr R ∈ Z is
possible only for ξ = 2π/n where n = 1, 2, 3, 4, or 6. Fivefold, sevenfold, etc. symmetries are forbidden!
Note that it is perfectly possible to have a fivefold symmetric molecule, such as C20H10 , also known
as corannulene. But when we insist on having both rotational as well as translational symmetries, the
former are strongly restricted. Remarkably, there exists a family of three-dimensional structures, called
quasicrystals, which exhibit forbidden fivefold or tenfold rotational symmetries. They elude the restric-
tion theorem by virtue of not being true crystals, i.e. they are quasiperiodic structures. See Fig. 2.4.

The result Tr R = Tr K ∈ Z is valid in all dimensions and does impose restrictions on the possible
rotational symmetries. However, rotations in higher dimensions are in general not planar. Consider
that it takes d − 1 angles to specify an axis in d dimensions, but the dimension of SO(d) is 1

2d(d − 1), so
an additional 1

2(d− 1)(d− 2) parameters in addition to specifying an axis are required to fix an element
of SO(d). For example, the four-dimensional F4 lattice is a generalization of the three-dimensional bcc
structure, consisting of two interpenetrating four-dimensional hypercubic lattices, and exhibits 12-fold
rotational symmetries.

2.1.4 Enumeration of two and three-dimensional Bravais lattices

The complete classification of two and three Bravais lattices is as follows4. In two dimensions, there are
four lattice systems: square, oblique, hexagonal, and rectangular. Of these, the rectangular system sup-
ports a subvariety called center rectangular, resulting in a total of five distinct two-dimensional Bravais
lattices, shown in Fig. 2.5.

In three dimensions, there are seven lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, trig-
onal, hexagonal, and cubic5. Of these, monoclinic supports two subvarieties or types (simple and base-
centered), orthorhombic four subvarieties (simple, base-centered, body-centered, and face-centered),
and cubic three subvarieties (simple, face-centered, and body-centered), amounting to a grand total of
14 three-dimensional Bravais lattices:
4To reinforce one’s memory, there is even a song: https://ww3.haverford.edu/physics/songs/bravais.htm.
5The systematic enumeration of three-dimensional lattices based on symmetry was first done by M. L. Frankenheim in 1842.
Frankenheim correctly found there were 32 distinct crystal classes, corresponding to the 32 distinct three-dimensional point
groups, but he erred in counting 15 rather than 14 distinct lattices. A. L. Bravais, in 1845, was the first to get to 14, and for this
he was immortalized. The identity of Frankenheim’s spurious 15th lattice remains unclear.

https://ww3.haverford.edu/physics/songs/bravais.htm.
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Figure 2.5: The five two-dimensional Bravais lattices.

(i) Cubic : this system is the most symmetric, with symmetry group Oh
∼= S4 × Z2, which has 48

elements6. The Z2 factor arises from the inversion symmetry exhibited by all Bravais lattices. Recall
inversion takes (x, y, z) to (−x,−y,−z). The three cubic subvarieties (simple, body-centered, and
face-centered) are depicted in the first three panels of 2.6.

(ii) Tetragonal : Lowering the cubic symmetry by stretching or compressing along one of the axes, one
arrives at the tetragonal system, whose unit cell is a cubic rectangle with side lengths a = b 6= c.
There are two sub-varieties: simple and body-centered, depicted in the left two panels of Fig. 2.8.
Why is there not a face-centered subvariety as well? Because it is equivalent to the body-centered
case7. The symmetry group is D4h

∼= Z4 × Z2 × Z2 .

(iii) Orthorhombic : Further lowering the symmetry by stretching or compressing in along a second
axis, we obtain the orthorhombic system. The only rotational symmetries are the three perpendic-
ular mirror planes bisecting each of the unit cell sides, resulting in a D2h = Z2×Z2×Z2 symmetry.
There are four subvarieties, depicted in Fig. 2.7: simple, base-centered, body-centered, and face-
centered.

(iv) Monoclinic : Take an orthorhombic lattice and shear it so that the c-axis is no longer along ẑ, but
lies in the (y, z) plane at an angle β 6= 90◦ with respect to the horizontal. There are two distinct
subvarieties, simple and base-centered, which are shown in the third and fourth panels of Fig.
2.8. The only remaining symmetries are reflection in the (y, z) plane and inversion, hence the
symmetry group is Z2 × Z2 .

(v) Triclinic : Shearing in a second direction, one obtains the triclinic system, depicted in the right

6Why is the symmetry group of the cube called O (or Oh with inversion)? Because the cube and the octahedron have the same
symmetries. Hence O is sometimes called the octahedral group.

7See Ashcroft and Mermin, Solid State Physics, pp. 116-118.
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(a) sc (b) bcc (c) fcc (d) trigonal (e) hex

Figure 2.6: Simple cubic, body-centered cubic, face-centered cubic, trigonal, and hexagonal Bravais
lattices. Image credits: Wikipedia.

(a) so (b) baco (c) bco (d) fco

Figure 2.7: (Simple orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-
centered orthorhombic Bravais lattices. Image credits: Wikipedia.

panel of Fig. 2.8. At least two of the angles ϑij = cos−1
(
âi · âj

)
are not 90◦, and all the axes are of

unequal lengths. The only remaining symmetry is inversion, so the symmetry group is Z2 .

(vi) Trigonal : Starting with the cubic system, rather than squashing it along one of its three orthogonal
axes, imagine stretching it along the cube’s diagonal. The resulting Bravais lattice is generated by
three nonorthogonal primitive vectors which make the same angle with respect to one another, as
depicted in the fourth panel of Fig. 2.6. The stretched cube diagonal becomes a threefold axis, and
the symmetry group is D3d , which is of order 12.

(vii) Hexagonal : Finally, we come to the hexagonal system, which is unrelated to the cube. The simple
hexagonal lattice, depicted in the last panel of Fig. 2.6, is its only representative. Two of the
primitive direct lattice vectors are of equal length a and subtend a relative angle of 60◦ or 120◦.
The third lies perpendicular to the plane defined by the first two, with an independent length c .
The symmetry group is D6h , which has 24 elements.
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(a) st (b) bct (c) sm (d) bacm (e) tri

Figure 2.8: Simple tetragonal, body-centered tetragonal, monoclinic, base-centered monoclinic, and
triclinic Bravais lattices. Image credits: Wikipedia.

2.1.5 Crystals

A Bravais lattice is a tiling of space with empty unit cells. We are in the position of a painter staring
at a beautifully symmetric but otherwise empty canvas. The art with which we fill our canvas is the
crystalline unit cell, and it consists of a number r of atoms or ions, where ions of species j are located at
positions δj relative to any given direct lattice point R, with j ∈ {1, . . . , r}. If the direct lattice points R
themselves represent the positions of a class of ion, we write δ1 ≡ 0. The set of vectors {δj} is called a
basis, and without loss of generality, we restrict the basis vectors so they do not lie outside the unit cell.

⋆ In a crystal, ions of species j are located at positions R+ δj , where R is a Bravais lattice vector and δj is a
basis vector. All basis vectors are taken to lie within a single unit cell of the Bravais lattice.

Obviously the existence of a basis, unless it is one of spherical symmetry with respect to each Bravais
lattice point, will have consequences for the allowed rotational symmetries of the crystal, in general
reducing them to a subgroup of the symmetry group of the Bravais lattice itself. A vivid illustration of
this is provided in Fig. 2.9 for the cubic lattice. When our canvas is completely blank, the cube is entirely
white, and the symmetry group is Oh, with 48 elements, as shown in the middle bottom panel of the
figure. If one of the reflection generators is broken, but all other generators are preserved, the symmetry
is reduced from Oh to O, which has 24 elements. By breaking different symmetry operations, Oh can be
reduced to the tetrahedral groups Td and Th, which also have 24 elements. Finally, each of O, Td , and
Th may be broken down to the 12 element tetrahedral group T , depicted in the upper left panel. It all
depends on how we paint the canvas.

As an example of a filled canvas, consider Fig. 2.10, which shows the unit cells of four high temperature
cuprate superconductors. It is a good exercise to verify the stoichiometry in at least one example. Con-
sider the unit cell for LSCO. The blue Cu ions at the top and bottom of the cell are each shared by eight
of these cubic rectangular cells, so the eight Cu ions at the corners amount to one per cell. The Cu ion in
the center belongs completely to this cell, so we have a total of two Cu per cell. Each of the eight green
La/Sr ions lying along the vertical columns at the cell edges is shared by four cells, so they amount to a
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T T
d

T
h

O O
h I

Figure 2.9: Tetrahedral, cubic, and icosahedral group symmetry operations. Twofold, threefold, four-
fold, and sixfold axes are shown. The blue fins extend into discs, slicing the cube in two along reflection
planes. Image credits: http://azufre.quimica.uniovi.es/d-MolSym/.

total of two per cell. The two La/Sr ions within the cell toward the top and bottom each count as one,
for a total of four La/Sr per cell. Lastly, we come to the oxygen ions, shown in red. Each of the O ions
along any of the 12 edges of the cell is shared by four cells. There are 16 such O sites, thus accounting
for four O per cell. If you think about the periodic repetition of the cell, you should realize that each
Cu ion is surrounded by six O ions arranged in an octahedron. There is also such an octahedron in the
center of the cell, on which we now focus. Two of its O ions are displaced vertically with respect to
the central Cu ion, and are therefore wholly part of our cell. The other four each lie in the center of a
face, and are each shared by two cells. Thus, this central octahedron accounts for an additional four O
ions, for a grand total of 8 per cell. Our final tally: two Cu, four La/Sr, and eight O per cell, which is to
say La2−xSrxCuO4. In the three other compounds, the oxygen stoichiometry is given as 4 + δ (Hg1201)
or 6 + δ (YBCO and Ti2201). The deviation of δ from an integer value (either 0 or 1) accounts for the
presence of oxygen vacancies8.

In an electron diffraction experiment, an incident beam of electrons with wavevector q is scattered from
a crystal, and the scattering intensity I(k) as a function of the wavevector transfer k = q′− q is measured.
If the scattering is elastic, |q′| = |q|, which means k is related to the scattering angle ϑ = cos−1(q̂ · q̂′) by

8It is a good exercise to determine the stoichiometry of these compounds based on the figures.

http://azufre.quimica.uniovi.es/d-MolSym/
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Figure 2.10: Unit cells of four high temperature cuprate superconductors. Lower left shows a sketch of
the active electronic orbitals in the Cu-O planes. Image credit: N. Baris̆ić et al., Proc. Nat. Acad. Sci. 110,
12235 (2013).

k = 2q sin(12ϑ). Let us model the T = 0 density9 of the crystal ρ(r) as

ρ(r) =
∑

R

∑

j

cj δ(r −R− δj) , (2.14)

where cj is the weight for ionic species j. The total scattering intensity I(k) is proportional to |ρ̂(k)|2/N ,
where ρ̂(k) is the Fourier transform of ρ(r) andN is the total number of unit cells in the crystal. Choosing
units where the prefactor is unity, we have

I(k) =
1

N

∣∣ρ̂(k)
∣∣2 = 1

N

∑

R,R′

e−ik·(R−R′)
∑

j,j′

cj cj′ e
−ik·(δj−δ

j′
)

= F (k)
∑

R

e−ik·R = Ω̂
∑

K

F (K) δ(k −K) ,
(2.15)

where we have invoked the Poisson summation formula of Eqn. 2.7, and where we have defined the

9What matters for electron diffraction is the electron density.
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form factor

F (K) =

∣∣∣∣
r∑

j=1

cj e
−iK·δj

∣∣∣∣
2

. (2.16)

Thus we expect δ-function Bragg peaks in the scattering intensity at values of the wavevector transfer
equal to any reciprocal lattice vector K. The form factor F (K) modifies the intensity and can even lead
to systematic extinctions of certain reciprocal lattice vectors. Consider, for example, a one-dimensional
lattice with lattice spacing a and basis elements δ1 = 0 and δ2 =

1
2a. If c1 = c2 ≡ c, the form factor is

F (K) = |c|2
∣∣1 + eiKa/2

∣∣2 . (2.17)

This vanishes for K = 2πj/a whenever j is odd. So the lesson here is that the T = 0 scattering intensity
from a crystal is given by a sum of δ-functions and is singular whenever the wavevector transfer is equal
to a reciprocal lattice vector. The presence of a basis modifies each Bragg peak by the form factor F (K),
which in some cases can even extinguish the peak completely10.

2.1.6 Trigonal crystal system

While the trigonal point groupD3d is a normal subgroup of the hexagonal point groupD6h, the trigonal
Bravais lattice does not result from an infinitesimal distortion of the simple hexagonal lattice. Contrast
this situation with that for, e.g., tetragonal vis-a-vis cubic, where a tetragonal lattice is obtained by an
infinitesimal stretching along one of the principal axes of the cubic lattice. Any trigonal lattice, however,
can be expressed as a hexagonal lattice with a three element basis. To see this, define the vectors

s1 =
1√
3
a
(√

3
2 x̂− 1

2 ŷ
)

, s2 =
1√
3
aŷ , s3 =

1√
3
a
(
−

√
3
2 x̂− 1

2 ŷ
)

. (2.18)

Then a1 ≡ s1 − s3 = ax̂ and a2 ≡ s2 − s3 = a
(
1
2 x̂ +

√
3
2 ŷ
)

are primitive DLVs for a two-dimensional
hexagonal lattice. The vectors dj ≡ sj +

1
3 cẑ for j = 1, 2, 3 then constitute three primitive DLVs for the

trigonal lattice, each of length d = 1
3

√
3a2 + c2. They also correspond to a three element basis within the

first Wigner-Seitz cell of the simple hexagonal lattice. Conventionally, and equivalently, the three ele-
ment basis may be taken to be δ1 = 0, 1

3a1+
1
3a2+

1
3cẑ, and 2

3a1+
2
3a3+

2
3cẑ, all of which are associated

with the hexagonal unit cell spanned by vectors a1, a2, and cẑ. Note that this is not a Wigner-Seitz cell,
and its projection onto the (x, y) plane is a rhombus rather than a hexagon. Although describing the trig-
onal Bravais lattice as a hexagonal Bravais lattice with a three element basis might seem an unnecessary
complication, in fact it proves to be quite convenient because two pairs of axes in the hexagonal system
are orthogonal. Similarly, it is convenient to describe the bcc and fcc cubic lattices as simple cubic with a
two and four element basis, respectively, to take advantage of the mutually orthogonal primitive direct
lattice vectors of the simple cubic structure.

10It is a good exercise to compute I(k) for the bcc and fcc structures when they are described in terms of a simple cubic lattice
with a two or four element basis. The resulting extinctions limit the Bragg peaks to those wavevectors which are in the bcc

or fcc reciprocal lattice.
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CRYSTALLOGRAPHY d = 2 d = 3

systems 4 7

lattices 5 14

point groups 10 32

space groups 17 230

symmorphic 13 73

non-symmorphic 4 157

Table 2.1: True Facts about two and three-dimensional crystallography.

2.1.7 Point groups, space groups and site groups

A group P ⊂ O(3) of symmetry operations of a structure which leaves one point fixed is known as a
point group11. The point group P

L
of a Bravais lattice is the group of rotational symmetries which fix

any of the the Bravais lattice sites. This group is shared by all lattices in the same lattice system, and is
known as the holohedry of the lattice.

In crystals, not every lattice site is equivalent. This may be due to the fact that different ions occupy
different sites, but it is also the case for certain monatomic crystals, such as diamond, which consists of
two interpenetrating fcc lattices that are not related by Bravais lattice translation. That is, the diamond
structure is an fcc Bravais lattice with a two element basis. The full symmetry group of a crystal consists
of both rotations and translations and is called the space group S. A space group is a subgroup of the
Euclidean group: S ⊂ E(3), and a general space group operation

{
g
∣∣ t
}

acts as

{
g
∣∣ t
}
r = g r + t , (2.19)

where g ∈ O(3). The identity element in S is
{
E
∣∣ 0
}

, where E is the identity in O(3), and the inverse is
given by {

g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1t
}

. (2.20)

In order that S be a group, we must have that

{
g2
∣∣ t2
}{

g1
∣∣ t1
}
r =

{
g2
∣∣ t2
}(
g1 r + t1

)

= g2 g1 r + g2 t1 + t2 =
{
g2 g1

∣∣ g2 t1 + t2
}
r ,

(2.21)

is also in S. This requires that the matrices g themselves form a group, called the crystallographic point
group P. For a Bravais lattice, P = P

L
, but in general a crystal is of lower symmetry than its underlying

Bravais lattice, and the crystallographic point group is a subgroup of the holohedry: P ⊂ P
L

. Note
that S 6≡ P× T, i.e. the space group is not simply a direct product of the point group and the translation
group, because multiplication of (g, t) ∈ P×T satisfies (g2, t2) (g1, t1) = (g2 g1, t2+t1). The abelian group
T ∼= Z

d of Bravais lattice translations
{
E
∣∣R
}

forms an invariant subgroup of S. If all the symmetry
operations of a particular crystal can be written as

{
g
∣∣R
}

, the crystal’s space group is then said to be

11Mathy McMathstein says that a point group is a group of linear isometries which have a common fixed point. An isometry is
a distance-preserving transformation on a metric space.
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symmorphic and we write S = P ⋊ T, where the symbol ⋊ indicates a semi-direct product of two groups.
In a symmorphic crystal, one may choose an origin about which all point group symmetries are realized.

However, it turns out that many crystals have space group elements
{
g
∣∣ t
}

where g ∈ P but t 6∈ T.
Rather, for these symmetry operations, t is a fraction of a Bravais lattice translation. In some cases,
with a different choice of origin, these operations can be expressed as a rotation followed by Bravais
lattice translation12. For crystals with nonsymmorphic space groups, however, there is no possible choice
of origin about which all elements of S can be decomposed into a point group operation followed by a
Bravais lattice translation. Two examples are shown in Fig. 2.11: the three-dimensional hexagonal close
packed (hcp) structure, and the two-dimensional Shastry-Sutherland lattice. An hcp crystal is a simple
hexagonal lattice with a two element basis. It occurs commonly in nature and describes, for example,
the low temperature high pressure phase of 4He just above its melting curve (about 25 atmospheres at
T = 0K). The primitive direct lattice vectors of the hcp structure are

a1 =
(
1
2 x̂−

√
3
2 ŷ
)
a , a2 =

(
1
2 x̂+

√
3
2 ŷ
)
a , a3 = cẑ , (2.22)

with c =
√

8
3 a. The basis vectors are δ1 = 0 and δ2 =

1
3a1+

2
3a2+

1
2a3. In the figure, A sublattice sites are

depicted in red and B sublattice sites in blue. Note that the B sites lie in the centers of the up-triangles
in each A sublattice plane, and displaced by half a unit cell in the ẑ diraction. The nonsymmorphic
operation in the hcp point group is known as a screw axis and it involves a rotation by 60◦ about the ẑ

axis through the centers of the A sublattice down triangles, followed by a translation by 1
2a3.

The second example is that of the Shastry-Sutherland lattice, which describes the CuBO3 layers in the

magnetic compound SrCu2(BO3)2. Here we have four sublattices, and the nonsymmorphic operation is
known as a glide mirror, which involves translation along a plane (or a line in two dimensions) by a half
unit cell, followed by a reflection in the plane. See if you can spot the nonsymmorphic symmetry.

A third example is that of diamond, which consists of two interpenetrating fcc lattices, and has a
zincblende structure shown in Fig. 2.16. Diamond possesses both a fourfold (41) screw axis as well
as a glide mirror. While the point group is Oh, there is no point in the diamond lattice about which all
operations in Oh are realized. The maximum symmetry at any site is Td.

In a symmorphic crystal, it is always possible to find some origin within the structural unit cell about
which all point group symmetries are realized. In a Bravais lattice, this is true with respect to every
lattice point, but obviously it is possible to choose an origin about which the group of rotational symme-
tries is reduced. For example, the point group of the square lattice is C4v, but by choosing an origin in
the center of one of the links the symmetry is reduced to C2v. It is sometimes convenient to speak of the
group of rotational symmetries with respect to a specific point r in the crystal structure. We call this the
site group P(r). When r = R+ δj is a site in the crystal, i.e. a location of one of the ions, we may denote
the site group as P(R, j).

In a nonsymmorphic crystal, in general no sites will realize the symmetry of the point group P. Consider,
for example, the Shastry-Sutherland lattice in Fig. 2.11. Choosing the origin as the center of the magenta
square unit cell, the site group is P(0) = C2v. But the crystallographic point group for this structure is

12In such cases, the putative nonsymmorphic operation is called removable. Otherwise, the nonsymmorphic operation is essen-
tial.
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Figure 2.11: Two nonsymmorphic crystal lattices. Left: The hexagonal close packed lattice (space group
P63/mmc) has a two site unit cell (red and blue) and a screw axis symmetry, given by a rotation by 60◦

followed by a translation of 1
2a3 along the c-axis. The underlying Bravais lattice is simple hexagonal.

Right: The Shastry-Sutherland lattice (space group p4g) has a four site unit cell (shown in center) and
a glide mirror (blue line). Translation by half a unit cell along the mirror line followed by a mirror
reflection is a lattice symmetry. The underlying Bravais lattice is square.

C4v. Since P is the group of all rotational symmetries about all possible origins, necessarily P(r) ⊂ P for
all sites r.

Our crystallographer forbears have precisely tabulated for us all the possible lattices, point groups, and
space groups in two and three dimensions (see Tab. 2.1). Proving these results is quite tedious, so we
shall be content to take them as received wisdom. Note that a bit more than two thirds (157 out of 230)
of the three-dimensional space groups are nonsymmorphic. Of those, all but two involve either a screw
axis or a glide plane13.

2.2 More on Point Groups

2.2.1 Standard notation for point group operations

A list of point group operations is provided in Tab. 2.2. We’ll also start to use Cn to denote a group
element, i.e. a rotation by 2π/n about a primary axis. If we need to distinguish this element from the
cyclic group, which we’ve thus far also called Cn, we’ll instead refer to the group as Cn. Note that
inversion can be written as I = S2 , and that I commutes with all elements of the point group P, i.e.
I ∈ Z(P) is in the center of P.

Any improper operation g ∈ O(3) has det(g) = −1. This entails that g must have an eigenvalue λ = −1,

13Space groups no. 24 (also known as I212121) and no. 199 (I213) have removable screw axes, but nevertheless there is no
single origin about which every symmetry operation can be expressed as

{

g
∣

∣ t
}

with g ∈ P and t ∈ T.
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SYMBOL OPERATION

E identity

Cn rotation through 2π/n about primary axis n̂ ;

operator equivalent: e−2πin̂·J/n~ where J = L+ S

I inversion (r → −r) ; leaves spinor coordinates invariant

and commutes with all other point group operations

σ C2 rotation followed by reflection in plane perpendicular

to the axis of rotation ; equivalent to IC2 or C2 I

σh reflection in a ‘horizontal’ plane perpendicular to a primary axis

σv reflection in a ‘vertical’ plane which contains a primary axis

σd reflection in a ‘diagonal’ plane containing the primary

axis of symmetry and which bisects the angle between

neighboring twofold axes perpendicular to the primary axis

Sn rotoreflection: Sn = σ−1
h Cn , i.e. rotation by 2π/n followed

by reflection in the perpendicular plane (note I = S2 )

Ē spinor rotation through 2π ; Ē = e−2πin̂·S (S = 1
2 ) ;

leaves spatial coordinates (x, y, z) invariant

ḡ any point group operation g followed by Ē

Table 2.2: Standard notation for point group operations.

and the corresponding eigenvector m̂, for which gm̂ = −m̂, is known as a reversal axis. It also follows
in all odd dimensions that if g is proper, i.e. if det(g) = +1, then g has an eigenvalue λ = +1, and the
corresponding eigenvector n̂ which satisfies gn̂ = n̂ is an invariant axis. Improper elements of O(n)
can be written as Ig(ξ, n̂), where I is the inversion operator. In even dimensions, the inversion I is
equivalent to C2, but one can form improper rotations via a reflection σ.

The rotoreflection operation is Sn = σ−1
h Cn = Cn σ

−1
h . The reason we write σ−1

h rather than σh has to
do with what happens when we account for electron spin, in which case σ−1

h = E σh , where E is spinor
reversal, i.e. rotation of the spinor component through 2π. Without spin, we have σ−1

h = σh , and for n
odd, one then has (Sn)

n = σh and (Sn)
n+1 = Cn , which says that if Sn ∈ P then so are both σh and Cn .

If, on the other hand, n is even, this may not be the case.

2.2.2 Proper point groups

A proper point group P is a subgroup of SO(3)14. The following are the proper point groups:

14Two-dimensional point groups are much simpler to classify as they always involve at most a single rotation axis and/or a
planar reflection. They form a subset of the three-dimensional point groups.
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(i) Cyclic groups : The cyclic group Cn (order n) describes n-fold rotations about a fixed axis. The
restriction theorem limits crystallographic cyclic groups to the cases n = 1, 2, 3, 4, and 6. Again,
molecules, which have no translational symmetries, are not limited by the restriction theorem.

(ii) Dihedral groups : The group Dn (order 2n) has a primary n-fold axis and n twofold axes perpen-
dicular to the primary axis. Note that if one started with only one such perpendicular twofold axis,
the Cn operations would generate all the others. For n even, the alternating twofold axes break up
into two conjugacy classes, whereas for n odd there is only one such class.

(iii) Tetrahedral, octahedral, and icosahedral groups : When there is more than one n-fold axis with
n > 2, the rotations about either axis will generate new axes. Geometrically, this process run
to its conclusion traces out a regular spherical polygon when one traces the intersections of the
successively-generated axes on the unit sphere. There are only five possible such regular poly-
hedra: tetrahedron, cube, octahedron, dodecahedron, and icosahedron. The second two have the
same symmetry operations, as do the last two, so there are only three such groups: T , O, and I .

(iiia) Tetrahedral group : T is the symmetry group of proper rotations of the tetrahedron. Em-
bedding the tetrahedron in a cube, as in Fig. 2.12, there are three two-fold axes through the
cube faces, plus four threefold axes through the cube diagonals, for a total of 12 operations
including the identity. Note T ∼= A4, the alternating group on four symbols.

(iiib) Octahedral group : O consists of all the symmetry operations from T plus 12 more, arising
from six new twofold axes running through the centers of each edge, not parallel to any face,
and six more operations arising from extending the twofold axes through the faces to fourfold
axes (see Fig. 2.9). So, 24 elements in all, shown in Fig. 2.12. Note O ∼= S4 , the symmetric
group on four symbols.

(iiic) Icosahedral group : I is the symmetry group of the dodecahedron or icosahedron. There are
six fivefold axes, ten threefold axes, and 15 twofold axes, so including the identity there are
1 + 6 · (5− 1) + 10 · (3− 1) + 15 · (2− 1) = 60 elements. We also have I ∼= A5, the alternating
group on five symbols.

2.2.3 Commuting operations

The following operations commute:15

• Rotations about the same axis.

• Reflections in mutually perpendicular planes. In general the product of reflections in two planes
which intersect at an angle α is σv σv′ = C(2α), where the rotation is about the axis defined by
their intersection line in the direction from the v′ plane to the v plane. Thus σv′ = σv C(2α).

• Rotations about perpendicular twofold axes: C2 C
′
2 = C ′

2 C2 = C ′′
2 , where the resulting rotation is

about the third perpendicular axis.

• A rotation Cn and a reflection σh in a plane perpendicular to the n-fold axis.

15See M. Lax, Symmetry Principles in Solid State and Molecular Physics, p. 54.
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Figure 2.12: Left: Proper rotational symmetries of the tetrahedron, forming the group T . Right: Proper
rotational symmetries of the octahedron (or cube), forming the group O.

• Inversion I and any point group operation g (with g a rotation relative to the inversion point)

• A twofold rotation C2 and a reflection σv in a plane containing the rotation axis.

2.2.4 Improper point groups

First, some notation. Since we will start to use Cn to denote the generator of rotations about the primary
axis, we’ll write Cn to denote the cyclic group with n elements. Similarly we’ll use S2n to denote the
rotoreflection group. In addition to the proper point group C2 = {E,C2} ∼= Z2 , we will also define two
improper Z2 clones: Ci = {E, I}, containing the identity and the inversion operation, and Cs ≡ {E, σh}
containing the identity and the horizontal reflection σh. All will play a role in our ensuing discussion.

In §2.10 of Lax, the relations between proper and improper point groups are crisply discussed. Suppose
a group G contains both proper and improper elements. We write G = H ∪M where H ⊳ G is a normal
subgroup containing all the proper elements, and M , which is not a group (no identity!) contains all the
improper elements. Letm ∈M be any of the improper operations. ThenmH =M since multiplying any
proper element by an improper one yields an improper element, and we conclude thatH andM contain
the same number of elements. Thus G ∼= H ∪mH and only one improper generator is needed. Since the
inversion operator commutes with all elements of O(3), we can always form an improper group which
contains I by constructingG = H∪IH = H⊗Ci. IfG = H∪mH does not contain the inversion operator

I , we can always form a proper group G̃ = H ∪mIH which is isomorphic to G. Consider the case of the
improper point groupG = C3v, where H = C3 =

{
E , C3 , C

−1
3

}
and m = σv is a vertical reflection plane

containing the threefold axis16. Then G̃ = D3 , which is proper, and which is isomorphic to C3v. Finally,
if G is proper, and if it contains an index two subgroup, i.e. a subgroup H ⊂ G such that NG = 2NH ,

16Acting with C3 generates the additional vertical reflections: C3 σv = σv′ and C3 σv′ = σv′′ .
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Figure 2.13: Stereographic projections of simple point groups Cn , Cnv , Cnh , and Sn. Dark lines corre-
spond to reflection planes. C6v looks like what I found the last time I sliced open a kiwi. Note S1 ∼= C1h

and S3 ∼= C3h. Adapted from Table 4.2 of M. Tinkham, Group Theory and Quantum Mechanics.

then we can construct G̃ = H ∪ I (G\H), where G\H is G with the elements from H removed. Then G̃
is an improper group with no inversion operation.

OK let’s finally meet the improper point groups:

S2n : The rotoreflection group S2n is a cyclic group of order 2n generated by S2n ≡ σ−1
h C2n. In the

absence of spin, σ−1 = σ for any reflection. Then for n odd, (S2n)
n = σhC2 = I , hence Sn ∼= Cn⊗Ci.

Cnh : The 2n element group Cnh ∼= Cn ⊗ Cs has two commuting generators, Cn and σh. For n odd, Cnh is
cyclic and is generated by the single element σhCn.

Cnv : The 2n element group Cnv has two noncommuting generators, Cn and σv, where σv is a reflection
in a plane containing the n-fold axis. Repeated application of Cn creates (n− 1) additional vertical
reflection planes. One has Cnv ∼= Dn.

Dnh : Adding a horizontal reflection plane to Dn, one obtains Dnh
∼= Dn ⊗ Cs . For n even, one also has

Dnh
∼= Dn ⊗ Ci. The group has 4n elements.
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62242232222
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Figure 2.14: Stereograms of simple point groupsDn , Dnd , and Dnh. Dark lines correspond to reflection
planes. Dashed lines correspond to 2-fold rotation axes. Adapted from Table 4.2 of M. Tinkham, Group
Theory and Quantum Mechanics.

Dnd : If instead of adding a horizontal reflection σh we add a ’diagonal’ reflection σd in a plane which
bisects the angle between neighboring twofold axes, we arrive at Dnd, which also has 4n elements.

Td : Adding a reflection plane passing through one of the edges of the tetrahedron, we double the size
of the tetrahedral group from 12 to 24. In Fig. 2.12, such a reflection might permute the vertices 3
and 4. Thus while T ∼= A4, we have Td

∼= S4.

Th : Adding inversion to the proper rotational symmetries of the tetrahedron, we obtain Th
∼= T ⊗ Ci ,

which has 24 elements.

Oh : Adding inversion to the proper rotational symmetries of the cube, we obtain Oh
∼= O ⊗ Ci , which

has 48 elements.

Ih : Adding inversion to the proper rotational symmetries of the icosahedron, we obtain Ih
∼= I ⊗ Ci ,

which has 60 elements.

Stereographic projections of the simple point groups are depicted in Figs. 2.13 and 2.14. The subgroup
structure of the point groups, which tells us the hierarchy of symmetries, is shown in Fig. 2.17.

Why don’t we consider the rotoreflection groups Sn for n odd? Because for n odd, Sn ∼= Cnh. For n odd,
both Sn and S2n generate cyclic groups of order 2n. It is perhaps instructive to consider the simplest
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h

m3m43m43223

Stereogram symmetry symbols :

= C
2
= 2 = C

3
= 3 = C

4
= 4 = C

6
= 6

= I = 1 = IC
4
= 4 = IC

6
= 6

= no reflection

= IC
3
= 3

m3

= IC
2
= m

Figure 2.15: Stereograms of tetrahedral and cubic point groups and legend for symbols.

nontrivial case, n = 3:

S3 =
{
E , σhC3 , C

−1
3 , σh , C3 , σhC

−1
3

}

S6 =
{
E , σhC6 , C3 , σhC2 , C

−1
3 , σhC

−1
6

}
.

(2.23)

We see that C3h , which is generated by the pair (C3 , σh), contains the same elements as S3. This result
holds for all odd n, because in those cases σh ∈ Sn.

2.2.5 The ten two-dimensional point groups

There are ten two-dimensional point groups, listed in Tab. 2.3. As the only allowed elements are 2, 3,
4, and 6-fold rotations about the z-axis, plus vertical (line) mirrors, the only possible groups are C1 ,
C2 , C3 , C4 , C6 and their mirrored extensions C1v , C2v , C3v , C4v , and C6v. Note that the group C1v is
equivalent to C1h , since in d = 3 both have a single reflection plane.

LATTICE SYSTEM POINT GROUPS

oblique C1 C2

rectangular C1h C2v

centered
rectangular C1h C2v

square C4 C4v

hexagonal C3 C3v C6 C6v

Table 2.3: The ten two-dimensional point groups. Note C1h
∼= C1v.
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Figure 2.16: Left: The zincblende structure. Right: Proper and improper elements of the group Td.

2.2.6 The achiral tetrahedral group, Td

Many materials such as GaAs occur in an AB zincblende structure, which consists of two interpenetrat-
ing fcc lattices A and B, separated by (a4 ,

a
4 ,

a
4 ), where a is the side length of the cube; see Fig. 2.16. As

the figure shows, the B sublattice sites within the cube form a tetrahedron. The crystallographic point
group for this structure is Td, the achiral tetrahedral group. A noteworthy feature is that the zincblende
structure has no center of inversion symmetry, hence I /∈ Td.

If all the atoms are identical, i.e. A = B, then we get the diamond structure, which is the structure of
silicon and of course carbon diamond. The diamond lattice is inversion symmetric, with the point of
inversion halfway between the A and B sublattice sites. The point group for diamond is the cubic group
Oh. This might be surprising upon staring at the structure for a time, because it doesn’t possess a cubic
symmetry. However, the space group for diamond is non-symmorphic – it has a glide plane.

The group Td has 24 elements; these are listed in Tab. 2.5. Its character table is provided in Tab. 2.4.
These are arranged in five group classes. One class is the identity, E. Another class consists of three 180◦

Td E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1

A2 1 1 1 −1 −1
E 2 −1 2 0 0

T1 3 0 −1 −1 1

T2 3 0 −1 1 −1

Table 2.4: Character table for the group Td.
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class x y z g ∈ O(3) class x y z g ∈ O(3)

E x y z 1 6σd −y −x z IR[110](π)

3C2 x −y −z R[100](π) y x z IR
[11̄0]

(π)

−x y −z R[010](π) −z y −x IR[101](π)

−x −y z R[001](π) z y x IR
[1̄01]

(π)

8C3 z x y R[111](+
2π
3 ) x −z −y IR[011](π)

y z x R[111](−2π
3 ) x z y IR

[011̄]
(π)

z −x −y R
[11̄1]

(+2π
3 ) 6S4 −x z −y IR[100](+

π
2 )

−y −z x R
[11̄1]

(−2π
3 ) −x −z y IR[100](−π

2 )

−z x −y R
[111̄]

(+2π
3 ) −z −y x IR[010](+

π
2 )

y −z −x R
[111̄]

(−2π
3 ) z −y −x IR[010](−

π
2 )

−z −x y R
[11̄1̄]

(+2π
3 ) y −x −z IR[001](+

π
2 )

−y z −x R
[11̄1̄]

(−2π
3 ) −y x −z IR[001](−

π
2 )

Table 2.5: Table of elements and classes for Td.

rotations about the x̂, ŷ, and ẑ axes, respectively. A third class, with eight elements, consists of rotations
by ±120◦ about each of the four body diagonals. This amounts to 12 group operations, all of which are
proper rotations. The remaining 12 elements involve the inversion operator, I , which takes (x, y, z) to
(−x,−y,−z), and are therefore improper rotations, with determinant−1.17 These elements fall into two
classes, one of which consists of 180◦ rotations about diagonals parallel to one of the sides of the cube
(e.g. the line y = x, z = 0), followed by inversion. The last class consists of rotations by ±90◦ about x̂, ŷ,
and ẑ, also followed by an inversion.

2.2.7 Tetrahedral vs. octahedral symmetry

In the case of the octahedral group,O, the inversion operation is not included in the last two classes, and
they are written as 6C2 and 6C4, respectively. The symmetry operations of O are depicted in fig. 2.12.
The groups O and Td are isomorphic. Both are enantiomorphic (i.e. chiral), and completing either of them
by adding in the inversion operator I results in the full cubic group, Oh, which has 48 elements.

While the groups Td and O are isomorphic, the symmetry of their basis functions in general differs.
Consider, for example, the function ψ = xyz. It is easy to see from table 2.5 that every element of
Td leaves ψ invariant. Within O, however, the classes 6σd and 6S4 are replaced by 6C2 and 6C4 when
the inversion operation is removed. Each element of these classes then takes ψ to −ψ. Thus, within
Td, the function ψ = xyz is indistinguishable from unity, and it transforms according to the trivial
A1 representation. Within O, however, ψ is distinguishable from 1 because ψ reverses sign under the
operation of all group elements in classes 6C2 and 6C4.

17Note that I itself is not an element of Td.
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Γ dΓ basis functions ψΓ
µ for Td basis functions ψΓ

µ for O

A1 1 1 or xyz 1

A2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2) xyz

E 2
{√

3 (x2 − y2) , 2z2 − x2 − y2
} {√

3 (x2 − y2) , 2z2 − x2 − y2
}

T1 3
{
x (y2 − z2) , y (z2 − x2) , z (x2 − y2)

} {
x , y , z

}

T2 3
{
x , y , z

} {
yz , zx , xy

}

Table 2.6: Irreducible representations and basis functions for Td and O.

In O, the triplets of basis functions {x, y, z} and {yz, zx, xy} belong to different representations (T1 and
T2, respectively). In Td, however, they must belong to the same representation, since one set of functions
is obtained from the other by dividing into xyz: x = (xyz)/(yz), et. cyc. But xyz transforms as the
identity, so ‘polar’ and ‘axial’ vectors belong to the same representation of Td.

Finally, let’s think about how O differs from Oh. Consider the function

ψ = xyz ·
{
x4 (y2 − z2) + y4 (z2 − x2) + z4 (x2 − y2)

}
. (2.24)

One can check that this function is left invariant by every element ofO. It therefore transforms according
to the A1 representation of O. But it reverses sign under parity, so within the full cubic group Oh, it
transforms according to separate one-dimensional representation. Note that ψ transforms according to
the A2 representation of Td .

LATTICE SYSTEM POINT GROUPS

cubic Oh O Th Td T

hexagonal D6h D3h C∗
6v D6 C6h C3h C∗

6

trigonal D3d C∗
3v D3 S6 C∗

3

tetragonal D4h D2d C∗
4v D4 C4h S4 C∗

4

orthorhombic D2h C∗
2v D2

monoclinic C2h C∗
s C∗

2

triclinic Ci C∗
1

Table 2.7: The 32 three-dimensional crystallographic point groups. Color scheme: centrosymmetric,
non-centrosymmetric, enantiomorphic (i.e. chiral). Polar point groups are marked with an asterisk ∗.
For each lattice system, the most highest symmetry point groups are toward the left.
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Figure 2.17: The 32 crystallographic point groups, their orders, and their subgroup structure. If the
subgroup is not invariant (normal), the line is heavy. Gray boxes indicate holohedral groups, i.e. point
groups of maximal symmetry within a given lattice system, corresponding to the symmetry of the un-
derlying Bravais lattice itself. (See Tab. 6.1.6 of Lax, or Tab. 5 of Koster et al.)

2.2.8 The 32 crystallographic point groups

Tab. 2.7 lists all possible point group symmetries for three-dimensional crystals. The largest possible
symmetry group within a given lattice system is the rightmost point group, corresponding to the sym-
metry of the underlying Bravais lattice. The point groups may be classified as being centrosymmetric (i.e.
including the inversion operation I), non-centrosymmetric, or enantiomorphic. A centrosymmetric crystal
has an inversion center. Enantiomorphic structures are non-centrosymmetric; they have only rotation
axes and include no improper operations. They are intrinsically chiral and not superposable on their
mirror image. In addition, a point group may be polar, meaning every symmetry operation leaves more
than one point fixed (i.e. those points along the high symmetry polar axis). Thus, a group with more than
one axis of rotation or with a mirror plane which does not contain the primary axis cannot be polar. A
polar axis is only possible in non-centrosymmetric structures. Ferroelectricity and piezoelectricity can
only occur in polar crystals.
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2.2.9 Hermann-Mauguin (international) notation

The notation with which we have thus far identified point groups and their operations (Cnv , Td , σh ,
etc.) is named for the German mathematician A. M. Schoenflies (1853-1928). A more informative sys-
tem, originally due to German crystallographer C. Hermann and subsequently improved by the French
minerologist C.-V. Mauguin, goes by the name Hermann-Mauguin (HM) or international notation. Since
most physics publications today use the international notation, we pause to review it and to explain the
method to its madness.

HM notation is defined for both point groups as well as their elements. For the individual symmetry
operations, the HM symbols are as follows:

(i) n : rotation by 2π/n about a primary axis (Schoenflies Cn)

2 = C2 3 = C3 4 = C4 5 = C5 6 = C6 (2.25)

32 = C−1
3 43 = C−1

4 54 = C−1
5 65 = C−1

6

(ii) m : reflection in a plane (σ)

◦ mh : reflection in a plane perpendicular to the primary axis n̂ (σh)

◦ mv : reflection in a plane containing the primary axis (σv)

◦ md : reflection in a plane containing the primary axis and bisecting the angle between two
perpendicular 2-fold axes (σd)

(iii) n : rotoinversion ICn (note 1 is inversion, 2 = mh is horizontal reflection)

3 = S−1
6 4 = S−1

4 5 = S−1
10 6 = S−1

3 (2.26)

32 = S6 43 = S4 54 = S10 65 = S3

(iv) ñ : rotoreflection σ−1
h Cn = Sn

The number assignments associated with rotoinversion look strange at first. Pray tell, why do we have
3 = S−1

6 but 4 = S−1
4 and 6 = S−1

3 ? Well, since you asked so nicely, I will explain, but it will help if
you consult Fig. 2.13. The issue here is that the Schoenflies groups Sn are generated by the rotoreflection
operation Sn ≡ σ−1

h Cn while the HM symbol n denotes rotoinversion ICn. The relation between the two

Z2 clones
{
E,C2

} {
E, I

} {
E, σh

}

Schoenflies C2 Ci Cs
HM 2 1 m

Table 2.8: Two element point group notation.



2.2. MORE ON POINT GROUPS 27

Schoenflies HM 2 3 4 5 6 G (HM) order

Cn n 2 3 4 5 6 n n

Sn (n odd) (2n) 6 10 (2n) 2n

Sn (n = 4k) n 4 n n

Sn (n = 4k + 2) (n/2) 1 3 n n

Cnv (n even) nmm 2mm 4mm 6mm n,mv 2n

Cnv (n odd) nm 3m 5m n,mv 2n

Cnh (n even) n
m

2
m

4
m

6
m n,mh 2n

Cnh (n odd) (2n) 6 10 n,mh 2n

Dn (n even) n22 222 422 622 n, 2 2n

Dn (n odd) n2 32 52 n, 2 2n

Dnd (n even) (2n) 2m 42m 82m 12 2m n, 2,md 4n

Dnd (n odd) n 2
m 3 2

m 5 2
m n, 2,md 4n

Dnh (n even) n
m

2
m

2
m

2
m

2
m

2
m

4
m

2
m

2
m

6
m

2
m

2
m n, 2,mh 4n

Dnh (n odd) (2n)m2 6m2 10m2 n, 2,mh 4n

Table 2.9: Schoenflies and Hermann-Mauguin (international) notation for simple crystallographic point
groups. The last columns list the generators G and the number of elements. Note Sn = Cnh for n odd,
and that (2n) 2m = (2n)m2.

is as follows. Let C(α) denote counterclockwise rotation through an angle α. Then S(α) = I C(α − π).
In other words, Sn = I C−1

2 Cn. According to this definition,

S2 = I , S3 = I C−1
6 , S4 = I C−1

4 , S6 = I C−1
3 . (2.27)

Note that S5 = I C−3
5 , which produces a ten-fold pattern. In general, for n odd, Sn generates a 2n-fold

pattern.

Now let’s talk about the HM symbols for the point groups themselves. The basic idea is to identify
symmetry-inequivalent axes and reflection planes. For a single n-fold axis, the Schoenflies group is Cn
and the HM symbol is n. If we add a vertical mirror σv to Cn, forming Cnv, the HM symbol is nm if n
is odd and nmm is n is even. The reason for the difference is that for n even, the alternating vertical
reflections break into two classes, whereas for n odd there is only one class (check the character tables!).
If we instead we had added a horizontal mirror σh to form Cnh, the HM symbol would be n

m . However,
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Schoenflies T Th Td O Oh I Ih

HM 23 2
m 3 43m 432 4

m 3 2
m 532 2

m 3 5

generators 3, 2 3, 2,mh 3, 2,md 4, 3, 2 4, 3, 2,mh 5, 3, 2 5, 3, 2,mh

order 12 24 24 24 48 60 120

Table 2.10: Schoenflies and Hermann-Mauguin notation for multi-axis point groups. Indices for gener-
ators refer to distinct (though not necessarily orthogonal) axes.

when n is odd, Cnh is generated by the single rotoinversion (2n), and the convention is to use that symbol

rather than the equivalent n
m because the operation (2n) generates a pattern with more points than either

n or mh (though combined of course they generate the same group). For the dihedral groups Dn, the
HM symbol is n22 if n is even and n2 if n is odd, for reasons similar to those for Cnv. In general, for
groups with a single primary axis, HM symbols can have up to three positions, which are assigned as
follows:

• The first position indicates the rotational symmetry n of the primary axis, or n if the symmetry is
rotoinversion. It can also be n

m in the case of an n-fold axis plus a horizontal reflection plane.

• The second position indicates symmetry of a secondary axis or plane, and can be 2, m, or 2
m .

• The third position indicates symmetry of a tertiary axis or plane, and can be 2, m, or 2
m .

Thus, the HM symbol for Dnd is n 2
m if n is odd but is (2n)m if n is even, while the HM symbol for Dnh

is nm2 if n is odd and n
m

2
m

2
m if n is even. Notation for two element point groups is given in Tab. 2.8

Finally we come to the tetrahedral, octahedral, and icosahedral groups, all of which have more than
one high order (n > 2) axis. For the tetrahedral group T , the HM symbol is 23 because the 2-fold
axes are oriented parallel to the axes of the cube containing the tetrahedron, as shown in Figs. 2.9 and
2.12. The octahedral group O is written 432 in HM notation, because the fourfold axes are parallel
to the cube axes, there are secondary threefold axes along the cube diagonals, and tertiary twofold axes
running through the centers of the cube edges. The HM symbol for the icosahedral group I is 532. There
are primary fivefold axes, through the vertices, secondary threefold axes through the face centers, and
tertiary twofold axes through the edge centers (once again, see Fig. 2.9). Now add an improper element:
inversion or a mirror plane. For the pyritohedral group Th, we start with T and then add mirror planes
perpendicular to the twofold axes, turning the threefold axes into inversion axes18. Consequently the
HM symbol is 2

m 3. For the achiral tetrahedral group Td, we add mirrors perpendicular to the diagonal
threefold axes, resulting in fourfold inversion axes and the symbol 43m. When it comes to the cubic
groupO, we may add either a mirror or inversion. Since they are equivalent, consider the mirror, which
bisects the fourfold axes, turning the threefold axes into inversion axes, and generating new mirrors
perpendicular to the teriary twofold axes. The HM symbol is then 4

m 3 2
m . Finally, adding a mirror to the

icosahedron turns I into Ih, with HM symbol 5 3 2
m .

18The seams of a volleyball have pyritohedral symmetry.
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No. HM short HM full Schoenflies No. HM short HM full Schoenflies

1 1 1 C1 17 3 3 C3i (S6)

2 1 1 Ci (S2) 18 32 32 D3

3 2 2 C2 19 3m 3m C3v

4 m m Cs (C1h) 20 3m 3 2
m D3d

5 2/m 2
m C2h 21 6 6 C6

6 222 222 D2 (V ) 22 6 6 C3h

7 mm2 mm2 C2v 23 6/m 6
m C6h

8 mmm 2
m

2
m

2
m D2h (Vh) 24 622 622 D6

9 4 4 C4 25 6mm 6mm C6v

10 4 4 S4 26 6m2 6m2 D3h

11 4/m 4
m C4h 27 6/mmm 6

m
2
m

2
m D6h

12 422 422 D4 28 23 23 T

13 4mm 4mm C4v 29 m3 2
m3 Th

14 42m 42m D2d (Vd) 30 432 432 O

15 4/mmm 4
m

2
m

2
m D4h 31 43m 43m Td

16 3 3 C3 32 m3m 4
m3 2

m Oh

Table 2.11: HM and Schoenflies notation for the 32 crystallographic point groups.

2.2.10 Double groups

The group operations act on electron wavefunctions, which are spinor functions of the spatial coordi-
nates r = (x, y, z):

~ψ(r) =

(
ψ↑(r)

ψ↓(r)

)
. (2.28)

Rotations by an angle θ about an axis n̂ are represented by the unitary operator U(θ; n̂) = e−iθn̂·J/~ ,
where J = L+S is the sum of orbital (L) and intrinsic spin (S) angular momenta. For crystallographic
point groups, θ = 2π/n where n = 1, 2, 3, 4, or 6.

When spin is neglected, we have the point groups we have studied. With spin, we must deal with the
fact that SU(2) gives us a projective representation of SO(3). Recall that D̂(G) is a projective representation
of G if

D̂(g) D̂(h) = ω(g, h) D̂(gh) (2.29)
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Figure 2.18: Schematic diagram of (common axis) double group rotation generators. Based on Fig. 1 of
Koster et al. (1963). Note that C1 = E, i.e. a rotation by 2π.

where associativity imposes the following condition on the cocycle ω(g, h):

ω(g, h)

ω(h, k)
=
ω(g, hk)

ω(gh, k)
. (2.30)

In our case, G = SO(3) and D̂
(
R(ξ, n̂)

)
= exp(−iξn̂ · Ĵ) where Ĵ = L̂ + Ŝ and S = 1

2 . For example,

any C2 operation has ξ = π, hence (C2)
2 = C1 = exp(−2πin̂ · Ŝ) = −1, which is to say spinor inversion,

i.e.

(
u
v

)
→ −

(
u
v

)
. For any point group P, the multiplication table for the projective representation D̂(P) looks

exactly like that for P, except some entries get multiplied by −1. I.e. all the cocycles ω(g, h) are ±1. We can
lift this projective representation to an enlarged point group, called the double group, P′, by introducing

a generator E, representing spinor inversion, with E
2
= E. To each element g ∈ P, there corresponds a

counterpart ḡ ≡ gE. Thus, N
P′ = 2N

P
. Note that E leaves r unchanged, and that the bar of g−1 is the

inverse of ḡ. A schematic illustration of proper rotations within a double group is shown in Fig. 2.18.
Do not confuse the barring operation in double groups with the HM symbol for rotoinversion!

Remarks about double group multiplication

Some noteworthy aspects regarding multiplication of double group elements:

⋄ The element E is given by E = C1 = C(±2π). Note C(4π) = E.

⋄ For any group element g, whether barred or unbarred, gg−1 = E.

⋄ For the inversion operator I , I2 = Ī2 = E and IĪ = ĪI = E.
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⋄ Any reflection σ obeys σ2 = E. This is because we can always write σ = IC2 whereC2 is a twofold
rotation about an axis normal to the reflection plane, whence σ2 = I2 C2

2 = C1 = E.

⋄ For n > 2, we define Cn ≡ R̂(2π/n) to be a counterclockwise rotation by 2π/n and C−1
n ≡

R̂(−2π/n) to be the inverse operation, i.e. clockwise rotation by 2π/n. Then C2
2 = C1 = E, hence

C−1
2 = C2. More fully, according to Fig. 2.18, we have

C2C
−1
3 = C6 C2 C

−1
4 = C4 C2 C

−1
6 = C3

C2 C6 = C
−1
3 C2C4 = C

−1
4 C2 C3 = C

−1
6

(2.31)

C2C
−1
3 = C6 C2 C

−1
4 = C4 C2 C

−1
6 = C3

C2C6 = C−1
3 C2 C4 = C−1

4 C2 C3 = C−1
6 ,

where all rotations are about the same axis.

⋄ To compute the product of σh with a rotation, recall the definition of the rotoreflection operation
Sn ≡ σ−1

h Cn = I C−1
2 Cn , which entails S−1

n = σhC
−1
n = I C2 C

−1
n . One then has

σhCn = Sn , σhC
−1
n = S

−1
n , σhCn = Sn , σhC

−1
n = S−1

n . (2.32)

⋄ We may then apply σh to Eqns. 2.31 and 2.32 to obtain results such as

C2 S
−1
3 = S6 , C2 S6 = S−1

3 , σh Sn = Cn , σh S
−1
n = C

−1
n . (2.33)

⋄ What about σv ? If
{
σv , σv′ , σv′′

}
denote vertical reflection planes oriented at angles 0, 2π/3, and

4π/3, respectively, then we should have either C3 σv = σv′ or C3 σv = σv′ . Which is it? If we apply
C3 twice, for either initial case we obtain C2

3 σv = σv′′ . Applying C3 yet again yields C3 σv′′ = σv .
Thus we have

C3 σv = σv′ , C3 σv′ = σv′′ , C3 σv′′ = σv . (2.34)

Note then that σv′ σv = C3 and σv σv′ = C−1
3 , et. cyc.

To summarize, let C(α) denote counterclockwise rotation through an angle α, and let Cn = C(αn) etc.
with αn = 2π/n. Then

C(α) = C(α− 2π) , S(α) = I C(α− π) , S(α) = I C(α+ π) (2.35)

and

σ = I C(π) , σ = I C(−π) . (2.36)
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T ′
d E E 8C3 8C3

3C
2

3C2

6σ
d

6σ
d

6S4 6S4

Γ1 (A1) 1 1 1 1 1 1 1 1

Γ2 (A2) 1 1 1 1 1 −1 −1 −1
Γ3 (E) 2 2 −1 −1 2 0 0 0

Γ4 (T1) 3 3 0 0 −1 −1 1 1

Γ5 (T2) 3 3 0 0 −1 1 −1 −1
Γ6 2 −2 1 −1 0 0

√
2 −

√
2

Γ7 2 −2 1 −1 0 0 −
√
2

√
2

Γ8 4 −4 −1 1 0 0 0 0

Table 2.12: Character table for the double group of Td.

Character tables for double groups

One might at first suspect that any conjugacy class C of the point group P spawns two classes within the
double group P

′, i.e. C and C ≡ E C. This is always true provided the elements of C don’t square to the
identity. But for twofold axes C2 and reflections σ, a theorem due to Opechowski (1940) guarantees:

• For proper twofold operations, C2 and C̄2 adjoin to the same class if either

– there exists a second twofold axis perpendicular to the initial axis, or

– there exists a reflection plane containing the initial axis.

• For improper twofold operations, σ and σ̄ adjoin to the same class if either

– there exists a second reflection plane perpendicular to the initial one, or

– there exists a twofold axis lying within the initial plane.

In these cases, the resulting total number of classes in P
′ is less than twice that for P. As an example,

consider the tetrahedral group Td. There are three twofold axis: x̂, ŷ, and ẑ. All are bilateral because a
rotation by π about x̂ reverses the direction of both ŷ and ẑ, etc. Accordingly, in the character table Tab.

2.12 for the double group of Td , the classes C2 and C̄2 are adjoined, as are σd and σ̄d .

With the exception of those twofold operations satisfying the conditions in Opechowski’s theorem, the
classes C and C are distinct in the double group. Any IRREP of P will be an IRREP of P′ with χ(C) = χ(C).
But since the number of elements is doubled in P

′, there must be new IRREPs specific to the double group.
For these additional IRREPs, one has χ(C) = −χ(C), hence if C and C adjoin to C ∪ C by Opechowski, one
must have χ(C ∪ C) = 0. Checking Tab. 2.12, we see that in the extra IRREPs Γ6,7,8 , χ(C) = −χ(C) except

in the case of the adjoined classes, for which χ(C ∪ C) = 0.
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We can understand that twofold rotations and reflections are special in this regard from the result we
obtained for SU(2) characters,

χ(j)(ξ) =
sin (j + 1

2)ξ

sin 1
2ξ

(2.37)

for rotation by an angle ξ about any axis. Thus χ(j)(α + 2π) = (−1)2jχ(j)(α). For j = 1
2 , or indeed for

any half odd integer j, we have χ(π) = χ(3π) = 0. Thus C2 and C2 have the same character. A similar
result holds for reflections, because σ = IC2 and σ = IC2. Therefore the classes C2 and C2 are not
distinguished by character, nor are σ and σ. This is true in any IRREP in which χ(E) = −χ(E).

2.2.11 The three amigos : D4 , C4v , D2d

Let’s try to apply some of what we’ve just learned to the groups D4, C4v, and D2d . All these eight-
element groups are isomorphic to each other. The character table for all three is given in Tab. 2.13.
Although they are all isomorphic, they include different sets of symmetry operations, and therefore
they will have different basis representations.

Let’s now discuss all the classes of these three groups. Recall that

R(ξ, n̂)ab = nanb +
(
δab − nanb

)
cos ξ − ǫabc nc sin ξ . (2.38)

• C2 : This class is present in all three groups. It consists of a single element which is rotation by π
about the ẑ axis, and represented by the 3× 3 matrix

Rπ
z ≡ R(π, ẑ) =



−1 0 0
0 −1 0
0 0 1


 . (2.39)

• 2C4 : Present in D4 and C4v. Contains the elements

Rπ/2
z ≡ R(π2 , ẑ) =



0 −1 0
1 0 0
0 0 1


 , R−π/2

z ≡ R(−π
2 , ẑ) =




0 1 0
−1 0 0
0 0 1


 . (2.40)

These elements are inverses of each other.

• 2S4 : Present only in D2d . These are rotoreflections, i.e. 2C4 followed by z → −z :

Sπ/2
z ≡ S(π2 , ẑ) =



0 −1 0
1 0 0
0 0 −1


 , S−π/2

z ≡ S(−π
2 , ẑ) =




0 1 0
−1 0 0
0 0 −1


 . (2.41)

These two are also inverses within O(3). In general we have S(α) = IC(α − π), in which case

S
π/2
z = IR

−π
z R

π/2
z and S

−π/2
z = IR

−π
z R

−π/2
z . Why do we distinguish Rπ

z and R−π
z when they are

represented by the same matrix? This will be important when we construct the corresponding
matrix representation for the double groups19.
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D4 E 2C4 C2 2C ′
2 2C ′′

2

C4v E 2C4 C2 2σv 2σd

D2d E 2S4 C2 2C ′
2 2σd D4 basis C4v basis D2d basis

A1 1 1 1 1 1 x2 + y2 x2 + y2 or z x2 + y2

A2 1 1 1 −1 −1 Lz or z Lz Lz

B1 1 −1 1 1 −1 x2 − y2 x2 − y2 x2 − y2

B2 1 −1 1 −1 1 xy xy xy or z

E 2 0 −2 0 0
{
x , y

} {
x , y

} {
x , y

}

Table 2.13: Character table for the point groups D4, C4v , and D2d.

• 2C ′
2 : Present in D4 and D2d , this class consists of twofold rotations about x̂ and ŷ:

Rπ
x ≡ R(π, x̂) =



1 0 0
0 −1 0
0 0 −1


 , Rπ

y ≡ R(π, ŷ) =



−1 0 0
0 1 0
0 0 −1


 . (2.42)

• 2σv : This occurs only in C4v and corresponds to reflections x→ −x and y → −y:

Σx ≡ IRπ
x =



−1 0 0
0 1 0
0 0 1


 , Σy ≡ IRπ

y =



1 0 0
0 −1 0
0 0 1


 . (2.43)

• 2C ′′
2 : Occurring only in D4 , these operations are twofold rotations about the diagonal axes y = x

and y = −x:

Rπ
xy ≡ R

(
π, x̂+ŷ√

2

)
=



0 1 0
1 0 0
0 0 −1


 , Rπ

xy ≡ R
(
π, x̂−ŷ√

2

)
=




0 −1 0
−1 0 0
0 0 −1


 . (2.44)

• 2σd : Occurring in C4v and D2d , this class of reflections is equivalent to IC ′′
2 , hence

Σxy ≡ IRπ
xy =




0 −1 0
−1 0 0
0 0 1


 , Σxy ≡ IRπ

xy =



0 1 0
1 0 0
0 0 1


 . (2.45)

I apologize for the loose notation where we are using the same symbols to refer to group elements as
well as their 3× 3 matrix representations. Notice that all the matrices representing elements of C4v have
a block-diagonal structure with an upper left 2× 2 block and a lower right 1× 1 block, where the latter

19See the explanation of Eqn. 2.32.
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is always 1. This is because we never need to speak of the z-direction when we talk about C4v as all its
operations involve x and y alone.

Now let’s talk about the basis functions. The projectors onto the various representations are given by

ΠΓ =
dΓ
NG

∑

g∈G
χΓ ∗

(g)D(g) , (2.46)

where NG = 8 for the three amigos. It should be clear how the basis functions in Tab. 2.13 are eigen-
functions of these projectors, but let’s note the following to obviate any confusion. First of all, what do
we mean by Lz as a basis function of the A2 IRREP in the case of C4v and D2d? We mean the angular
momentum operator, Lz = xpy− ypx. We know that Lα = εαβγr

βpγ transforms as a vector under proper
rotations, however it is known as an axial vector because it transforms differently under improper rota-
tions. That is, under the operation σh (which, nota bene is present in none of our three groups), z is odd
but Lz is even. Similarly, under either of the σv operations, z is even but Lz is odd. For D4 , the basis
function f(z) = z corresponds to the A2 IRREP because it is even under E, 2C4, and C2 and odd under
2C ′

2 and 2C ′′
2 . But in C4v, whose operations all leave z invariant, f(z) = z transforms as the A1 IRREP.

And for D2d , where 2S4 and 2C ′
2 reverse z but 2σd does not, f(z) = z transforms as the B2 IRREP! Note

that other valid choices of basis functions are possible. For example, rather than the pair
{
x , y

}
, we

could have chosen
{
Lx , Ly

}
as basis functions for the E IRREP.

Double group matrices and projectors

Now let’s tackle the corresponding double groups. We will need the 2 × 2 matrices representing the
various point group operations. Recall for a rotation by ξ about n̂ ,

exp(−iξn̂ · σ/2) = cos(12ξ)− i sin(12ξ) n̂ · σ . (2.47)

We’ll write the elements of D(1/2)(G) as U(g). We then have

U(Rπ
z ) =

(
−i 0
0 i

)
, U(Rπ/2

z ) =

(
e−iπ/4 0

0 eiπ/4

)
, U(R−π/2

z ) =

(
eiπ/4 0

0 e−iπ/4

)
. (2.48)

For the rotoreflections,

U(Sπ/2
z ) =

(
eiπ/4 0

0 e−iπ/4

)
, U(Sπ/2

z ) =

(
−e−iπ/4 0

0 −eiπ/4
)

. (2.49)

Note that U(S
±π/2
z ) = I U(R

−π
z )U(R

±π/2
z ), where R−π

z = −Rπ
z and that I acts as the identity matrix on

spinors. Note that U(S
π/2
z ) = U(R

−π/2
z ). Next, we need

U(Σx) = U(Rπ
x) =

(
0 −i
−i 0

)
, U(Σy) = U(Rπ

y ) =

(
0 −1
1 0

)
. (2.50)

Since the only difference between the twofold rotations and the corresponding reflections in the planes
perpendicular to their axes is the inversion I , their representations in D1/2(G) are identical. The remain-
ing matrices are

U(Σxy) = U(Rπ
xy) =

(
0 −eiπ/4

e−iπ/4 0

)
, U(Σxy) = U(Rπ

xy) =

(
0 e−iπ/4

−eiπ/4 0

)
. (2.51)
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D′
4 E E 2C4 2C4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2C ′′

2 ∪ 2C
′′
2

C ′
4v E E 2C4 2C4 C2 ∪ C2 2σv ∪ 2σv 2σd ∪ 2σd

D′
2d E E 2S4 2S4 C2 ∪ C2 2C ′

2 ∪ 2C
′
2 2σd ∪ 2σd basis

Γ1 1 1 1 1 1 1 1 x2 + y2

Γ2 1 1 1 1 1 −1 −1 Lz

Γ3 1 1 −1 −1 1 1 −1 x2 − y2

Γ4 1 1 −1 −1 1 −1 1 xy

Γ5 2 2 0 0 −2 0 0
{
x , y

}
or
{
Lx , Ly

}

Γ6 2 −2
√
2 −

√
2 0 0 0

{
|↑ 〉 , |↓ 〉

}

Γ7 2 −2 -
√
2
√
2 0 0 0 Γ3 × Γ6 or Γ4 × Γ6

Table 2.14: Character table for the double groups of D4 , C4v , and D2d .

Note that their product is U(Σxy)U(Σxy) = U(Rπ
z ). Note also that det U(g) = 1 since each U(g) ∈ SU(2).

Appealing to the character table in Tab. 2.14, we can now construct the double group projectors. We
write the projectors as

ΠΓ =
dΓ
NG

∑

g∈G
χΓ ∗

(g)D(g) ⊗ U(g) . (2.52)

where G is any of D′
4 , C ′

4v , and D′
2d , and NG = 16, since each of the double groups of the three amigos

has 16 elements. For the IRREPs
{
Γ1, Γ2, Γ3, Γ4, Γ5}we may use the basis functions ψΓ

µ (r) from the proper
point groups. I.e. we can simply ignore all the U -matrices and pretend there is no spin component. More
correctly, we can consider the spin component of each basis function to be a singlet,

∣∣ S
〉
=

1√
2

(∣∣ ↑
〉
⊗
∣∣ ↓
〉
−
∣∣ ↓
〉
⊗
∣∣ ↑
〉)

. (2.53)

One can check that U(g) |S 〉 = |S 〉 for all g, which follows from det U(g) = 1. For Γ6 and Γ7 , though,
the projectors annihilate any basis function of the form f(r) |S 〉. However, a basis function of the form
| ↑ 〉 or | ↓ 〉 (i.e. with no spatial dependence) does the trick. In spinor notation, we have

2

16

[
χΓ

6(E)U(E) + χΓ
6(E)U(E)

](u
v

)
=

1

2

(
u
v

)

2

16

[
χΓ

6(2C4) + χΓ
6(2C4)E

][
U(Rπ/2

z ) + U(R−π/2
z )

](u
v

)
=

1

2

(
u
v

)
.

(2.54)

Thus,

(
u
v

)
is an eigenfunction of the projector ΠΓ

6 . In order to keep this spinor from being annihilated

by ΠΓ
7 , we need to multiply it by a scalar function ψ(r) which reverses the sign from the characters of
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the classes 2C4 and 2C4. According to Tab. 2.13, the basis function from either the B1 or the B2 IRREPs
will work. This explains the basis functions in Tab. 2.1420. Other valid choices of basis functions are of
course possible.

Do we always need the double group?

Although electrons carry spin S = 1
2 , we usually don’t need to invoke the double group formalism if

the spin-orbit coupling is sufficiently weak. That is, we may use L rather than J as the generator of
rotations, since

[
Ĥ, Lα

]
= 0. Each electronic energy level is of course doubly degenerate due to the spin,

which just ”comes along for the ride”. In the presence of significant spin-orbit coupling,
[
Ĥ, Lα

]
6= 0

but
[
Ĥ, Jα

]
= 0. Thus we must use the total angular momentum J as the generator of rotations, which

entails the double point group symmetries.

2.3 Space Groups

The full group of symmetry operations of an n-dimensional crystal is called its space group, S. Any
crystallographic space group is a subgroup of the Euclidean group: S ⊂ E(n). Space groups are infinite
discrete groups. Two-dimensional space groups are called wallpaper groups. An accounting of the total
number of lattices, point groups, and space groups for two and three dimensional crystals is provided
in Tab. 2.1.

2.3.1 Space group elements and their properties

Each element
{
g
∣∣ t
}
∈ S represents a compounded operation of rotation by a rotation g (either proper

or improper) and a translation t. When g = E, the space group operations are pure translations, and
are all of the form

{
E
∣∣R
}

, where R ∈ L is a vector in the underlying Bravais lattice. As discussed in
§2.1.7, the operations

{
g
∣∣ t
}

form a group, with

{
g
∣∣ t
}{

g′
∣∣ t′
}
=
{
gg′
∣∣ gt′ + t

}
{
g
∣∣ t
}−1

=
{
g−1

∣∣ − g−1t
}

.
(2.55)

We see that the rotations g must themselves form a group, which is the point group P of the crystal. Pure
translations

{
E
∣∣R
}

by a direct lattice vector are part of the space group, and indeed form a normal

subgroup thereof:
{
g
∣∣ t
}−1{

E
∣∣R
}{

g
∣∣ t
}

=
{
E
∣∣ g−1R

}
. Thus, g−1R ∈ L for any g ∈ P, which

means, as noted above in §2.1.7, that the point group P of any crystal is a subgroup of the point group
P
L

of its underlying Bravais lattice (i.e. the holohedry).

Fom Eqn. 2.55, we have the group conjugation property

{
h
∣∣ s
}−1{

g
∣∣ t
}{

h
∣∣ s
}
=
{
h−1gh

∣∣ h−1gs− h−1s+ h−1t
}
≡
{
g′
∣∣ t′
}

, (2.56)

20The spin component of the basis functions for the Γ1 through Γ5 IRREPs should be considered to be the singlet |S 〉.
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Figure 2.19: Structure of hexagonal H2O ice, with red spheres showing location of oxygen atoms. The
space group is P63/mmc. The 63 symbol indicates a sixfold screw axis. The first twom symbols indicate
mirror planes perpendicular and parallel to the c-axis. The c symbol indicates a glide plane where the
translation is along the c-axis. (Image credit: Wikipedia).

for which the rotation is g′ = h−1gh and the translation is t′ = h−1gs − h−1s + h−1t. When h = E, we
have g′ = g and

t− t′ = (E − g) s . (2.57)

Suppose we further demand t′ = 0 , i.e. that the conjugated operation is equivalent to a pure rotation,
with no translation, about a different choice of origin. We see that this is possible if we choose s such
that t = (E − g) s.

Now it was noted in §2.2.1 that when the dimension n of space is odd, g ∈ O(n) always preserves some
axis, meaning it has an eigenvalue λ = 1. The other two eigenvalues may be written as e±iα where
α = 2π/n with n = 2, 3, 4, or 6. (The case n = 1 corresponds to the identity E.) A mirror reflection,
which is an improper operation, has an inversion axis corresponding to an eigenvalue λ = −1, with all
remaining eigenvalues λ = +1. Proper rotations therefore have an invariant axis, while mirror reflections
have an invariant plane. Thus we can write

proper rotation : r = | ê1 〉〈 ê1 |+ eiα | ê2 〉〈 ê2 |+ e−iα | ê3 〉〈 ê3 |
mirror reflection : m = −| ê1 〉〈 ê1 |+ | ê2 〉〈 ê2 |+ | ê3 〉〈 ê3 | .

(2.58)

We now see that if g = r is a proper rotation, t = (E− r) s cannot be solved for s if t has any component
along the invariant axis ê1. Similarly, if g = m is a mirror, t = (E −m) s cannot be solved for s if t has
any component in the invariant plane spanned by {ê2, ê3}. Space group operations

{
r
∣∣ t
}

for which t

is parallel to the invariant axis of r are called screws, while those for which t is parallel to an invariant
plane of m are called glides. As we shall see, the possible values of t are strongly constrained in either
case. Screws and glides may be considered intrinsic translations because they cannot be removed simply
by a new choice of origin.

Next we note that if
{
g
∣∣ t
}
∈ S, we can always choose the translation component t to either be in the

direct lattice or to lie within the first Wigner-Seitz (WS) cell21. If t ≡ τ /∈ T, then it must be unique for a

21A translation t which is not a direct lattice vector can always be brought into the first WS cell by a direct lattice translation.
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Nos. lattice P
(Sch)

P
(HM) order S (sym) S (n-sym)

1 oblique C1 1 1 p1

2 oblique C2 2 2 p2

3 - 4 rectangular C1v m 2 pm pg

5 - 6 rectangular C2v 2mm 4 pmm pmg

7 centered
rectangular C1v m 2 cm

8 - 9 centered
rectangular C2v 2mm 2 cmm pgg

10 square C4 4 4 p4

11 - 12 square C4v 4mm 8 p4m p4g

13 hexagonal C3 3 3 p3

14 - 15 hexagonal C3v 3m 6 p3m1 , p31m

16 hexagonal C6 6 6 p6

17 hexagonal C6v 6mm 12 p6m

Table 2.15: The 17 wallpaper groups and their short notation.

given g, because if both
{
g
∣∣ τ
}

and
{
g
∣∣ τ ′ } are in S, then so is

{
g
∣∣ τ ′ }−1{

g
∣∣ τ
}
=
{
E
∣∣ g−1(τ − τ ′)

}
,

which means that g−1(τ −τ ′) ∈ T and therefore τ −τ ′ ∈ T. Since by assumption both τ and τ ′ lie within
the first WS cell, we must have τ ′ = τ . Thus, all space group elements are of the form

{
g
∣∣R + τg

}
,

where τg may either be zero or a unique nonzero vector within the first WS cell. Now the point group
P is of finite order, so each element g ∈ P satisfies gn = E where n is finite and taken to be the smallest
positive integer which satisfies this relation. Therefore

{
g
∣∣ τg

}n
=
{
gn
∣∣ τg + gτg + . . .+ gn−1τg

}
, (2.59)

and since gn = E, we must have that τg + gτg + . . .+ gn−1τg = R is a direct lattice vector. Note that for
g = r we can have n = 2, 3, 4, or 6, while for g = m we necessarily have n = 2.

According to Eqn. 2.58, we have

E + g + g2 + . . .+ gn−1 = nP‖(g) , (2.60)

where P‖(r) ≡ | ê1 〉〈 ê1 | is the projector onto the invariant axis of r, and P‖(m) ≡ | ê2 〉〈 ê2 |+ | ê3 〉〈 ê3 |
the projector onto the invariant plane of m. Thus we conclude nP‖(g) τg = R, which is to say that the

nonremovable part of the translation τg , i.e. its projection onto the rotation axis or mirror plane, is equal
to R/n . Note also that in d = 2, there is no preserved rotation axis, since it would be orthogonal to the
(x, y) plane. Therefore two dimensional point groups can at most have glides and no screws.

We may now identify all possible screws with the symbols 21, 31, 41, 42, 61, 62, and 63, as well as their
enantiomorphous counterparts 32, 43, 64, and 65. Glide planes are denoted by the symbols a, b, c, n, and
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(a) p1 (b) p2 (c) pm (d) pg

(e) pmm (f) pmg (g) cm (h) cmm

(i) pgg (j) p4 (k) p4m (l) p4g

(m) p3 (n) p3m1 (o) p31m (p) p6

(q) p6m

Figure 2.20: Unit cells for the 17 two-dimensional space groups (wallpaper groups). (Image credit:
Wikipedia.)
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d, depending on the direction of the translation component. Let the symmetry axes of the crystal be a,
b, and c. Then

◦ For a glides, τ = 1
2a.

◦ For b glides, τ = 1
2b.

◦ For c glides, τ = 1
2c.

◦ For n glides, τ = 1
2(a+ b), 1

2(b+ c), 1
2(a+ c), or 1

2(a+ b+ c).

◦ For d glides, τ = 1
4 (a+ b), 1

4(b+ c), 1
4 (a+ c), or 1

4 (a+ b+ c).

The d-glide is called the diamond glide and is present in the diamond lattice.

Be forewarned that it is possible for a symmorphic space group to include screw and glide operations
provided they are removable by choosing a different origin. Such nonsymmorphic operations are called
inessential. In other words, if S contains nonsymmorphic operations (screws or glides), but there exists
some ρ ≡

{
h
∣∣ s
}

such that all elements of ρ−1
Sρ are of the form

{
g
∣∣R
}

, then S is symmorphic. A
nonsymmorphic space group contains essential (i.e. unremovable) screws or glides22.

2.3.2 Factor groups

In the dim and distant past – specifically, in §1.3.1 – we discussed the concept of a factor group. Recall
that if H ⊂ G is a subgroup, there is a unique left coset decomposition of G as G =

⋃
i riH where i ∈

{1, . . . , NG/NH}. If H ⊳G is a normal subgroup, meaning gHg−1 ∈ H for all g ∈ G, the cosets riH form
a group under multiplication, called the factor group G/H .

Since the abelian group T of Bravais lattice translations is a normal subgroup of the space group, we can
decompose S as

S =
⋃

g

{
g
∣∣ τg

}
T = T +

{
g2
∣∣ τg

2

}
T + . . .+

{
gN

P

∣∣ τg
N
P

}
T . (2.61)

This says that the space group S is generated by all Bravais lattice translations
{
E
∣∣R
}

and all opera-
tions

{
g
∣∣ τ g

}
. If, as in §2.3.5 below, we impose periodic boundary conditions, so that space is compact-

ified into a three-dimensional torus of N1 × N2 × N3 unit cells, then the translation group T is of finite
order |T| = N1N2N3 , and the order of the space group is |S| = |P| · |T|.

The set of operations
{
g
∣∣ τ g

}
is thus the factor group F ≡ S/T. While there exists a bijective map{

g
∣∣ τ g

}
←→

{
g
∣∣ 0
}

between the factor group F and the point group P, multiplication within the factor
group is always modulo T. Group multiplication of the factor group elements results in a projective
representation of the point group,

{
g
∣∣ τg

}{
h
∣∣ τh

}
=
{
E
∣∣Rg,h

}{
gh
∣∣ τgh

}
, (2.62)

22As noted above, there are two nonsymmorphic space groups which contain neither screws nor glides, but for which one can
nevertheless not write S = P⋊ T.
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crystal system type symmorphic space groups

triclinic P P1 , P1

monoclinic P P2 , Pm , P2/m

A/C C2 , Cm , C2/m

orthorhombic P P222 , Pmm2 , Pmmm

A/C C222 , Cmm2 , Cmmm , Amm2

I I222 , Imm2 , Immm

F F222 , Fmm2 , Fmmm

tetragonal P P4 , P4 , P4/m , P422 , P4mm

P42m, P4m2 , P4/mmm

I I4 , I4 , I4/m , I422 , I4mm

I42m, I4m2 , I4/mmm

trigonal P P3 , P3 , P321 , P3m1 , P3m1

P312 , P31m, P31m

(rhombohedral) R R3 , R3 , R32 , R3m, R3m

hexagonal P P6 , P6 , P6/m , P622 , P6mm

P6m2 , P62m , P6/mmm

cubic P P23 , Pm3 , P432 , P43m, Pm3m

I I23 , Im3 , I432 , I43m, Im3m

F F23 , Fm3 , F432 , F43m, Fm3m

Table 2.16: The 73 symmorphic three-dimensional space groups and their short notation. Bravais lattice
types are primitive (P), base-centered (A/C), body-centered (I), and face-centered (F). Space groups
printed in red indicate cases where there are two inequivalent P-invariant space lattice orientations.

and one can lift the projective representation of P to its central extension, which is to say S. Here

Rg,h = τg + gτh − τgh (2.63)

must be in the Bravais lattice. Note that the cocycles here are actually translation operators rather than
actual phases. Below we shall see how by diagonalizing the translation part of the space group, the
cocycles become phases.

The case of diamond

Diamond is a rather typical nonsymmorphic space group. Recall the primitive direct lattice vectors for
the fcc Bravais lattice,

a1 =
1
2a0 (0, 1, 1) , a2 =

1
2a0 (1, 0, 1) , a3 =

1
2a0 (1, 1, 0) , (2.64)
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where a0 is the side length of the simple cubic lattice whose four element basis describes the fcc structure.
The space group of diamond is S = Fd3m, this the point group is m3m, which is Oh. Thus there are
48 cosets in the factor group F, which is the order of Oh. These cosets break up into two collections.
One consists of operations of the form

{
h
∣∣ 0
}
T where h ∈ Td . The other consists of operations of the

form
{
I
∣∣ τ
}{

h
∣∣ 0
}
T where I is the inversion operator and τ = 1

4a1 +
1
4a2 +

1
4a3 = 1

4a0 (1, 1, 1). The
elements from the first collection thus constitute a group in their own right, which is the zincblende

space group S̃ = F43m. This is a normal subgroup of S of index two, i.e. S/S̃ ∼= Z2. Explicitly, we then

have S = S̃ ∪
{
I
∣∣ τ
}
S̃.

2.3.3 How to make a symmorphic space group

The simplest recipe:

(i) Start with a lattice system.

(ii) Choose a point group consistent with the lattice system.

(iii) Choose an allowed lattice type (i.e. centering).

(iv) Congratulations, you’ve just specified a symmorphic point group.

To see this method in practice, let’s try it out in two dimensions, where there 13 of the 17 space (wallpa-
per) groups are symmorphic. There are four crystal systems (oblique, rectangular, square, hexagonal),
and the rectangular system can either have a primitive or a centered unit cell. For oblique lattices the
allowed point groups are C1 and C2, so two possibilities. For rectangular lattices, the allowed point
groups are C1v and C2v . There are two possible centerings, for a total of four possibilities. For square
lattices, P can be either C4 or C4v – another two. For hexagonal, either C3, C3v, C6, or C6v , so four total.
We arrive at 12 so we are missing a space group. The reason is there can be two inequivalent orientations
of the space lattice which the point group leaves invariant, thereby leading to another space group. This
happens in the case of the hexagonal lattice with C3v (3m) point group symmetry. There are two space
groups, called p3m1 and p31m.

A table of the 17 wallpaper groups is provided in Tab. 2.15, and sketches of the unit cells of each of them
are depicted in Fig. 2.20. Study the nonsymmorphic cases pg, pmg, pgg, and p4g to see if you can identify
the glide mirrors. Note also how the naming convention works: the leading p or c character stands for
primitive or centered. Information about the point group is contained in the space group label. Finally,
the symbol g is used to indicate the presence of a glide mirror.

The naming convention for three-dimensional space groups is somewhat more complex, but the pro-
cedure is as described in the above recipe. There are seven distinct crystal systems, and Bravais lattice
types are either primitive (P), base-centered (A/C), body-centered (I), or face-centered (F). Consider an
fcc lattice with point group Oh (m3m in HM short notation). The corresponding symmorphic space
group is Fm3m, the full symbol for which is F 4

m3 2
m . Proceeding in this way, accounting for all the

crystal systems, their allowed point groups, and possible centerings, one obtains 66 symmorphic space
groups. As in the two-dimensional case, when inequivalent orientations of the space lattice are both
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(a) Rocksalt, Fm3m (b) Wurzite, P63mc (c) Zincblende, F43m

Figure 2.21: Some common AB crystal structures and their space groups.

preserved by the point group, we get an extra space group. Such cases are indicated in red in Tab. 2.16.
For example, for the caseC2v = mm2, the A and C centering types lead to different space groups,Amm2
and Cmm2, respectively. They are distinct space groups because in the latter case the centering is along
a twofold axis, while in the former it is not.

2.3.4 Nonsymmorphic space groups

Returning to our example space group F 4
m3 2

m , a check of the tables23 reveals that there are a total of
four space groups generated from the fcc lattice and point groupOh = 4

m3 2
m . The other three are F 4

m32
c ,

F 41
d 3

2
m , and F 41

d 3
2
c ; their short names are Fm3c, Fd3m, and Fd3c, respectively. These three space

groups are all nonsymmorphic and involve either screws (41), glides (c, d), or both. The second of these
three corresponds to carbon diamond. Schoenflies’ names for the four point groups generated from fcc
and Oh were O5

h, O6
h, O7

h, and O8
h, respectively, which convey little information other than the order in

which he derived them from the point group Oh.24

Of the 230 three-dimensional space groups, 157 are nonsymmorphic and contain operations
{
g
∣∣ τg

}

where τg /∈ T is not in the direct lattice, and no single change of origin can reduce all the τg to zero or to
a direct lattice vector.

Some of the nonsymmorphic space groups with screw axes have mirror images, and together are known
as enantiomorphic pairs. For example, space groups (P41 , P43) form such a pair, as do (P41212 , P43212),
(P3112 , P3212), (P6222 , P6422), etc.

23See http://www.wikiwand.com/en/List_of_space_groups .
24Schoenflies’ O1

h through O4
h correspond to primitive cubic lattices, and O9

h and O10
h to bcc lattices.

http://www.wikiwand.com/en/List_of_space_groups
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system P
(Sch)

P
HM N

P
nonsymmorphic space groups

triclinic C1 1 1 none

Ci 1 2 none

monoclinic C2 2 2 P21
Cs m 2 Pc , Cc

C2h 2/m 4 P21m, P2/c , P21/c , C2/c

orthorhombic D2 222 4 P2221 , P21212 , P212121 , C2221 , I212121
C2v mm2 4 Pmc21 , P cc2 , Pma2 , P ca21 , Pnc2 , Pmn21 , P ba2 ,

Pna21 , Pnn2

Cmc21 , Ccc2 , Abm2 , Ama2 , Aba2 , Fdd2 , Iba2 , Ima2

D2h mmm 8 Pnnn , Pccm , Pban , Pmma , Pnna , Pmna , Pcca , Pbam ,

Pccm , Pbcm , Pnnm , Pmmn , Pbcn , Pbca , Pnma

Cmcm , Cmca , Cccm , Cmma , Ccca , Fddd , Ibam , Ibcm , Imma

tetragonal C4 4 4 P41 , P42 , P43 , I41
S4 4 4 none

C4h 4/m 8 P42/m , P4/n , P42/n , I41/a

D4 422 8 P42121 , P4122 , P41212 , P4222 , P42212 , P4322 , P43212 , I4122

C4v 4mm 8 P4bm , P42cm , P42nm , P4cc , P4nc , P42mc , P42bc

I4cm , I41md , I42d

D2d 42m 8 P42c , P421m, P421c , P4c2 , P4c2 , P4n2 , I4c2 , I42d

D4h 4/mmm 16 P4/mcc , P4/nbm , P4/nnc , P4/mbm , P4/mnc , P4/nmm ,

P4/ncc , P42/mmc , P42/mcm , P42/nbc , P42/nnm , P42/mbc ,

P42/mnm , P42/nmc , P42/ncm

I4/mcm , I41/amd , I41/acd

trigonal C3 3 3 P31 , P32
S6 3 3 none

D3 32 6 P3112 , P3121 , P3212 , P3221

C3v 3m 6 P31c , P3c1 , R3c

D3d 3m 12 P31c , P3c1 , R3c

hexagonal C6 6 6 P61 , P62 , P63 , P64 , P65
C3h 6 6 none

C6h 6/m 12 P63/m

D6 622 12 P6122 , P6222 , P6322 , P6422 , P6522

C6v 6mm 12 P6cc , P63cm , P63mc

D3h 6m2 12 P6c2 , P62c

D6h 6/mmm 24 P6/mcc , P63/mcm , P63/mmc

cubic T 23 12 P213 , I213

Th m3 24 Pn3 , Pa3 , Fd3 , Ia3

O 432 24 P4132 , P4232 , P4332 , I4132 , F4132

Td 43m 24 P43n , F43c , I43d

Oh m3m 48 Pn3n , Pm3n , Pn3n , Fm3c , Fd3m, Fd3c , Ia3d

Table 2.17: The 157 nonsymmorphic three-dimensional space groups.
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2.3.5 Translations and their representations

The set of translations T is a subgroup of S, consisting of the elements
{
E
∣∣R
}

, where R =
∑d

j=1mj aj

is a sum over the primitive direct lattice vectors with integer coefficients. It is convenient to work with
discrete groups of finite order, so to this end we invoke periodic boundary conditions, which places our
system on a d-dimensional torus extending for Nj unit cells in the aj direction for each j ∈ {1, . . . , d}.
This means that R is equivalent to R+

∑d
j=1 lj Lj with Lj = Nj aj and each lj ∈ Z. Our Bravais lattice

translation group T now has N =
∏d

j=1Nj elements, which is the total number of unit cells in the real
space torus.

Next we ask about irreducible representations of T. Since T is an abelian group, all its IRREPs are one-
dimensional. If ψ(r) is a basis function for a unitary one-dimensional IRREP of T, then

{
E
∣∣R
}
ψ(r) = ψ

({
E
∣∣R
}−1

r
)
= ψ(r −R) = e−iω(R) ψ(r) . (2.65)

In order that the group multiplication law be satisfied, we must have e−iω(R) e−iω(R′) = e−iω(R+R′),
which tells us that ω(R) is linear in R, i.e.

ω(m1 a1 + . . .+md ad) = m1 ω(a1) + . . .+md ω(ad) (2.66)

to within an additive multiple of 2π. We may define ω(aj) ≡ θj , in which case the IRREP is labeled by
the set of angles θ. Furthermore, we must have ω(R) = ω(R + Lj) for all j ∈ {1, . . . , d}, which says
that Nj θj is congruent to zero modulo 2π, i.e. θj = 2πlj/Nj , where lj ∈ {1, . . . , Nj}. So the θj values are
quantized and there are N =

∏
j Nj distinct values of the vector θ = (θ1, . . . , θd).

Recall the definition of the reciprocal lattice vectors bj which satisfy ai · bj = 2π δij . Then if we define

the wavevector k ≡
∑d

j=1 θj bj
/
2π , we then have ω(R) = k ·R , and our basis functions may be written

as ψk(r) = u(r) eik·r where u(r −R) = u(r) for all R ∈ L is a periodic cell function. Any cell function
may be expanded as a discrete Fourier series, viz.

u(r) =
∑

K

CK eiK·r , (2.67)

where K =
∑d

j=1 nj bj is a reciprocal lattice vector, which satisfies exp(iK · R) = 1 for all direct lat-
tice vectors R, and the {CK} are a set of coefficients. What we have just shown is known as Bloch’s

theorem, which says that the eigenfunctions of any Hamiltonian Ĥ which commutes with all Bravais
lattice translations may be written in the form ψk(r) = eik·r u(r), where u(r) is a cell function and k

lies within the first Brillouin zone of the reciprocal lattice. The reason that k is confined to this region is
that k→ k +K amounts to a change of the cell function u(r)→ u(r) eiK·r. Note that quantization of θ
entails quantization of k to one of N possible values.

The character of the space group element
{
E
∣∣R
}

in the k IRREP is thus χ(k)(R) = e−ik·R, in suitably
abbreviated notation. The great orthogonality and completeness theorems then tell us

∑

R

ei(k−k′)·R = N δ
k,k′ ,

∑

k

eik·(R−R′) = N δR,R′ . (2.68)
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In the limit N →∞, these equations become

∑

R

ei(k−k′)·R = Ω̂
∑

K

δ(k′ − k −K) , Ω

∫

Ω̂

ddk

(2π)d
eik·(R−R′) = δR,R′ . (2.69)

The first of these is the generalized Poisson summation formula from Eqn. 2.7. In the second, the integral
is over the first Brillouin zone, Ω̂. Recall Ω̂ = (2π)d/Ω is the volume of Ω̂.

2.3.6 Space group representations

We follow Lax §8.6 and §8.7. When solving for electronic or vibrational states of a crystal, the first order
of business is to classify eigenstates by wavevector, i.e. to diagonalize the operations

{
E
∣∣R
}

in the
space group S. For states of crystal momentum k, we have

{
E
∣∣R
}
|k, λ 〉 = eik·R |k, λ 〉, where λ

denotes other quantum numbers not related to crystal momentum.

Acting on Bloch states, a general space group operation has the following action:

{
g
∣∣ t
}

ψk(r)︷ ︸︸ ︷
eik·r u(r) = exp

[
ik ·

{
g
∣∣ t
}−1

r
]
u
({
g
∣∣ t
}−1

r
)

= eigkr u
(
g−1(r − t)

)
≡ eigk·r e−igk·t ũ(r) = ψ̃gk(r) ,

(2.70)

where if u(r) =
∑

K CK eiK·r is the original cell function, then

ũ(r) =
∑

K

Cg−1K e−iK·t eiK·r ≡
∑

K

C̃K eiK·r (2.71)

is a new cell function, i.e. it satisfies ũ(r +R) = ũ(r) for all direct lattice vectors R. Thus, application of{
g
∣∣ t
}
∈ S to a Bloch function ψk(r) generates a new Bloch function ψ̃gk(r) at wavevector gk.25

Group and star of the wavevector k

If gk = k +K , then
{
g
∣∣ t
}

does not change the wavevector of the Bloch function. We define the point
group Pk of the wavevector k to be those point group operations g ∈ P which leave k unchanged up to a
reciprocal lattice vector26. The space group of the wavevector Sk is then all

{
g
∣∣ t
}
∈ S for which g ∈ Pk.

The star of the wavevector k is defined to be the set of points including k and all its images gk , where
g ∈ P \ Pk .27

25The phase e−igk·t amounts to a gauge transformation.
26
Pk is also known as the little group of k .

27We use the notation A \B to denote set subtraction, with B ⊆ A. I.e. A \B = A−B, which is to say the set of elements in A

that are not in B.
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Algebra and representation of the space group

Recall the results of Eqns. 2.62 and 2.63. From
{
g
∣∣ τg

}{
h
∣∣ τh

}
=
{
E
∣∣Rg,h

} {
gh
∣∣ τgh

}
=
{
gh
∣∣ τgh

}{
E
∣∣ (gh)−1Rg,h

}
, (2.72)

we see that, acting on a Bloch state,

{
g
∣∣ τg

}{
h
∣∣ τh

}
ψk(r) = e−ighk·Rg,h

{
gh
∣∣ τgh

}
ψk(r) , (2.73)

and so if g and h are both elements of Pk , then

{
g
∣∣ τg

}{
h
∣∣ τh

}
= e−ik·Rg,h

{
gh
∣∣ τgh

}
(2.74)

when acting on Bloch states of crystal momentum k, where Rg,h = τ g + gτ h − τgh is a direct lattice
vector. The above equation establishes a projective representation for Sk. Alternatively, one may define
the operators

Λk(g) ≡
{
g
∣∣ τg

}
eik·τg =

{
g
∣∣R+ τg

}
eik·(R+τg) , (2.75)

which act on states of crystal momentum k , and which satisfy the projective algebra

Λk(g)Λk(h) = ωk(g, h)Λ(gh)

ωk(g, h) = eik·(τh−gτ
h
) = eiKg·τh

(2.76)

because k · gτh = g−1k · τh ≡ (k −Kg) · τh , with Kg = k− g−1k = k − kg.

Representations of symmorphic space groups

When S is symmorphic, τg = 0 for all g ∈ P, hence ωk(g, h) = 1 for all k. We don’t have to worry about
projective representations of the little groups, and therefore

DΓ ; S
k

({
g
∣∣ 0
})

= DΓ ;P
k(g)

χΓ ; S
k

({
g
∣∣ 0
})

= χΓ ;P
k(g) ,

(2.77)

i.e. we can use the ordinary point group representation matrices.

Representations of nonsymmorphic space groups

If k /∈ ∂Ω̂ lies in the interior of the Brillouin zone and not on its boundary, then both k and g−1k lie
inside Ω̂, which means kg = 0 and the cocycle is unity: ωk(g, h) = 1. Thus we have

DΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg DΓ ;P

k(g)

χΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg χΓ ;P

k(g) ,
(2.78)

where Γ can only be the trivial representation if k 6= 0. Again, we only need the ordinary point group
representation matrices.

If k ∈ ∂Ω̂, then Pk may be nontrivial. In this case there are two possibilities:
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(i) If there is a one-dimensional IRREP of Sk, dk(g), with dk(g) dk(h) = ωk(g, h) dk(gh) , define the ratio

Λ̃k(g) ≡ Λk(g)/dk(g). The operators Λ̃k(g) then satisfy Λ̃k(g) Λ̃k(h) = Λ̃k(gh) , i.e. the point group
multiplication table. Thus,

DΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg dk(g)D

Γ ;P
k(g)

χΓ ; S
k

({
g
∣∣ τg

})
= e−ik·τg dk(g)χ

Γ ;P
k(g) .

(2.79)

and again we can use the ordinary point group representations.

(ii) If there is no one-dimensional IRREP of Sk, if one wishes to avoid needless work, one can consult
tables, e.g. in appendix F of Lax, or appendix C of Dresselhaus, Dresselhaus, and Jorio.

2.4 Fourier Space Crystallography

Thus far our understanding of crystallography has been based on real space structures and their trans-
formation properties under point and space group operations. An equivalent approach, originally due
to Bienenstock and Ewald (1962), and formalized and further developed by Mermin and collaborators
in the 1990s, focuses on the Fourier modes ρ̂(K) of the density ρ(r). This is known in the literature as
Fourier space crystallography28 . Writing ρ(r) as a Fourier sum,

ρ(r) =
∑

K

ρ̂(K) eiK·r , (2.80)

where each K ∈ L̂. Since ρ(r) ∈ R is real, we have ρ̂(−K) = ρ̂∗(K) for all K ∈ L̂. The inverse of the
above relation is

ρ̂(K) =

∫
ddr ρ(r) e−iK·r . (2.81)

Note that if ρ′(r) = ρ(r + d) then ρ̂′(K) = ρ̂(K) eiχ(K) where χ(K) = K · d is a linear function on L̂.

2.4.1 Space group symmetries

We now ask how the ρ̂(K) transform under space group operations of the crystal. The general space
group operation may be written as

{
g
∣∣R+ τg

}
. We have already accounted for the symmetries under

Bravais lattice translations, which says that ρ(r) is given as the above Fourier sum. So now restrict our
attention to operations of the form

{
g
∣∣ τg

}
. If ρ(r) is invariant under all space group operations, we

must have
ρ(r) =

{
g
∣∣ τg

}
ρ(r) = ρ

({
g
∣∣ τg

}−1
r
)
= ρ
(
g−1(r − τg)

)
. (2.82)

Taking the Fourier transform, we have

ρ̂(K) =

∫
ddr ρ

(
g−1(r − τg)

)
e−iK·r = ρ̂(Kg) e−iK ·τg , (2.83)

28Here we follow the pedagogical treatment in A. König and N. D. Mermin, Am. J. Phys. 68, 525 (2000), with some minor
notational differences.
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which is easily established by changing the integration variables29 from r to r′ = g−1(r− τg). Note that
g denotes both an abstract element of the point group P as well as its 3 × 3 matrix representation, and
that by Kg we treat K as a row vector and multiply by the matrix of g on the right. We therefore have

ρ̂(Kg) = ρ̂(K) eiφg(K) , (2.84)

where φg(K) = K · τg acts linearly on L̂, with φg(0)
∼= 0 for all g ∈ P and φE(K) ∼= 0 for all K ∈ L̂.

Here the symbol ∼= denotes equality modulo 2π. We call φg(K) a phase function on the reciprocal lattice.

We then have

ρ̂(Kgh) = ρ̂(Kg) eiφh
(Kg) = ρ̂(K) eiφg(K) eiφh

(Kg)

= ρ̂(K) eiφgh
(K) ,

(2.85)

and therefore the group compatibility condition for the phase functions is

φgh(K) ∼= φh(Kg) + φg(K) , (2.86)

which is the same condition as that in eqn. 2.63.

Suppose ρ′(r) and ρ(r) differ by a translation. Then ρ̂′(K) = ρ̂(K) eiχ(K), hence

ρ̂′(Kg) = ρ̂′(K) eiφ
′

g(K) = ρ̂(K) eiχ(K) eiφ
′

g(K)

= ρ̂(Kg) eiχ(Kg) = ρ̂(K) eiφg(K) eiχ(Kg) ,
(2.87)

and therefore

φ′g(K) ∼= φg(K)+

χ(Kg −K)︷ ︸︸ ︷
χ(Kg)− χ(K) . (2.88)

We say that the the above equation constitutes a gauge transformation and thus that the functions φ′g(K)
and φg(K) are gauge equivalent. We then have the following:

⋄ A space group S is symmorphic iff there exists a gauge in which φg(K) ∼= 0 for all g ∈ P and all K ∈ L̂.

2.4.2 Extinctions

In §2.1.5 we noted how in certain crystals, the amplitude of Bravais lattice Bragg peaks observed in a
diffraction experiment can be reduced or even extinguished due to the crystal structure. Bragg peak
extinction is thus a physical manifestation of the crystallographic point group symmetry, and as such
must be encoded in the gauge-invariant content of the phase functions. Suppose that Kg = K. Then

ρ̂(K) = ρ̂(Kg) = ρ̂(K) eiφg(K) , (2.89)

and thus if φg(K) 6∼= 0, we necessarily have ρ̂(K) = 0, i.e. the Bragg peak at K is extinguished. Kg =
gTK = K means that K lies within the invariant subspace of g (and that of gT = g−1 as well, of

29Since g ∈ O(n), we have that the Jacobian of the transformation is | det g| = 1.
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course). Now the only nontrivial (g 6= E) point group operations (in three dimensions) with invariant
subspaces are (i) proper rotations r, and (ii) mirror reflections m. Every proper rotation has an invariant
axis, and every mirror reflection has an invariant plane. We now consider the consequences of each for
extinctions.

• Mirrors : If m is a mirror, then m2 = E. Consider a reciprocal lattice vector K = Km lying in the
invariant plane of m. Then

0 ∼= φE(K) ∼= φm2(K) ∼= φm(Km) + φm(K) ∼= 2φm(K) . (2.90)

Thus, 2φm(K) ∼= 0 which means either φm(K) ∼= 0 or φm(K) ∼= π. Unless φm(K) = 0 for all
K = Km in the mirror plane, we say that m is a glide mirror. Let β1 and β2 be basis vectors for the

two-dimensional sublattice of L̂ in the invariant plane of m. Linearity of the phase functions says

φm(n1 β1 + n2 β2) = n1 φm(β1) + n2 φm(β2) . (2.91)

Suppose now that φm(β1)
∼= φm(β2)

∼= 0. In this case, the mirror is ordinary and we have not a
glide, i.e. there are no extinctions due to m. Next suppose φm(β1)

∼= π and φm(β2)
∼= 0. In this

case, we have extinctions for all K = n1 β1 + n2 β2 with n1 odd, for all n2. A corresponding result
holds for the case φm(β1)

∼= 0 and φm(β2)
∼= π. Finally, suppose φm(β1)

∼= φm(β2)
∼= π. Then K is

extinguished whenever n1 + n2 is odd.

• Proper rotations : In this case, rn = E with n = 2, 3, 4, or 6. Suppose K = Kr lies along the
invariant axis of r. Then

0 ∼= φE(K) ∼= φrn(K) ∼= nφr(K) , (2.92)

which says φr(K) = 2πj/n. If φr(K) = 0 for all K = Kr, the rotation is ordinary. If φr(K) 6∼= 0
for any K = Kr along the invariant axis, we say that r is a screw. Let β1 be the basis vector for K

points along the invariant axis. Then φr(β1)
∼= 2πj/n , with j ∈ {0, . . . , n − 1}. The case j = 0

corresponds to an ordinary rotation. For K = lβ1, we have φr(K) ∼= 2πjl/n , and Bragg vectors
with jl 6= 0 modulo n are extinguished.

• Special circumstances : Suppose an n-fold proper rotation r lies within the invariant plane of a
mirror m. Then rmr = m, i.e. mrm = r−1. This is the case, for example, for the groups Cnv, Dnd,
and Dnh. Let K = Kr = Km. Then

φm(K) = φrmr(K) ∼= φmr(Kr) + φr(K)
∼= φr(Krm) + φm(Kr) + φr(K) ∼= 2φr(K) + φm(K) .

(2.93)

We then have 2φr(K) ∼= 0, and so the screw symmetry is restricted to two possible cases: either
φr(K) ∼= 0 or φr(K) ∼= π. Such a screw requires n even and j = 1

2n.

Suppose next that the n-fold rotation axis is perpendicular to a mirror plane, as in the groups Cnh

and Dnh. In this case mr = rm, and we have

φmr(K) = φr(Km) + φm(K)

φrm(K) = φm(Kr) + φr(K) .
(2.94)
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There are two interesting possibilities. First, if K = Kr is along the invariant axis of r, then
Km = −K, and we have φr(K) ∼= φr(−K) ∼= −φr(K), hence 2φr(K) ∼= 0, which entails the same
restrictions as in the case where rmr = m analyzed above. Second, if Km = K, then we obtain
φm(Kr) = φm(K), which says that the diffraction pattern in the invariant plane, including any
extinctions, is symmetric under the r operation.

2.4.3 Sticky bands

Consider now the Schrödinger equation Ĥψ = Eψ, where30

Ĥ = − ~
2

2m
∇2 + V (r) , (2.95)

where V (r) is invariant under space group operations. Typically V (r) is purely due to (screened)
Coulomb interactions between a given electron and the combined electron-ion charge density ρ(r), in
which case

V (r) =

∫
ddr′ v(r − r′) ρ(r′) , (2.96)

where v(r) = v(r) is the screened potential at separation r. According to Bloch’s theorem, eigenfunc-
tions ψnk(r) of H are labeled by crystal momentum k ∈ Ω̂ as well as by a band index n, and may be
written as

ψnk(r) =
∑

K

Cnk(K) ei(K+k)·r . (2.97)

The Schrödinger equation for band n can then be written as

E Cnk(K) =
∑

K′

〈K | Ĥ(k) |K ′ 〉︷ ︸︸ ︷[
~
2(K + k)2

2m
δK,K′ + V̂ (K −K ′)

]
Cnk(K

′) , (2.98)

where V̂ (K) = v̂(K) ρ̂(K), since the Fourier transform of a convolution is the product of the Fourier
transforms. Since v(r) is isotropic, we have v̂(q g) = v̂(q) for all q, and therefore V̂ (Kg) = V̂ (K) eiφg(K).
Let us define ω̂(q) ≡ ~

2q2/2m, which is the isotropic free particle dispersion. Note that

ω̂(Kg + k) = ω̂
(
(K + k) g + (k − k g)

)
. (2.99)

We now (re-)introduce the notion of the little group of a wavevector:

DEFINITION : Given a wavevector k ∈ Ω̂, the set of all g ∈ P for which Kg ≡ k−kg is in L̂ is called
the little group of k, and notated Pk.

30In this section, we will use hats to denote operators as well as Fourier transformed quantities, so keep on your toes to
recognize the meaning of the hat symbol in context.
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Since kg must also lie within Ω̂, we have that Pk = {E} if k lies in the interior of the first Brillouin zone.

For wavevectors k ∈ ∂Ω̂ lying on the boundary of Ω̂, the little group Pk can contain other elements.

Consider for example the case of a square lattice, for which Ω̂ is itself a square, and let k = 1
2b1, which

lies at the center of one of the edges. Let P = C4v , which is generated by r (90◦ rotation) and σ (x-axis
reflection). Then E and σ are in Pk because they leave k fixed and hence Kg = 0, but so are r2 and σr2,

which send k → −k, in which case Kg = b1 ∈ L̂. It should be clear that Pk ⊂ P is a subgroup of the
crystallographic point group, containing those operations g ∈ P which leave k invariant or changed by
a reciprocal lattice vector. Note that if g, h ∈ Pk , then

Kgh = k − kgh = (k − kh) + (kh− kgh) = Kh +Kg h . (2.100)

For each element g of the little group Pk , define the unitary operator Û(g) such that

Û †(g)
∣∣K

〉
= eiφg(K)

∣∣Kg −Kg

〉
. (2.101)

We then have

〈
K
∣∣ Û(g) Ĥ(k) Û †(g)

∣∣K′ 〉 =
〈
Kg −Kg

∣∣ Ĥ(k)
∣∣K′g −Kg

〉
eiφg(K

′−K)

= ω̂
(
Kg −Kg +K

)
δK,K′ + V̂ (K −K′)

= ω̂
(
(K + k) g

)
δK,K′ + V̂ (K −K ′) =

〈
K
∣∣ Ĥ(k)

∣∣K ′ 〉
(2.102)

for all k, K, and K ′. This tells us that
[
Ĥ(k), Û (g)

]
= 0 for all k ∈ L̂ and g ∈ Pk . Next, we have

Û †(h) Û †(g)
∣∣K

〉
= eiφg(K) eiφh

(Kg−Kg)
∣∣Kgh−Kg h−Kh

〉

Û †(gh)
∣∣K

〉
= eiφgh

(K)
∣∣Kgh −Kgh

〉
.

(2.103)

Invoking Eqn. 2.100, we see that the ket vectors on the RHS of the above two equations are identical.
Appealing to the compatibility condition Eqn. 2.86, we conclude Û †(h) Û †(g) = Û †(gh) e−iφ

h
(Kg), i.e.

Û(g) Û (h) = Û(gh) eiφh
(Kg) , (2.104)

which is to say a projective representation of the little group.

Suppose Ĥ(k) |ψk 〉 = E(k) |ψk 〉, where we have dropped the band index n. Since
[
Ĥ(k), Û (g)

]
= 0,

the state Û(g) |ψk 〉 is also an eigenstate of Ĥ(k) with eigenvalue E(k). If |ψk 〉 is nondegenerate, then

we must have Û(g) |ψk 〉 = λg(k) |ψk 〉 for all g ∈ Pk. But then
[
Û(g), Û (h)

]
|ψk 〉 = 0, and we must have

eiφh
(Kg) Û(gh)

∣∣ψk

〉
= eiφg(Kh) Û(hg)

∣∣ψk

〉
. (2.105)

Thus, if gh = hg, we must have either (i) φh(Kg) = φg(Kh) or else (ii) |ψk 〉 = 0, i.e. there is no such
nondegenerate eigenstate at wavevector k. Therefore,

⋆ If gh = hg and φh(Kg) 6= φg(Kh), all the eigenstates of Ĥ(k) appear in degenerate multiplets.
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Figure 2.22: Stickiness of tight binding energy bands εn(q) in an hcp crystal. Left: First Brillouin zone
of the hexagonal Bravais lattice, with high symmetry points identified. Right: Tight binding energy
levels for the hcp structure are shown in blue. Note the degeneracies at q = K, q = H, and all along the
A − H − L − A triangle on the top face and along the K − H edge. When an alternating site energy on
the two sublattices is present (dashed red curves), the screw symmetry is broken, and the space group
is reduced from P63/mmc to P6m2.

d Name Examples Space group S

2 Shastry–Sutherland SrCu2(BO3)2 p4g 2

3 hcp Be, Mg, Zn P63/mmc 2

3 Diamond C, Si Fd3̄m 2

3 Pyrochlore Dy2Ti2O7 (spin ice) Fd3̄m 2

3 – α-SiO2, GeO2 P3121 3

3 – CrSi2 P6222 3

3 – Pr2Si2O7,La2Si2O7 P41 4

3 Hex. perovskite CsCuCl3 P61 6

Figure 2.23: Examples of space groups and their nonsymmorphic ranks.

That is, two or more bands become ”stuck” together at these special k points. Note that the sticking
conditions cannot be satisfied in a symmorphic space group, because the phase functions can all be set
to zero by a choice of gauge (i.e. by a choice of origin for the point group operations). Note also that
under a gauge transformation, the change in φh(Kg)− φg(Kh) is

∆
(
φh(Kg)− φg(Kh)

)
= χ(Kg h−Kg)− χ(Kh g −Kh) = χ(k gh − k hg) , (2.106)

which vanishes when gh = hg.

Since φg(0) = 0 for all g, the sticking conditions require that either Kg or Kh be nonzero. This is possible

only when k ∈ ∂Ω̂ lies on the boundary of the first Brillouin zone, for otherwise the vectors Kg and Kh
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are too short to be reciprocal lattice vectors31. Thus, in nonsymmorphic crystals, band sticking occurs
only along the boundary. Consider, for example, the case of diamond, with nonsymmorphic space
group F 41

d 3
2
m (Fd3m in the short notation). The diamond structure consists of two interpenetrating

fcc Bravais lattices, and exhibits a 41 screw axis and a diamond (d) glide32. Let k = 1
2K, where K is

the shortest reciprocal lattice vector along the screw axis. Then Kr = k − kr = 0 because k is along
the invariant axis of the fourfold rotation r, hence r is in the little group. Diamond is centrosymmetric,
meaning that its point group contains the inversion operator I , which commutes with all other point
group elements. Clearly KI = k−Ik = 2k = K, so I is in the little group as well. The sticking conditions
then require φr(K) 6= 0, which is the condition we found for r to be a screw in the first place. So we
have band sticking at k = 1

2K. This is a special case of the following general rule: in nonsymmorphic
centrosymmetric crystals, there is band sticking at every k = 1

2K where K is an extinguished reciprocal
lattice (Bragg) vector.

Band sticking can also occur along continuous lines along the zone boundary. This is possible when the
point group contains perpendicular mirrors, such as in the case D3h. Let k lie along the line where the
horizontal Brillouin zone surface intersects the vertical mirror plane. The vertical component of k is
thus 1

2K, where K is the shortest vertical reciprocal lattice vector, but otherwise k can lie anywhere
along this line. Then Km

h
= K and Kmv

= 0, for all k along the line, where mh,v are the horizontal

and vertical mirror operations, respectively. The sticking condition is φmv
(K) 6= 0, which says that mv

is a glide mirror and K is extinguished. Introducing a perturbation which breaks the nonsymmorphic
symmetries unsticks the bands and revives the extinguished Bragg vectors. An example is the hcp
structure, shown in Fig. 2.22.

A more detailed result was derived by Michel and Zak33. In nonsymmorphic crystals, energy bands
stick together in groups of S , where S = 2, 3, 4, or 6 is the nonsymmorphic rank of the space group. In
such cases, groups of S bands are stuck at high symmetry points or along high symmetry lines in the
Brillouin zone, and one must fill an integer multiple of S bands of spinless electrons in order to construct
a band insulating state.

31My childhood dreams of becoming a reciprocal lattice vector were dashed for the same reason.
32Diamond has a diamond (d) glide. The d is for ”duh”.
33L. Michel and J. Zak, Phys. Rev. B 59, 5998 (1999).
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