Notes 5: Non-Markoucsis Stooheotici Processes ard Zusnzers Mari Theory

Ilea: $\left\{\begin{array}{l}\text { Timer scale separation } \\ \rightarrow\left\{\begin{array}{l}\text { both } \\ \text { system. }\end{array}\right.\end{array}\right.$
Recall:

$$
\begin{aligned}
& \begin{array}{l}
\text { ensemble } H: 0^{\prime} \\
\omega_{j}^{3}>\omega^{2}
\end{array} \\
& H_{s}=\frac{D^{3}}{2 m}+u(x) \\
& \begin{array}{ll}
x_{j} p & H_{n}=\sum_{j} \frac{p_{j}^{3}}{2}+\frac{\omega_{j}^{3}}{2}\left(q_{j}-\frac{\gamma_{j} x_{j}}{\omega_{j 2}^{2}}\right)^{2}, ~
\end{array}
\end{aligned}
$$

then an deriv generalized Lengevin Equation for system:

$$
\begin{aligned}
& \text {, } t \rightarrow \text { Memory fth } \\
& \left.\frac{d p}{d t}=-U(x(t))-\int_{b} k(s) P \frac{1}{m}-5\right)+F_{p}(t) \\
& \text { dreg non-Merhovesy noise } \\
& K(t)=\sum_{j} \frac{\gamma_{j}^{2}}{\omega_{j}^{2}} \cos \operatorname{coj} t^{2} \\
& F_{p}(t)=\sum_{j} \gamma_{j} p_{j}(0) \sin \frac{g_{j} t}{\omega_{j}}+\sum_{j} \gamma_{j}\left(\frac{\beta_{j}(\omega)-\gamma_{j} \times(\Delta)}{\omega_{j}^{2}}\right) \operatorname{arsin} t
\end{aligned}
$$

Fincte Memary Tome / Kormel.
(ii) Non-Markovian Stochastic Processes
\rightarrow general idea is to derivo Master Eqn.
for Non-Markovian stachastic procerses
a.) \rightarrow but what, really, does Markovian mean?
$\frac{\text { Markovian }}{\text { consider }}=$ no memory. fectorizable transition probubility
e9. consides particle motion in sfochastic
electric freld \rightarrow Daradigmatic Example
$R=l d$ presonibed $\rightarrow \quad b=t h$

$$
\begin{aligned}
\frac{d x}{d t}=v_{j} \quad \frac{d v}{d t} & =\frac{2}{m} E(x, t \\
& =\sum_{m} \sum_{s} E_{1} e^{i\left(k x-v_{k} t\right)}
\end{aligned}
$$

so $\left\langle\delta v^{2}\right\rangle=D_{V} T \quad\langle\delta v(0)$ ovcru $\rangle=D_{\nu} \tau$

$$
\begin{aligned}
& \partial_{v}=\sum_{K^{\prime} \omega^{\prime} m^{2}}\left|E_{\frac{k}{\prime}^{\prime}}\right|_{\omega^{\prime}} d \hat{d}\left(\hat{\omega}^{\prime}-K^{\prime} v\right) \\
& =\sum_{K}{\frac{q}{m^{2}}}^{3} \frac{\left|E_{N}\right|^{2}}{|V|} \delta\left(\frac{U^{\prime}}{N}-V\right)
\end{aligned}
$$

reponance condition

So $\quad T_{\text {ek }}^{-i}=\mid \Delta K / V$ is wave-parficke corfelation time. tuodth density stitat)

Now, from viewpoint of Kinetic equation Hamiltonian system \Rightarrow Vlasov equation $\quad\left(n \lambda_{B}^{3}>1\right) \Rightarrow$

$$
\begin{aligned}
& \frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\nabla \cdot\left[v_{p h} f\right]=\frac{\partial f}{p}+v_{p p} \cdot \underline{D}}{\partial f}=0 \\
& \underline{D} \cdot v_{p h}=0 \Rightarrow \text { Liovilles Thm. }
\end{aligned}
$$

Wharou,
so $\frac{\partial f}{\partial f}+v \frac{\partial f}{\partial x}+\frac{q}{m} E \frac{\partial f}{\partial V}=0 \quad \begin{aligned} & \text { Collivonless } \\ & \text { Beltzminn }\end{aligned}$
averaying, for homogeneous, stafionary procers \Rightarrow

$$
\frac{\partial\langle f\rangle}{\partial f}=-\frac{2}{M} \frac{\partial}{\partial V}\langle E f\rangle \quad \begin{aligned}
& \text { cmphect } \\
& \text { scise } \\
& \text { sep }
\end{aligned}
$$

Simplest approach \Rightarrow mean-field theory Equosi(inear theory)

$$
\langle\tilde{E} \vec{f}\rangle=\sum_{\vec{\omega}} E_{\substack{k \\-\omega} \tilde{f}^{\omega}}
$$

(plug in lineor response \Rightarrow un-perturbel orbits.

$$
\begin{aligned}
& -i(\omega-k V) \hat{f}_{\hat{K}}=-\frac{q}{m} \hat{E}_{\hat{\omega}} \frac{\partial\langle f\rangle}{\partial V} \\
& \text { 1/w-kv neglijible } \\
& -\frac{q}{m}\langle E f\rangle_{M F}=-\frac{q^{3}}{m^{2}} \sum_{\omega}^{\frac{u}{\omega}}\left|E_{\omega}\right|^{2} \pi d(c-k v) \frac{\partial\langle f\rangle}{\partial V} \\
& =-\Gamma_{V}=-D \frac{\partial\langle f\rangle}{\partial v} \\
& \Rightarrow N=\sum_{\dot{H}, \omega} q_{m^{2}}^{2} \left\lvert\, E \frac{E_{\omega}}{2} \pi \delta(\omega-k v)\right. \\
& \text { uses RoPA. }
\end{aligned}
$$

ie. meen field theory recovers kingevin result
(Woth rest on unperturbed orbits, only and)
Gausrian Pdf /RPA)
Gaustian Pdf/RPA)
Now, consider response for k, us; seek $\frac{\delta}{\delta_{\text {mext }} f}$

$$
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}+\frac{q}{m} \frac{\partial f}{\partial v}=\text { ACext. }
$$

库心
i.e need response function. To calculate perfurbotively, extrect piece of nonlinecrify phase coherent with extemal perturts ation Mu,w

$$
N_{\omega, \omega}=+\frac{q}{m} \frac{\partial}{\partial V} \sum_{b^{\prime}, \infty} E_{\substack{-k^{\prime} \\-\omega 1}} F_{\substack{k^{\prime}+k \\ w+i}}
$$

Need determino oNk,w/dMk,w

Now, assume Ens specificl (acceleration problem)

$$
N_{k, \omega}=\frac{q \nu}{m o V_{j}^{\prime} \omega} \sum_{\sum_{k,}} f_{k 1}^{m}
$$

driven by beat-interaction of $(k, \omega),\left(k, \omega^{\prime}\right)$ modes

$$
\Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow \quad N_{K, \omega}=-\frac{\partial}{\partial V} \sum_{\sum_{y^{\prime}} \omega^{\prime} m^{2}} \frac{q^{2}\left|E_{k^{\prime}}\right|^{2} R\left(\omega^{\prime \prime} K^{\prime \prime} V\right) \frac{\partial f}{\partial V} L^{\prime}}{} \\
& -\frac{\partial}{\partial V} \sum_{\left.K_{1}^{\prime}, \omega\right)} \frac{q}{m} E_{k^{\prime}}^{*} \frac{\partial f_{n}}{\partial V^{\prime \prime}} R\left(\omega^{\prime \prime}, K_{1}^{\prime \prime} V\right) \frac{q}{m} E_{r_{3} \omega} \\
& =-\frac{\partial}{\partial V} D_{K, 0} \frac{\partial}{\partial V} f_{V, \omega}-\frac{\partial}{\partial V} b_{V, \omega} \frac{q}{m} E_{K, \omega}
\end{aligned}
$$

$$
\text { analogous to } \frac{\partial}{\partial V} D \frac{\partial}{\partial V}
$$

Now $D_{k, c}=\sum_{\psi_{1}^{\prime \prime} s^{\prime}} \frac{q^{2}}{m^{2}}\left|E_{k^{\prime}}\right|^{2} \pi \delta\left(\omega^{\prime \prime}-K^{\prime \prime} v\right)$
comparo to Markovian/Mean Field result:

$$
D=\sum_{k^{\prime}, s^{\prime}} \frac{q^{2}}{m^{2}}\left|E_{-j}\right|^{2} \pi d\left(\omega^{\prime}+k^{\prime} v\right)
$$

$$
\begin{aligned}
& \longrightarrow \text { pronagetor nenormalizefion }
\end{aligned}
$$

unperturbel orbit by
fluctusting field
ier
\rightarrow Markovian dynemies recoved in $\frac{k \ll k^{\prime}}{k, \omega}, \frac{\omega \ll \omega^{\prime}}{k^{\prime}} \omega^{\prime}$ limit

$$
\begin{aligned}
& \text { ier }\left\{\begin{array}{l}
\text { renormalization } \\
\text { interation of } k \text {, } o \text { test } \\
\text { mode with spectrum } \\
k^{\prime}, w^{\prime} \text { modes }
\end{array}\right.
\end{aligned}
$$

\rightarrow in $k, \omega<k_{j}^{\prime} \omega^{\prime}$ limit, interaction events of duration $\| \Delta i \mid v$ apples as (random) Kicks of vanishingly short durifion \Rightarrow diffusion
*'Non-Markovian \equiv time duration of test 'mode 1 with scattering 'modes' comparable to time scales of: test mode.

Markevian 三 time duration of scattering mode inferation-with test mode short in comparison to time scales of test mode
\rightarrow if $\omega=k v$ (resonance) Markovian limit recovered \Rightarrow plasma physics topic
$\rightarrow \frac{\omega \text { dependence of } 0_{1,0} \text { implies time history l }}{\text { ie. }}$

$$
\begin{aligned}
\int e^{-i \omega t} L_{k, \omega} & =\int e^{-i \omega t}\left[-i \omega+i k v-\frac{\partial}{\partial v} D_{v, \nu} \frac{\partial}{\partial V}\right]_{k, v} \\
& =\frac{\partial f_{k}}{\partial t}+i k v f_{k}-\int_{-\infty} \frac{\partial}{\partial v} D_{r y} \frac{\partial}{\partial v} f_{k}\left(t-T^{\prime}\right)
\end{aligned}
$$

b.) Gener.l Theory: Ewanzig - Mori Formalism
$\rightarrow N$ variables (bandico $q=\left(q_{1}, \ldots q_{N}\right)$
$\dot{q}_{j}=h_{j}(q) \Rightarrow$ dynanical equetions.
\rightarrow Assume (via linear tronoformation), dynamioal equations of form:

$$
\dot{p}_{j}=-\gamma_{j} p_{j}+q_{j}(p) \quad j=1, \cdots N
$$

\rightarrow if concerned with phenomena/evolution on time scale $\sim \tau$, then ctn divido/cleosify variables:
$\gamma_{c} \cdot \tau>1 \rightarrow$ "imelevant"/ fart vorisbles i.e. hovo 'equilibroted' on Fime side T Canelogores termenal valoutr)
$\left.\gamma_{i}\right\rangle<1 \rightarrow$ "relevant"/slow voriahles idea is to desaribe on termos/releusulat verishles. on Y For frest variables:

$$
\begin{aligned}
\dot{P}_{0}=-\gamma_{j} p_{j}+q_{j}(p) \quad, j=M+1, \ldots \cdots N \\
\Rightarrow \dot{p}_{j} \nsubseteq 0 \Rightarrow p_{j}=\frac{q}{\gamma ;}(p) \quad 子
\end{aligned}
$$

$$
\left.\begin{array}{rl}
P_{\text {fast }}=\frac{q_{\text {fast }}(p)}{\gamma_{f}}
\end{array} \Rightarrow \begin{array}{l}
\text { 'slaves'/eliminater } \\
\text { fast vorigbles to } \\
\text { slow verifloles }
\end{array}\right]
$$

Can use to obtais dynamical equations in terms slow. Voriables only.
"relevent" [probect syotem]

Now, for $p d f$ evolition; $\rightarrow\left\{\begin{array}{l}\text { seek Masten Eqno fon } \\ \text { Non-Makovian system }\end{array}\right.$ - variables $\left\{\begin{array}{l}a \rightarrow \text { slow ielevent } \\ b \rightarrow \text { fast, irelevent }\end{array}\right.$

- for pdf
ci.e. Liouvclizen.

$$
\frac{\partial}{\partial t} p(a, b, t)=f_{t}(a, b, t)
$$

$$
\text { differentiol operator }\left\{\begin{array}{l}
\text { deipisson brokket } \\
- \text { Fpoperiton }
\end{array}\right.
$$

Con defins reduced pdf?

$$
s(a, t)=\int d b \quad \varphi(a, b, t)
$$

integrater ap inreleumt, fart varisbles.
also, assume can decomposer L as:

Now, assume equilibrium distrait ution exists \Rightarrow only for b variables, peg (b)

$$
\Rightarrow
$$

$$
\begin{array}{ll}
L_{b} P_{e q}(b)=0 & \text { what } 10 \operatorname{Pes}(b) ? \\
\int d p P_{e q}(b)=1 &
\end{array}
$$

\therefore can define projection Panto a variables
$\xrightarrow[\text { projection }]{ }$

$$
P_{p}(a, b, t) \equiv P_{e s}(b) \int d b p(a, b t)=\operatorname{Peq}_{2}(b) s(a, t)
$$

Now, for projection, need: (idempotency")

$$
\begin{aligned}
& P p p=\frac{p}{=} p \\
& P_{p}^{2} p(a, b, t)=P_{P_{e z}}(b) S(a, t) \\
& =p_{e z}(b) \int d b p_{\text {eq }}(b) S(a, t) \\
& =p_{22}(b) S(a, t)=\rho \rho(a, b, t)
\end{aligned}
$$

so P is indeed projection
Now, can define:

$$
\begin{aligned}
& p_{1}=p p(a, b, t) \\
& p_{2} \equiv \frac{p-p)}{} p(a, b, t) \equiv Q p(a, b, t)
\end{aligned}
$$

identity
so

$$
=p
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t} p=L P \quad P=p_{1}+p_{2} \\
& \begin{cases}\text { Lowville } \\
E_{\text {Lu }}\end{cases} \\
& \left.\frac{\partial p_{1}}{\partial t}=P L\left(p_{1}+p_{2}\right)_{\text {croon }} \quad \text { coper } P\right) \\
& \left.\frac{\partial p_{2}}{\partial f}=Q L\left(p_{1}+p_{2}\right)_{\text {fort }} \quad \text { cop } Q\right)
\end{aligned}
$$

Solving p_{2} equation \Rightarrow

$$
\begin{aligned}
P_{2}(t) & =e^{Q L t} p_{2}(0)+e^{Q L t} d s e^{-Q L s} Q L p_{1}(s) \\
& =e^{Q L t} p_{2}(\delta)+\int_{0}^{t} e^{Q L s} Q L p_{1}(t-s) d s
\end{aligned}
$$

Recall, have obtained Master En. for pdf of $\xrightarrow[\text { relevant }]{\text { variables }} \underset{\text { slow } \rightarrow \text { slow }}{ } P_{1}$:

$$
\begin{aligned}
& +\int_{0}^{t} \frac{p L e^{Q L S} Q L P p(t-s) d s}{\phi(s) \rightarrow \text { memory kernel }} \\
& \left\{\begin{array}{l}
P_{b} \\
\left(f=p_{\text {ec }}(b) \int d b p(a, b, t)=p_{e}(b) s(a, t)\right. \\
Q=1-p
\end{array}\right. \\
& \rightarrow \text { Libville operator }
\end{aligned}
$$

and $\frac{\partial p}{\partial t}=L p$
Salient features:
c.) memory Kernel $\phi(s) \rightarrow$ from elimination of fast b's in terms slow a's
has form: \qquad

$$
P L e^{Q L S} Q+P
$$

Liouville operators (2)
Recall non-Markovian renormalized Wasov equation

$$
-i(\omega-k v) f_{k_{j} \omega}-\frac{\partial}{\partial V} A_{r, \omega} \frac{\partial f_{k, \omega}}{\partial v}=-\frac{\varepsilon}{m} E_{k, \omega} \frac{\partial\langle f\rangle}{\partial v}
$$

\rightarrow Representions for NMssp Masten Eqn.
Now, have Master Eqn.

$$
\begin{aligned}
\frac{\partial}{\partial t} P_{1}= & P L P P(t)+P L e^{Q L t} Q p(0) \\
& +\int_{0}^{t} \phi(s) p(t-s) d s
\end{aligned}
$$

$$
\begin{aligned}
L & =L_{a}+L_{b}+L_{i} \\
& \equiv L_{0}+L_{i}
\end{aligned}
$$

zorothorder/
decoupled
$\longrightarrow a, b$ inferaction
decoupled Liovillo opacoton
Liovilian operator
(Zwansig) (Mori)
Thus, akin Schroedinger \rightarrow Hersenberg change ofresp:

$$
\begin{aligned}
& \rho \equiv e^{-L_{0} t} p(a, b t) \\
& L_{0} \equiv L_{a}+L_{b} \\
& L_{i}(t)=e^{-L_{0} t} L_{i} \cdot e^{L_{0} t}
\end{aligned}
$$

$(,) \frac{\partial}{\partial t} p(t)=L_{i}(t) \rho(t)$
ie. $\quad \frac{\partial}{\partial f}\left(e^{-L_{0} t} p(a, b, t)\right)=\left(e^{-L 0 t} L_{i} e^{L_{0} t}\right)\left(e^{-L 0 t} p\right)$

$$
e^{A \cdot t \cdot t}\left(-L_{0} p+\frac{\partial p}{\partial t}\right)=e^{-2 t} L_{i} p
$$

note ordering

$$
\frac{\partial \rho}{\partial t}=\left(L_{0}+h_{i}\right) \rho
$$

Note: Understood that exponential to ko calculated ald

$$
\begin{gathered}
\stackrel{\Delta}{\exp }\left[\int_{0}^{t} A(s) d s\right]=1+\sum_{r=1}^{\infty} \frac{(-1)^{r}}{r_{j}} \int_{0}^{t} d s_{1} \int_{0}^{s_{1}} d s_{2} \ldots \int_{0}^{s_{n}} * \\
A\left(s_{1}\right) \ldots \ldots A\left(s_{r}\right) .
\end{gathered}
$$

\rightarrow Linear Chain: A Case Study
Consider a chain of springs with spring constant K and moses $M \gg m_{1} m_{2} \ldots m_{2} \ldots m_{N}$

Application of Linear Ehain Paradigm
(1) $T \rightarrow$ thermal

\rightarrow tweak ala laser
\rightarrow primitive macroMolecular model (real case entropic)
\Rightarrow output is measured spectra - mode frequencies but recall $\omega_{0}^{2}=\frac{K_{1}}{M} \ll \omega_{i}^{2}$

what is $A \omega_{0}^{P} \rightarrow\left\{\begin{array}{l}\text { relaxation rate of } \\ \text { low wo de }\end{array} \prod_{0}\right.$
but relaxation rate set by kiolis due fast Modes \leftrightarrow background "effective noise"
\Rightarrow Z-M method useful in calculating relaxation Prates for slow modes in complex systems!

Then can immediately write down equations of motion: $\left\{\begin{array}{l}\text { i, e, coupled eqss, for } \\ \text { each miss }\end{array}\right.$

$$
\begin{aligned}
& \dot{x}=v \\
& V=-K \cdot\left(x-x_{1}\right) \\
& \left\{\begin{array}{l}
\dot{x}_{i}=v_{i} \\
\vdots
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{x_{1}}=v_{1} \\
\dot{v}_{1}=\frac{-k}{m_{1}}\left(x_{1}-x_{2}\right)-\frac{k_{1}}{m_{1}}\left(x_{1}-x\right) \\
\vdots
\end{array}\right.
\end{aligned}
$$

To simplify, can define relative coordinates: (work in relative coordinates only)

$$
\begin{aligned}
& d x_{0}=x-x_{1} \\
& d x_{1}=x_{1}-x_{2} \\
& d x_{i}=x_{i}-x_{i+1}
\end{aligned}
$$ simplicity

$$
\begin{align*}
& \delta \dot{x}_{0}=V \quad ; \quad \dot{v}=-\frac{k}{M} \delta x_{0} \tag{3}\\
& d \dot{x_{1}}=v-v_{1} ; \quad \dot{v}_{1}=\frac{k}{m_{1}} d x_{0}-\frac{k}{m_{1}} d x_{1} \\
& d \dot{\dot{x}_{i}}=V_{i}-v_{i+1} ; \dot{v}_{i}=\frac{K}{m_{i}} d \dot{x}_{i}-\frac{K}{m_{i}} d^{\prime} x_{i}
\end{align*}
$$ coordinates.

C'ote: In reality for taking fast modes/orcillators $\left.\begin{array}{l}\text { algal in equilibrium need: } \\ \text { fletn- }\left\{\begin{array}{l}\text { (1) stochastic forcing in each } \\ \text { dispon. } \\ 2\end{array}\right) \text { some dissipation in coupling }\end{array}\right\}$, define
,Vow, need construct "Liouvillian" for system: (note Hamiltonian,

$$
L=\frac{d x}{d t} \frac{\partial}{\partial x}+\frac{d v}{d t} \frac{\partial}{\partial v}+\sum_{j}\left(\frac{d d x_{j}}{d t} \frac{\partial}{\partial d x_{j}}+\frac{d v_{j}}{d t} \frac{\partial}{\partial v_{j}}\right)^{\text {(note Hamill }}
$$

Now, $\rightarrow x$ variable absorbed into $d x_{0}$

$$
\begin{aligned}
& \rightarrow \dot{V}=-\frac{K}{M} d x_{0} \\
& \rightarrow \frac{d}{d t} d x_{j}=\left(v_{j}-v_{\hat{j}+1}\right) \\
& \frac{d v_{j}}{d t}=\frac{k_{i}}{m_{i}} d x_{i-1}-\frac{k_{i}}{m_{i}} d x_{i} \\
& \text { so } \\
& L=\frac{-k}{M} d x_{0} \frac{\partial}{\partial V}+\left(V-V_{1}\right) \frac{\partial}{\partial V^{2} x_{0}}+\left(\frac{K}{m_{1}} \partial x_{0}-\frac{K}{m_{1}} \delta x_{1}\right) \frac{\partial}{\partial V_{1}} \\
& +\left(v_{1}-v_{2}\right) \frac{\partial}{\partial x_{1}}+\left(\frac{k_{1}}{m_{1}} d x_{1}-\frac{k_{1}}{m_{1}} d x_{2}\right) \frac{\partial}{\partial V_{2}} \\
& +\ldots \ldots \\
& +\left(V_{i}-V_{i+1}\right) \frac{D}{\partial d x_{i}}+\left(\frac{k}{m_{i}} d x_{i-1}-\frac{K_{i}}{m_{i}} d x_{i}\right) \frac{\partial}{\partial V_{i+1}}
\end{aligned}
$$

This yields Lioville equation \Rightarrow continuity equation in phase space, die.

$$
\frac{\partial}{\partial f} p+\underset{\substack{\text { phase } \\ \text { space }}}{\nabla_{\text {space }}}\left[V_{\text {phase }} p\right]=0
$$

but here,

$$
\begin{array}{rc}
\nabla \cdot V_{\text {phase }}^{\text {space }} \\
& \text { (Hamiltonian } \\
\text { System) }
\end{array}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial p}{\partial t}+L p=0, \quad L \equiv \underline{v}_{\text {sphere }}^{\text {space }} \\
\cdot D_{\text {sparse }} \text { space } . ~
\end{array}\right.
$$

given above of.
\rightarrow Now, need decompose. into $\begin{gathered}\text { relevant (a) } \\ \text { intenocintion (i) } \\ \text { irrelevant (b) (b) opiablestors } \\ \text { fast }\end{gathered}$

- Key point $\omega_{0}^{2}=\frac{K}{M} \ll \omega_{j}=\frac{K}{m_{j}}$
but
- relative coordinates \Rightarrow no isolated slow variables \quad ie. $\quad \delta x_{0}=x-x_{1}$ slow \leftrightarrow fast
80

$$
\begin{aligned}
\rightarrow \quad L_{a} & =0 \\
\rightarrow \quad L_{i} & =-\frac{K_{1}}{M} \delta X_{0} \frac{\partial}{\partial V}+V \frac{\partial}{\partial \delta X_{0}}
\end{aligned}
$$

interaction Liouvilhian
ce. note here $d x_{0}=x-x_{1}$, slow fort
\rightarrow irrelevant variable hiouvilliars:

$$
\begin{aligned}
L_{b} & =\left(V-V_{1}\right) \frac{\partial}{\partial \partial x_{0}}+\left(\frac{k}{m_{1}} d x_{0}-\frac{k}{m_{1}} d x_{1}\right) \frac{\partial}{\partial V_{1}} \\
& +\left(V_{1}-V_{2}\right) \frac{\partial}{\partial \partial x_{1}}+\left(\frac{k}{m_{2}} d x_{1}-\frac{k}{m_{2}} d x_{2}\right) \frac{\partial}{\partial V_{2}} \\
\vdots & \vdots \\
& +\left(V_{i}-V_{i+1}\right) \frac{\partial}{\partial \partial x_{i}}+\left(\frac{k}{m_{i}} d x_{i-1}-\frac{k}{m_{i}} d x_{i}\right) \frac{\partial}{\partial V_{i+1}}
\end{aligned}
$$

To implement projection on to lire. eliminate fast variables)
\rightarrow integrate out the fart varisbler but
need equilibrium pot af fart \rightarrow i.e. Peq (b).
we recall projection operot or $P \equiv p_{\text {eq }}(b) \int d b$.
Now, can conveniently write pdf for inpelevont variables as:

$$
\begin{array}{r}
P_{e q}\left(\delta x_{i j} V_{i}\right)=M \prod_{i=1}^{N} \exp \left[-\delta x_{i=1}^{2} / 2 \Delta_{i-1}^{2}\right] \exp \left[-V_{i}^{2} / 2\left\langle V_{i}^{2}\right\rangle\right] \\
\text { variances }
\end{array}
$$

Questions:

- requirement for (equilibrium) $\left\{\begin{array}{l}L_{b} p_{e q}(b)=0 \\ \text { implicit fluctuation } \\ \text {-dissipation thin, } \\ \text { (al amping) }\end{array}\right.$
- origin of distribution function?
(Markov'sthm!)
- validity \rightarrow \{保icin's/damping

Now,
\rightarrow must have Gala' Chopmon-Enskog exponsion)
Lb $P_{\text {eq }}(b)=0$ interaction Liouvillion at absolute
equilibrium

$$
\begin{aligned}
& +\left(v_{1}-v_{2}\right) \frac{d x_{1}}{\Delta \Delta_{1}^{2}}+\left(\frac{K}{M_{2}} d x_{1}-\frac{K}{m_{2}} d x_{2}\right) \frac{V_{2}}{\left\langle v_{2}^{2}\right\rangle}
\end{aligned}
$$

sboenvo $L_{b} P_{e z}(b)=0$ annihilation occurs if:

$$
\begin{aligned}
&\left(\Delta_{0}^{2}\right)^{-1}=\frac{K}{m_{1}}\left\langle v_{1}^{2}\right\rangle \Rightarrow m_{1}\left\langle\frac{v_{1}^{2}}{2}\right\rangle=\frac{k}{2} \Delta_{0}^{2} \\
& \frac{1}{\Delta_{1}^{2}}=\frac{K}{m_{2}}\left\langle V_{2}^{2}\right\rangle \Rightarrow \frac{M}{2}\left\langle v_{2}^{2}\right\rangle=\frac{K}{2} \Delta_{1}^{2} \\
& \vdots \\
& \frac{1}{\Delta_{i}^{2}}=\frac{K}{m_{i+1}}\left\langle v_{i+1}^{2}\right\rangle \Rightarrow m_{j+1}\left\langle v_{j+1}^{2}\right\rangle=\frac{K}{2} \Delta_{j}^{2}
\end{aligned}
$$

che. red:" sequential equipartition" thru chain

$$
\begin{aligned}
& \text { cine. }\left\{\frac{k}{2} \Delta_{j}^{2}=\frac{m_{j}}{2}\left\langle v_{j+1}^{2}\right\rangle\right. \\
& \Rightarrow k\left\langle\Delta_{0}^{2}\right\rangle=\ldots \cdots=m_{i}\left\langle v_{i}^{2}\right\rangle
\end{aligned}
$$

Hence linked equipartition is necessary for Gaussian pdf of invelevent variables.
\rightarrow also mat, regulate energy in chain \rightarrow dicis \Rightarrow chaos development
\rightarrow stochastic forces damping

Aside: For total equilibrium distribution

$$
p=M \exp \left[\frac{-v^{2}}{2\left\langle v^{2}\right\rangle}\right] \rho_{e q}(b)
$$

and of course have:

$$
M\left\langle v^{2}\right\rangle_{e q}=k\left\langle\Delta_{0}^{2}\right\rangle_{e z}=\ldots \cdot m_{i}\left\langle v_{i}^{2}\right\rangle_{e q}
$$

Thug, can proceed with construction of projection operator:

$$
P \rho(V, \underline{b}, t)=P_{e 2}(b) \int d b \rho(v, b, t)
$$

Now, to construct Master equation:

$$
(\mathcal{L}=L)
$$

- recall derived:
(in Heatenbery rep)

$$
\begin{aligned}
& \frac{\partial}{\partial t} P_{\rho}(t)=P \mathscr{L}_{i}(t) P \tilde{\rho}(t)+P \mathscr{L}_{r}(t) \exp \left[\int_{0}^{\dagger} Q \dot{Q}(s)\right]
\end{aligned}
$$

eco. \rightarrow as
prevars
higher order interaction
effect in memory kernel
, Vow
\rightarrow ignore higher order interactions impliont in exponential $\Rightarrow \exp [\quad \approx 1$
Δ weak interaction limit
Thus, reduced pelf evolution (is Heisen berg representation) becomes:

$$
\frac{\partial}{\partial t} \tilde{\theta}_{1}(t)=\int_{0}^{t} s P \mathcal{L}_{i}(t) \mathcal{L}_{i}(s) \tilde{\omega}_{1}(s)
$$

$\rightarrow\left\{\begin{array}{l}\text { altematively, } \\ \text { correspondingly, can franco } \\ \text { Kernel for Master. Esl }\end{array}\right.$

$$
\begin{aligned}
& c_{1}=\frac{\rho}{p_{2 q}(v)} \\
& \text { must absorb } \\
& p_{\text {eq }}(v) \text { in } \\
& e_{\text {aq }}(b) \\
& \text { deviation } \\
& \text { counts! }
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=e^{-\mathscr{L}_{0}(t-s)} \Phi_{B}(t-s) \\
& \Phi_{B}(t-s)=\rho \mathcal{L}_{i} e^{\left(\mathscr{L}_{A}+\mathscr{L}_{b}\right)(t-s)} \mathcal{L}_{i} P
\end{aligned}
$$

Thus, can finally write Non-Markovian Master equation for reduced system as:
pdf of relevant variable.

$$
\begin{aligned}
& \text { to concept } \\
& \text { piece } P \\
& \Phi_{B}=P \mathcal{L}_{i} e^{=f_{b}(t-s)} \mathcal{L}_{i} \rho
\end{aligned}
$$

Now, as f increases:
\rightarrow time scale for observation $O\left(v_{0} t\right)$ evolution exceeds memory time of slow-faof interactions drastically
\rightarrow Can take Markovian limit

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial p}{\partial t}=\mathcal{L}_{\text {eff }} \rho \quad \rho=p(v, t) \\
\mathcal{L}_{\text {eff }}=\frac{1}{\hat{O}_{\text {eq }}(b)}\left(\int_{0} d s \Phi_{B}^{\infty}(s)\right) \operatorname{l}_{\text {eq }}(b)
\end{array}\right. \\
& \left(\Phi_{B}=p \mathcal{L}_{i n} e^{-\mathcal{L}_{b}(t-s)} \mathcal{L}_{i} p\right.
\end{aligned}
$$

Kennel
$\stackrel{\operatorname{cin}}{\Rightarrow} \frac{\partial p}{\partial t}=\frac{-1}{\gamma_{\text {eft }}} \theta$

$$
\tau_{\text {eff }}^{-1} \equiv|\mathscr{L}|
$$

, Vow to evaluate explicitly for lines chairs problem, recall:

$$
\begin{aligned}
& \rightarrow \mathcal{L}_{i}=-\frac{K}{M} \delta x_{0} \frac{\partial}{\partial V}+V \frac{\partial}{\partial \delta x_{0}} \\
& \rightarrow P=D_{e 2}(b) \int d b D(a, b, x) \quad\left\{\begin{array}{l}
\text { where } b \\
\text { includes } \delta x_{0} \\
\text { (relative } \\
\text { separation! }
\end{array}\right.
\end{aligned}
$$

\rightarrow also useful to recall:

$$
\begin{aligned}
& O_{e q}(b)=M \prod_{i=1}^{N} \exp \left[-d x_{i-1}^{2} / 2 \Delta_{i-1}^{2}\right] \exp \left[-V_{i-1}^{2} / 2\left\langle V_{i-1}^{2}\right\rangle\right] \\
& \left(\text { total } \rho_{e q}\right) .
\end{aligned}
$$

Thus, can note

$$
\rightarrow \quad P \vee \frac{\partial}{\partial \delta x_{0}}=\int d x_{0} \quad v \frac{\partial}{\partial \delta x_{0}} \ldots \ldots
$$

$=0$ upon custegration by ports
ie. only $D / \partial v$ pieces \mathcal{J} i survive
\rightarrow should recall $\theta / j v$ acts on $P_{e q}(v, b)$

$$
\text { ill. } \Rightarrow \theta=\rho_{e 2} \frac{\rho}{\rho_{22}} \text {. ealculated. }
$$

$$
\mathcal{L}_{i}=\frac{k}{M} \delta x_{0}\left(\frac{\partial}{\partial V}+\frac{V}{V_{T}^{2}}\right)-V\left(\frac{\delta}{\partial \delta x_{0}}+\frac{k \delta x_{0}}{k_{B} T}\right)
$$ (sign absorbed, as er) f_{i}^{2}).

binckdesV
So for $L_{\text {eff }}$:

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\underset{\rho_{e \varepsilon}(b)}{ \pm}\left(\int_{0}^{\infty} d s \perp \mathcal{L}_{i} e^{-\mathcal{L}_{b}(t-s)} \mathcal{L}_{i}, P\right) \rho_{e \varepsilon}(b) \\
& =\frac{1}{\theta_{Q}} \not A_{(D)}\left(\int _ { 0 } ^ { \infty } d \sigma c _ { q \Sigma } ^ { \infty } (b) \int ^ { d } d b \left(\frac{K}{M} d x_{0}\left(\frac{D}{v V}+\frac{V}{V_{c}{ }^{2}}\right)\right.\right. \\
& \left.-v \frac{k d x_{0}}{k_{B} T}\right) e^{-\mathcal{L}_{B}(t-s)}\left(\frac{k}{M} d^{*} x_{0}\left(\frac{\partial}{\partial V}+\frac{v}{v_{T}}\right)-\frac{v k d x_{0}}{V_{B B} T}\right) \\
& p_{e q} * \int d b \quad \int \rho_{c q}(b)
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \rightarrow\left\langle\delta x_{0}\right\rangle=0 \\
& \left.\rightarrow p \mathcal{L}_{i} p=p e^{-\mathcal{L}_{0} t} \mathcal{L}_{i} e^{f_{i} t} p=0 \quad \text { (ob. }\right) .
\end{aligned}
$$

-leming it all up finally yieldo:

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\frac{K}{M} \Phi(0)\left\{\left\langle v^{2}\right\rangle \frac{\partial^{2}}{\partial v^{2}}+\frac{\partial}{\partial v} v\right\} \\
& \Phi(0)=\Phi(z) \mid \text {, where }
\end{aligned}
$$

$$
\begin{aligned}
& z=0 \quad \rightarrow \text { romalizel corrain. fetn. } \\
& \begin{array}{l}
\Phi(z)=\int_{0}^{\infty} d z e^{-z t} \frac{\left\langle\partial x_{0} d x_{0}(t)\right\rangle_{e r}}{\left\langle d x_{z}^{z}\right\rangle_{e I} \rightarrow} \int_{\int_{i} \frac{K}{M}\left\langle\left\langle x_{0}^{2}\right\rangle \sim m\left\langle v^{2}\right\rangle\right.}^{\sim T} .
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t} \rho(v, t) & =\mathcal{L e f f ~}^{\rho(v, t)} \\
& =\frac{k}{M} \Phi(0)\left\{\left\langle v^{2}\right\rangle \frac{\partial^{3}}{\partial v^{2}}+\frac{\partial}{\partial v} v\right\} \rho(v, t)
\end{aligned}
$$

Note can n-write is F.P.E. form:

$$
\frac{\partial \partial}{\partial t}=\frac{\partial^{3}}{\partial v^{2}}(D \theta)-\frac{\partial}{\partial v}(\beta v \rho)
$$

where, bauk-tracking thru calculation:

Some observations and discussion:
\rightarrow F.P. E. recovered in
\rightarrow weak interaction limit exp []$\approx I$
\rightarrow Markovian lime it.
of non-Markovian master equation.
Indicates how incorporate / treat more complex physical problem
\rightarrow physical ideari

$$
\omega_{0}^{2}=\frac{K}{M} \ll \omega_{i}^{2}
$$

time scale seperstion
only only
\rightarrow major assumptions

- chaos/ stocasticity. "thermal Sluitn. analogy" $\} \Rightarrow$ imeversibility
-

p mathematically,

$$
\begin{aligned}
& D_{\text {eff }}=\frac{k}{M} \Phi(0) \cdot\left\langle v^{2}\right\rangle \\
& \Phi(0)=\lim _{z \rightarrow 0} \int_{0}^{\infty} d z 0^{-z t} \frac{\left\langle\Delta x_{0} d x_{0}(t)\right\rangle_{e q}}{\left\langle d x(0)^{2}\right\rangle_{\text {eq }}}
\end{aligned}
$$

Lie. Laplace trans form of correl afion function determines all
\Rightarrow essence of memory hemal formalism 1
some questions:
\rightarrow whet if wo keep higher order ofuff? answer: Daff will be renormalized

$$
\frac{K_{1}}{M} \Phi(0)=\gamma_{v} \Rightarrow \gamma_{v}+\delta \gamma_{v}
$$

friction
ie consider simple pase

$$
\begin{aligned}
\Phi(t)=\frac{\left\langle\delta x_{0} \delta x_{0}(t)\right\rangle}{\left\langle\delta x_{0}^{2}\right\rangle}= & e^{-\gamma_{0} t} \\
& \text { usual assumed form }
\end{aligned}
$$

hen: \rightarrow lowest order: $\quad \gamma_{v}=\frac{K / M}{\gamma_{c}}$

$$
\rightarrow \Delta \gamma_{v}=\frac{(K / M)^{2}}{\gamma_{0}^{3}} \Rightarrow \text { impact of }_{\text {stronger cisterotions }}
$$

etc.
essence is random coupling!
\rightarrow What's left out?

- time scale separation arbitrary scaling effed
- essence of Ewanzig - Mori formalism is projection of variables onto per. fast
che.

$$
\underline{P}=p_{\varepsilon \varepsilon}(b) \int d b
$$

but slow variables can induce adiabatic variation is fast variables
ie. suggests bact-tracts: instead of adiabatic elimination, allow adiabatic evolution of scales on stow fast time scale such that © near' Po (ier for fast $C_{e} \rightarrow$ fluid equations)

