PHYSICS 239.c : CONDENSED MATTER PHYSICS
 HW ASSIGNMENT \#1

(1) Consider the Euclidean Lagrangian density

$$
\mathcal{L}_{\mathrm{E}}\left(\boldsymbol{\phi}, \boldsymbol{\nabla} \phi, \partial_{\tau} \boldsymbol{\phi}\right)=i \phi_{1} \partial_{\tau} \phi_{2}-i \phi_{2} \partial_{\tau} \phi_{1}+\frac{1}{2} K\left(\boldsymbol{\nabla} \phi_{1}\right)^{2}+\frac{1}{2} K\left(\boldsymbol{\nabla} \phi_{2}\right)^{2}+V\left(\phi_{1}^{2}+\phi_{2}^{2}\right) .
$$

Express \mathcal{L}_{E} in terms of the complex scalar field $\psi=\phi_{1}+i \phi_{2}$.
(2) Consider the $\mathrm{U}(1)$ Ginsburg-Landau theory with

$$
F=\int d^{d} r\left[\frac{1}{2} a|\Psi|^{2}+\frac{1}{4} b|\Psi|^{4}+\frac{1}{2} \kappa|\nabla \Psi|^{2}\right] .
$$

Here $\Psi(\boldsymbol{r})$ is a complex-valued field, and both b and κ are positive. This theory is appropriate for describing the transition to superfluidity. The order parameter is $\langle\Psi(\boldsymbol{r})\rangle$. Note that the free energy is a functional of the two independent fields $\Psi(\boldsymbol{r})$ and $\Psi^{*}(\boldsymbol{r})$, where Ψ^{*} is the complex conjugate of Ψ. Alternatively, one can consider F a functional of the real and imaginary parts of Ψ.
(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can be written in the form

$$
F=\varepsilon_{0} \int d^{d} x\left[\pm \frac{1}{2}|\psi|^{2}+\frac{1}{4}|\psi|^{4}+\frac{1}{2}|\nabla \psi|^{2}\right],
$$

where ψ and \boldsymbol{x} are dimensionless, ε_{0} has dimensions of energy, and where the sign on the first term on the RHS is $\operatorname{sgn}(a)$. Find ε_{0} and the relations between Ψ and ψ and between \boldsymbol{r} and \boldsymbol{x}.
(b) By extremizing the functional $F\left[\psi, \psi^{*}\right]$ with respect to ψ^{*}, find a partial differential equation describing the behavior of the order parameter field $\psi(\boldsymbol{x})$.
(c) Consider a two-dimensional system $(d=2)$ and let $a<0$ (i.e. $T<T_{\mathrm{c}}$). Consider the case where $\psi(\boldsymbol{x})$ describe a vortex configuration: $\psi(\boldsymbol{x})=f(r) e^{i \phi}$, where (r, ϕ) are two-dimensional polar coordinates. Find the ordinary differential equation for $f(r)$ which extremizes F.
(d) Show that the free energy, up to a constant, may be written as

$$
F=2 \pi \varepsilon_{0} \int_{0}^{R} d r r\left[\frac{1}{2}\left(f^{\prime}\right)^{2}+\frac{f^{2}}{2 r^{2}}+\frac{1}{4}\left(1-f^{2}\right)^{2}\right]
$$

where R is the radius of the system, which we presume is confined to a disk. Consider a trial solution for $f(r)$ of the form

$$
f(r)=\frac{r}{\sqrt{r^{2}+a^{2}}},
$$

where a is the variational parameter. Compute $F(a, R)$ in the limit $R \rightarrow \infty$ and extremize with respect to a to find the optimum value of a within this variational class of functions.
(3) Consider the Ginzburg-Landau free energy density

$$
f=\frac{1}{2} \alpha t m^{2}+\frac{1}{6} d m^{6}+\frac{1}{2} \kappa(\boldsymbol{\nabla} m)^{2}
$$

where $t=\left(T-T_{\mathrm{c}}\right) / T_{\mathrm{c}}$ is the reduced temperature.
(a) Find the equilibrium order parameter $m_{0}(t)$ as a function of reduced temperature.
(b) Find expressions for the correlation length in the cases $t<0$ and $t>0$.
(4) Verify the inequalities proven at the end of $\S 1.5 .3$ of the Lecture Notes,

$$
\begin{array}{ll}
d=1: & m<C_{1}\left(\frac{h \mathcal{J}}{\left(k_{\mathrm{B}} T\right)^{2}}\right)^{1 / 3} \\
d=2: & m<C_{2} \frac{\left(\mathcal{J} / k_{\mathrm{B}} T\right)^{1 / 2}}{\ln ^{1 / 2}(\mathcal{J} / h m)} \\
d>2: & m<C_{d} \mathcal{J} / k_{\mathrm{B}} T,
\end{array}
$$

and provide estimates for the constants C_{d}.

