PHYSICS 239.c : CONDENSED MATTER PHYSICS HW ASSIGNMENT #1

(1) Consider the Euclidean Lagrangian density

 $\mathcal{L}_{\mathsf{E}}(\phi, \nabla \phi, \partial_{\tau} \phi) = i \phi_1 \partial_{\tau} \phi_2 - i \phi_2 \partial_{\tau} \phi_1 + \frac{1}{2} K (\nabla \phi_1)^2 + \frac{1}{2} K (\nabla \phi_2)^2 + V (\phi_1^2 + \phi_2^2)$ Express \mathcal{L}_{F} in terms of the complex scalar field $\psi = \phi_1 + i \phi_2$.

(2) Consider the U(1) Ginsburg-Landau theory with

$$F = \int d^{d}r \left[\frac{1}{2}a \, |\Psi|^{2} + \frac{1}{4}b \, |\Psi|^{4} + \frac{1}{2}\kappa \, |\nabla\Psi|^{2} \right].$$

Here $\Psi(\mathbf{r})$ is a complex-valued field, and both b and κ are positive. This theory is appropriate for describing the transition to superfluidity. The order parameter is $\langle \Psi(\mathbf{r}) \rangle$. Note that the free energy is a functional of the two independent fields $\Psi(\mathbf{r})$ and $\Psi^*(\mathbf{r})$, where Ψ^* is the complex conjugate of Ψ . Alternatively, one can consider F a functional of the real and imaginary parts of Ψ .

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can be written in the form

$$F = \varepsilon_0 \int d^d x \left[\pm \frac{1}{2} |\psi|^2 + \frac{1}{4} |\psi|^4 + \frac{1}{2} |\nabla \psi|^2 \right],$$

where ψ and x are dimensionless, ε_0 has dimensions of energy, and where the sign on the first term on the RHS is sgn(a). Find ε_0 and the relations between Ψ and ψ and between r and x.

- (b) By extremizing the functional $F[\psi, \psi^*]$ with respect to ψ^* , find a partial differential equation describing the behavior of the order parameter field $\psi(x)$.
- (c) Consider a two-dimensional system (d = 2) and let a < 0 (*i.e.* $T < T_c$). Consider the case where $\psi(\boldsymbol{x})$ describe a *vortex* configuration: $\psi(\boldsymbol{x}) = f(r) e^{i\phi}$, where (r, ϕ) are two-dimensional polar coordinates. Find the ordinary differential equation for f(r)which extremizes *F*.
- (d) Show that the free energy, up to a constant, may be written as

$$F = 2\pi \varepsilon_0 \int_0^R dr \, r \left[rac{1}{2} (f')^2 + rac{f^2}{2r^2} + rac{1}{4} (1-f^2)^2
ight],$$

where *R* is the radius of the system, which we presume is confined to a disk. Consider a *trial solution* for f(r) of the form

$$f(r) = \frac{r}{\sqrt{r^2 + a^2}} \, .$$

where *a* is the variational parameter. Compute F(a, R) in the limit $R \to \infty$ and extremize with respect to *a* to find the optimum value of *a* within this variational class of functions.

(3) Consider the Ginzburg-Landau free energy density

$$f = \frac{1}{2}\alpha tm^2 + \frac{1}{6}dm^6 + \frac{1}{2}\kappa(\nabla m)^2$$
 ,

where $t = (T-T_{\rm c})/T_{\rm c}$ is the reduced temperature.

- (a) Find the equilibrium order parameter $m_0(t)$ as a function of reduced temperature.
- (b) Find expressions for the correlation length in the cases t < 0 and t > 0.

(4) Verify the inequalities proven at the end of §1.5.3 of the Lecture Notes,

$$\begin{split} d &= 1 : \quad m < C_1 \bigg(\frac{h\mathcal{J}}{(k_{\rm B}T)^2} \bigg)^{1/3} \\ d &= 2 : \quad m < C_2 \, \frac{(\mathcal{J}/k_{\rm B}T)^{1/2}}{\ln^{1/2}(\mathcal{J}/hm)} \\ d &> 2 : \quad m < C_d \, \mathcal{J}/k_{\rm B}T \quad , \end{split}$$

and provide estimates for the constants $C_d\,.$