Lecture 4: probability calculus and the central limit theorem

distribution functions:

We are often interested in distributions that have some kind of localization (because why would we be interested if they didn't?)

Suppose we want to summarize $p(x)$ by a single number a, its "value". Let's find the value a that minimizes the mean-square discrepancy of the "typical" value x :

distribution functions:

Recall expectation notation:
\langle anything $\rangle \equiv \int_{x}$ (anything) $p(x) d x$
i.e., the weighted average of "anything", weighted by the probable values of x. Expectation is linear over "anything" (sums, constants times, etc.).

$$
\begin{aligned}
\operatorname{minimize}: \quad \Delta^{2} & \equiv\left\langle(x-a)^{2}\right\rangle=\left\langle x^{2}-2 a x+a^{2}\right\rangle \\
& =\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)+(\langle x\rangle-a)^{2}
\end{aligned}
$$

This is the variance $\operatorname{Var}(\mathrm{x})$,
but all we care about here is that it doesn't depend on a.
(in physics this is called the "parallel axis theorem")

The minimum is obviously $a=\langle x\rangle$. (Take derivative wrt a and set to zero if you like mechanical calculations.)

distribution functions:

Why mean-square? Why not mean-absolute? Try it!

$$
\begin{aligned}
\Delta & =\langle | x-a| \rangle=\int_{-\infty}^{\infty}|x-a| p(x) d x \\
& =\int_{-\infty}^{a}(a-x) p(x) d x+\int_{a}^{\infty}(x-a) p(x) d x
\end{aligned}
$$

So,

$$
\begin{aligned}
0 & =\frac{d \Delta}{d a}=\int_{-\infty}^{a} p(x) d x+0-\int_{a}^{\infty} p(x) d x+0 \\
& \int_{-\infty}^{a} p(x) d x=\int_{a}^{\infty} p(x) d x=\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow a \text { is the median value }
$$

Mean and median are both "measures of central tendency".

distribution functions:

Higher moments, centered moments are conventionally defined by

$$
\begin{aligned}
& \mu_{i} \equiv\left\langle x^{i}\right\rangle=\int x^{i} p(x) d x \\
& M_{i} \equiv\left\langle(x-\langle x\rangle)^{i}\right\rangle=\int(x-\langle x\rangle)^{i} p(x) d x
\end{aligned}
$$

The centered second moment M_{2}, the variance, is by far most useful

$$
\begin{aligned}
& M_{2} \equiv \operatorname{Var}(x) \equiv\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} \\
& \sigma(x) \equiv \sqrt{\operatorname{Var}(x)} \longleftarrow \text { "standard deviation" summarizes a distribution's half-width } \\
& \text { (r.m.s. deviation from the mean) }
\end{aligned}
$$

Third and fourth moments also have "names"

But generally wise to be cautious about using high moments. Otherwise perfectly good distributions don't have them at all (divergent). And (related) it can take a lot of data to measure them accurately.

distribution functions:

Let us review some standard (i.e., frequently occurring) distributions:

The "bell shaped" ones differ qualitatively by their tail behaviors:

distribution functions:

Normal (Gaussian) has the fastest falling tails:

$$
\begin{aligned}
x & \sim \mathrm{~N}(\mu, \sigma), \quad \sigma>0 \\
p(x) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left[\frac{x-\mu}{\sigma}\right]^{2}\right)
\end{aligned}
$$

Cauchy (aka Lorentzian) has the slowest falling tails:

$$
\begin{aligned}
x & \sim \operatorname{Cauchy}(\mu, \sigma), \quad \sigma>0 \\
p(x) & =\frac{1}{\pi \sigma}\left(1+\left[\frac{x-\mu}{\sigma}\right]^{2}\right)^{-1}
\end{aligned}
$$

Cauchy has area=1 (zeroth moment), but no defined mean or variance ($1^{\text {st }}$ and $2^{\text {nd }}$ moments divergent).

characteristic function:

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution is uniquely important. We need to understand where it does and doesn't apply.

The characteristic function of a distribution is its
Fourier transform.

$$
\phi_{X}(t) \equiv \int_{-\infty}^{\infty} e^{i t x} p_{X}(x) d x
$$

(Statisticians often use notational convention that X is a random variable, x its value, $p_{\chi}(x)$ its distribution.)

$$
\begin{aligned}
\phi_{X}(0) & =1 \\
\phi_{X}^{\prime}(0) & =\int i x p_{X}(x) d x=i \mu \\
-\phi_{X}^{\prime \prime}(0) & =\int x^{2} p_{X}(x) d x=\sigma^{2}+\mu^{2}
\end{aligned}
$$

So, the coefficients of the Taylor series expansion of the characteristic function are the (uncentered) moments.

$$
\phi_{\mathrm{Normal}}(t)=e^{i \mu t-\frac{1}{2} \sigma^{2} t^{2}}
$$

characteristic function:

Addition of independent r.v.'s:

$$
\begin{aligned}
\text { let } S & =X+Y \\
p_{S}(s) & =\int p_{X}(u) p_{Y}(s-u) d u \\
\phi_{S}(t) & =\phi_{X}(t) \phi_{Y}(t)
\end{aligned}
$$

Last line follows immediately from the Fourier convolution theorem. (In fact, it is the Fourier convolution theorem!)

distribution functions:

Proof of convolution theorem:

$$
\begin{aligned}
\phi_{X}(t) & \equiv \int_{-\infty}^{\infty} e^{i t x} p_{X}(x) d x \\
p_{X}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{X}(t) e^{-i t x} d t \\
p_{S}(s) & =\int_{-\infty}^{\infty} p_{X}(u) p_{Y}(s-u) d u \\
& =\int_{-\infty}^{\infty} p_{X}(u)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{Y}(t) e^{-i t(s-u)} d t\right] d u \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{Y}(t) e^{-i t s}\left[\int_{-\infty}^{\infty} p_{X}(u) e^{i t u} d u\right] d t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{Y}(t) \phi_{X}(t) e^{-i t s} d t
\end{aligned}
$$

So, $\quad \phi_{S}(t)=\phi_{Y}(t) \phi_{X}(t)$

distribution functions:

Mean and variance are additive over independent random variables:

$$
\overline{(x+y)}=\bar{x}+\bar{y} \quad \begin{aligned}
& \operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(y) \\
& \text { note "bar" notation, equivalent to <> }
\end{aligned}
$$

Certain combinations of higher moments are also additive. These are called semi-invariants.

$$
\begin{array}{cc}
I_{2}=M_{2} & I_{3}=M_{3} \quad I_{4}=M_{4}-3 M_{2}^{2} \\
I_{5}=M_{5}-10 M_{2} M_{3} & I_{6}=M_{6}-15 M_{2} M_{4}-10 M_{3}^{2}+30 M_{2}^{3}
\end{array}
$$

Skew and kurtosis are dimensionless combinations of semi-invariants

$$
\operatorname{Skew}(x)=I_{3} / I_{2}^{3 / 2} \quad \operatorname{Kurt}(x)=I_{4} / I_{2}^{2}
$$

A Gaussian has all of its semi-invariants higher than I_{2} equal to zero. A Poisson distribution has all of its semi-invariants equal to its mean.
characteristic function:

Scaling law for r.v.'s:

Scaling law for characteristic functions:

$$
\begin{aligned}
\phi_{a X}(t) & =\int e^{i t x} \underline{p_{a X}(x)} d x \\
& =\int e^{i t x} \frac{1}{a} p_{X}\left(\frac{x}{a}\right) d x \\
& =\int e^{i(a t)(x / a)} p_{X}\left(\frac{x}{a}\right) \frac{d x}{a} \\
& =\phi_{X}(a t)
\end{aligned}
$$

central limit theorem:

10,000 trials of 1,000 tosses

central limit theorem:

Let $\quad S=\frac{1}{N} \sum X_{i}=\sum \frac{X_{i}}{N}$ with $\left\langle X_{i}\right\rangle \equiv 0$
Can always subtract off the means, then add back later.
Then

$$
\begin{aligned}
\phi_{S}(t) & =\prod_{i} \phi_{X_{\mathrm{i}} / N}(t)=\prod_{i} \phi_{X_{\mathrm{i}}}\left(\frac{t}{N}\right) \\
& =\prod_{i}\left(1-\frac{1}{2} \sigma_{i}^{2} \frac{t^{2}}{N^{2}}+\cdots\right) \begin{array}{l}
\text { Whoal II better have a } \\
\text { convergent Taylor series } \\
\text { around zerol ((cauchy } \\
\text { doesn't, e.g.) }
\end{array} \\
& =\exp \left[\sum_{i} \ln \left(1-\frac{1}{2} \sigma_{i}^{2} \frac{t^{2}}{N^{2}}+\cdots\right)\right] \\
& \approx \exp \left[-\frac{1}{2}\left(\frac{1}{N^{2}} \sum_{i}^{\text {These terms decrease with }} \frac{\sigma_{i}^{2}}{\sigma_{i}}\right) t^{2}+\cdots\right]
\end{aligned}
$$

So, S is normally distributed

$$
p_{S}(\cdot) \sim \operatorname{Normal}\left(0, \frac{1}{N^{2}} \sum \sigma_{i}^{2}\right)
$$

central limit theorem:

CLT is usually stated about the sum of RVs, not the average, so

$$
p_{S}(\cdot) \sim \operatorname{Normal}\left(0, \frac{1}{N^{2}} \sum \sigma_{i}^{2}\right)
$$

Now, since

$$
N S=\sum X_{i} \quad \text { and } \quad \operatorname{Var}(N S)=N^{2} \operatorname{Var}(S)
$$

it follows that the simple sum of a large number of r.v.'s is normally distributed, with variance equal to the sum of the variances:

$$
p_{\sum X_{\mathrm{i}}}(\cdot) \sim \operatorname{Normal}\left(0, \sum \sigma_{i}^{2}\right)
$$

If N is large enough, and if the higher moments are well-enough behaved, and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but convergence to Normal is slow and/or highly nonuniform. (This can affect pvalues for tail tests, as we will soon see.)
central limit theorem:

10,000 trials of 1,000 tosses

central limit theorem:

Since Gaussians are so universal, let's learn estimate the parameters μ and σ of a Gaussian from a set of points drawn from it:

For now, we'll just find the maximum of the posterior distribution of (μ, σ), given some data, for a uniform prior. This is called "maximum a posteriori (MAP)" by Bayesians, and "maximum likelihood (MLE)" by frequentists.

The data is: $x_{i}, i=1, \ldots, N$
The statistical model is: $\quad P(\mathbf{x} \mid \mu, \sigma)=\prod_{i} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}}$
The posterior estimate is: $P(\mu, \sigma \mid \mathbf{x}) \propto \frac{1}{\sqrt{2 \pi} \sigma^{N}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left(x_{i}-\mu\right)^{2}} \times P(\mu, \sigma)^{\text {nifiorm }}$
Now find the MAP (MLE):

$$
\begin{aligned}
0 & =\frac{\partial P}{\partial \mu}=\frac{P}{\sigma^{3}}\left(\sum_{i} x_{i}-N \mu\right) \Rightarrow \mu=\frac{1}{N} \sum_{i} x_{i} \quad \begin{array}{l}
\text { Ha! The MAP mean is the sample } \\
\text { mean, the MAP variance is the } \\
\text { sample variance! }
\end{array} \\
0 & =\frac{\partial P}{\partial \sigma}=\frac{P}{\sigma^{4}}\left[-N \sigma^{2}+\sum_{i}\left(x_{i}-\mu\right)^{2}\right] \Rightarrow \sigma^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

