PHYSICS 239.c : CONDENSED MATTER PHYSICS
 HW ASSIGNMENT \#3

[1] Consider a one-dimensional chain of s-orbitals

$$
\begin{aligned}
& H=\sum_{n}\left(\varepsilon_{\mathrm{A}}\left|\mathrm{~A}_{n}\right\rangle\left\langle\mathrm{A}_{n}\right|+\varepsilon_{\mathrm{B}}\left|\mathrm{~B}_{n}\right\rangle\left\langle\mathrm{B}_{n}\right|\right. \\
& \quad-t \sum_{n}\left(\left|\mathrm{~A}_{n}\right\rangle\left\langle\mathrm{B}_{n}\right|+\left|\mathrm{B}_{n}\right\rangle\left\langle\mathrm{A}_{n+1}\right|+\left|\mathrm{B}_{n}\right\rangle\left\langle\mathrm{A}_{n}\right|+\left|\mathrm{A}_{n+1}\right\rangle\left\langle\mathrm{B}_{n}\right|\right) .
\end{aligned}
$$

(a) How many atoms are there per unit cell? What is the length of the Wigner-Seitz cell?
(b) Find the dispersions $E_{a}(k)$ of the energy bands.
(c) Sketch the band structure over the one-dimensional Brillouin zone.
(d) Show that for $\varepsilon_{\mathrm{A}}=\varepsilon_{\mathrm{B}}$ that you recover the correct energy band for the uniform onedimensional nearest-neighbor chain.
[2] Hexagonal boron nitride, BN , has a honeycomb lattice structure, with boron atoms at A sites and nitrogen atoms at B sites. The tight binding Hamiltonian is

$$
\begin{aligned}
H=\sum_{R}\left(\varepsilon_{\mathrm{A}}\left|\mathrm{~A}_{R}\right\rangle\right. & \left.\left\langle\mathrm{A}_{R}\right|+\varepsilon_{\mathrm{B}}\left|\mathrm{~B}_{R}\right\rangle\left\langle\mathrm{B}_{R}\right|\right) \\
& -t \sum_{\boldsymbol{R}}\left(\left|\mathrm{A}_{\boldsymbol{R}}\right\rangle\left\langle\mathrm{B}_{R}\right|+\left|\mathrm{A}_{\boldsymbol{R}}\right\rangle\left\langle\mathrm{B}_{R+a_{1}}\right|+\left|\mathrm{A}_{\boldsymbol{R}}\right\rangle\left\langle\mathrm{B}_{R-a_{2}}\right|+\text { H.c. }\right)
\end{aligned}
$$

(a) Find the 2×2 Hamiltonian matrix $\hat{H}(\boldsymbol{k})$. You may find it convenient to write $\boldsymbol{k}=$ $\frac{\theta_{1}}{2 \pi} \boldsymbol{b}_{1}+\frac{\theta_{2}}{2 \pi} \boldsymbol{b}_{2}$ and express your answer in terms of $\theta_{1,2}$.
(b) Find expressions for the band energies at the high symmetry points Γ, K, and M .
(c) Find an expression for the band gap Δ. Is the gap direct or indirect?
[3] Consider a tight binding model of $\left(p_{x}, p_{y}\right)$ orbitals on a triangular lattice. The hopping is restricted to nearest neighbor links. Recall that the hopping matrix elements are given by

$$
t_{\mu \nu}=t_{\mathrm{w}} \delta_{\mu \nu}-\left(t_{\mathrm{s}}+t_{\mathrm{w}}\right) \hat{\eta}_{\mu} \hat{\eta}_{\nu},
$$

where the link direction is $\hat{\boldsymbol{\eta}}$.
(a) Find the matrix $\hat{t}_{\mu \nu}(\boldsymbol{k})$. You may find it convenient to write $\boldsymbol{k}=\frac{\theta_{1}}{2 \pi} \boldsymbol{b}_{1}+\frac{\theta_{2}}{2 \pi} \boldsymbol{b}_{2}$ and express your answer in terms of $\theta_{1,2}$.
(b) Find expressions for the band energies at the high symmetry points Γ, K, and M.
(c) For $t_{\mathrm{s}}=1$ and $t_{\mathrm{w}}=\frac{1}{2}$, plot the dispersions $E_{ \pm}(\boldsymbol{k})$ along the path $Г М К Г$.

